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A B S T R A C T   

The quality assessment, in terms of lipid oxidative status, of food products stored in the long-term is of great 
importance, especially those with a high lipid content. Specifically, companies working in this sector need 
feasible, simple, and fast techniques that are suitable for quality or process control. Herein, a fingerprinting 
approach, based on headspace analysis carried out by flash gas chromatography electronic nose (FGC E-nose) 
and multivariate data analysis was applied to pistachio and gianduja spreads. These samples, differently pack-
aged, were stored in climatic chambers at 40 ◦C for 180 days and their headspace fraction was analyzed peri-
odically for a total of 15 sampling times. Principal component analysis showed a clear separation according to 
the packaging type for both pistachio and gianduja samples. Partial least squares regression models were 
developed to predict the storage time considering the aggregated data (R2 up to 0.985, RMSEP = 6.16 days) or 
separately (R2 up to 0.989, RMSEP = 5.71 days). Based on the obtained residual prediction deviation (RPD from 
4.4 to 8.5 in prediction), the models can be considered suitable for use in quality control in an industrial 
environment.   

1. Introduction 

Nut spreads, having at least 40% nuts as an ingredient (Shaker-
ardekani, Karim, Ghazali, & Ling Chin, 2013), are produced by mixing 
nuts, sweeteners, vegetable oils, and protein sources (Liedl & Rowe, 
2007) until the desired cream texture is obtained (Gamlı & Hayoglu, 
2012). The types of nuts used in these formulations can be different (e.g., 
pistachio, hazelnut, almond, peanut, cashew, macadamia nut, pecan, or 
walnut) and can be added in various forms, such as whole, pieces, paste, 
or slurry (USDA, 2006; Nielsen, 2010). Generally, nut spread is made by 
grinding roasted nuts into a paste that can be used like butter (Shaker-
ardekani et al., 2013). 

Because of their high lipid content with a large proportion of poly-
unsaturated fatty acids, in addition to thermal stress caused by possible 
use of roasted nuts, these products are particularly prone to lipid 
oxidation (Mureșan, et al., 2016). This leads to formation of hydroper-
oxides that further degrade into secondary oxidation products such as 
ketones, aldehydes, and other molecules (Frankel, 1980). The release in 
the head-space of these secondary oxidation compounds is associated 

with changes in the odor of the product, resulting in rancidity (Shak-
erardekani, Karim, Ghazali, & Ling Chin, 2015). 

Deteriorative reactions may occur during storage, mainly in terms of 
lipid oxidation and browning (Maskan & Göğüş, 1997). For example, 
pistachio nut paste changes its color to brown in the presence of 
high-water activity as a consequence of Maillard reactions (Maskan & 
Göğüş, 1997). In addition, it has been reported that the whiteness of a 
greenish spreadable pistachio paste decreased after 8 months of storage 
at 20 ◦C due to degradation of chlorophyll into pheophytin b (grayish 
green) and browning reactions (Gamlı & Hayoglu, 2012). Furthermore, 
the effect of different packaging (sealed jar, vacuumed PP, and 
non-vacuumed PP) and storage conditions on the quality of pistachio nut 
paste has been evaluated (Gamli & Hayoglu 2007). It has been reported 
that peroxide values and free fatty acids are weakly affected by the 
packaging type. However, considering total acidity, moisture content, 
and browning indices, a sealed glass jar was found to be more suitable 
than polypropylene pouches. A similar conclusion was also reached by 
(Torun, 1999) for walnut paste. Measuring the oxidative stability of 
these products is therefore essential to determine their shelf life, 
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consumer acceptability, and nutritional quality (Mureșan et al., 2016). 
Analysis of volatile lipid oxidation products is a challenging task due 

to their physical properties, complexity of the food matrices from which 
they are released, and trace levels (Jeleń, Gracka, & Myśków, 2017). 
Different analytical techniques, such as headspace (HS) analysis coupled 
with a mass spectrometry (MS) detector, especially in nuts (Salcedo & 
Nazareno, 2015; Rogel-Castillo, Luo, Huang, & Mitchell, 2017), or flame 
ionization (FID) detector (Vichi, Pizzale, Conte, Buxaderas, & 
López-Tamames, 2003; Deiana et al., 2019; Khrisanapant, Kebede, 
Leong, & Oey, 2019; Pan, Ushio, & Ohshima, 2004) have been applied to 
study these compounds during storage under accelerated conditions 
(Franklin et al., 2018). However, most of the traditional analytical 
methods are time consuming and expensive. 

Rapid and innovative instrumental approaches have also been 
developed to satisfy the need for simpler and faster techniques that can 
also be used for quality assurance within food companies. Flash gas 
chromatography electronic nose (FGC E-nose) is a highly selective and 
sensitive gas chromatograph for analysis of the volatile fraction and is 
capable of performing very fast hydrocarbon measurements at low 
concentrations in laboratory or field conditions. Its novel features 
include versatility and higher analysis speed over conventional gas 
chromatographs (Marion, Herve, & Fatma, 2011). 

This technique has recently been used to evaluate the quality and 
authenticity of olive oil (Melucci et al., 2016; Barbieri et al., 2020; 
Palagano, Valli, Cevoli, Bendini, Gallina Toschi, 2020) to measure the 
flavor changes of rapeseed oils used for frying (Xu et al., 2019), in age 
identification and brand classification of brandy (Yang, Zhao, Zhang, Ni, 
& Zhan, 2012), and to predict storage time and quality changes of hen 
eggs (Yimenu et al., 2017). Additionally, it has been used to help identify 
the causes of rancidity and in monitoring of global sensory quality in nut 
mixes (Marion et al., 2011). In all these studies, multivariate chemo-
metric methods [principal component analysis (PCA), partial least 
squares regression (PLS), PLS discriminant analysis, and cluster analysis 
(CA) have been used to elaborate chromatographic data, adopting tar-
geted and untargeted approaches. 

From an industrial point of view (quality control), it is important to 
implement rapid screening approaches. Since to the authors’ knowledge 
all studies reported in the literature have investigated the oxidative 
stability of nut spreads by traditional analytical techniques, the aim of 
this work was to evaluate the storage time of two nut spreads (pistachio 
and gianduja) using a rapid screening method, i.e. FGC E-nose. Chro-
matograms were elaborated by applying an untargeted multivariate 
approach based on PCA (group the sample according to packaging type) 
and PLS models (predict storage time). 

2. Materials and methods 

2.1. Samples 

Pistachio and gianduja spreads, usually used as ingredients in the 
pastry and ice cream sector, were supplied by a food company imme-
diately after production. The ingredients of the two spreads are reported 
in Table 1, and the shelf life of the products given by the manufacturer 
was 18 months. 

Both the spreads were packaged, directly by the company, in PP5 
cylindrical containers characterized by two flush edge capacity, L and S, 
respectively, in the 3 and 0.35 L formats in which they are generally 
marketed. Furthermore, the product inside the L container was her-
metically covered by a plastic film (nylon Bx + PP). 

Storage conditions at 40 ◦C for 180 days were chosen to accelerate 
storage tests and simulate approximately 18 months at room tempera-
ture (25 ± 2 ◦C), according to Ling, Hou, Li, and Wang (2014) and 
Dordoni, Cantaboni, and Spigno (2019) that reported Q10 values (oil 
oxidation) ranging from 2.68 to 3.4. All samples were stored in climatic 
chambers (Constant Climate Chamber with Peltier technology, model 
HPP 108/749- Memmert, Germany) and analyzed at 0, 3, 7, 11, 14, 18, 

21, 25, 28, 32, 42, 60, 74, 83, 130, and 180 days for a total of 15 
sampling times (50 ± 5% of relative humidity). The sampling times were 
chosen considering that the main chemical and physical modifications of 
pistachio spread stored at room temperature take place during the first 
4–6 months (40–60 days at 40 ◦C) (Gamlı & Hayoglu, 2012). Within the 
same product (pistachio and gianduja) and type of packaging (L and S), 
three samples were analyzed for each storage time (15), for a total of 180 
samples. 

2.2. Flash gas chromatography 

The analysis of volatile compounds was carried out using the FGC 
Electronic Nose Heracles II (Alpha MOS, Toulouse, France) based on 
ultra-fast gas-chromatography technology. The instrument was equip-
ped with two metal capillary columns working in parallel mode and 
characterized by different polarity and stationary phase: a non-polar 
column (MXT5: 5% diphenyl, 95% methylpolysiloxane, 10 m length 
and 180 μm diameter) and a polar column (MXT-1701: 14% cyano-
propylphenyl, 86% dimethyl polysiloxane, 10 m length, 180 μm diam-
eter). At the end of each column, a FID detector was placed and the 
acquired signal was digitalized every 0.01 s. 

Each sample was analyzed in triplicate, weighing 2 ± 0.1 g of paste in 
a 20 mL vial sealed with a magnetic cap. Before removing the sample, 
the spreads were mixed to avoid ingredient separation. The analytical 
conditions applied have been described in detail by Palagano et al. 
(2020). 

2.3. Data processing 

Considering an untargeted approach similar to those proposed by 
Barbieri et al. (2020), Palagano, et al. (2020), Xu et al. (2019), Yang 
et al. (2012) and Yimenu et al. (2017), the full chromatograms were 
used to estimate the storage time of the products according to packaging 
type. The raw data of each chromatogram was composed of the intensity 
values for each point acquired every 0.01 s. 

The mean chromatograms calculated on three replicates were 
aligned with the COW (Correlation Optimized Warping) algorithm 
(Tomasi et al, 2014), centered (mean-centering), and pretreated using 
two approaches: (i) Pareto-scaling; (ii) normalization by Standard 
Normal Variate (SNV). 

Pareto-scaling gives equal importance to all variables, but to a lesser 
extent than standard autoscaling which may cause loss of important 
information in chromatographic fingerprints, since it significantly in-
creases the weights of minor noisy variables (Aliakbarzadeh, Parastar, & 
Seresthi, 2016). Furthermore, the data structure remains partially intact 
(Van den Berg, Hoefsloot, Westerhuis, Smilde, & Van der Werf, 2006). 
SNV is a pretreatment usually used with spectroscopic data to correct for 
both baseline shift and global intensity variations. In addition, in this 
case, the shape of the chromatogram is not altered. 

The data were subjected to PCA and PLS regression to discriminate 
samples as a function of different storage times or packaging type, and to 

Table 1 
Ingredients of gianduja and pistachio spreads.  

Gianduja spread Pistachio spread 

Sunflower oil Sunflower oil 
Sugar Sugar 
Roasted hazelnuts Maltodextrin 
Dextrose Roasted Pistachio 
Low-fat cocoa powder Dextrose 
Skimmed milk powder Vegetable fibre 
Soy lecithin Cocoa butter 
Bourbon vanilla pods Soy lecithin 
Tocopherols Salt  

Tocopherols  
Brilliant Blue FCF  
Carotenes  
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extrapolate the storage times. Considering PLS regressions, for each 
product type (pistachio or gianduja), three different models were 
developed, two considering the samples separately according to the 
packaging type and one considering all samples together. The predictive 
power of the models was tested by performing venetian blinds cross 
validation (10 segments) and external test set. The dataset was split into 
two sub-sets, one to calibrate the model (80% of the entire data-set) and 
the other (20%) to externally validate it (test-set) using the Kennard- 
Stone method (selects samples that best span the same range as the 
original data, but with an even distribution of samples across the same 
range) (Kennard & Stone, 1969). 

Results were analyzed in terms of determination coefficient (R2), 
root mean square error (RMSE), and residual prediction deviation 
(RPD): 

R2 =

∑N
i=1(ŷi − y)2

∑N
i=1(yi − y)2 (1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(ŷi − y)2

N − k

√

(2)  

RPD=
SD

RMSE
(3)  

where yi is the actual storage time (days), ŷi is the predicted storage time 
(days), y is the mean of the actual values, N is the number of samples, k is 
the number of latent variables retained in the model, and SD is the 
standard deviation of reference values. 

To avoid over-fitting the model, the optimal number of latent vari-
ables was chosen by plotting the RMSE in cross validation (RMSECV) as 
a function of the number of components and by identifying where the 
curve reaches a minimum. The results obtained for the external vali-
dation set were used to evaluate the model’s robustness in terms of 
degree of model generalization (Putri & Fukusaki, 2015). All data ana-
lyses were carried out using PLS Toolbox for Matlab 2018a®. 

3. Results 

The chromatograms of gianduja and pistachio spreads are reported 
in Fig. 1a and b, respectively. The chromatograms of the two spreads are 
quite different, and most peaks were observed in the initial part of the 
chromatogram (from 2000 to 14,000). Differences, in terms of variable 
intensities between the L and S samples, are highlighted with different 
colors, confirming the discriminating power of the volatile profile 
related to the packaging. A fingerprinting approach involving 

chemometric elaboration of the entire profiles (X-variables from 2000 to 
14,000) of volatile compounds without identification and quantification 
was applied to estimate the storage time or packaging type. 

PCA (Fig. 2) of whole chromatograms was used as explorative 
technique to visualize samples according to the storage time and pack-
aging type. From evaluation of the score plot obtained for gianduja 
samples (Fig. 2a), a clear separation between L and S samples was 
observed along PC2 (37.18%), while all samples (L and S) were arranged 
on PC1 (51.41%) according to storage time identified by the numbers 
placed near the points. The storage time increased from right to left. 

To understand how the X variables contribute to each of the PCs, the 
X-loadings were evaluated. High loading values (positive or negative) 
indicate that a variable has a strong effect on that principal component. 
In particular, positive loadings indicate a variable and a principal 
component a positive correlation: an increase in one results in an in-
crease in the other. Negative loadings indicate a negative correlation. 
Accordingly, by analysis of the X-loadings (Fig. 3a), it was possible to 
observe the chromatographic zones characterized by the highest 
contribution to PC1 and PC2. Specifically, just before 6000 d a peak with 
strong positive loadings for the PC2 was observed, suggesting that this 
affects the separation between L (negative score) and S (positive score) 
shown in the score plot (Fig. 2a). The highest contribution to the PC1 
(samples distribution according to storage time) was observed in the 
same zone of PC2, but with a negative correlation in the zones from 2000 
to 4000. 

For pistachio samples, the score plot (Fig. 2b), showed a clear sep-
aration according to the packaging type (S and L) along the PC1 only 
(73.32%). The X-loading evaluation (Fig. 3b) suggests that highest 
contribute is due, as for gianduja, to the peak at just before 6000. To 
observe the sample distribution as a function of storage time, two PCAs 
were developed considering S and L samples separately. 

Gamlı and Hayoglu (2007) investigated the effect of different pack-
aging types (sealed jar, vacuumed PP, and non-vacuumed PP) on the 
quality of pistachio nut spread, reporting that at 20 ◦C the shelf life 
calculated on the base of peroxide values and free fatty acid is weakly 
affected by the packaging type. However, considering total acidity, 
moisture content, and browning indices, a sealed glass jar was found to 
be more suitable than polypropylene pouches. Similarly, Torun (1999) 
reported that the moisture content of walnut paste decreased during 
storage at different temperatures with various packaging materials. 
Consequently, for the nut spreads investigated herein, PLS models to 
predict the storage time were developed considering samples L and S 
both together and separately. 

The PLS results, in terms of determination coefficient (R2) and RMSE, 
residual prediction deviation (RPD), and latent variable (LV) in 

Fig. 1. Chromatograms of gianduja (a) and pistachio (b) spreads. L: large package, S: small package.  
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calibration, cross validation, and prediction, are reported in Table 2. In 
general, for both spreads and packaging types, good results were ach-
ieved for calibration, cross-validation, and prediction data set. 

Considering Pareto-scaling pretreatment, R2 (prediction set) ranging 
from 0.970 (RMSEP = 9.7 days) to 0.982 (RMSEP = 5.75 days) and from 

0.972 (RMSEP = 8.22 days) to 0.979 (RMSEP = 7.31 days) were ach-
ieved for pistachio and gianduja spreads, respectively. Slightly lower R2 

values were obtained using the SNV pre-treatment, especially for pis-
tachio samples (from 0.932, to 0.978). 

The higher the RPD value, the greater the probability of the model to 

Fig. 2. Score plot obtained by the PCA for the gianduja (a) and pistachio (b) samples. L: large package, S: small package.  

Fig. 3. X-loadings (PC1 and PC2) obtained by the PCA for the gianduja (a) and pistachio (b) samples.  

Table 2 
Results of the PLS models developed by using the whole chromatograms.    

Calibration Cross-Validation Prediction LV   

R2 RMSEC (day) RPD R2 RMSECV (day) RPD R2 RMSEP (day) RPD 

Pareto scaling 
Pistachio L + S 0.996 3.02 14.8 0.983 6.74 7.7 0.976 6.86 6.4 11 

L 0.990 5.21 10.1 0.967 9.73 5.5 0.970 9.7 5.8 11 
S 0.993 4.16 11.9 0.984 6.52 8.1 0.982 5.75 7.4 9 

Gianduja L + S 0.996 2.89 15.1 0.978 7.22 6.7 0.977 7.44 6.5 13 
L 0.998 2.05 22.3 0.979 7.81 6.9 0.979 7.31 6.9 6 
S 0.997 2.27 18.2 0.991 4.39 10.5 0.972 8.22 5.9 6 

SNV 
Pistachio L + S 0.992 4.97 9.7 0.961 10.7 4.6 0.932 11.1 4.4 15 

L 0.985 5.97 8.1 0.971 9.89 4.9 0.963 10.0 5.0 6 
S 0.985 5.63 8.7 0.967 9.91 4.9 0.978 8.72 5.6 9 

Gianduja L + S 0.981 6.45 7.5 0.968 9.21 5.9 0.985 6.16 7.8 9 
L 0.983 6.33 7.7 0.956 10.21 4.8 0.973 8.34 5.8 6 
S 0.991 4.63 10.5 0.978 8.1 6.0 0.989 5.71 8.5 8 

Note: L: large; S: small; SNV: Standard Normal Variate; R2: determination coefficient: RMSE: Root Mean Square Error; C: calibration; CV: ross validation; P: prediction; 
RPD: residual prediction deviation, LV: latent variables. 

C. Cevoli et al.                                                                                                                                                                                                                                   



LWT 159 (2022) 113217

5

accurately predict the storage time of a new sample set. Williams and 
Norris (2001) and Natsuga and S. Kawamura (2006) reported the 
following RPD ranges: 0.0–2.3 as not recommended, 2.4–3.0 as very 
rough screening quality, 3.1–4.9 as screening quality, 5.0–6.4 as quality 
control, 6.5–8.0 as process control, and >8.1 suitable for any applica-
tion. For all PLS models, the RPD value in prediction was greater than 
5.0 (except for the model built considering all pistachio samples, 4.4), 
which make the models suitable to predict the storage time in quality or 
process control. 

The robustness of the models, in terms of degree of model general-
ization, was expressed as the ratio between the apparent performance 
(RC

2 and RMSEC) and external validation performance (RP
2 and 

RMSEP). When the apparent and external validation predictive powers 
are similar, it is possible to affirm that the model is robust. PLS models 
developed for the gianduja spread, applying the SNV pre-treatment, 
were the most robust, with values of RMSEC/RMSEP from 0.76 to 1 
and of RC

2/RP
2 from 0.99 to 1. 

Appreciable differences between the results considering samples L 
and S both together and separately were not seen. This is probably since 
variation of some volatile compounds is independent of the packaging 
type. These results agree with data reported by Gamlı and Hayoglu 
(2007), suggesting the shelf life of pistachio pastes calculated on the 
basis of peroxide values is weakly affected by the packaging type. 

Variable importance in projection (VIP) scores obtained by the PLS 
models were used to evaluate the importance of each variable in the 
projection used in a PLS model. In particular, the VIP score calculates the 
contribution of each variable according to variance explained by each 
PLS component. The ‘greater than one’ can be considered important in 
given model conventionally used as the criterion for variable selection. 
Accordingly, only the variables with VIP scores greater than one were 
selected. Figs. 4 and 5 show the VIP scores obtained by the PLS models 
developed considering all samples (L + S) for gianduja and pistachio 
spreads, respectively. For both products and pre-treatments, only a small 
portion of the chromatograms was characterized by scores greater than 
one, especially for the data normalized with the SNV method. The 
different pre-treatment techniques resulted in different effects. For 
instance, Pareto-scaling showed many large peaks characterized by a 
VIP score higher than one, while after SNV normalization only a few 
peaks, even if perfectly corresponding to those present in the raw 
chromatograms, were highlighted. This likely happens because Pareto- 
scaling gives equal importance to all variables, and it increases the 
weights of minor noisy variables. Consequently, the variable selection 
method based on VIP scores (>1) was used to reduce the original data set 
pre-treated by SNV and to remove redundant or unnecessary chro-
matogram regions (Indahl, Liland, & Næs, 2009). This method has been 

extensively used in different fields and adopted for a variety of data 
types (Farrés, Platikanov, Tsakovski, & Tauler, 2015). 

Results of PLS models developed using the variables selected by the 
VIP method are reported in Table 3. In general, the values of R2 

(0.948–0.989), RMSE (5.61–10.8 day), and RPD (4.5–8.6) in prediction 
are very similar to those obtained considering the entire chromato-
grams, suggesting that data reduction does not affect the goodness of the 
PLS models. Furthermore, the most robust results were obtained for 
gianduja spread (RMSEC/RMSEP from 0.74 to 0.84 and of RC

2/RP
2 from 

0.99 to 1), as for entire chromatogram. 
From an industrial point of view, especially considering the quality 

control sector, the proposed method allows to estimate, in a rapid way, 
the days of storage of nut spreads. 

Future developments should focus on identification and quantifica-
tion with standards, or through the use of appropriately selected refer-
ence materials, of volatile compounds with VIP >1 to better understand 
the phenomenon through a targeted approach. 

4. Conclusions 

Given the composition of pistachio and gianduja spreads, deterio-
rative reactions may occur during long-term storage. In fact, these 
products are particularly prone to lipid oxidation which leads to the 
formation of secondary oxidation products. In particular, the analysis of 
volatile compounds represents a key point in relation to shelf life, con-
sumer acceptability, and nutritional quality of this type of product. For 
this reason, a FGC E-nose was used, thus providing a simple and fast 
technique that can also be implemented in industrial quality control. 
Herein, this analytical technique was combined with multivariate data 
analysis and used to estimate the storage time of pistachio and gianduja 
spreads also considering two different types of packaging. PCA showed a 
clear separation according to the packaging type for both pistachio and 
gianduja samples, while PLS models were developed to predict the 
storage time considering the samples both together and separately ac-
cording to packaging type. In general, for both spreads and packaging 
types, good results were achieved for calibration, cross-validation, and 
the prediction data set. Furthermore, all PLS models presented an RPD 
value in prediction greater than 5.0 (except for one), which make these 
latter suitable to predict the storage time in quality or process control. 
The fingerprint method has been shown to be promising for applications 
in industrial food quality control, although further investigations are 
warranted to identify and quantify volatile compounds. 

Fig. 4. VIP scores obtained by the PLS models developed considering all the gianduja samples and applying Pareto-scaling (a) and SNV (b) data pre-treatment.  
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Gallina Toschi, T. (2020). Flash gas chromatography in tandem with chemometrics: 
A rapid screening tool for quality grades of virgin olive oils. Foods, 9, 862. 
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