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In this paper we consider a station-based electric car-sharing system which
allows one-way trips, and uses relocation to re-balance the vehicle distribution.
We adopt the point-of-view of a service provider, whose objective is to max-
imize the profit associated with the trips performed by users. We introduce
an exact relocation model for operating hours, and we explicitly consider the
consumption and recharge process of electric vehicles batteries. In addition,
the model is extended to the relocation operations to be performed at night,
namely when the system is not operating. We also describe two model-based
heuristics developed to solve the relocation model for operating hours on large-
scale systems. The paper is concluded by a set of computational experiments on
realistic data derived from an existing car-sharing system. The experiments in-
vestigate the scalability of the proposed model and highlight the circumstances
under which the relocation operations can improve the system performance.

Keywords: Electric Car-Sharing, Relocation, Operations, Mathematical Models, Heuristic
Algorithms, Computational Experiments.

1 Introduction

The first car-sharing system was introduced in Zurich, back in 1948. Nowadays, because of
the increasing concerns regarding oil supplies and sustainable transportation, car-sharing
systems are increasingly popular: sharing a car can help to lower the idle time of the
vehicle, thus achieving a reduction of both the emissions and the total number of vehicles
in cities (see Millard-Ball et al. [17]). On top of that, new technologies are making the
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1 Introduction

management of such systems easier: GPS allows to track vehicle movements, while on-line
tools enable to book cars in advance and monitor the real-time status of the system.

Car-sharing providers may offer two kinds of services, namely two-way and one-way
services. Serving only two-way trips means accepting only travels that end at the same spot
where they started. On the other hand, one-way trips may end everywhere else, within the
designated zone. Clearly, one-way trips may determine an unbalance in the distribution of
the vehicles, which needs to be addressed by the car-sharing provider through the possible
relocation of idle vehicles.

In electric car-sharing systems, only Electrical Vehicles (denoted as EVs in the following)
are used. EVs are characterized by relatively large costs and limitations in their auton-
omy. These issues may have hindered the diffusion of EVs among the general public ;
however, car-sharing initiatives contributed to their penetration in the market. EVs are
now widespread and their popularity is also related to the availability of alternatives (and
environmentally friendly) technologies to produce electricity. Therefore, switching to EVs
represents the natural evolution of car-sharing as a way to move towards sustainable means
of transport.

In the first implementations of electric car-sharing (denoted as Ecar-sharing) services,
station-based systems were adopted, which require the customer to pick-up (and drop-
off) the vehicles at specific sites in the city, each equipped with recharge infrastructures.
Recently, however, some free-floating systems have been introduced. The free-floating
option allows the user to return the car at any idle parking spot under the area controlled
by the car-sharing provider.

The design of an Ecar-sharing system requires to take long-term decisions (strategical
planning level), while daily operations (operational planning level) are faced during the
management of the service. In this framework, the main optimization challenges can be
summarized as follows:

Strategic
Infrastructure design
Sizing of the EVs fleet
Sizing of the relocation team

Operational
Assign travels to EVs
Re-balance the one-way system
Avoid battery depletion

This paper focuses on the operational level. Therefore, the strategic decisions are con-
sidered as fixed (i.e., the infrastructure and the number of available EVs are given) and
their relative costs are considered as sunk costs. At the operational level, the EVs must be
assigned to certain paths in order to serve as many customers’ trips as possible. Simultane-
ously, the relocation operations can be scheduled. Each relocation requires an operator (in
the following refereed to as relocator) to move the vehicle. The assignment of relocators to
EVs must also ensure the feasibility of the vehicle routes with respect to the battery charge
at the departure station. In this paper, we assume that all requests are done in advance,
say the day before. Within a prefixed time interval, say one hour, from the closing of the
request system the users are notified about the acceptance or not of their transportation
requests based on the available system resources and the system optimum found by the
optimization system. Such process is similar to that implemented in some existing systems
and compatible with the use of the exact and heuristic methods proposed in this paper.
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1 Introduction

The literature considers both Ecar-sharing systems and traditional ones. A brief review
is provided here with focus on relocation; for an extensive survey on optimization prob-
lems arising in electric car-sharing systems, the reader is referred to the recent survey by
Brandstätter et al. [6]. As far as relocation strategies are concerned, two approaches are
identified in the literature: user-based (UB) and operator-based (OB) strategy.

Reference Strategy Objective methodology
[3] UB min. relocation costs Simulation
[9] UB max. revenue and max. user’s benefit Simulation
[12, 13] OB min. relocation cost and min. rejected demand Exact/Heuristic/Simulation
[18] OB min. relocation costs Exact
[15] OB min. relocation distance Simulation
[11] OB max. profit Exact/Simulation
[7] OB max. number of relocations served Exact
[5] OB max. revenue and max. user’s benefit Exact

Table 1: Classification of the literature related to vehicles relocation (from Brandstätter et al. [6])

The UB relocation is performed by the customers and consists in modifications of their
trips in order to help the system to restore a balanced distribution of vehicles in the
network. Barth et al. [3] introduce trip joining, where two customer trips are converted into
a single one who satisfies both customers, and trip splitting, where a single trip is divided
into multiple trips, as a mean to reduce imbalances in the distribution. Furthermore,
Clemente et al. [9] simulate a real-time monitoring that suggests trip alternatives to better
balance the system. However, no realistic data on the customers willingness to accept the
suggested trips after economic incentives are available. A necessary condition for adopting
UB strategies is to gather information on the trips booked by users and this may can cause
privacy issues.

Other papers rely solely on OB strategies. Lee and Park [15] present an operation
planner: given the actual EVs distribution, a relocation strategy is chosen, then the demand
for relocation is computed, and finally the staff operations are scheduled. These tasks are
carried out at the end of the service by a single team. A genetic algorithm is developed in
order to minimize the distance traveled. The battery charge of the EV is not considered
during the scheduling.

Nair and Miller-Hooks [18] consider various scenarios defined by a stochastic demand,
and solve a Mixed-Integer Programming (MIP) model with joint chance constraints. To
achieve a specified reliability of the system and minimize the relocation costs, no restriction
on the number of relocators is considered.

Bruglieri et al. [7] explicitly consider linear battery consumption. Given a customer de-
mand from under-supplied stations to over-supplied stations, an Electric Vehicle Relocation
Problem (EVRP) is developed to maximize the total number of requests served.

Jorge et al. [11] present a MIP model based on a time-space network which focuses on
maximizing the profit obtained by the car-sharing operator, given a set of stations and
a demand. Besides, a simulation model is used to compare two different OB relocation
strategies. The authors consider traditional combustion cars.

Boyacı et al. [5] introduce a bi-objective MIP model to support strategic, tactical and
operational decisions (i.e., station positioning and capacity, assigning trips to EVs, per-
forming relocations) in an integrated framework. A time-space network models a one-way
station-based service. The EVs battery is assumed to be recharged after every travel. This
introduces a fixed waiting time for the vehicle, but the charging process is not explicitly
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modeled. The economical viability of relocations is evaluated under different scenarios. In
order to reduce the number of relocation arcs, nodes are aggregated in virtual hubs.

A relevant issue in EVs systems is related with charging operations. Indeed, charging
time for these vehicles is not negligible, charging infrastructure is a scare resource, and
charging operations require large electric power, affecting the status of the power grid.
Kim et al. [14] propose a stochastic model and charge scheduling methods for EV battery
charging infrastructure. The model considers relevant random factors and constraints,
which include parking times, requested amounts of electricity, number of parking lots
and demand level. Umetani et al. [20] consider the use of EVs as battery storages for
stabilizing large fluctuations in the power grid through the vehicle-to-grid power system.
They develop a linear programming based heuristic algorithm on a time–space network
model for charge and discharge scheduling of EVs, and also present an improved two-stage
heuristic algorithm to cope with uncertain demands and departure times of EVs.

Finally, in a one-way system each vehicle has a pick-up location and a return location,
and hence associated optimization problems share some elements with pick-up and deliv-
ery problems, see, e.g., Hernández-Pérez and Salazar-González [10], Malaguti et al. [16].
However, in classical pick-up and delivery problems the visit order of the “locations” is not
predetermined, while in one-way system each vehicle must visit the return location right
after the pick-up location.

In this paper we consider a station-based electric car-sharing system which allows one-
way trips, and uses OB relocation to re-balance the vehicles distribution. The system is
managed by a service provider whose objective is to maximize the profit associated with
the trips performed by the users. We introduce an exact relocation model for operat-
ing hours, and we explicitly consider the EVs battery consumption and recharge process.
Our operational model assumes the number and features of vehicles, and the number of
relocators as given. However, it can be used to assess the system performance under dif-
ferent configurations, and hence answers to tactical questions on the system management.
In particular, we run computational experiments on realistic data derived from an exist-
ing car-sharing system, and discuss under which circumstances relocation operations can
provide an improvement to the system performance.

This work was motivated and developed within the European project e4-share (Models
for Ecological, Economical, Efficient, Electric Car-Sharing). The project lays the foun-
dations for efficient and economically viable electric car-sharing systems by studying and
solving the optimization problems arising in their design and operations.

The paper is organized as follows. Section 2 presents the exact model for the relocation
problem, and Section 3 describes an auxiliary model for overnight relocation. Section 4 de-
scribes the heuristic approaches. The computational experiments and results are described
in Section 5. Section 6 presents a graphical tool for displaying the solution computed on
an electronic map. Finally, Section 6 draws the conclusions and presents possible future
extensions of the work.

2 Relocation Model for Operating Hours

This section describes a Mixed-Integer Programming (MIP) model representing the oper-
ations of a one-way Ecar-sharing system. The system consists of a set of stations, where
customers can pick-up or return a vehicle, and where idle vehicles are parked and recharged.
We consider a reservation-based system, where all the customer requests must be performed
in advance (say, the day before) and the users are notified within a prescribed deadline
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2 Relocation Model for Operating Hours

(say, one hour after the requests period closing) about the acceptance or not of their re-
quest based on the available resources. To this end, each request is associated with a
profit including the revenue for its service, but possibly also some other system-related
or customer-related factors, such as bonuses to increase customers retention. The objec-
tive of the car-sharing provider is to maximize the profit associated with served requests.
This is accomplished by choosing the requests to be served, by assuring the vehicles have
enough battery charge before starting a trip, and by relocating idle vehicles. Relocations
is performed by the so-called relocators, who drive the vehicles where needed.

More in detail, let H be the set of EVs and Q the set of relocators. The car-sharing
system is modeled as a time-space network where both h 2 H and q 2 Q move, and
{0, . . . , t, . . . , T

max

} is the discretized set of time instants. Vehicles can either move only
in time (i.e., wait at a station), or move in time and space when used by a customer or
moved by a relocator. Similarly, relocators move in time only, or move in time and space
when relocating a shared vehicle (in this case they travel using one of the vehicles, and
each vehicle can transport at most B relocators) or alone (i.e., by walking, bike, public
transportation, etc.). The model decides the optimal initial station for each vehicle at the
beginning of the day; this information can be used to organize overnight relocation. The
models also decides the optimal initial station for each relocator. Therefore, the model can
manage every decision that may have an impact on the final daily performance.

Let S be the indexed station set. Each station i 2 S can accommodate and charge
a limited number Ci of EVs. The node set V of the time-space network is defined by
S ⇥ {0, . . . , t, . . . , T

max

}. In the arc set A, each arc a = (it, jt0) connects a node it to a
node jt0 , with t0 > t. When traversed by a vehicle, each arc a is associated with an energy
variation ca, which can be either positive or negative, as well as a profit (or cost) pa, and a
positive demand da for arcs used by customers. In detail, the arc set A is partitioned into
several subsets of specific arcs as follows:

• Ac: arcs a = (it, jt0), encoding the customer requests. Each of these arcs corresponds
to a request starting in a pick-up station i at time t and ending in a return station j
at time t0. Each time the arc is traversed by a vehicle (i.e., the associated request is
satisfied, up to the demand da > 0), the vehicle energy variation is ca < 0, and the
profit earned by the service provider is pa > 0;

• Aw: arcs a = (it, it+1

) where either vehicles or the relocators wait at a station i
between periods t and t + 1. These arcs are associated with a positive variation of
the energy ca > 0 when traversed by a vehicle, and do not provide profit, hence,
pa = 0. There are O(|S|T

max

) of such arcs in the time-space network (see 2.1 for
more details).

• Ar: arcs a = (it, jt0) where vehicles are relocated from station i at time t to station
j at time t0 (at least one relocator is onboard). These arcs are defined for each pair
of stations and each pair of time instants t, t0 such that t0 is the first instant (in the
time discretization) which allows to reach j when leaving i at time t. These arcs are
associated with a variation of the energy ca < 0 when traversed by a vehicle, and are
associated with a cost for the service provider, hence, pa < 0. There are O(|S|2T

max

)

of such arcs in the time-space network.

• At: transfer arcs a = (it, jt0) travelled by relocators when they do not move on a
shared vehicle or wait at a station. Similarly to the relocation arcs, they are defined
for pair of stations and time intervals depending on the speed of transportation mode
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2 Relocation Model for Operating Hours

of the relocators. These arcs are associated with a null variation of energy ca = 0 and
null profit pa = 0. There are O(|S|2T

max

) of such arcs in the time-space network.

Three sets of decision variables are used:

• Vehicle arc variables: xha, a 2 Ar [ Aw [ Ac, taking value 1 when vehicle h travels
on arc a = (it, jt0) and 0 otherwise;

• Relocator arc variables: yqa, a 2 Ar[Aw[At, taking value 1 when relocator q travels
on arc a = (it, jt0) and 0 otherwise;

• Vehicle battery charge variables: zht , denoting the charge of vehicle h battery at time
t, where zh

0

is the initial battery charge.

The MIP model is as follows

max

X

h2H

X

a2A
c
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r

pax
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1 < t < T
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(x, z) 2 B (9)
X

h2H
xha 

X

q2Q
yqa a 2 Ar (10)

X

q2Q
yqa  B

X

h2H
xha a 2 Ar (11)

xha 2 {0, 1} h 2 H, a 2 Ac [Aw [Ar(12)
yqa 2 {0, 1} q 2 Q, a 2 Ar [At [Aw (13)

The objective function (1) maximizes the profit associated with the customers requests
that are satisfied, minus the cost for relocation of vehicles. Constraints (2) guarantee that
the customers demand associated with each arc in Ac is not exceeded. Constraints (3)
ensure that the number of vehicles parked (and recharging) at each station at any time
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2 Relocation Model for Operating Hours

t > 0 does not exceed the capacity, while (4) impose the same condition for instant t = 0

(i
0

denotes the node associated with the initial time instant for station i). Constraints (5)
impose that each vehicle departs from only one station in the time-space network at time
0, and Constraints (6) impose vehicle flow conservation at the network nodes. Constraints
(7) and (8) impose the same conditions for the relocators. Constraints (9) require that the
set of trips assigned to each car is feasible with respect to that car battery charge. Actual
implementations of such constraints are discussed next. Constraints (10) and (11) are used
to match vehicles and relocators on relocation arcs Ar: (10) impose that the number of
vehicles traveling on a relocation arc a 2 Ar is not larger than the number of relocators
(i.e., relocators may either drive the vehicle or travel as passengers), and (11) impose that
no more than B relocators can travel on a vehicle.

2.1 Battery Charge Constraints

In order to model constraints (9), we introduce a continuous variable zht , t =

1, . . . , Tmax, h 2 H, denoting the battery charge of vehicle h at time t. At each time
instant, the battery charge of each vehicle must be non-negative, and cannot exceed a
maximum level Zmax, as expressed in the following constraints

0  zht  Zmax h 2 H, t 2 {1, . . . , T
max

} (14)

Next, for a given vehicle h, we have to impose an upper bound on the battery level at
each time t, which is defined as the battery level at any previous instant ⌧ , plus the charge
and discharge of the battery during the path on the time-space network from ⌧ to t, as
expressed by the following constraints

zht  zh⌧ +

X

a=(i
✓

,j
⇢

)2A
c

[A
w

[A
r

:⌧✓<⇢t

cax
h
a h 2 H, t 2 {1, . . . , T

max

}, ⌧ < t (15)

Note that, since an arc (it, jt0) can connect two non-consecutive time instants in the time
discretization (i.e., t0 > t+1), it is not possible to express (15) for consecutive time instants
only but, for a given t, all previous instants ⌧ have to be considered. The effect of (14)
and (15) is to allow a vehicle to reach the maximum charge level when it is waiting at
a charging station, and then to remain at the station (i.e., traversing arcs in Aw in the
time-space network), without further charging, so that the maximum charge level Zmax

is not exceeded. Parameter zh
0

defines the initial charge for each vehicle h 2 H at the
beginning of the time horizon. i.e., for t = 0.

Preliminary numerical testing showed that the large number of constraints (15) affects
the capability to solve the model. The constraint generation is demanding both in terms
of CPU time and memory required. Therefore, an alternative formulation was developed,
replacing constraints (15) with the following

zht = zh
0

+

X

a=(i
✓

,j
⌧

)2A
c

[A
w

[A
r

: ✓<⌧t

cax
h
a h 2 H, t 2 {1, . . . , T

max

} (16)

However, since the battery of an EV cannot exceed Zmax, (16) would prevent fully
charged EVs from staying at stations (overcharging) and force them to move uselessly. In
order to avoid this undesired effect, each wait arc a = (it, it+1

), denoting wait and recharge
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3 Relocation Model For Non-Operating Hours

at node i, is paired with a (new) parallel wait arc ā = (it, it+1

), with cā = 0, pā = 0. These
new waiting arcs allow the EV to stay at station i without increasing the vehicle battery
charge.

Comparing the two alternatives, constraints (15) are |H|Tmax(Tmax � 1)/2 and ask to
define Aw = |S|Tmax wait variables; (16), are |H|Tmax and ask to define Aw = 2|S|Tmax

wait variables. Note that the two ways of modeling the battery charging are not equivalent:
the former allows the battery level to reach any value between 0 and Zmax, while the latter
only allows to charge by exactly the energy ca associated with the arc a, so the maximum
charge level may not reached. Testing proved that the introduction of new variables is
worthy both in terms of computing time and memory usage, and that the two alternatives
for modeling the battery charge are equivalent for practical purposes. An experimental
comparison of the two formulation is discussed in Section 5.2.1.

3 Relocation Model For Non-Operating Hours

The model described in Section 2 computes the optimal initial position for each vehicle in
the network. This optimal initial distribution can be obtained through an overnight relo-
cation performed when the system is not operating. An additional model was developed,
in order to schedule the staff operations during the night.

Let Ri be the number of EVs that are requested at a station i at the beginning of the
next day. We operate on the same network described beforehand, however, no travel
arc Ac is available during the night. The initial position oh and the initial battery z0h of
vehicle h are given by the system configuration at the end of the day.

The MIP model for relocation in non-operating hours is as follows

max Z (17)
s.t. Z  zTmax

h h 2 H (18)
X

a2(�+(o
h

))\(A
w

[A
r

)

xha = 1 h 2 H (19)

X

a2(��(i
T

max

))\(A
w

[A
r

)

xha = Ri h 2 H, i 2 S (20)

(3)� (13)

The objective function (17) maximizes Z, which is defined in Constraints (18) as the
charge level of the EV with the most depleted battery at the end of the working day. An
alternative is to maximize the sum of the battery levels for all vehicles. Constraints (19)
impose that each EV departs from its initial position. Constraints (20) impose to achieve
the required EV distribution.

This formulation allows to stop relocations after a specified time, therefore taking into
account the length of a shift for the operators. When relocation operations are over,
the model still allows the EVs parked at charging stations to be recharged for the next
period (in the model, relocation arcs are disabled after a certain time). The EVs, from
that moment on, can only stay at their station and recharge. Clearly, allowing a larger
relocation time leads to better solutions, since more time is available for both relocation
and recharging. If relocation time drops below a minimum threshold, there might not be
enough time to move the EVs to their final position, thus making the problem infeasible.
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4 Heuristic Algorithms

4 Heuristic Algorithms

Finding the optimal solution of the relocation model presented in Section 2 may be a com-
putationally impractical task. This section describes model-based heuristics, also known
as matheuristics (see, e.g., Boschetti et al. [4], Puchinger and Raidl [19], Archetti and Sper-
anza [2]), developed for solving the relocation model for operating hours, i.e., (1)–(13), on
a larger scale. Computing a fast initial feasible solution can be also useful in helping a
general-purpose solver in finding the optimal solution of the model. Computational tests
on several instances showed that such initial solution can be computed really fast and
provides a remarkable decrease of the CPU total time when used to initialize the search of
the solver. For the testing we used the CPLEX MIP solver by IBM.

4.1 Removing Relocation - Reducing Relocation Density

Removing or reducing the relocation arcs in Ar defines a model that remains feasible,
since relocators can move in the time-space network on wait arcs, while EVs can either
serve a customer or move along wait arcs. The model is clearly sub-optimal because
the opportunity to relocate vehicles to increase the profit from served requests is lost or
reduced. We considered removing or reducing relocation separately:

• By completely removing relocations, the model is significantly easier to be solved.
We use the solution computed in this case to initialize the MIP solver with a feasible
solution when tackling model (1)–(13). We observed that the built-in heuristics that
CPLEX uses are usually slower in finding a feasible solution.

• The effect of reducing relocation arcs on the solution quality depends on how many
relocation arcs are removed. Carlier et al. [8] studied a traditional vehicle manage-
ment problem and proposed to perform relocations only at certain time steps (e.g.,
every 30 minutes). Reducing in this way the relocation density simplifies the prob-
lem, however the obtained solution can be far from the optimal one. In order to find a
good trade-off between time and solution quality, random instances were tested with
different densities of the relocation arcs. The results obtained using such approaches
are reported in Section 5.3.

4.2 Rolling Horizon: Gradual Inclusion of Relocation Arcs

The rolling horizon approach is widely used in planning problems when the same group of
decisions must be repeated over time. Instead of dealing with the problem over the whole
planning horizon, the time horizon is split into smaller sub-periods. The first sub-periods
is solved to optimality and the associated decision variables are fixed, while variables
associated with the subsequent periods are relaxed or reduced. Afterwards, the problem
is solved in sequence for the next sub-periods in a rolling fashion.

In detail, the rolling horizon algorithm that we apply to solve the relocation model for
operating hours works as follows. The original formulation is split into ⇢ sub-periods and
relocation arcs associated with sub-periods after the first one are disabled. The resulting
MIP model is solved to optimality, and the value of all variables associated with the
first sub-period is fixed. Then the process is iterated for the next sub-period. As the
rolling horizon proceeds, the algorithm may update the decisions for future periods, while
an increasing set of decision variables remains fixed, making the resulting MIP problems
smaller at each iteration.

Page 9 of 27 August 30, 2017



5 Computational Experiments

Figures 1 and 2 represent the procedure in the time-space network. The horizontal axis
denotes time steps, and the vertical axis denotes the stations. The vertical line divides the
time into 2 sub-periods. The relocator path is represented by a straight line and 3 EVs-
paths are depicted by dashed lines. Note that some of the trips requested by customers are
two-way, so there can be travel arcs that remain at the same station. When a relocation
is performed, both the relocator and the EV travel the same arc. At the first iteration
(Figure 1), no relocation is permitted in the second sub-period (sp

2

), and the resulting
problem is optimally solved for the first sub-period sp

1

. At the next iteration, the solution
is fixed for sub-period sp

1

, and relocation is activated in the second sub-period.

Figure 1: Visualization of solution of subproblem sp
1

Figure 2: Visualization of solution of subproblem sp
2

The ⇢ parameter determines the trade-off between size of the models to be solved and
quality of the solution. As the number of sub-periods increases, the computational time
decreases. However, smaller sub-periods lead to potentially worse solutions.

A rolling horizon approach is very useful when the relocation problem is solved on-line,
and not all the customer requests are known in advance. In this case, it is preferable to
find the solution of a limited upcoming sub-period, without considering relocations that
are late in time, and may be not necessary due to yet unknown customer requests.

5 Computational Experiments

5.1 Test Instances

This section describes the process of data gathering and filtering, which led to the definition
of the realistic instances to test the mathematical models and heuristic algorithms. The
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presented experiments have two purposes: first, we want to assess the difficulty in solving
the presented models with a general purpose MIP solver, and to evaluate the effectiveness
of the heuristic algorithms for difficult instances; second, we want to evaluate under which
conditions the relocation is significant for improving the performance of a car-sharing
system. The algorithms are incorporated in a web tool for planning relocation of cars in a
practical context which is briefly illustrated in the Appendix.

ICVS (Intelligent Community Vehicle System) ICVS was a Honda Motor car-sharing
initiative in Singapore, which is not operating anymore. It used hybrid Honda Civic
vehicles, parked in 14 stations. The ICVS allowed customers to use the vehicles for one-way
trips. All customer travels performed from March 2003 until January 2006 were inserted
into a dataset. These data are currently the only one publicly available for car-sharing
problems and have already been used as test instances in previous papers, see, e.g., Nair
and Miller-Hooks [18], Kek et al. [13] and Kek et al. [12].

ICVS cars could rely on a tank of fuel, therefore they could be used for long journeys.
However, the battery itself would not have been enough for such trips. Given that the
proposed models deal with electric cars solely, the dataset was modified accordingly, and
trips longer than 6 hours were deleted. The maximum battery capacity was assumed to be
sufficient to cover 150 km. The recharge speed may vary depending on the infrastructures;
since we consider station-based systems, we assume that high power chargers are installed.
The recharge speed is modelled as a linear function of time.

Model (1)-(13) aims to support operational vehicle management throughout the day,
while other activities (such as maintenance) are carried out by night. The vehicle trips
are considered in a 10-hours interval, namely from 8.00 to 18.00. In Table 2 we report the
seven days with largest number of trips performed in the original dataset, before and after
filtering of trips that were too long or exceeded operating hours.

Original Duration < 6h Duration < 6h; 8.00� 18.00

Day #Trips Rank #Trips Rank #Trips

1 98 1 60 1 50
2 97 2 56 2 50
3 96 3 54 3 47
4 96 4 53 4 45
5 95 5 52 5 45
6 95 6 52 6 44
7 95 7 52 7 44

Dataset Total 45570 Dataset Total 23212 Dataset Total 19633

Table 2: Number of customer trips; 7 days with highest demand

The 10 hours horizon was split in 40 intervals of 15 minutes. This discretization repre-
sents a convenient trade-off between size of the model and accuracy of the instance: after
removing the trips longer than 6 hours, average trip duration was 128 minutes.

Network specification - Base Case We constructed a base-case time-space network based
on ICVS data, with the following characteristics:

• 14 stations with finite capacity;

• Profit of customer arcs pa, a 2 Ac: 0.2 per km and 0.1 per minute, between 50 and
125 arcs per instance;
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• Profit (negative) of relocation arcs pa, a 2 Ar: -1.5 per km;

• Profit of transfer arcs pa, a 2 At: 0;

• 20 EVs

• 2 relocators

• Battery capacity: 150 km; the battery is recharged of the 10% in each time step

The profit of customer arcs was computed as a function of distance and time duration
of the trips. The values have been obtained from the price of existing car-sharing services.
The duration and distance associated with relocation arcs were computed from the ICVS
data. There is a cost associated with each relocation, hence the corresponding arcs have a
negative profit pa, proportional to the distance. The cost per km considers the EV usage
and the labor cost.

Working days corresponding to the filtered data proved to be too easy for the model,
because only two days had more than 50 trips. Therefore, test instances were created by
randomly picking customer trips from the dataset. The instances have a different number
of customer arcs Ac (denoted as Size of the instance in the following). For each size, 6
instances were created.

5.2 Exact solution

This section summarizes the results obtained by solving to optimality the previously de-
scribed models. Each instance was tackled with a time limit of 1 hour by means of CPLEX
12.6 on a Xeon E3-1220 processor clocked at 3.10 GHz, with 8 GB RAM.
In the following tables, the computational times are reported in seconds and the value of
the solution obtained by each method is denoted by Sol.

5.2.1 Battery charge constraints

The two alternative formulations (14), (15) and (14), (16) of battery charge constraints
(described in Section 2.1) were tested on the base instances, so as to define the best
performing model to be used in the subsequent experiments. Table 3 displays the best
solution values obtained and the associated computing times. The average values on 6
instances with the same size are reported. The smallest instances (size 50 and 75) show a
remarkable decrease in computing time if constraints (16) are used in place of (15). The
average solution value is the same, with the exception of one instance of size 75, for which
the optimal solution was not found with the formulation (14), (15).

Size Battery constr Sol T ime

50

(14)-(16) 724.33 75.83

(14)-(15) 724.33 840.50

75

(14)-(16) 1057.50 95.67

(14)-(15) 1055.83 2985.33

Table 3: Comparison of computational time [s] between formulations.

On top of the additional computational time, formulation (14), (15) also requires a larger
amount of memory. Since Constraints (14), (16) turn out to be much more efficient than
(14), (15), they were chosen to be used in the following experiments.
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5.2.2 Base instances

Table 4 reports the results obtained by solving model (1)–(13) on the base instances. Each
row of the table reports average results over 6 instances. Column Size reports the number
of available customer arcs; columns Cons and V ars report the number of constraints and
variables of the optimization model, respectively; column Gap the percentage optimality
gap of CPLEX at the time limit; Nodes is number of explored nodes; T ime is the comput-
ing time required; RootGap reports the gap at the root node of CPLEX. Finally, Solved
is the number of instances solved to optimality within time limit.

Size Cons V ars Sol Gap Nodes T ime RootGap Solved

50 27268 336717 724.33 0.00% 0.00 75.83 0.00% 6/6

75 27293 337267 1057.50 0.00% 0.00 95.67 0.00% 6/6

100 27318 337817 1197.33 0.01% 3568.00 739.00 0.71% 5/6

125 27343 338367 1249.83 0.16% 2055.67 1068.50 0.95% 5/6

Table 4: Average performances of the algorithm, base instances

All instances with up to 75 customer arcs are easily solved at the root node by the
CPLEX branch-and-bound algorithm. For larger number of customer arcs, the solver has
to start branching, and can solve 10 out of 12 instances within time limit.

Concerning the system performance and the relevance of relocation, in Table 5 we report
the number of customer arcs served when relocation is not active, column Ac (no rel), and
the computational time required by CPLEX. The same information is reported when relo-
cation activities are possible. Clearly, the presence of relocation arcs makes the mathemat-
ical model more challenging, however the obtained solution enables to serve more customer
requests. Finally, the number Ar of relocation arcs used and the percentage increase in
profit are reported.

Size A
c

(no rel) T ime (no rel) A
c

(rel) T ime (rel) A
r

% Profit

50 42.83 4.79 44.83 75.83 2.67 1.93%

75 56.17 9.97 61.33 95.67 4.83 2.50%

100 61.17 12.33 63.00 739.00 6.00 2.35%

125 60.17 42.95 65.67 1068.50 7.83 3.56%

Table 5: System performance with and without relocation, base instances

5.2.3 Sensitivity to relocation cost

In this section we discuss the effect of relocation cost and other features of the instances
related to the relocations.

In the base-case we considered a quite large cost for relocation, and according to the
results in Table 5 relocations are performed with low occurrence.

The actual cost of relocations in a real-world application depends on the cost structure
of the car-sharing provider, and in particular on the allocation of labour cost, which can
be a large component in relocation cost. When labour cost is not allocated as a direct cost
to relocations (because, e.g., relocations are performed by personnel which is already hired
for other duties and can be used also for relocations), we can assume smaller relocation
costs. Tables (6) and (7) report information for the case in which the relocation costs of
each arc has been reduced to 1.
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Size Sol Gap Nodes T ime Root node gap Solved

50 736.17 0.00% 0.00 167.83 0.00% 6/6

75 1084.50 0.00% 0.00 247.17 0.00% 6/6

100 1228.67 0.51% 78.17 820.00 1.54% 5/6

125 1282.83 0.85% 376.67 1403.67 1.17% 4/6

Table 6: Average performances of the algorithm, low relocation cost

Size A
c

(no rel) A
c

(with rel) A
r

% Profit

50 42.83 48.33 5.33 3.64%

75 56.17 65.17 11.33 5.11%

100 61.17 66.00 12.33 5.14%

125 60.17 68.33 14.50 6.49%

Table 7: System performance with and without relocation, low relocation cost

According to Table 6, the instances become more challenging, with only 9 out of 12
instances solved to optimality when 100 or 125 customer arcs are considered. A possible
explanation for the fact that instances are easier when relocation cost are large is that,
in this case, several variables related with relocation arcs can be removed by the MIP
solver preprocessing, because they could not appear in an optimal solution. Instead,
by reducing the relocation cost, many more relocation arcs become attractive and their
possible inclusion in an optimal configuration complicates the solution of the model.
Concerning the system performance and the relevance of relocation, we observe that the
number of performed trips increases in a more sensitive way when relocation is allowed,
and relocation can lead to a profit increase of more than 6% on average, for the instances
with 125 customer arcs.

A second feature that determines the benefit of performing relocations is the ratio of
customer arcs and available EV. On the one hand, when there are many EVs with respect to
the customer arcs, a careful initial allocation of the EV may reduce the need for relocation,
because we may expect to have available vehicles where needed. Trivially, if the number
of available EVs equals the number of customer arcs (and no capacity constraint is active
at the stations), no relocation is needed. On the other hand, when there are very few EVs
with respect to the customer arcs, again relocation is not attractive. Indeed, when a trip
is ended, it may be preferable to keep the EV waiting at a station for the next request,
instead of moving it to a different station. Relocation looks appealing in intermediate
situations, as shown in Figure 3, where we test the base instances for different numbers of
EVs. The figure reports the average number of performed relocations as a function of the
ratio between customer arcs and EV. Initially, as the ratio Ac to EV grows, the average
number of relocation increases, but only up to a certain threshold of about 4 customer arcs
per EV. When the ratio grows over such threshold, the number of relocations decreases.

5.2.4 Sensitivity to battery capacity

In this section we evaluate the effect of having smaller or larger battery capacities on
the difficulty of the instances, and on the profit that can be obtained by the car-sharing
provider. In the base instances, the maximim battery capacity was set to 150 Km. The
model was tested by considering 4 different values of battery capacity: scarce (autonomy
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Figure 3: Base instances: average number of relocations and ratio Ac to EV.

of 80 Km), less (100 km), base (150 Km) and more (200 km).
In Table 8 we report the average optimality gaps and computing times for different

battery capacities. The table shows that reducing the battery has a big impact on the
difficulty of the instances. For low values of the battery capacity, the algorithm rarely
solves the instance to optimality, especially when the size is large. The optimality gaps are
larger than 10% on average for instances with 125 customer arcs. Instead, when considering
the more battery capacity, all instances are solved to optimality.

Concerning the profit, in Table 9 we observe that it is not increased when going from
base to more capacity, showing that at the base level the car-sharing operator is already
capable to make the maximum profit from the system and larger battery capacity seems not
required. For smaller levels of battery capacity, the obtained profit seems to be reduced.
However, since most of the small-capacity instances are not solved to optimality, we cannot
conclude with high certainty that such profit reduction is only due to the reduced battery
capacity.

5.2.5 Overnight relocation

The overnight relocation model of Section 3 is intended to relocate EVs at the end of the
day, in order to be available at the requested stations at the beginning of the next day.
Hence, the initial network of the overnight relocation model is given by the position and
battery level of each vehicle as specified by a solution of model (1)-(13) at the end of a
working day. The target is the distribution of the vehicles at the beginning of the next
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Gap T ime

Size Scarce Less Base More Scarce Less Base More

50 0.21% 0.00% 0.00% 0.00% 1619.67 136.67 75.83 108.83

75 4.44% 1.12% 0.00% 0.00% 3348.83 2284.50 95.67 100.83

100 9.41% 3.60% 0.01% 0.00% 3600.00 3188.33 736.33 114.67

125 10.51% 5.31% 0.16% 0.00% 3600.00 3600.00 1036.83 133.67

Table 8: Average optimality gap and computing time for different battery capacities.

Sol

Size Scarce Less Base More

50 706.50 708.33 724.33 724.33

75 995.50 1032.50 1057.50 1057.50

100 1082.83 1148.67 1197.33 1197.67

125 1125.33 1185.67 1249.83 1252.67

Table 9: Average profit for different battery capacities.

working day.
This is an operational model for which several input decisions, depending on the service

design, can be varied: schedule of the relocation (to be performed immediately after the
previous day or just before new day operations are started), number of relocators, etc. In
our experiments we considered 20 EVs, as in the base case. The time available for the
relocation operations is set between 2 and 5 hours, i.e., 8 to 20 time steps, and each value
was tested on 6 different instances. When a shorter time for relocation is allowed, we
consider a larger number of relocators. We assume relocation is performed just after the
working day, i.e., when the EVs have the lowest battery level. For the rest of the night,
each EV recharges at the destination station.

In Table 10, we consider groups of 6 homogeneous instances, where each group is defined
by the number of relocators and by the relocation duration reported in column T ime Steps.
Note that the target distribution may be unreachable with the available resources (i.e.,
time and staff); the number of instances where this happens is displayed in the Infeasible
column. On top of that, not all the feasible instances may not be solved to the optimality
within 1 hour of computing time. The Solved column counts the instances out of the
feasible ones for which the optimal solution was found. The table also reports the number
Ar of used relocation arcs.

Instance Performance

Relocators T ime Steps Average time Infeasible Solved A
r

1 20 145.50 4 2 10.00

1 24 590.00 1 4 11.25

2 12 95.67 1 5 11.40

2 16 726.33 0 6 13.33

2 20 2232.60 0 5 14.40

3 8 16.66 1 5 11.20

3 12 324.33 0 6 14.50

Table 10: Performances of the overnight relocation with different resources (i.e time and
number of operators)
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The tables clearly shows that larger problems, having more relocators or more time steps
for the relocation, are more difficult to solve.

5.3 Heuristic Algorithms

We compare the heuristic approaches described in Section 4 with the exact solution of
models (1)–(13). When considering a reduction of relocation arcs, we tried to halve them,
i.e., relocation is performed every half hour, and to reduce them to a quarter, i.e., relocation
performed only once per hour. In the following, we denote the corresponding heuristic
solutions as dens2 and dens4, respectively. In the rolling horizon algorithm, the planning
horizon was divided into 2 intervals (denoted as rolling2 in the following) and 4 intervals
(denotes as rolling4). The quality of the heuristic solutions of the base case instances with
size 100 and 125 are compared to the exact solutions. All algorithms are run with a time
limit of 1 hour. We also considered larger instances with size 200, where the heuristics
are run with a time limit of 1 hour, while the exact algorithm was given a longer time
limit of 4 hours (so as to compute a near optimal solution value and a good upper bound
to allow a meaningful evaluation of the heuristic methods). Average results for groups of
6 homogeneous instances are reported in Table 11 where, for each solution method, we
give the average best solution value (Sol), the associated computing time, the optimality
gap and the subproblem gap. The first gap is equal to the gap between the upper bound
associated with the solution of the exact model, and the solution value obtained by the
heuristic method itself. The second gap corresponds to the average optimality gap of the
subproblems associated with the heuristic approaches. Namely, it is the optimality gap for
the models with a reduced number of relocation arcs, and it is the average optimality gap
for each subproblem associated with the rolling algorithms. If it is equal to zero, it means
that the subproblems were solved to the optimum.

For instances of size 100, the dens solutions can be obtained with a negligible reduction
of computing time, and a loss of profit not exceeding 0.6%. The rolling approach is more
interesting: with a loss of profit of about 1.5% for rolling4, the computing time is reduced
by an order of magnitude. For instances of size 125, the rolling2 approach approximately
halves the computing times, at cost of a 1.1% reduction of profit. For large instances of
size 200, the use of the heuristic algorithms has a significant impact on the computational
tractability of the model. At basically no decrease in terms of average solution quality,
computing times are reduced by an order of magnitude and more. On instances of size
200, the rolling approach finds solutions of quality comparable to the ones obtained with
the density approach in approximately half of the time.

We also tested the heuristic methods on the low battery instances of size 125 at the Less
level, which are quite difficult to solve to optimality. As reported in Table 12, the battery
limitation largely worsen the exact resolution, and both heuristics provide a sub-optimal
solution better than the best solution found by CPLEX, in comparable computing time.

6 Conclusions and Future Research

In this paper we presented a mathematical model to manage the daily operations of an
electric car-sharing system. The system under consideration is station-based, and unbal-
ances in the electric vehicles distribution are managed by relocation of the vehicles, which
is performed by a dedicated staff (i.e., an operator-based relocation strategy). Both exact
and heuristic approaches were developed, and tested on a set of realistic instances obtained
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Size Method Sol T ime Opt. Gap Suprob. Gap

100

exact 1197.33 739.00 0.01% -

dens2 1194.17 650.33 0.27% 0.05%

dens4 1190.00 642.33 0.62% 0.01%

rolling2 1189.17 225.17 0.69% 0.00%

rolling4 1179.67 51.00 1.48% 0.00%

125

exact 1249.83 1068.50 0.16% -

dens2 1244.00 769.50 0.63% 0.08%

dens4 1232.5 704.00 1.54% 0.08%

rolling2 1236.00 593.33 1.26% 0.00%

rolling4 1207.00 615.20 3.58% 0.00%

200

exact 1380.00 11544.40 0.44% -

dens2 1378.20 2311.20 0.57% 0.26%

dens4 1375.40 2286.40 0.77% 0.58%

rolling2 1378.60 894.60 0.54% 0.09%

rolling4 1377.40 782.40 0.63% 0.04%

Table 11: Heuristic performances compared to exact algorithm

Size Method Sol T ime Opt. Gap Suprob. Gap

125

exact 1185.67 3600.00 5.31% -

dens2 1199.83 3600.00 4.18% 3.51%

dens4 1196.50 3151.83 4.45% 2.50%

rolling2 1194.17 2812.17 4.63% 1.85%

rolling4 1192.00 3600.00 4.80% 1.05%

Table 12: Low-battery stress instances: heuristic solutions compared to exact solutions

from an existing car-sharing servive. Furthermore, a model for the overnight relocations
was described and tested in integration with the previous daily operations model. Together,
the two models provide a comprehensive optimization tool to support the management of
an electric car-sharing system.

The performed computational experiments showed that the introduction of relocation
in a electric car-sharing system allows to achieve larger profits, in particular when there is
a balance between the number of vehicles and the customers requests.

The proposed model is mainly operational. As a future research direction, we plan to de-
velop an integrated model where strategic and tactical design decisions are simultaneously
taken into account. In particular, the strategic decision considered will be related to the
sizing and location of the charging stations. Moreover, further research may be devoted to
different exact approaches that may allow for an increase in the size of solved problems.
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Appendix: Displaying the Solution

A tool for representing the solutions was developed by using Google Maps API [1]. Given
the position of the stations, it is possible to show the path of EVs and relocators during
operational activities with an html page.

Figure 4 depicts the path of one relocator on an example instance. Markers on the map
show the waypoints; each waypoint is labelled with an increasing index that marks the
order of the performed travels. If one station is visited more than once, markers “scatter”
when clicked, allowing to check all the stops at that station. On the right side of the figure,
the path is described textually, allowing to find the correct time to the ordinal indexes on
the waypoints. A white waypoint marks the starting station of a relocation, whereas an
orange waypoint represents the head of a transfer arc.

Figure 4: Path of one relocator

The path of an EV can be quite different, as shown in Figure 5. Yellow waypoints
correspond to relocations and red waypoints indicate the trips performed: they are labelled
with an increasing index showing the visit order. Travel arcs have an unknown route:
the customer may follow whichever path he prefers to get from the starting point to the
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destination. Such paths are displayed as arrows. On the other hand, relocations follow the
shortest path, so the actual route is displayed. Note that some of the travels are two-way
(i.e., starting and ending station are coincident).

Figure 5: An EV Path
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