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Fig. 1. The system’s pipeline is composed by four components: 1) The wire detection, that exploits a self-trained multiple CNN triangulation for pose
estimation; 2) The wire grasp during which a tactile sensor is used together with MLP to classify the grasp; 3) The pose correction of the wire; 4) The
wire insertion into the terminal hole exploits the tactile sensor and a MLP trained to detect collisions.

Abstract— This paper reports the development of a manip-
ulation system for electric wires, implemented by means of a
commercial gripper installed on an industrial manipulator and
equipped with cameras and suitably designed tactile sensors.
The purpose of this system is the execution of wire insertion
on commercial electromechanical components. The synergy be-
tween computer vision and tactile sensing is necessary because,
in a real environment, the tight spaces very often prevent the
possibility to use the vision system, also when the same task
is performed by a human being. A novel technique to speed
up the generation of training datasets for Convolutional Neural
Networks (CNN) is proposed. Therefore, this technique is used
to train a CNN in order to detect small objects (like wire
terminals). Moreover, aiming to prevent faults during the task
and to interact with the environment safely, several machine
learning approaches are used to produce an affordable output
from the tactile sensor. The proposed approach shows how a
cheap sensor embedded with suitable intelligence can provide
information comparable to a more expensive force sensor.

Index Terms— Machine Learning, Robotic Vision, Tactile
Sensors, Dexterous Manipulation, Deformable Objects.

Note to Practitioners— This paper was motivated by the lack
of commercial solution for the automatic cabling of switchgears.
Existing approaches to this problem are in some way limited to
specific large scale products or simple layouts. This paper inves-
tigated a robust and flexible solution, based on the exploitation
of multiple sensors and machine learning algorithms, for wire
detection, grasping and connection. The proposed approach
is characterized by simple design and self-tuning capabilities,
and it can be easily employed on a wide range of switchgear
layouts thanks to the large workspace of the manipulator.
Experimental results show that the proposed system is able to
achieve a 95% success rate within a realistic admissible region.
In future research, we will integrate the proposed solution
with an electromechanical component localization module and
a terminal fastening system to evaluate the performance on the
real production line.

I. INTRODUCTION

Switchgears and control panels are basic components

of power generation, transformer and distribution stations,

commercial and institutional buildings, industrial plants and

automated factories, automatic machines and civil houses. In

the actual scenario, the switchgear wiring is mostly executed

by human operators because of the complex manipulation

tasks, the large variability of the design, usually character-

ized by highly-customized solutions and small lot or, more

frequently, single item production.

On the other hand, for series production of small-sized

switchgears, a couple of commercial solutions for automatic

wiring are available on the market. The SYNDY robotized

wiring tool [1] requires a relatively large space between

the components in the switchgear, mainly because of the

dimensions and the mobility requirements of the end effector.

It results that SYNDY is not suited to operate with a large

number of wires or with high component density, fact that

limits its applicability to the wiring of ceiling lamps. Another

solution is the Kiesling Averex wiring [2], but it can operate

only with fixed orientation of the wire and the screw, it

presents a limited workspace and requires the switchgear to

be in horizontal position.

Generally speaking, the wiring is composed by a sequence

of single wire connections. Each wire connection implies:

A) the localization in the switchgear of the components to

be connected, i.e. the points in which the two wire ends

will be placed (since their position is known with some

uncertainty);

B) first wire end connection;

C) wire routing inside the wire collector;

D) second wire end connection.

Step A), that is out of the scope of this paper, can be

executed once at the beginning of the whole process, while

the other steps from B) to D) must be repeated for all the

connections in the switchgear net list. Moreover, step B)

can be further decomposed in the following phases: 1) wire



localization; 2) wire grasping; 3) wire pose detection and

correction; 4) insertion into the terminal; 5) tightening of

the terminal screw (that can be achieved by a screwdriver

or is automatic depending on the terminal type); 6) wire

connection check. In particular, this paper deals with the

phases from 1) to 4), see Fig. 1 where the implemented task

sequence is depicted, while the following phases 5) and 6),

as well as step C) and D), will be object of future research.

In this paper, we suppose that the wires are prepared in

advance by a devoted automatic machine. However, even if

this paper focuses on a portion of the complete switchgear

cabling, the implementation is carried out taking the whole

process in mind. Even a single wire connection is really a

challenging task for a robotic system, since it can be seen as

a sub-millimeter precision peg-in-hole problem involving the

manipulation of a deformable object, i.e. the wire. Moreover,

the terminal position, or connection point, is usually known

only approximately since the components are mounted on

DIN rails, therefore a certain mobility along the rail is

possible. The terminals are also difficult to see and to access,

due to their location on both sides of the electromechanical

components, the proximity of other components and wire

collectors, and the presence of previously connected wires.

These issues limit the applicability of vision systems to

guide and control the wiring process. Therefore, in the

system implementation we considered the requirements and

the constraints imposed by the whole process, the space

limitations imposed by the specific application, as well as

the overall system cost and complexity.

In [3], preliminary results obtained within the WIRES

experiment are presented. The project aims to automatize

the switchgear wiring process. This objective is pursued

by adopting industrial manipulators and properly design

hardware and software tools. In [4] the design of the tactile

sensor developed for this experiment is presented. This

sensor is able to estimate both position and orientation of

the grasped wire with respect to a reference frame placed

at the center of the tactile sensor. In this work, the problem

of wire grasping and the insertion of one wire end into a

component terminal is addressed, supposing that the position

of the terminal is known. To this end, we will present,

for the first time to the best of our knowledge, how the

vision and tactile feedback are complementary exploited and

combined with several machine learning approaches to solve

the problem of wire detection, manipulation and insertion

into the terminal hole. It is worth mentioning that, even if

no occlusion given by other wires or components is present

in the experimental setup, the gripper adopted to grasp the

wire prevents by itself the usage of a vision system to provide

a close view of the terminal from front. It will be shown

that the features and characteristics of the vision and tactile

sensors are complementary for the task at hand. As a matter

of fact, they both provide information that are strictly needed

to achieve the required precision. This is due by the fact

that, in a realistic scenario, the tight spaces between wires

and components prevent the use of the vision system, in

particular during the final part of the wire insertion, also

when the same task is performed by a human being. It

results that, in most of the practical cases, when a sensor

can generate useful information, the other can not and vice

versa. In the insertion phase, the tactile sensor can be used

to quantify a collision, in order to evaluate if the insertion

is correctly achieved. Moreover, in this work a novel tech-

nique to automatize and speed up the generation of training

datasets is presented. This technique is exploited to train

a Convolutional Neural Network (CNN) in order to detect

small objects (like wire terminals), and a new method to

estimate their 3D positions using multiple CNN predictions

is shown. Additionally, Multi-Layer Perceptrons (MLPs),

Random Forests (RFs) and Support Vector Machines (SVMs)

are either trained to produce an affordable output from

the tactile sensor to evaluate the correctness of the wire

insertion task and detect faults. The application considered

in this paper implies several issues related to micro-assembly

processes, manipulation of deformable objects, occlusion in

computer vision systems, tactile sensing, vision-tactile fusion

and machine learning. Therefore, this application is of great

interest for the overall robotic community.

The paper is organized as follows. Section II reports a

summary of the previous researches carried out by other

authors in this field. Section III introduces an high-level

vision of the wire insertion problem. Section IV presents

the hardware setup exploited during experiments. Section V

describes in detail the components of the system pipeline.

Finally, Sec. VI reports the set of experimental tasks that

show the effectiveness of the proposed approach.

II. RELATED WORKS

A number of previous research activities can be found

in literature about the modeling, the manipulation and the

visual tracking of Deformable Linear Objects (DLOs) such

as electric wires, demonstrating the large interest in this field.

In [5] a method to calculate the force acting on a purely-

elastic flexible wire from its shape observed by stereo vision

is developed. The same authors presented a method to insert

a purely-elastic flexible wire into a hole observing the shape

of the wire by stereo vision in [6]. The task of picking up

cables from approximately known positions with an indus-

trial robot using two light barriers has also been investigated

in [7]. In [8], [9] the authors presented the static and the

dynamic modeling of DLOs based on differential geometry

coordinates, respectively. In [10] a path planning algorithm

for DLOs subject to manipulation constraints is presented.

In [11] a motion planner for manipulating DLOs and tying

knots using two cooperating robotic arms is developed. In

[12] a DLOs model based on mechanically rigorous and

geometrically exact dynamic splines including both elastic

and plastic deformation is described. In [13] a modeling of

electric cables based on the visual measurement of their static

and dynamic deformation is performed for cable insertion

in electric and automotive industries. In [14] an algorithm

for tracking DLOs based on a probabilistic generative model

that incorporates observation and the physical properties of

the tracked object is presented. In [15] the manipulation



planning problem of a DLO handled by a gripper at one

of its extremities in free or contact space is considered. In

[16], the robot is guided to grasp the wire on the clamp cover

adopting a SIFT (Scale-Invariant Feature Transform) based

algorithm. The problem of assembling flexible wire harness

into instrument panel frame is addressed in [17] by making

use of vision sensors and markers attached on the surfaces

of the clamp.

Tactile sensing and vision are two synergistic modalities

for manipulation. Vision systems provide rich information

regarding unknown objects, in fact they became one of the

main feedback source in robotics. However, they are often

difficult to be applicable when the objects are occluded or

visually confused. Recent progress in artificial touch sensing

hardware allowed the robotics community to endow robots

with touch capabilities and to show that tactile sensing can be

efficiently employed in robot grasping. In order to deal with

complex tactile information, machine learning algorithms

have been widely used to address the classification problem.

A grasp detection deep network is proposed in [18] to detect

the grasp rectangle from the visual image with a new metric

to assess the stability of the grasp. In [19] a novel method

to systematically solve the visual-tactile fusion in object

recognition tasks using multivariate time series is developed.

In [20] visual modality is used to aid learning tactile modality

during the training phase. In [21] the authors propose a cross-

modal approach based on the use of visuo-tactile data for

object recognition. A comparative analysis of classification

algorithms for tactile sensors mounted on humanoid hand is

presented in [22]. In [23] they present a robotic agent that

learns to derive object grasp stability from touch. Classifica-

tion is conducted through kernel logistic regression, applied

to a low- dimensional approximation of the tactile data read

from the robots hand. The implementation of tactile object

identification and feature extraction techniques is discussed

in [24], where two methods of tactile data interpretation are

combined on data acquired during a single unplanned grasp:

a random forests classifier and parametric object property

estimators.

In this paper, our aim is to combine vision, tactile sensing

and machine learning to manipulate electric wires and insert

them into electromechanical components, taking into account

the real manufacturing application constraints. This work

will be part of an automatic switchgear wiring system under

development. Previous approaches to similar manufacturing

problems are mainly based on vision. The strength of the

approach presented in this paper relies mainly on the syn-

ergistic combination of vision and tactile data to overcome

the application constraints. The way how to combine these

sensors has been selected taking into account that there are

working conditions in which one of these two sensors can be

ineffective or unreliable. Moreover, the whole development

is performed trying to reduce complexity and cost of the final

system.

This manufacturing application is really relevant in the

industrial scenario, since the switchgear wiring still today

represents a completely manual operation, that in turn results

the major cost in the production of these highly customized

items. Moreover, the interest in this field is confirmed by

the number of literature works and companies involved.

The proposed work is relevant because first there is no

literature dealing with the overall task sequence, secondly

it investigates a novel solution based on the combination of

different technologies, i.e. vision, tactile sensing and machine

learning to solve a problem that remains unsolved in the

actual industrial practice.

The assumptions considered in this work are the following:

• only a limited part of the complete wiring task is taken

into account to simplify the analysis;

• since the system is designed for an industrial setting, we

suppose to operate in a partially structured environment;

• the resolution of the vision system and tactile sensor is

somehow limited by the use of low-cost devices.

Besides this latter point is a benefit form the point of

view of the overall system cost, resolution problems are

mitigated by the introduction on suitable techniques, such

as the exploitation of multiple views and machine learning,

to achieve the desired task success rate.

III. TASK DESCRIPTION

The task considered in this work consists in the insertion

of an electric wire terminal in a hole that emulates the

electromechanical component connector. Since it is really

difficult to evaluate the correct alignment and the contact of

the wire terminal using a real electromechanical component,

an emulation body composed by a beam with a 5 mm pass-

through hole has been used to ease the evaluation of the

system performance without affecting results. With reference

to Fig. 1, the task to be executed by the robot is composed

by the following operations: 1) Detect the pose of the wire

terminal using vision feedback in order to grasp it; 2) grasp

the wire and validate the grasp through tactile feedback to

evaluate if the following steps can be correctly executed; 3)

Estimate the pose of the wire end w.r.t. the gripper with the

required precision using vision feedback in order to correctly

execute the insertion task; 4) Execute the wire insertion into

the terminal hole detecting possible collisions by means of

tactile feedback.

In the 2nd frame of Fig. 1 the blind icon is shown to em-

phasize that the vision system can’t be used for monitoring

the scene in this phase since the grasp, obviously, needs to

be monitored by a device able to detect the physical contact

with the object, e.g. the tactile sensor. The same holds for

the 4th frame, showing the wire insertion, since in the real

scenario the limited space available and the presence of other

components and wires in the neighborhood of the working

region prevent the scene observation by the camera, because

both of occlusion problems and the impossibility of placing

the camera close to the fingers. It results that the designed

tactile sensor only fits with the available space in the region

close to the wire connection point in the application scenario.

This assumption is clearly not true in our experimental setup

created ad-hoc to evaluate the effectiveness of the system,
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Fig. 2. The end effector used during the experiments. The Microsoft
RGB Camera (referred as side Camera) is mounted on the end effector
for evaluation purposes. In the real scenario the side Camera will be fixed
to ground, to reduce the end-effector encumbrance.

but we selected to not use the vision during the insertion to

recreate the real working conditions.

IV. THE EXPERIMENTAL SETUP

The hardware setup used during the experiments here

described is shown in Fig. 2. The system is composed by

an industrial manipulator, a COMAU Smart Six, equipped

with a commercial gripper, a Schunk PG70 electric parallel

gripper and an ATI SI-130-10 Force Torque (FT) sensor

mounted on the wrist (between the robot interface and the

gripper). Moreover, an Asus Xtion 3D camera with VGA

resolution is mounted on the one gripper side pointing

downward, to provide a top view of the scene (namely, the

hand camera in the following). The 3D feature of this camera

is useful for the reconstruction of the component location

and encumbrance in the switchgear (these problems are not

treated in this paper), but the 3D resolution is too poor for the

purpose of wire terminal detection and grasping. Therefore,

a computer vision algorithm has been developed, as reported

in Sec. V-B, for reconstructing the 3D pose of the wire using

multiple RGB images only provided by this camera.

On the other hand, to provide a close view of the task

execution, an additional Microsoft 2D LifeCam camera with

HD resolution is mounted on one gripper side (namely,

the side camera in the following). In the experiments here

reported, this camera was used also to estimate the wire pose

after the grasp, as detailed in Sec. V-D. In normal conditions,

this operation is performed by a fixed camera placed in a

known position reachable by the robot to reduce the end-

effector encumbrance.

Optoelectronic components Rigid grid

Flat deformable layerResistorsA/D converter

13 mm

15 mm

3
6

 m
m

PCB

Fig. 3. Layout of the tactile sensor PCB on the left and pictures of the
sensor components on the right.

A custom tactile sensor [3], [4] has been developed on the

base of the one presented in [25] for the task here considered,

see Fig. 3, and it has been mounted on one gripper’s finger to

provide a tactile image of the grasped objects, e.g. the wire.

It is constituted by 16 taxels organized as a 4×4 matrix and a

deformable layer with a flat shape. Each taxel is constituted

by a single SMT photo-reflector integrating both an infrared

LED and a PhotoTransistor (PT). When a contact with the

deformable layer occurs, it produces vertical displacements

of the reflective surfaces of the cells for all taxels. These

displacements produce variations of the reflected light and,

accordingly, of the photocurrents measured by the PTs. The

taxel signals are acquired by a 16 channels ADC with Serial

Peripheral Interface (SPI). The mechanical properties of the

silicone cap determine the maximum load applicable to

the sensor before cell saturation and, as a consequence, its

sensitivity. The implemented sensor uses a shore hardness

of 26A, resulting in a maximum applicable force up to

30N, with a sensitivity of about 0.3N. An Arduino-based

µcontroller board is then used to send the data to the control

PC via USB connection.

The control system has been developed exploiting the

ROS middleware to allow the communication between the

different parts (sensors, robot, gripper, cameras, etc.) that

compose the experimental setup.

Despite the gripper previously described is a preliminary

solution, the end effector that will be adopted for the im-

plementation of the whole cabling process is much more

complex, see Fig. 4. The whole end effector will integrate an

FT sensor at the wrist interface, a 3D camera providing top

view of the scene, an computer-controlled screwdriver (for

the execution of phase 5)) and a 4-DOFs gripper (gripper

opening and finger x-y-z position w.r.t. to the screwdriver

tip) equipped with the aforementioned tactile sensor. In the

final process implementation, the robot arm will be used to

position the screwdriver tip on the terminal screw, and the

FT sensor will be used to control the contact with the screw

during the tightening. Therefore, the end effector will be held

in an almost fixed position, just the screw motion during

the tightening will be compensated. Consequently, the wire
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Fig. 4. CAD of the final end effector developed for the WIRES project.

insertion (phase 4)) will be performed by using the gripper

DOFs only. It results that the FT sensor cannot be used

during the insertion and for the tightening check, because

the magnitude of the force generated by the wire contact

during phase 4) is much lower than the one generated by

the contact between the screwdriver and the screw, making

the former indistinguishable. In this paper, the FT sensor

has been used as ground through to train the tactile sensor

integrated into the fingertip, as described in Sec. V-E.

Moreover, while the vision system can be easily applied

during phase 1) and 3), it would be complex to adopt vision

during phase 4) and 6) due to occlusion problems. In fact,

several wires and components are usually present in the same

scene, as shown in Fig. 5. Moreover, even if a camera will be

mounted in the end effector, the field of view of this camera

will provide a top view of the cables and components, for the

execution of step A) and phase 1), while during phase 3) the

point of view of this camera will be ineffective. Additionally,

during phase 4) the wire insertion point (i.e. the terminal)

will likely be occluded by the component itself (since the

terminals are usually located on two opposite sides of the

component). The use of a stereo or 3D camera for phase

3) was discarded because, due to the relative position of the

wire tip and the camera, the vision system must be explicitly

designed for this phase to achieve the required precision and

range of view. It follows that the same camera cannot be used

for other operations such as step A) that requires a much

larger vision field. Therefore, we opted for a 3D camera

providing a top view of the scene with a vision field selected

mainly for step A). In the final setup, a second 2D fixed

camera will be placed close to the wire picking point (and

not mounted on the end effector as in Fig. 2). After phase

2), the robot will place the gripper in front this fixed camera

to obtain a lateral view of the wire to execute phase 3). This

Fig. 5. Different views of a switchgear during the assembly. The cables
and components, often very similar and of the same color, make complex
the detection of a specific terminal or wire from the scene.

solution do not increase the end-effector complexity, can be

easily implemented since no space restrictions are present in

the neighborhood of the wire picking region, is cheap and

provide the better point of view to correct the most likely

wire misalignment, i.e. in the gripper grasping plane.

V. SYSTEM PIPELINE

In this section, the self-labeling of the vision system

training dataset by the robot will be introduced first, that rep-

resents the main novelty of the developed system. Secondly,

the whole task execution pipeline as depicted in Fig. 1 will

be presented. Each of the four modules will be described in

detail, highlighting the adopted machine learning algorithms

along with the related training techniques.

An overview of the pipeline is depicted in Fig. 6. In this

picture the system is presented with the flowchart metaphor

to understand better the dataflow and the interconnections

between subsystems. It should be noted that the self-training

procedure, described in Sec. V-A, is not present because

technically, as described later, it is functionally equal to

the procedure described in Sec. V-B and, moreover, it is an

offline procedure not strictly related to the online pipeline.

A. CNN Self-Training for Wire Terminal Detection

The major novelty of the vision system here developed

is the self-learning procedure exploited by the robot to train

the CNN for wire terminals recognition. A popular approach

introduced in Mitash et. al. [27], that uses synthetic data

(physics emulation), is not suitable for deformable objects

like wires. Also the approach proposed by Georgakis et. al.
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Fig. 6. The overall Pipeline of our System resumed as an High Level Flowchart. The system is split into 3 sub-systems to facilitate its representation
and labeled edges are depicted to understand better the dataflow. Each subsystem is described in detail in the related subsection: B-Detection in the Sec.
V-B; C-Grasp in the Sec. V-C; D-Correction in the Sec. V-D and E-Insertion in the Sec. V-E (the latter is not represented as a detailed flowchart module
because its simple nature, and furthermore it’s the topic of a future research. The notation m ∈ R

h×w×3 , introduced in this graph, represents a generic
3-channel image (e.g. an RGB image).

[28] cannot scale enough to industrial environment due to

the lack of public datasets outside the service robotics field.

In our approach, a CNN [26] was trained to detect square-

regions around the wire end in RGB images gathered by the

hand camera (the camera mounted on the end effector). The

adopted CNN also discerns good terminals from bad ones

(e.g. bad-crimped ferrules). This CNN differs from a classical

Region Based CNN (R-CNN) [29] because reframes the

problem of detecting a square region and, at the same time,

classifies the object within as a unique regression problem.

The CNN is not trained from scratch, instead a Fine-

Tuning procedure is performed starting from the original

network [26] pre-trained over the ImageNet[30] dataset. We

trained the network for 100000 steps with a batch size of 24.

In Fig. 7(a) an example of self-labeled entries is presented.

Our experimental dataset contains over 5000 RGB images,

built in 4 hours (0.5 hours of human work + 3.5 hours of

robot work). Considering an average time of 1 hour per

100 images, (estimated during our observations), the same

labeling procedure done by hand would last at least 50 hours.

With the term labeled image, we mean an image with square

regions drawn around target objects used to train a CNN to

detect the same object/region in new unseen pictures. As

for other machine learning approaches, also in this case the

larger is the number of training samples, the better is the

CNN recognition rate.

The solution here proposed exploits the inverse technique

shown in Fig. 8, that will be detailed in the next subsection.

Given the position pn of the wire terminals in homogeneous

coordinates w.r.t. the robot reference frame, e.g. through

measurement or by touching them with the end effector (this

is the only human intervention), for every picture taken with

the hand camera, it is possible to compute the projection yn
of pn in the image coordinates using the pinhole camera

equation

yn = A
[

Rcam tcam

]

pn, A =





fx 0 cx
0 fy cy
0 0 1



 (1)

where A represents the intrinsic camera matrix (a camera

dependent parameter). The matrix
[

Rcam tcam

]

∈ R
3×4 rep-

resents the poses of the hand camera in the world coordinate

frame (i.e. the camera extrinsic parameters). This matrix can

be computed given by the position of the robot end effector

(provided by the robot) and the relative position between

the end effector and the hand camera (known from the end-

effector design). In this way, given a scene with cables in

known positions, it is possible to collect an arbitrary number

of self-labeled training images just moving the hand camera

around using the robot.

The outcome of this CNN is a set of rectangular frames,

i.e. the ”predictions”, identified by both their 2D center

coordinates x, y in the image plane, width w and height h,

along with a label l identifying good (l = 1) or bad terminals

(l = 0).

The Fig. 7(b) shows Precision-Recall curves for the object

detector used during experiments (YOLO [26]). The mean

Average Precision (mAP) for the overall detection task is

0.854, with a 0.88 mAP for wire terminals and 0.77 mAP

for defective ferrules. This precision gap is justified on the

grounds that a wire terminal is higher in visual cues w.r.t. a

simple defective ferrule. Considering that:

• the human intervention takes only 30 minutes;

• this labeling procedure needs to be repeated whenever

the environmental conditions change or a new class of

Wire Terminals is provided;

• in an industrial setting, the environmental conditions can

be controlled and maintained fairly constant;
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(a) A couple of self-labeled random frames. This procedure generates more
than 5000 labeled images in approximately 4 hours. The same labeling
task if had been entrusted to a distributed service like Amazon Mechanical

Turk, minimizing user rewards, it would cost around 1000$. Our labeling
procedure trains the network to distinguish between the wire terminals
(Class1=C1) and defective ferrules, or other resembling things (Class2=C2).
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(b) Precision-Recall curves of the YOLO Object Detector ([26]) varying the
output threshold. The mean average precision is 0.854.

Fig. 7. Qualitative and quantitative results for the self-labeling procedure.
The presented approach provides high performance with minimal human
intervention.

• just two classes of wire terminals are used in the actual

industrial production;

the overall performance represents a suitable trade-off be-

tween functionality of the automatic system and required

operator time. However, the proposed approach allows to

easily generate training datasets in an extremely wide set of

working conditions, far beyond the industrial scenario.

B. Wire Detection through CNN

It is worth mentioning that, in the real scenario, the

wires to be connected into the switchgear will be produced

and stored in a known region by an dedicated machine.

Therefore, we can assume that the wires are arranged on a

plane in such a way the gripper can grasp each wire without

colliding with other wires or the environment. However, due

to possible wire bends, the robot needs to locate the wire

terminal and estimate its pose with sufficient precision to

plan a correct grasp by using the hand camera.

This module exploits the output of the CNN described

in the previous section to estimated the wire terminal 3D

location in each image provided by the hand camera. This

procedure is needed since the 3D hand camera resolution

is not sufficient to achieve the desired wire grasp success

rate. Thus, we need to reconstruct the 3D position of the

target object, in this case the wire terminal, only exploiting

multiple 2D information provided by the CNN. This is the

1

2

3

R-CNN Detection

Detection Center

Ray From

Detection Center

3D Simulation

ferrule

ferrule

ferrule

Fig. 8. Depth estimation through multiple CNN detections. Three images
were captured from the camera poses C{1,2,3} respectively, obtaining 3
different square regions through the “predictions”. By projecting the rays
r{1,2,3} passing through each region’s center yc{1,2,3} , the wire terminal
pw is found. Conversely, knowing the wire terminal position pw in the robot
coordinate system and moving the hand camera using the robot, images from
an arbitrary number of known camera poses Cn can be collected. Therefore,
pw can be projected into the images coordinates ŷcn, generating an arbitrary
number of self-labeled images for the CNN training.

well-known technique called Structure From Motion (SFM)

[31], which exploits the triangulation algorithm to reconstruct

the 3D coordinates of a 2D feature seen from multiple known

vantage points. In the classical SFM approach, as well as in

SLAM systems, the camera pose is computed simultaneously

to the reconstruction phase. Unlike these approaches, we rely

on the technique described in [32]. This technique exploits

the robot high repeatability, along with a precise hand camera

calibration, to compute in a closed form the 6-DOF pose

of the hand camera. Theoretically, if we know the exact

homogeneous coordinate yn of our target object in the image

In, two viewpoints only are needed to obtain a suitable

triangulation result. However, in our case only a coarse

region around our target terminal is available, as depicted

in Fig. 8. If the center of the square-region is chosen as 2D

reference feature, a non-perfect overlapping with the tracked

object center is obtained (this error strictly depends upon

CNN architecture and is not treated in this work). Therefore,

more vantage points are needed to achieve a more accurate

3D reconstruction. For each vantage point, a ray rn can be

computed, i.e. a unit vector in the camera reference frame,

corresponding to the selected 2D feature:

rn =
∥

∥A−1yn
∥

∥ (2)

Together with the center of the camera frame cn, rn gener-

ates a 3D line ln = (rn, cn). In the camera reference frame,

cn is zero, otherwise it represents the position of the hand

camera in the world coordinate frame. Thus, given a set of

lines ln, the closest point p, i.e. the point with minimum

distance from all the lines (since a common intersection point

could not exist with real measurements) can be computed by

p = (
∑

i

I− r̂ir̂
T
i )

−1(
∑

i

(I− r̂ir̂
T
i ) ci)

where r̂i is any perpendicular unit vector to ri [33].
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Fig. 9. Wire terminal depth estimation error w.r.t. the number of images
collected from different viewpoints moving the hand camera by using
the robot. Three wire terminals, Red, Yellow and Blue, and two motion
directions, Parallel or Orthogonal to the plane on which the cable lies, were
tested. The Parallel movement provides better results since it minimizes the
likelihood between the rays, achieving an error lower than 1 cm after 10÷15
images.

In Fig. 9 the results of the proposed algorithm scanning

three different wires (in color and dimension) with different

camera movements (parallel and orthogonal to the image

plane) are presented. The achieved precision is approxi-

mately 1 cm collecting more than 20 images from different

viewpoints. At the same time our results show that the best

performance is achieved by moving the camera parallel to

image plane. These experiments are designed as a proof of

the approach correctness and not to evaluate best hyper-

parameters to reduce the error (i.e. the optimal distance

between camera and target object). To generalize the error

in the depth estimation, the Stereo Vision error formulated

by Gallip et. al [34] can be used

ǫz =
z2

b · f
ǫd

where ǫz is the depth estimation error, z is the distance,

f is the focal length of the camera, b is the baseline (e.g.

the distance between the two camera, in a classical stereo

vision setup, or the two vantage points in our system) and

ed is the disparity error. Since the 6-DOF camera pose can

be controlled by moving the manipulator, it is possible to

select the couple (z, b) to reduce the error ǫz according to

the circumstances. Now, we can define a generic function:

τ (y0, ..., yn, C0, ..., Cn) = p (3)

to compute the 3D position p, corresponding to the 2D

feature y using multiple images.

Unfortunately, just one 2D feature is not enough to infer

a 3D reference frame associated with the wire terminal.

Therefore, at least 2 features are needed to estimate a 3D

vector corresponding to the final part of the wire by means

of the eq. (3). In Fig. 10 the algorithm used to infer a 2D

reference frame Hw of the wire terminal is shown starting

from a square region of the image, in a nutshell: starting from

the image 1) an adaptive threshold is applied to the target

region obtaining in 2) a binary image enhancing wire’s pixels

and removing background; 3) the region is rotated w.r.t. a

custom reference frame H⊥ placed on the mid point of one

R-CNN
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Adaptive
Threshold

Line
Fitting

Circle
Crop

Fitted Line

Crop Area

Error = 30°

Error = 2°

Ground Truth
Rightmost
Projection

Wire-Frame
Intersection

1 2 3 4

Fig. 10. 2D wire terminal reference frame estimation. Each row represents
a pipeline iteration: 1) CNN detection over the wire image; 2) binary output
obtained by the adaptive threshold; 3) the detected region is rotated w.r.t.
H⊥ and the fitting line is superimposed; 4) the wire reference frame Hw1

is laid out. In the second row, another iteration is performed carving out a
circular region around yw1 and repeating the line fitting process.

side of the frame, chosen such that it is the nearest point

to the intersection of the wire with the square region; 4)

an orthogonal regression is applied to the binary image to

estimate the best fitting line L = {(x, y) | y = mx + q}
onto wire points; use the rightmost wire’s pixel projection

onto line as the center of Hw and the angle of L as its

orientation, i.e.

Hw = (yw, θw) = (yw, tan
−1(m)) (4)

In Fig. 10 a case in which the cable is strongly bent

is shown: this situation is useful to show the effectiveness

of the proposed algorithm but it is unlikely in a real sce-

nario. This sequence can be considered as the worst case,

in which the ferrule is almost orthogonal to the portion

of the cable intersecting the square region. The proposed

algorithm produces a quite inaccurate wire end pose after

the first iteration in this case. However, it is possible to

see how a second iteration applied to a cropped region

around the previous estimated center yw ensures that line

fitting is relative only to the terminal part and not to the

whole wire within the region. In Sec. V-D the way how

this algorithm is applied to the images provided by the side

camera to estimate the wire end reference frame for pose

correction will be further explained. Here, instead, we can

just take advantage of the center homogeneous coordinate

yw of Hw and use eq. (3) to estimate its 3D position

in the robot reference frame. Thus, from the pairs yw, yc,

where yc is the homogeneous coordinate of the center of the

aforementioned CNN detection, see Fig. 8, collected from

multiple viewpoints, we can compute their corresponding 3D

points

pw = τ(yw{1,...,n}, C{1,...,n}), pc = τ(yc{1,...,n}, C{1,...,n})

Thus, given the pair (pw,pc),

vwx
=

(pw − pc)

‖pw − pc)‖
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(a) The binary classifier distinguishes between Good (1) and Bad (0) grasps
using tactile sensor measurements.
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(b) Classification metrics over RF, MLP and SVC. MLP shows better results
and the lowest prediction time.

Fig. 11. The wire grasp classifier. This classifier was self-trained over
the outcomes of the system module described in Sec. V-D choosing – by
design – the thresholds that would affect the rest of the task (e.g. an escaping
terminal shorter than 1 cm is considered a bad grasp).

represents the unit vector oriented along the wire terminal

symmetry axis, while

vwz
= vwx

×±ux, ux = [1 0 0]T

indicates the forward direction w.r.t. the robot reference

frame. Therefore, the pose 0Tw of the wire end can be

defined as

0Tw =

[

vwx
vwx

× vwz
vwz

pc

0 0 0 1

]

=

[

Rw pc

0 1

]

(5)

Note that the orientation Rw is chosen by construction

considering that the wire terminal is symmetric along its vwx

axis. Thus, the vwz
component, can be arbitrarily chosen to

point toward the ceiling. To this end, the sign of ux is chosen

case-by-case to avoid that vwz
points to the floor instead. The

6-DOF pose of the wire 0Tw is then used by the robot in

order to perform the grasp.

C. Wire Grasp

In order to facilitate the insertion, the wire should be

grasped at the center of the gripper fingers. It is important

here to recall that, both in the real scenario and during the

experiments here reported, the wire lays on a plane with its

terminal section in the free space. This allows the gripper

to grasp the wire without colliding with other wires or the

environment.

Even though the module described in Sec. V-D can be

used to detect if the wire as been effectively grasped or

not, there will be no way to recover from a grasp failure

at this stage, mainly because it will be very challenging

to perform a re-grasp once the wire has been removed

from its docking position. For this reason, the outcome of

the wire pose detection module described in Sec. V-B is

exploited to train a classifier able to detect if the cable

is in a suitable pose w.r.t. the fingers from tactile sensor

data only. Therefore, the use of the tactile sensor allows

to evaluate immediately the grasp correctness, removing in

this way the possibility of reaching unrecoverable situations.

Three different machine learning algorithms for classification

are tested and compared: a Multi-layer Perceptron Neural

Network (MLP) with 3 hidden layers composed of 16,

8 and 2 neurons; a Random Forest (RF) with 200 trees;

and a Support Vector Classifier (SVC) with a radial basis

function kernel. Figure 11 shows some example of good

and bad grasps together with some classification benchmark

among different classifiers trained during our experiments.

The generic classifier is fed with xt ∈ IR16, representing

the 4×4 matrix of the tactile measurement, coupled with

ĥ ∈ {1, 0}, that is a boolean information representing if the

wire grasp configuration is within an admissible range or not

respectively. Taking into account eq. (4), the parameter ĥ is

defined as

ĥ =

{

1 lmin ≥ ‖⊥yw‖ ≥ lmax ∧ θ(⊥Hw) ≤ θmax

0 otherwise

where θ(⊥Hw) means the orientation of the 2D reference

frame ⊥Hw (i.e. is Hw expressed in H⊥) and θmax, lmin, lmax

are the parameters defining the terminal orientation/position

admissible range with respect to the fingers. The results

shown in Fig. 11(b) were obtained with a dataset of over

200 grasp samples. The best performance is provided by the

MLP algorithm. However, since the purpose of this classifier

is to ensure that bad grasps are detected, the objective is

to maximize precision and not recall. Therefore, any of the

evaluated classifiers can be used for this problem because all

reach precision equal to 1 in the precision-recall curve. In

case of bad grasp is detected, the gripper is retracted without

removing the wire from its docking, and the procedure

restarts from the wire pose detection. Increasing the number

of viewpoints can be used in this case to possibly reduce the

wire pose estimation error.

D. Wire Pose Correction

In this stage of the pipeline, the system aims to estimate

the pose of the wire w.r.t. the gripper by means of the side

camera framing laterally the fingers, as depicted in Fig. 12.

This problem is a simplification of the one seen in the

Sec. V-B. Indeed, here the pose of the side camera eeTcam

w.r.t to the gripper is known by construction. Therefore, the

pose of the side camera in world coordinates can be easily

computed as 0Tcam = 0Tee
eeTcam, where 0Tee is the actual

forward kinematics solution. In case a fixed camera is used

to that purpose, the camera position 0Tcam is known and

the camera position w.r.t. the end effector eeTcam can be

compute inverting the previous formula. A mandatory step

of this module is to calibrate correctly the pose of the side

camera 0Tcam in the robot coordinate system. To perform

a correct extrinsic calibration, the method seen in [32] is

exploited by means of an Augmented Reality marker [35]

printed in a known pose w.r.t. the fingers of the gripper.

The marker attached to the back side of finger is visible in

Fig. 12. This approach allows to calibrate the side camera

pose on-line, enabling to use a moving camera instead of a

fixed one (e.g. camera mounted on another robot).
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Fig. 12. Estimation of the wire terminal pose after grasp. The flattest part
of the finger contains the Augmented Reality Marker used to calibrate the
camera 6-DOF pose related to the robot reference frame.

By exploiting the knowledge of the camera and the gripper

position, the distance of the grasp plane (i.e. the plane on

which the wire lies after grasp) can be computed in analytical

form as dw = campzee
, where campzee

is the z component

of the translation part of camTee. Then, given the depth dw
of the image pixels, the conversion from homogeneous to

3D coordinates (in the camera reference system) can be

computed as

π(y) = π(
[

u v 1
]T

) = p = dw

[

(v−cx)
fx

(u−cy)
fy

1
]T

(6)

where y =
[

u v 1
]T

are the homogeneous coordinates

of a generic pixel in the 2D image, p is the corresponding

3D point, cx, cy , fx and fy are the parameters of the camera

matrix A. Thus, the systems exploits the same algorithm seen

in Sec. V-B (see Fig. 10). The only difference is that, in this

case, the reference frame H⊥ is chosen to be as close as

possible to the fingers’ center. The whole procedure is shown

in Fig. 12. Hence, given the position of the wire terminal

w.r.t. the end effector eeTw, the wire terminal position in the

world coordinates is 0Tw = 0Tee
eeTw.

In Fig. 13 the error rate on the 2D wire pose estimation

after the grasp varying the tilt of the cable is reported. In

Fig. 13(b) we can see how, choosing a desired crop size e.g.

between 1 and 2, the estimation error is under 5 pixel for

the position and 5 deg for the orientation (the dotted black

line) considering a wire tilt angle in the range ±45 deg (i.e.

for the first three curves in the legends).

Obviously, the error metric derived from the pixel error

is proportional to the distance between the camera and the

target object; for a distance of 0.1 m we have a conversion

factor of k = 0.0002, then 5 pixel = 0.0001 m error.

E. Wire Insertion

After the wire pose correction accomplished during the

previous stage, the insertion task can be executed by planning

a trajectory of the wire terminal frame 0Tw toward the

component hole. This task can be seen as a peg-in-hole

problem. In this phase, machine learning is exploited to

Estimated Orientation with
Tactile Sensor

Real Terminal
Orientation

Angle
Error

Tactile Sensor
2D View

(a) 2D view of the tactile sensor is superimposed over a real RGB image of a
grasped wire. The red dashed line represent the best fit provided by the tactile
sensor.
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(b) Estimation error varying the angle of the wire terminal w.r.t. the prediction
of the tactile sensor. The x-axis reports the crop radius normalized over the
ferrule size (in pixel).

Fig. 13. Detection of the pose of a grasped wire by the vision system.

infer from the tactile sensor data the same information

coming from the FT sensor. This is needed to detect impact

between cable terminal and the component, and eventually

to correct the wire trajectory during the insertion into the

terminal. Normal and tangential forces components can be

distinguished by the tactile sensor described in [25] since

they are related, respectively, to symmetric and asymmetric

variations of the measured pressure map. As a consequence,

during a collision, a strong correlation exists between the

direction of movement of the grasped object and the signal

pattern xt provided by the 4 × 4 taxels matrix. For this

reason, xt is exploited to train a regressor able to provide a

scalar continuous variable representing the magnitude of the

collision force in the tactile sensor plane.

Aiming at comparing alternative solutions, several regres-

sors are trained by the robot itself, collecting data during

many collisions between a flexible barrier and a grasped

terminal in known pose (as provided by the wire pose

correction module). These data are used to predict a real

value associated with the impact force and quantify the latter

in a continuous manner. In Fig. 14 the data used during the

training procedure involving tactile and force sensor data are

shown. From this figure, it is clear that the MLP produces

a suitable prediction of the contact force. Figure 14 shows

a Mean Square Error (MSE) and Dynamic Time Warping
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Fig. 14. Training and the Prediction phases of the collision detection
regressor. On the left plot, a couple of impacts measured by both the
force sensor (top) and the tactile sensor (bottom); the green curve is the
normalized output of the force sensor used as training reference. On the
right plot, the execution of the predictors RF (Random Forest), MLP (Multi-
Layer Perceptron) and SVR (Support Vector Regression) speculating about
terminal collisions. On the bottom table, the performance of the predictors
in terms of MSE (Mean Square Error) and DTW (Dynamic Time Warping
[36]).

(DTW) analysis [36] performed over the regressor. The

regressor is trained over 15000 samples collected during

controlled impacts with different cable diameters in different

angle w.r.t. the fingers. During training, the wrist-mounted

FT sensor is used as ground truth. From these results, it is

possible to conclude that the insertion task can be monitored

exploiting the tactile sensor only, without using a vision

system or a more expensive FT sensor.

A Regressor is adopted during the wire insertion to

quantify the collisions instead of a simple Classifier that

can simply detect it. By exploiting this approach, it is

possible to distinguish between actual collisions, as shown

in Fig. 16(a), from rubbing of the wire end inside the

component terminal hole, as reported in Fig. 16(b). While in

the former case the insertion task is stopped and completely

replanned, in the latter one the task is very likely to be

successfully accomplished. As a future development, we aim

at exploiting the regressor output as a feedback signal to

guide the insertion task. The aim is to increase the insertion

success rate even in case of lateral contact between the wire

end and the component terminal hole.

VI. EVALUATION OF THE INSERTION TASK SEQUENCE

In Fig. 15 a sequence showing the wire pose correction

and insertion into the component simulacrum hole is shown.

Starting from a common configuration (1), in the top se-

quence a wrong alignment is provided to the system at step

(2) to shown the effect of collisions. It results that the wire

terminal is not aligned with the reference line and, as a

consequence, with the hole at stage (3), causing a collision

at stage (4). In Fig. 16(a) the artificial wrong wire terminal

orientation, the robot x-axis position and the filtered output

of the MLP regressor over tactile sensor during the wire

pose correction and insertion task are reported for the wrong

sequence in Fig. 15. Looking in particular at the MLP output,

the effect of the collision measured by the tactile sensor

can be clearly seen in the final part of the insertion phase.

The bottom sequence, instead, shows how the vision system

allows to correctly align the wire terminal with the reference

line at step (2) and, consequently, with the insertion hole at

step (3). It results that the wire is correctly inserted into

the hole at step (4). Figure 16(b) shows the wire terminal

orientation, position and the MLP output over the tactile

sensor data during the wire pose correction and insertion

task reported in the good sequence of Fig. 15. After the

initial estimation of the wire terminal pose, the end-effector

orientation is corrected and the insertion task is executed:

during the insertion, the MLP output allows to detect a

contact between the wire terminal and the internal part of the

hole causing friction. The output of the MLP regressor is not

considered during the other phases to avoid false positive.

The performance of the overall pipeline were evaluated

by executing the whole task for about 30 times with a wide

range of working conditions. In Tab. I two subsets of 15 runs

executed with two wires which external diameter is 2 mm and

3.5 mm, respectively, are reported. In these tables, m is the

estimated wire terminal orientation, d denotes the distance

of the wire tip from the finger center and c is 1 in case of

successful insertion or 0 in case of failure. With reference to

Fig. 16

c =

{

0, Position > 0.65 ∧ MLP output > 0.5

1, Position > 0.65 ∧ MLP output < 0.5

where the position threshold means that the wire terminal

is inserted. The data reported in Tab. I include also exper-

iments performed in extreme conditions to test the system

robustness. It results a overall success rate of about 66%.

TABLE I

WIRE INSERTION RESULTS FOR A CABLE WITH EXTERNAL DIAMETER OF

2.0 MM ON THE LEFT AND 3.5 MM ON THE RIGHT. PARAMETERS m AND

d REFER TO INITIAL CONDITION OF THE WIRE W.R.T. THE GRIPPER,

WHILE c REFERS TO THE RESULT OF INSERTION WHERE c = 1 IS A

POSITIVE OUTCOME.

# m [deg] d [mm] c

1 -5.7 48.0 1
2 -1.0 32.5 1
3 4.0 38.9 1
4 -2.9 27.6 1
5 27.5 46.5 1
6 -32.6 40.6 0
7 -15.6 38.5 1
8 12.4 39.4 1
9 14.0 29.5 1
10 10.8 24.4 0
11 46.4 56.0 0
12 42.9 60.9 1
13 -28.4 45.3 0
14 41.3 65.9 0
15 33.0 39.0 1

# m [deg] d [mm] c

1 13.5 27.0 1
2 -20.3 30.0 1
3 4.6 29.4 1
4 4.0 30.0 1
5 -12.4 29.0 1
6 23.3 43.0 0
7 -19.8 41.0 1
8 0.6 40.0 1
9 24.2 48.0 0
10 21.8 52.0 1
11 52.9 56.0 0
12 7.4 35.6 1
13 47.5 52.0 1
14 58.6 95.0 0
15 44.7 69.2 0
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Fig. 15. Evaluation of the whole insertion task. Collision detection exploiting tactile feedback in case of wrong alignment (top sequence) and wire terminal
pose correction and insertion using the vision feedback (bottom sequence).
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(a) Collision detection using the tactile sensor.
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(b) Wire pose correction and insertion using the vision system.

Fig. 16. Execution of the wire pose correction and insertion tasks.

Looking at these results in the {m, d}-plane, as reported

in Fig. 17, it is possible to define an admissible working

region of m = ±20 deg and d ≤ 50mm containing almost

only successful wire insertions, 15 over 16, resulting in a

success rate of about 95%. This working region can be easily

addressed in the partially structured application scenario.

A qualitative evaluation for each building block of the

insertion pipeline is shown in the supplementary material.

VII. CONCLUSIONS

In this paper, the system developed to perform wire

detection, grasping and insertion into a component hole

using suitable combinations of vision and tactile feedback is

described. The synergy between cameras and tactile sensors

allows to deal with the typical issues in the switchgear wiring

scenario. Several machine learning algorithms are exploited
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Fig. 17. Evaluation of the admissible operating range of the developed
wire manipulation and insertion system.

for the system development, both for the vision and for

the tactile module. Moreover, suitable techniques are devel-

oped for the automatic generation of the training datasets,

allowing to significantly speed up the implementation of

the target application. Future activities will be devoted to

the integration with the component localization module and

the terminal fastening system to test the overall wiring task

execution pipeline. Moreover, the system evaluation in the

real production scenario will be evaluated.
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