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Abstract
The problem of making the output of a linear system with polytopic uncer-
tainties and discontinuities in the state evolution totally insensitive to an
unknown disturbance input by state feedback is investigated. Suitable geo-
metric notions are introduced and used to provide a structural, constructive
solvability condition. The requirement of achieving global robust asymptotic
stability of the compensated dynamics is then added and further solvability
conditions are provided by requiring that the time instants at which discon-
tinuities in the state evolution, or jumps, occur are sufficiently far from each
other.
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1 INTRODUCTION

Dynamical systems whose state behavior presents discontinuities (or jumps), called impulsive systems, are useful to
model impulsive phenomena that may arise in physical systems, like, for example, anelastic collisions of mechanical
parts, the activation of switches or abrupt failures of components (see, e.g., References 1-3 and the references therein). For
this reason, impulsive linear systems have recently attracted the interest of many researchers in relation to a number of
control problems. By extending to the framework of impulsive linear systems approaches and techniques previously devel-
oped for linear systems, solvability conditions have been obtained for stabilization problems,4-6 linear quadratic control
problems,7,8 disturbance decoupling problems,9-12 output regulation problems,13-21 and observation problems.22-25 Struc-
tural geometric methods obtained by extending the classical geometric approach of Basile and Marro26 and of Wonham27

have been shown to be particularly effective to deal with the mentioned problems for this class of systems.
It has however to be remarked that in all the previously mentioned papers the parameters of the considered systems

are assumed to be completely known. This hypothesis is rarely verified in practice, where the knowledge of the parameters
of the system at issue is generally affected by uncertainty, and this reduces the applicability of the available results. In
order to overcome this limitation, it is interesting to extend the study to impulsive linear systems whose mathematical
models are characterized by uncertainty.
[Corrections added on 15 April 2021, after first online publication: In the first sentence of the Introduction section: the word ‘in’ in front of ‘anelastic’,
‘activation’, and ‘abrupt’ has been deleted.]
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A convenient, general way to include uncertainty in mathematical models avoiding conservatism is that of letting the
coefficients of the model equations vary in a given polytope. This results in the introduction of the so-called polytopic
systems, which are widely used in dealing with robust control problems (see, e.g., References 28-30). In particular, dis-
turbance decoupling problems for polytopic linear systems have been studied in References 31-35, where the existence of
solutions that are robust with respect to variations of the parameters was investigated. Also in that case, structural geo-
metric methods derived from the geometric approach of Basile and Marro26 and of Wonham27 have been extended and
then profitably employed to deal with the considered problems.

With the above motivations and starting from the above mentioned results, in this article, we consider impulsive linear
systems with polytopic uncertainties. These are hybrid objects whose state dynamics consists of a linear component and
of a sequence of linear jumps which occur at given time instants (jump instants). In considering control problems for this
class of system, we look for solutions that are robust with respect to the variations of the parameters in the polytopes of
uncertainty and that hold for all possible sets of jump instants in a given class.

In particular, here we concentrate on the study of the disturbance decoupling problem for impulsive linear systems
with polytopic uncertainties. Our aim is to investigate the problem from a methodological point of view in order to derive
structural, practically checkable solvability conditions.

The problem of decoupling the output of a given system from a disturbance input is one of the fundamental problems
in the control of multivariable dynamical systems36 and a cornerstone of the development of the structural geometric
approach26,27 to control theory. The problem has been investigated by extending the methods described in References 26
and 27 for several classes of systems, including nonlinear systems, systems over rings, infinite dimensional systems, 2D
systems and others. Examples of practical applications in which the problem is efficiently solved by structural methods
range from the control of simple mechanical systems,37 to that of active suspensions for road vehicles,38 big ships,39

distillation columns,40 manufacturing systems,41 multi-agent systems,42 and strategies in dynamic games.43

Our approach consists first in developing a suitable, novel notion of controlled invariance, which takes into account
the occurrence of discontinuities in the state behavior and which is robust with respect to the variations of the system’s
parameters in the polytope of uncertainty. This is the main geometric structural tool that makes it possible to state a suffi-
cient structural condition for the existence of a solution to the disturbance decoupling problem, namely of a state feedback
that robustly decouples the output from an unknown disturbance input in presence of finitely many jump instants in any
finite interval. An algorithmic procedure to check the solvability condition and to construct the feedback is provided.

Then, we add the requirement of stability of the compensated system to the decoupling requirement. Stability
depends on the interaction between the so-called flow dynamics and the jump behavior and, in case the first is sta-
ble, on the length of the time interval that separates consecutive jump instants. The existence of a common Lyapunov
function for the flow dynamics of the compensated systems corresponding to the vertices of the polytope of uncer-
tainty is the additional condition that, together with the structural one, assures solvability of the disturbance decoupling
problem with stability. If both conditions hold, there exists a state feedback that robustly decouples the output from
an unknown disturbance input and that stabilizes the compensated dynamics for all the sequences of jump instants
in which consecutive elements are sufficiently distant from each other. The conditions concerning the existence of
a common Lyapunov function can be checked using LMIs and an algorithmic procedure to construct the feedback
is given.

This article is organized as follows. In Section 2, we introduce the class of impulsive dynamical systems with poly-
topic uncertainties we will deal with and we state formally the disturbance decoupling problem we want to study. In
Section 3, we introduce the geometric notions of robust hybrid controlled invariance and we characterize the robust hybrid
controlled invariant subspaces of the state space. An algorithmic procedure to compute the maximum robust hybrid
controlled invariant subspace contained in a given subspace is given. The maximum robust hybrid controlled invariant
subspace contained in the kernel of the output map for all values of the uncertain parameters is then used to state a suffi-
cient structural solvability condition for the considered problem in Theorem 1. The stability requirement is discussed in
Section 4, where Theorem 2 provides a sufficient condition for the solution of the disturbance decoupling problem with
stability. An example is presented in Section 5. Appendix A contains the details of the computations performed on the
example of Section 5.

Notations. The symbols N, R, R+ are used for the sets of natural numbers, real numbers, non negative real num-
bers, respectively. Matrices and linear maps between vector spaces are denoted by slanted capital letters like A. Sets,
vector spaces and subspaces are denoted by calligraphic capital letters like  . The quotient space of a vector space 

over a subspace  ⊆  is denoted by ∕ . The restriction of a linear map A to an A-invariant subspace  is denoted by
A| . For a vector v ∈ Rn, ||v|| denotes the Euclidean norm and, for a matrix A, ||A|| denotes the matrix norm defined by
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||A|| = supx≠0
||Ax||||x|| . Analogously, ||A||1 and ||A||∞ denote the 1-norm and the ∞-norm of A, which are respectively defined

by ||A||1 = maxj=1,… ,n
∑n

i=1 aij and by ||A||∞ = maxi=1,… ,n
∑n

j=1 aij. In denotes the identity matrix of order n. For a linear
map A ∶  →  from a vector space  into a vector space  , the image and the kernel of A are denoted respec-
tively by Im A (⊆ ) and by Ker A (⊆ ); the inverse image with respect to A of a subspace  ⊆  is the subspace
A−1 = {x ∈  such that Ax ∈  ⊆ }. Given a real vector space  of dimension n, we denote by ⊕N the external direct
sum of N copies of  , namely the nN-dimensional vector space consisting of the vectors (x⊤1 , … x⊤N)

⊤, with xi ∈  , with
the obvious addition and scalar multiplication. Given a subspace  ⊆  , ⊕N ⊆ ⊕N denotes the external direct sum of N
copies of  , namely ⊕N is the subspace consisting of all vectors (v⊤1 , … , v⊤N)

⊤ ∈ ⊕N with vi ∈  . If Ai, for i= 1, … , N,
are N linear maps from  to  (respectively, N matrices of the same dimensions), we denote shortly by ⊕N

i=1Ai the linear
map from  to ⊕N given by  ∋ x → ((A1x)⊤, … , (AN x)⊤)⊤ ∈ ⊕N (respectively, the matrix ((A1)⊤ … (AN)⊤)⊤).

2 PRELIMINARIES AND PROBLEM STATEMENT

Let us denote by  the set of all maps 𝜎 ∶ N → R+ which, letting 𝜏𝜎 be defined by 𝜏𝜎 = inf{𝜎(0), 𝜎(k + 1) − 𝜎(k); k ∈
N, 𝜎(k + 1) ≠ 𝜎(k)}, satisfy the condition 𝜏𝜎 > 0. This condition implies that 𝜎(k + 1) is greater than or equal to 𝜎(k) for
all k ∈ N. Moreover, it implies that the set of points in the image of 𝜎, that is, Im 𝜎 = {t ∈ R+, t = 𝜎(k) for some k ∈ N},
is a discrete, finite or countably infinite subset of R+, whose subsets (including Im 𝜎 itself) have no accumulation points.
We say that 𝜏𝜎 is the dwell time of 𝜎. In the following, given 𝜏 ∈ R+, we will denote by 𝜏 the subset of  defined by
𝜏 = {𝜎 ∈  , 𝜏𝜎 ≥ 𝜏}.

The dynamical systems we consider present jump discontinuities, called simply jumps, in the state evolution and
coefficients that are affected by polytopic uncertainties. They are described by sets of linear equations of the following
form

Σ𝜎 ≡

⎧⎪⎨⎪⎩
ẋ(t) = Ax(t) + Bu(t) for t ≠ 𝜎(k), k ∈ N

x(𝜎(k)) = Jx−(𝜎(k)) for t = 𝜎(k), k ∈ N

y(t) = Cx(t)
(1)

where t ∈ R+ is the time variable; 𝜎 belongs to  ; x ∈  = Rn, u ∈  = Rm, and y ∈  = Rp denote, respectively, the
state, the control input, and the output variables; the matrices A, B, C, and J have, respectively, the form

A = A(𝜇) =
∑
i∈I

𝜇iAi ; B = B(𝜇) =
∑
i∈I

𝜇iBi ;

C = C(𝜇) =
∑
i∈I

𝜇iCi ; J = J(𝜇) =
∑
i∈I

𝜇iJi

where I = {1, … , N} is a set of indices; the vector of the polytopic uncertain parameters 𝜇 = (𝜇1, … , 𝜇N)⊤ belongs to the
standard (N − 1)-dimensional symplex Δ(N−1) in RN (that is: 𝜇i ≥ 0 for i∈ I and

∑
i∈I𝜇i = 1); Ai, Bi, Ci, and Ji are real

matrices of suitable dimensions that form the vertices of the related uncertainty polytopes; x−(𝜎(k)) denotes the limit of
x(t) for t which goes to 𝜎(k) from the left, that is x−(𝜎(k)) = limt→𝜎(k)−x(t). In other words, the state x(t) of Σ𝜎 , starting from
an initial condition x(0)= x0 at time t = 0, evolves continuously on the time interval [0, 𝜎(0)) according to the dynamics
given by the first block of equations in (1). Then, at time t = 𝜎(0), instead of taking the value x−(𝜎(0)), the state jumps
to Jx−(𝜎(0)), as stated in the second block of equations in (1). The same behavior repeats on each one of the subsequent
time intervals [𝜎(k), 𝜎(k + 1)), with initial condition x(𝜎(k)). In practice, we have x(𝜎(0)) = JeA𝜎(0)x(0) and x(𝜎(k + 1)) =
JeA(𝜎(k+1)−𝜎(k))x(𝜎(k)) for k ∈ N. We say that the equations in the first block in (1) represent the flow dynamics of Σ𝜎 , while
the equations in the second block represent the jump behavior of Σ𝜎 . A single jump occurs at each point 𝜎(k) ∈ Im 𝜎. The
points in Im 𝜎 are called jump instants and the time interval between consecutive jumps in the behavior of Σ𝜎 is greater
than or equal to the dwell time 𝜏𝜎 . The jump behavior depends on J and on the choice of the map 𝜎 and, in particular, it
is not necessarily periodic. Note that we do not assume that the interval between consecutive jumps has an upper bound.
In case Im 𝜎 is a finite set, no jumps occur for t > maxk∈N𝜎(k) and, on the interval [maxk∈N𝜎(k),+∞), the dynamics of
Σ𝜎 reduces to the flow dynamics.

[Corrections added on 15 April 2021, after first online publication: In the third and fifth line from the bottom: ‘consecutive jump’ has been changed to
‘consecutive jumps’.]
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We refer to systems of the above kind, which combine polytopic uncertainty with the discontinuous state behavior of
linear impulsive systems,44,45 as uncertain impulsive (linear) systems.

The hybrid control systems Σi given by

Σi ≡

⎧⎪⎨⎪⎩
ẋ(t) = Aix(t) + Biu(t) for t ≠ 𝜎(k), k ∈ N

x(𝜎(k)) = Jix−(𝜎(k)) for t = 𝜎(k), k ∈ N

y(t) = Cix(t)
(2)

for i∈ I form the family {Σi}i∈I of the vertex systems, or simply of the vertices, of the uncertain impulsive system Σ𝜎 .
If we apply a state feedback of the form u(t)=Fx(t) to any element of the family of vertices {Σi}i∈I , we have a family

{ΣF
i }i∈I of closed-loop hybrid systems whose elements are given by

ΣF
i ≡

⎧⎪⎨⎪⎩
ẋ(t) = (Ai + BiF)x(t) for t ≠ 𝜎(k), k ∈ N

x(𝜎(k)) = Jix−(𝜎(k)) for t = 𝜎(k), k ∈ N

y(t) = Cix(t)
(3)

that can be viewed as the family of vertices of the compensated uncertain impulsive system ΣF
𝜎 given by

ΣF
𝜎 ≡

⎧⎪⎨⎪⎩
ẋ(t) =(A + BF)x(t) for t ≠ 𝜎(k), k ∈ N

x(𝜎(k)) = Jx−(𝜎(k)) for t = 𝜎(k), k ∈ N

y(t) = Cx(t)
(4)

In case the considered uncertain impulsive system is subject to an additional unknown input d(t), its equations take the
form

ΣD𝜎 ≡

⎧⎪⎨⎪⎩
ẋ(t) = Ax(t) + Bu(t) + Dd(t) for t ≠ 𝜎(k), k ∈ N

x(𝜎(k)) = Jx−(𝜎(k)) for t = 𝜎(k), k ∈ N

y(t) = Cx(t)
(5)

where d ∈  = Rq is the disturbance, the matrix D has the form

D = D(𝜇) =
N∑

i=1
𝜇iDi

and the other notations are as in Equation (1).
In such situation, one is interested in compensating the system ΣD𝜎 by a state feedback u(t)=Fx(t) in such a way that

the disturbance d(t) does not affect the output y(t) for all 𝜇 ∈ ΔN−1 and for all 𝜎 ∈  . More formally, this problem is stated
as follows.

Problem 1 (Disturbance Decoupling Problem). Given a disturbed uncertain impulsive system ΣD𝜎 of the form (5), the
Disturbance Decoupling Problem (DDP) by state feedback for ΣD𝜎 consists in finding a state feedback F ∶  →  , if any
exists, such that the disturbance d(t) does not affect the output y(t) of the compensated uncertain impulsive system ΣF

D𝜎

for all 𝜇 ∈ ΔN−1 and for all 𝜎 ∈  , or, in other words, such that the output y(t) of ΣF
D𝜎

initialized at x(0)= 0 is identically
null (i.e., y(t)= 0 for t ≥ 0), for all 𝜇 ∈ ΔN−1, all 𝜎 ∈  and any disturbance input d(t).

Note that the requirement of making the output y(t) insensitive to the disturbance d(t) by means of a single state
feedback F for all 𝜇 ∈ ΔN−1 and for all 𝜎 ∈  is quite strong, but, since no information is assumed to be available other
than the polytopic structure of the uncertainty and the knowledge of the vertex systems, this is the only way to find, if
any exists, an implementable solution.

[Corrections added on 15 April 2021, after first online publication: In the first and fourth lines of Problem 1: ‘the form’ and ‘other word’ have been
changed to ‘of the form’ and ‘other words’, respectively.]
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3 PROBLEM SOLUTION

In order to find structural conditions for the solvability of the DDP stated in the previous section, we need to introduce
suitable geometric tools. Taking into account the uncertainty and the presence of jumps that characterize the systems
at issue, we combine the ideas of Conte et al.10 (where systems with jumps are considered) and of Otsuka46 (where, in
particular, uncertain systems are considered) to give the following novel definitions.

Definition 1. Given an uncertain impulsive system Σ𝜎 of the form (1), a subspace  ⊆  is said robust hybrid invariant
for Σ𝜎 if and only if

A = A(𝜇) ⊆  (6)

holds together with

J = J(𝜇) ⊆  (7)

for all 𝜇 ∈ Δ(N−1).

Proposition 1. Given an uncertain impulsive system Σ𝜎 of the form (1), a subspace  ⊆  is robust hybrid invariant for Σ𝜎

if and only if the conditions Ai ⊆  and Ji ⊆  hold for all i∈ I.

Proof. If Ai ⊆  and Ji ⊆  hold for all i∈ I, then obviously the conditions (6) and (7) are satisfied for all 𝜇 ∈ Δ(N−1).
The converse is proved by taking 𝜇i = 1 in (6) and (7) for i∈ I. ▪

Definition 2. Given an uncertain impulsive system Σ𝜎 of the form (1), a subspace  ⊆  is said robust hybrid controlled
invariant for Σ𝜎 if and only if

(⊕N
i=1Ai) ⊆ ⊕N + Im(⊕N

i=1Bi) (8)

holds together with

Ji ⊆  (9)

for all i∈ I.

The following proposition can be obtained from Basile and Marro26 and from Otsuka.46

Proposition 2. Given an uncertain impulsive system Σ𝜎 of the form (1) and a subspace  ⊆  , condition (8) is equivalent
to the existence of an m×n matrix F such that

(Ai + BiF) ⊆  (10)

for all i∈ I.

Given a subspace  ⊆  , any matrix F for which (10) holds for all i∈ I is called friend of the subspace  . An obvious
consequence of Proposition 2 is that if  is a robust hybrid controlled invariant subspace for the uncertain impulsive
system Σ𝜎 of the form (1) and F is one of its friends, then  is a robust invariant subspace for the compensated system
ΣF
𝜎 given by (4). This remark, together with the elementary decomposition of the linear dynamics Ai with respect to an

invariant subspace (Theorem 3.2-1 of Reference 26), proves the following proposition.

Proposition 3. Given an uncertain impulsive system Σ𝜎 of the form (1), let  ⊆  be a robust hybrid controlled invariant
subspace of dimension k≤n and let F be a friend of  . Then,  is robust hybrid invariant for ΣF

𝜎 . Moreover, by applying the
change of basis x =Tz in  with T = (V T1), where V is a n× k matrix whose columns are a basis of  , the equations of ΣF

𝜎

take the form

ΣF
𝜎 ≡

⎧⎪⎨⎪⎩
ż(t) = Âz(t) for t ≠ 𝜎(k), k ∈ N

z(𝜎(k)) = Ĵz−(𝜎(k)) for t = 𝜎(k), k ∈ N

y(t) = Ĉz(t)
(11)

[Corrections added on 15 April 2021, after first online publication: In Equation 11: the word ‘for’ has been changed to roman font.]
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with

Â = T−1(A + BF)T =

(
A11 A12

0(n−k)×k A22

)
=
∑
i∈I

𝜇iT−1(Ai + BiF)T

=
∑
i∈I

𝜇i

(
A11i A12i

0(n−k)×k A22i

)
(12)

Ĵ = T−1JT =

(
J11 J12

0(n−k)×k J22

)
=
∑
i∈I

𝜇iT−1JiT =
∑
i∈I

𝜇i

(
J11i J12i

0(n−k)×k J22i

)
(13)

Ĉ = CT =
(

C1 C2

)
=
∑
i∈I

𝜇iCiT =
∑
i∈I

𝜇i

(
C1i C2i

)
(14)

Remark 1. It is important to note that robust hybrid invariance and robust hybrid controlled invariance of a subspace  ,
as well as the feedback friends of  , are characterized in terms of the vertex systems that define Σ𝜎 , without requiring
any knowledge of the uncertainty parameters. Moreover, the block-triangular structure of Â and Ĵ given by Proposition 3
shows that the free motion x(t) of the state of ΣF

𝜎 that originates from any x(0) ∈  remains inside  for all t ∈ R+ and
for all 𝜇 ∈ ΔN−1 and for all 𝜎 ∈  . In other terms, this means that in the uncertain system Σ𝜎 the motion x(t) of the state
that originates from any x(0) ∈  can be kept inside  by a feedback control input u(t)=Fx(t), which does not depend
on the uncertainty parameter 𝜇 and on the time sequence of jumps defined by 𝜎, on all the time intervals [𝜎(k), 𝜎(k + 1))
in which the system behaves according to its flow dynamics and at each jump instant 𝜎(k). For this reason, the notions
of robust hybrid invariance and of robust hybrid controlled invariance we have introduced qualify as the right tools for
tackling feedback decoupling control problems, as the DDP, for uncertain impulsive systems.

For any subspace  ⊆  , we denote by VR() the family of all the robust hybrid controlled invariant subspaces
contained in  , that is,

VR() = { ⊆  , such that  is robust hybrid controlled invariant}.

Then, we have the following proposition.

Proposition 4. Given an uncertain impulsive system Σ𝜎 of the form (1) and a subspace  ⊆  , the family VR() has a
unique maximum element that is denoted by ∗

R().

Proof. It is sufficient to note that the considered family of subspaces is closed with respect to the sum of subspaces. ▪

The maximum element ∗
R() of VR() coincides with the limit of the sequence of subspaces k that is recursively

generated by the following procedure:

• 0 = 

• k = k−1 ∩ (⊕N
i=1Ai)−1( ⊕N

k−1 + Im(⊕N
i=1Bi)) ∩ (⊕N

j=1Ji)−1 ⊕N
k−1

If dim() = r ≤ n, the above sequence converges in a number of steps at most equal to r + 1 and therefore∗
R() = r.

Notations. In case  = ∩i∈IKer Ci, we denote ∗
R() simply by ∗

R.
The solvability of the DDP can now be characterized by the following result.

Theorem 1. Given a disturbed uncertain impulsive system ΣD𝜎 the form (5), let ∗
R denote the maximum robust hybrid

controlled invariant subspace for the undisturbed system Σ𝜎 contained in ∩i∈ IKer Ci . Then, the DDP for ΣD𝜎 is solvable if
the following condition is satisfied

Im Di ⊆ ∗
R (15)

for all i∈ I.
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Proof. By applying the same change of basis as in Proposition 3, the equations of ΣF
D𝜎

take the form

ΣF
D𝜎

≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
ż1(t)
ż2(t)

)
=

(
A11 A12

0 A22

)(
z1(t)
z2(t)

)
+

(
D1

0

)
d(t) for t ≠ 𝜎(k), k ∈ N(

z1(𝜎(k))
z2(𝜎(k))

)
=

(
J11 J12

0 J22

)(
z−1 (𝜎(k))
z−2 (𝜎(k))

)
for t = 𝜎(k), k ∈ N

y(t) = (0 C2)

(
z1(t)
z2(t)

)

which shows that, initializing ΣF
D𝜎

at z(0)= 0, one has y(t)=C2z2(t)= 0 for t ≥ 0 for all 𝜇 ∈ ΔN−1, all 𝜎 ∈  and any
disturbance input d(t). ▪

It is important to remark that the condition of Theorem 1 can be practically checked by using the algorithmic
procedure described above to construct ∗

R and by checking the inclusion of Im Di in it.

Remark 2. Obviously, Theorem 1 applies also to the particular case in which Ji = In for all i∈ I and, actually, the state
evolution of the uncertain system at issue does not present jumps.

Condition (15) in general is not necessary. An example of this fact is provided by the system ΣD𝜎 of the form (5) with
I = {1, 2} and

A1 =
⎛⎜⎜⎜⎝
0 0 0
1 0 0
0 0 0

⎞⎟⎟⎟⎠ ; A2 =
⎛⎜⎜⎜⎝
0 0 0
0 0 0
1 0 0

⎞⎟⎟⎟⎠ ; B1 = B2 =
⎛⎜⎜⎜⎝
0
0
0

⎞⎟⎟⎟⎠ ; D1 = D2 =
⎛⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎠
J1 = J2 = I3 ; C1 =

(
0 0 1

)
; C2 =

(
0 −1 0

)
.

In this case, we can analyze the effect of the disturbance on the output by means of the transfer function of ΣD𝜎 from 

to  , which, for all 𝜇 ∈ Δ1 and all 𝜎 ∈  , is given by

(𝜇1C1 + 𝜇2C2)(sI3 − (𝜇1A1 + 𝜇2A2))−1(𝜇1D1 + 𝜇2D2)

=
(

0 −𝜇2 𝜇1

) ⎛⎜⎜⎜⎝
s−1 0 0
𝜇1s−2 s−1 0
𝜇2s−2 0 s−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
0
0

⎞⎟⎟⎟⎠ = 0.

Therefore, the disturbance does not affect the output and the DDP is solved without applying any feedback. However, it
is easily seen that ∗

R = (0 0 0)⊤ and Im D1 = Im D2 = span{(1 0 0)⊤} ⊆  is not contained in ∗
R.

Remark 3. Solvability of the DDP for each vertex system by means of the same feedback F is clearly a necessary but not
sufficient condition for the solvability of the DDP for ΣD𝜎 . This is seen by considering, for instance, the following simple
example. Let ΣD𝜎 be of the form (5) with I = {1, 2} and

A1 =
⎛⎜⎜⎜⎝
0 0 0
1 0 0
0 0 0

⎞⎟⎟⎟⎠ A1 =
⎛⎜⎜⎜⎝
0 0 0
0 0 0
1 0 0

⎞⎟⎟⎟⎠ ;B1 = B2 =
⎛⎜⎜⎜⎝
0
0
0

⎞⎟⎟⎟⎠ ;D1 = D2 =
⎛⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎠
J1 = J2 = I3 ; C1 =

(
0 0 1

)
; C2 =

(
0 1 0

)
.

Any feedback of the form F = (f 1 f 2 f 3), for arbitrary f1, f2, f3 ∈ R solves the DDP problem for both the vertex systems,
since we have Ci(sI − (Ai +BiF))−1Di = 0 for i= 1, 2. But no feedback solves the problem for all 𝜇 ∈ Δ1, since C(𝜇)(sI −
(A(𝜇) + B(𝜇)F))−1D(𝜇) = C(𝜇)(sI − A(𝜇))−1D(𝜇) ≠ 0 if, for example, 𝜇1 = 𝜇2 = 1∕2 and any F.

[Corrections added on 15 April 2021, after first online publication: In the last line: the parenthesis between ‘−’ and ‘A’ has been removed.]
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4 STABILITY REQUIREMENT

Stability of an uncertain impulsive control system Σ𝜎 of the form (1) depends on the characteristics of its flow dynamics
and of its jump behavior as well as on the interaction between the two.

Definition 3. An uncertain impulsive control system Σ𝜎 of the form (1) is said robustly asymptotically stable over 𝜏 ,
with 𝜏 > 0, if it is asymptotically stable for all 𝜇 ∈ ΔN−1 and all 𝜎∈ 𝜏 .

Adding the requirement of stability, the disturbance decoupling problem can be stated as follows.

Problem 2 (Disturbance Decoupling Problems with Stability). Given a disturbed uncertain impulsive system ΣD𝜎 the
form (5), the Disturbance Decoupling Problem with Stability (DDPS) by state feedback for ΣD𝜎 consists in finding a
state feedback F ∶  →  , if any exists, that solves the corresponding DDP and that makes the compensated uncertain
impulsive system ΣF

D𝜎
robustly asymptotically stable over 𝜏 for some 𝜏 > 0.

In order to study the solvability of the DDPS, the following result is useful.

Proposition 5. Given an uncertain impulsive control systemΣ𝜎 of the form (1), assume that there exists a symmetric, positive
definite n×n matrix P such that A⊤

i P + PAi < 0 for all i∈ I. Then A = A(𝜇) =
∑N

i=1 𝜇iAi is an Hurwitz matrix for all 𝜇 ∈
ΔN−1. Moreover, V(x)= x⊤Px is a common quadratic Lyapunov function for the flow dynamics given by A = A(𝜇) for all
𝜇 ∈ ΔN−1.

Proof. From A⊤
i P + PAi < 0 for all i∈ I, we have

A(𝜇)⊤P + PA(𝜇) =

( N∑
i=1

𝜇iA⊤
i

)
P + P

N∑
i=1

𝜇iAi =
N∑

i=1
𝜇i(A⊤

i P + PAi) < 0

for 𝜇 ∈ ΔN−1. Then, A = A(𝜇) is Hurwitz and V(x)= x⊤Px is a Lyapunov function for the flow dynamics defined by A =
A(𝜇) for all 𝜇 ∈ ΔN−1. ▪

Now, we can state the following result.

Theorem 2. Given a disturbed uncertain impulsive control system ΣD𝜎 of the form (5), assume that there exists a solution F
of the related DDP such that

(Ai + BiF)⊤P + P(Ai + BiF) < 0 (16)

for some positive definite matrix P of suitable dimension and for all i∈ I. Then, the related DDPS is solvable.

Proof. Since F solves the DDP, it is enough to show that ΣF
D𝜎

is robustly asymptotically stable over 𝛼 for some 𝛼.
To this aim, we begin by showing that, under the hypotheses of the Theorem, there exists 𝜂 ∈ R such that||e(A(𝜇)+B(𝜇)F)t|| < 1 for t ≥ 𝜂 and for all 𝜇 ∈ ΔN−1. In fact, by Proposition 5, V(x)= x⊤Px is a common quadratic Lya-

punov function for the flow dynamics given by A = A(𝜇) for all 𝜇 ∈ ΔN−1. Each flow dynamics is therefore asymptotically
stable and, in particular, for all 𝜇 ∈ ΔN−1, there exist two positive values 𝛼(𝜇) and 𝛽(𝜇) such that ||e(A(𝜇)+B(𝜇)F)tx|| ≤
𝛼(𝜇)e−𝛽(𝜇)t||x||. Now, given 𝜇 ∈ ΔN−1, let S(𝜇, 𝛿𝜖(𝜇)) ⊆ ΔN−1 be an open neighborhood of 𝜇 such that

||e(A(𝜇)+B(𝜇)F)tx − e(A(𝜇)+B(𝜇)F)tx|| ≤ 𝜖 < 1∕2

for all 𝜇 ∈ S(𝜇, 𝛿𝜖(𝜇)) and all t ∈ R+ and let t ∈ R+ be such that 𝛼(𝜇)e−𝛽(𝜇)t ≤ 1∕2. Note that, in general, t depends on 𝜇

and the notation t has been preferred to t(𝜇) for simplicity. Now, for all x ∈  with ||x||= 1 and for all t ≥ t we get

||e(A(𝜇)+B(𝜇)F)tx|| = ||e(A(𝜇)+B(𝜇)F)tx − e(A(𝜇)+B(𝜇)F)tx + e(A(𝜇)+B(𝜇)F)tx||
≤ ||e(A(𝜇)+B(𝜇)F)tx − e(A(𝜇)+B(𝜇)F)tx|| + ||e(A(𝜇)+B(𝜇)F)tx||
≤ 𝜖 + 𝛼(𝜇)e−𝛽(𝜇)t||x|| ≤ 𝜖 + 𝛼(𝜇)e−𝛽(𝜇)t||x|| ≤ 𝜖 + 1∕2||x|| < 1 (17)

[Corrections added on 15 April 2021, after first online publication: In the second line of Problem 2: the first letters of the words ‘Disturbance’,
‘Decoupling’, ‘Problem’, and ‘Stability’ have been capitalized.]
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for all 𝜇 ∈ S(𝜇, 𝛿𝜖(𝜇)). This says that for t ≥ t the norm of e(A(𝜇)+B(𝜇)F)t is smaller than 1, that is, ||e(A(𝜇)+B(𝜇)F)t|| < 1, for
all 𝜇 ∈ S(𝜇, 𝛿𝜖(𝜇)). Since ΔN−1 =

⋃
𝜇∈ΔN−1 S(𝜇, 𝛿𝜖(𝜇)), the totality of the open sets (𝜇, 𝛿𝜖(𝜇)) form a cover  of the symplex

ΔN−1 and, since the latter is compact, it is possible to extract a finite subcover f , namely, a finite set {S(𝜇j, 𝛿𝜖(𝜇J))}j=1,… ,M ,
such that ΔN−1 =

⋃
j=1,… ,MS(𝜇j, 𝛿𝜖(𝜇j)). Then, considering the set of values {t(𝜇j)}j=1,… ,M corresponding to the elements

of f and letting 𝜂 be such that 𝜂 ≥ maxj=1,… ,Mt(𝜇j), it follows from the above results that ||e(A(𝜇)+B(𝜇)F)t|| < 1, for t ≥ 𝜂 and
for all 𝜇 ∈ ΔN−1 as claimed.

Now, let us take 𝛾 ≥
∑

i∈I||Ji|| and remark that, since ||J|| = ||J(𝜇)|| = ||∑i∈I𝜇iJi|| ≤ ∑
i∈I𝜇i||Ji|| ≤ ∑

i∈I||Ji||, we
have 𝛾 ≥ ||J(𝜇)|| for all 𝜇 ∈ ΔN−1. Since ||e(A(𝜇)+B(𝜇)F)t|| < 1 for all t ≥ 𝜂 and all 𝜇 ∈ ΔN−1, there exists n ∈ N such that||e(A(𝜇)+B(𝜇)F)nt|| ≤ 1

2𝛾
for all t ≥ 𝜂 and all 𝜇 ∈ ΔN−1. Therefore, for all t ≥ n𝜂 and all 𝜇 ∈ ΔN−1 we have ||e(A(𝜇)+B(𝜇)F)tx|| ≤

1
2𝛾
||x|| for all x ∈  .

It follows that, for the system ΣF
D𝜎

, we have

||x(𝜎(k + 1))|| = ||J(𝜇)e(A(𝜇)+B(𝜇)F)(𝜎(k+1)−𝜎(k))x(𝜎(k))|| ≤ 1∕2||x(𝜎(k))||
for all x ∈  , all 𝜇 ∈ ΔN−1 and all 𝜎 ∈ n𝜂 . Hence, ΣF

D𝜎
is robustly asymptotically stable over 𝜏 for 𝜏 = n𝜂. ▪

Theorem 3. Given a disturbed uncertain impulsive system ΣD𝜎 of the form (5), let ∗
R denote the maximum robust hybrid

controlled invariant subspace for the undisturbed system Σ𝜎 contained in ∩i∈ IKer Ci. Then, the DDPS for ΣD𝜎 is solvable if
condition (15) is satisfied for all i∈ I and there exists a friend F of ∗

R such that condition (16) is satisfied for some positive
definite matrix P of suitable dimensions and all i∈ I.

Proof. It follows from Theorems 1 and 2. ▪

We have already illustrated how to check condition (15). If it is satisfied, condition (16) can be checked by the following
procedure. Note, first of all, that if V is an n× k matrix whose columns are a basis of ∗

R, condition (10) of Proposition 2
is equivalent to the existence of a matrix F and of matrices L1, … , LN of suitable dimensions such that (Ai +BiF)V =VLi
for i∈ I. It follows, reasoning as in Perdon et al.,47 that F′ is a friend of ∗

R if and only if

F′V = FV + K2H

where F is a given friend, K2 is an m × k′ matrix of suitable dimensions such that, for some kN × k′ matrix K1, the columns

of the (kN + m) × k′ matrix
(

K1
K2

)
are a basis of Ker

⎛⎜⎜⎜⎝
V 0 … … 0 B1
0 V 0 … 0 B2

… …
0 0 … 0 V BN

⎞⎟⎟⎟⎠, and H is an arbitrary k′ × k matrix. Then,

expressing condition (16) in terms of LMIs by the change of variable FP−1 =Y as

P−1A⊤
i + AiP−1 + YB⊤

i + Y⊤Bi < 0

for i∈ I, one can search, in particular, for solutions P and Y such that YPV =FV +K2H for some matrix H of suitable
dimensions.

Remark 4. When the conditions (15) and (16) are satisfied, Theorem 3 guarantees that the feedback F is a solution
of the DDPS, namely that it achieves the decoupling and that it stabilizes the compensated system over 𝜏 for some
𝜏 ≥ 0. However, the theorem does not indicate how to compute 𝜏. Actually, no general procedure to compute 𝜏 is
known and one has to use ad hoc procedures depending on the characteristics of the system at issue (see the example in
Section 5).

5 EXAMPLE

Consider the disturbed, uncertain impulsive linear system with jumps and polytopic uncertainties ΣD𝜎 of the form (5)
defined, for 𝜇 ∈ Δ1, by the matrices:
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A = A(𝜇) = 𝜇A1 + (1 − 𝜇)A2 = 𝜇

⎛⎜⎜⎜⎝
−1 0 1
1 −2 1
1 0 −3

⎞⎟⎟⎟⎠ + (1 − 𝜇)
⎛⎜⎜⎜⎝
−1∕2 −1 2

1 −5∕2 1
0 1 −5∕2

⎞⎟⎟⎟⎠
B = B(𝜇) = 𝜇B1 + (1 − 𝜇)B2 = 𝜇

⎛⎜⎜⎜⎝
1
1
0

⎞⎟⎟⎟⎠ + (1 − 𝜇)
⎛⎜⎜⎜⎝

1
1
−1

⎞⎟⎟⎟⎠
C = C(𝜇) =

(
0 1 0

)
= C1 = C2

D = D(𝜇)
⎛⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎠ = D1 = D2

J = J(𝜇) = 𝜇J1 + (1 − 𝜇)J2 = 𝜇

⎛⎜⎜⎜⎝
1 1 1
0 1 0
1 −1 −1

⎞⎟⎟⎟⎠ + (1 − 𝜇)
⎛⎜⎜⎜⎝
−1 2 2
0 1 0
1 −1 0

⎞⎟⎟⎟⎠ .
Computations show that Ker C = span

{(1
0
0

)
,

(0
0
1

)}
and ∗

R = Ker C. Since Im Di ⊆ ∗
R for i= 1, 2, we have by

Theorem 1 that the related DDP is solvable. Again, computations show that, for all f1 ∈ R, the matrix F =
(
−1 f1 −1

)
is a friend of ∗

R and therefore we can, in particular, choose F =
(
−1 0 −1

)
as solution of the DDP.

We can also check directly that F =
(
−1 0 −1

)
is a solution by applying in  the change of basis x =Tz= (V T1)z,

where V is a matrix whose columns are a basis of ∗
R. For instance, for T =

(1 0 0
0 0 1
0 1 0

)
, we have

Â = T−1(A + BF)T =
⎛⎜⎜⎜⎝
−1∕2 𝜇 − 3∕2 1 − 𝜇 −1 + 𝜇

1 −3∕2 𝜇 − 3∕2 1 − 𝜇

0 0 1∕2 𝜇 − 5∕2

⎞⎟⎟⎟⎠
Ĵ = T−1JT

⎛⎜⎜⎜⎝
2 𝜇 − 1 −𝜇 + 2 −𝜇 + 2

1 −𝜇 −1
0 0 1

⎞⎟⎟⎟⎠
Ĉ = CT =

(
0 0 1

)
, D̂ = T−1D =

⎛⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎠
and, hence, ΣF

D𝜎
in the new basis takes the form

ΣF
D𝜎

≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ż1(t) = (−1∕2 𝜇 − 3∕2)z1(t) + (1 − 𝜇)z2(t) + (−1 + 𝜇)z3(t) + d(t)
ż2(t) = z1(t) + (−3∕2𝜇 − 3∕2)z2(t) + (1 − 𝜇)z3(t)
ż3(t) = (1∕2 𝜇 − 5∕2)z3(t)

z1(𝜎(k)) = (2 𝜇 − 1)z−1 (𝜎(k)) + (−𝜇 + 2)z−2 (𝜎(k)) + (−𝜇 + 2)z−3 (𝜎(k))
z2(𝜎(k)) = z−1 (𝜎(k)) − 𝜇 z−2 (𝜎(k)) − z−3 (𝜎(k))
z3(𝜎(k)) = z−3 (𝜎(k))

y(t) = z3(t)

(18)

Inspection shows that, for all 𝜇 ∈ Δ1, the disturbance does not affect the component z3 of the state of the compensated
system ΣF

D𝜎
and therefore it does not affect its output for all 𝜎 ∈  .

[Corrections added on 15 April 2021, after first online publication: In the third line of Equation (18): the first minus symbol has been removed.]
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Moreover, taking P= I3, we also have

(A1 + B1F)⊤P + P(A1 + B1F) = (A1 + B1F)⊤ + (A1 + B1F) =
⎛⎜⎜⎜⎝
−4 0 1
0 −4 0
1 0 −6

⎞⎟⎟⎟⎠ < 0

(A2 + B2F)⊤P + P(A2 + B2F) = (A2 + B2F)⊤ + (A2 + B2F) =
⎛⎜⎜⎜⎝
−3 −1 2
−1 −5 1
2 1 −3

⎞⎟⎟⎟⎠ < 0

Hence, by Theorem 3, the related DDPS is solvable and F =
(
−1 0 −1

)
is a solution. Beside assuring decoupling of

the output from the disturbance input for all 𝜇 ∈ Δ1 and all 𝜎 ∈  , this means that ΣF
D𝜎

is robustly asymptotically stable
over 𝜏 for some value 𝜏 ≥ 0. In order to find a valid 𝜏 in this particular case, we can proceed as follows. First, using the
symbolic calculus capability of MAPLE®, we get an explicit expression of e(A(𝜇)+B(𝜇)F)t (see the Appendix). Then, using the
general inequality

||e(A(𝜇)+B(𝜇)F)t|| ≤ √||e(A(𝜇)+B(𝜇)F)t||1||e(A(𝜇)+B(𝜇)F)t||∞ (19)

we obtain that ||e(A(𝜇)+B(𝜇)F)t|| is smaller than 1 for t = 1 and for all𝜇 ∈ Δ1. Indeed, plotting the graph of ||e(A(𝜇)+B(𝜇)F)t||1 and
of ||e(A(𝜇)+B(𝜇)F)t||∞ for t = 1 by MAPLE® (see the Appendix), it is possible to conclude that max𝜇∈Δ1 ||e(A(𝜇)+B(𝜇)F)1||1 < 0.6
and max𝜇∈Δ1 ||e(A(𝜇)+B(𝜇)F)1||∞ < 0.55, so that ||e(A(𝜇)+B(𝜇)F)1|| < 0.57. Since P= I3, we have x⊤Px = ||x||2 and the level curves
of x⊤Px are circumferences with center in the origin of R2. It follows that for all 𝜇 ∈ Δ1 the function ||e(A(𝜇)+B(𝜇)F)tx|| is
monotonically decreasing and hence we have

||e(A(𝜇)+B(𝜇)F)tx|| ≤ ||e(A(𝜇)+B(𝜇)F)1x|| ≤ ||e(A(𝜇)+B(𝜇)F)1||||x|| < 0.57||x||
for all t ≥ 1, that is ||e(A(𝜇)+B(𝜇)F)t|| < 0.57 for all t ≥ 𝜂 = 1 and all 𝜇 ∈ Δ1.

By similar computations, we get ||J(𝜇)|| < 𝛾 = 5.4 for all 𝜇 ∈ Δ1 and then for n = 4 we have

||e(A(𝜇)+B(𝜇)F)nt|| = ||e(A(𝜇)+B(𝜇)F)4t|| < 0.574 < 0.091 <
1

2𝛾

for all t ≥ 𝜂 = 1 and for all 𝜇 ∈ Δ1.
We therefore obtain ||x(𝜎(k + 1))|| = ||J(𝜇)e(A(𝜇)+B(𝜇)F)(𝜎(k+1)−𝜎(k))x(𝜎(k))||

≤ ||J(𝜇)||||e(A(𝜇)+B(𝜇)F)(𝜎(k+1)−𝜎(k))||||x|| ≤ 𝛾
1

2𝛾
||x|| = 1

2
||x||

for all 𝜎∈ n𝜂 , that implies robust asymptotic stability of ΣF
D𝜎

over 𝜏 with 𝜏 = 4.

6 CONCLUSIONS

The structural solvability of a class of disturbance decoupling problems for hybrid linear systems with polytopic uncer-
tainties which present jumps in the state behavior has been investigated by means of a structural geometric approach.
Sufficient, constructive conditions for the solvability of the disturbance decoupling problem by state feedback and for
the same problem with the additional requirement of robust stability of the compensated system have been given. Since
the requirements of decoupling for all values of the uncertainty parameter and of robust stability are quite strong, the
solvability conditions are tight. However, they can be checked by viable algorithmic procedures.
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APPENDIX A

The symbolic computation routine of MAPLE® gives the following expression, as functions of t and 𝜇, for the columns
E1(t, 𝜇), E2(t, 𝜇), E3(t, 𝜇) of the matrix e(A(𝜇)+B(𝜇)F)t considered in Section 5:

E1(t, 𝜇) =
⎛⎜⎜⎜⎝

e−1∕2 (5+𝜇)t𝜇−e−1∕2 (5+𝜇)t−e−1∕2 (1+3 𝜇)t

𝜇−2

0
e−1∕2 (5+𝜇)t−e−1∕2 (1+3 𝜇)t

𝜇−2

⎞⎟⎟⎟⎠
E2(t, 𝜇) =

⎛⎜⎜⎜⎝
−1∕2 −8 e−1∕2 (5+𝜇)t𝜇+4 e−1∕2 (5+𝜇)t𝜇2+4 e−1∕2 (5+𝜇)t+8 𝜇 e1∕2 (𝜇−5)t−3 𝜇2e1∕2 (𝜇−5)t−4 e1∕2 (𝜇−5)t−𝜇2e−1∕2 (1+3 𝜇)t

(𝜇−2)𝜇

e1∕2 (𝜇−5)t

−1∕2 4 e−1∕2 (5+𝜇)t𝜇−4 e−1∕2 (5+𝜇)t−4 𝜇 e1∕2 (𝜇−5)t+4 e1∕2 (𝜇−5)t+𝜇2e1∕2 (𝜇−5)t−𝜇2e−1∕2 (1+3 𝜇)t

(𝜇−2)𝜇

⎞⎟⎟⎟⎠



4742 CONTE et al.

E3(t, 𝜇) =
⎛⎜⎜⎜⎝
−−e−1∕2 (5+𝜇)t+e−1∕2 (5+𝜇)t𝜇+e−1∕2 (1+3 𝜇)t−𝜇 e−1∕2 (1+3 𝜇)t

𝜇−2

0
− e−1∕2 (1+3 𝜇)t+e−1∕2 (5+𝜇)t−𝜇 e−1∕2 (1+3 𝜇)t

𝜇−2

⎞⎟⎟⎟⎠ .
Note that the expression of E2(t, 𝜇) returned by MAPLE® is not defined for 𝜇 = 0, but we can extend it by continuity by
defining

E(t, 0) = lim
𝜇→0+

E(t, 𝜇) =
⎛⎜⎜⎜⎝
1∕2 e−5∕2 t + 1∕2 e−1∕2 t −te−5∕2 t 1∕2 e−1∕2 t − 1∕2 e−5∕2 t

0 e−5∕2 t 0
1∕2 e−1∕2 t − 1∕2 e−5∕2 t te−5∕2 t 1∕2 e−5∕2 t + 1∕2 e−1∕2 t

⎞⎟⎟⎟⎠ .
For t = 1, we have

E1(1, 𝜇) =
⎛⎜⎜⎜⎝

e−1∕2 𝜇−5∕2𝜇−e−1∕2 𝜇−5∕2−e−1∕2−3∕2 𝜇

𝜇−2

0
e−1∕2 𝜇−5∕2−e−1∕2−3∕2 𝜇

𝜇−2

⎞⎟⎟⎟⎠
E2(1, 𝜇) =

⎛⎜⎜⎜⎝
−1∕2 −8 e−1∕2 𝜇−5∕2𝜇+4 e−1∕2 𝜇−5∕2𝜇2+4 e−1∕2 𝜇−5∕2+8 𝜇 e1∕2 𝜇−5∕2−3 𝜇2e1∕2 𝜇−5∕2−4 e1∕2 𝜇−5∕2−𝜇2e−1∕2−3∕2 𝜇

(𝜇−2)𝜇

e1∕2 𝜇−5∕2

−1∕2 4 e−1∕2 𝜇−5∕2𝜇−4 e−1∕2 𝜇−5∕2−4 𝜇 e1∕2 𝜇−5∕2+4 e1∕2 𝜇−5∕2+𝜇2e1∕2 𝜇−5∕2−𝜇2e−1∕2−3∕2 𝜇

(𝜇−2)𝜇

⎞⎟⎟⎟⎠
E3(1, 𝜇) =

⎛⎜⎜⎜⎝
−−e−1∕2 𝜇−5∕2+e−1∕2 𝜇−5∕2𝜇+e−1∕2−3∕2 𝜇−𝜇 e−1∕2−3∕2 𝜇

𝜇−2

0
− e−1∕2−3∕2 𝜇+e−1∕2 𝜇−5∕2−𝜇 e−1∕2−3∕2 𝜇

𝜇−2

⎞⎟⎟⎟⎠ .
In particular, we have:

||e(A(𝜇)+B(𝜇)F)1||∞ = max

(|||||e−1∕2 𝜇−5∕2𝜇 − e−1∕2 𝜇−5∕2 − e−1∕2−3∕2 𝜇

𝜇 − 2

||||| + ||||e−1∕2 𝜇−5∕2 − e−1∕2−3∕2 𝜇

𝜇 − 2
|||| ,|||||−e−1∕2 𝜇−5∕2 + e−1∕2 𝜇−5∕2𝜇 + e−1∕2−3∕2 𝜇 − 𝜇 e−1∕2−3∕2 𝜇

𝜇 − 2

||||| +
|||||e−1∕2−3∕2 𝜇 + e−1∕2 𝜇−5∕2 − 𝜇 e−1∕2−3∕2 𝜇

𝜇 − 2

||||| ,
1∕2

|||||−8 e−1∕2 𝜇−5∕2𝜇 + 4 e−1∕2 𝜇−5∕2𝜇2 + 4 e−1∕2 𝜇−5∕2 + 8 𝜇 e1∕2 𝜇−5∕2 − 3 𝜇2e1∕2 𝜇−5∕2 − 4 e1∕2 𝜇−5∕2 − 𝜇2e−1∕2−3∕2 𝜇

(𝜇 − 2)𝜇

|||||
+e−5∕2+1∕2 𝜇 + 1∕2

(|||||4 e−1∕2 𝜇−5∕2𝜇 − 4 e−1∕2 𝜇−5∕2 − 4 𝜇 e1∕2 𝜇−5∕2 + 4 e1∕2 𝜇−5∕2 + 𝜇2e1∕2 𝜇−5∕2 − 𝜇2e−1∕2−3∕2 𝜇

(𝜇 − 2)𝜇

|||||
)

||e(A(𝜇)+B(𝜇)F)1||1 = max
(||||e−1∕2 𝜇−5∕2 − e−1∕2−3∕2 𝜇

𝜇 − 2
||||

+1∕2
|||||4 e−1∕2 𝜇−5∕2𝜇 − 4 e−1∕2 𝜇−5∕2 − 4 𝜇 e1∕2 𝜇−5∕2 + 4 e1∕2 𝜇−5∕2 + 𝜇2e1∕2 𝜇−5∕2 − 𝜇2e−1∕2−3∕2 𝜇

(𝜇 − 2)𝜇

|||||
+
|||||e−1∕2−3∕2 𝜇 + e−1∕2 𝜇−5∕2 − 𝜇 e−1∕2−3∕2 𝜇

𝜇 − 2

||||| ,
|||||e−1∕2 𝜇−5∕2𝜇 − e−1∕2 𝜇−5∕2 − e−1∕2−3∕2 𝜇

𝜇 − 2

|||||
+1∕2

|||||−8 e−1∕2 𝜇−5∕2𝜇 + 4 e−1∕2 𝜇−5∕2𝜇2 + 4 e−1∕2 𝜇−5∕2 + 8 𝜇 e1∕2 𝜇−5∕2 − 3 𝜇2e1∕2 𝜇−5∕2 − 4 e1∕2 𝜇−5∕2 − 𝜇2e−1∕2−3∕2 𝜇

(𝜇 − 2)𝜇

|||||
+

(|||||−e−1∕2 𝜇−5∕2 + e−1∕2 𝜇−5∕2𝜇 + e−1∕2−3∕2 𝜇 − 𝜇 e−1∕2−3∕2 𝜇

𝜇 − 2

||||| , e−5∕2+1∕2 𝜇

)

and, using again MAPLE®, we can plot the graphs of ||e(A(𝜇)+B(𝜇)F)1||1 and of ||e(A(𝜇)+B(𝜇)F)1||∞ as functions of 𝜇 for 𝜇 ∈ Δ1

(see Figure A1). As said in Section 5, we get max𝜇∈Δ1 ||e(A(𝜇)+B(𝜇)F)1||1 ≤ 0.55 and max𝜇∈Δ1 ||e(A(𝜇)+B(𝜇)F)1||∞ ≤ 0.6.



CONTE et al. 4743

F I G U R E A1 Graph of ||e(A(𝜇)+B(𝜇)F)1||1 and of ||e(A(𝜇)+B(𝜇)F)1||∞
for 𝜇 ∈ Δ1 [Colour figure can be viewed at wileyonlinelibrary.com]
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