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This paper presents a new hybrid compartmental model for studying the COVID-19
epidemic evolution in Italy since the beginning of the vaccination campaign started on
2020/12/27 and shows forecasts of the epidemic evolution in Italy in the first six months.
The proposed compartmental model subdivides the population into six compartments and
extends the SEIRD model proposed in [E.L.Piccolomini and F.Zama, PLOS ONE, 15(8):1e17,
08 2020] by adding the vaccinated population and framing the global model as a hybrid-
switched dynamical system. Aiming to represent the quantities that characterize the
epidemic behaviour from an accurate fit to the observed data, we partition the observation
time interval into sub-intervals. The model parameters change according to a switching
rule depending on the data behaviour and the infection rate continuity condition. In
particular, we study the representation of the infection rate both as linear and exponential
piecewise continuous functions. We choose the length of sub-intervals balancing the data
fit with the model complexity through the Bayesian Information Criterion. We tested the
model on italian data and on local data from Emilia-Romagna region. The calibration of the
model shows an excellent representation of the epidemic behaviour in both cases. Thirty
days forecasts have proven to well reproduce the infection spread, better for regional than
for national data. Both models produce accurate predictions of infected, but the
exponential-based one perform better in most of the cases. Finally, we discuss different
possible forecast scenarios obtained by simulating an increased vaccination rate.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Compartmental models are essential mathematical tools in the analysis of the evolution of epidemics, for prediction and
simulation of future strategies which can be used by governments and policymakers to allocate sanitary and economic re-
sources. The parameters of such models are related to meaningful characteristics of the epidemic disease, such as infection
rate, infectious period, lethality rate. Moreover, through such models, it is possible to estimate the number of secondary cases
produced by a single infected person at start time (basic reproduction number R0) and during the epidemic evolution
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(effective time-dependent reproduction number Rt). In particular, the trend of Rt is of great importance to check the epidemic
evolution over time.

The COVID-19 pandemic, caused by the Sars-CoV-2 virus, has renewed interest in studying these models and a significant
number of papers appeared on this subject since the beginning of 2020 (refer to LitCovid database for up to date literature
(Chen, Allot & Lu, 2020)). They differ each other for the type of model proposed, the external events considered, such as
movement restrictions imposed by governments or quarantines, and the regions where models are applied.

Starting from the first SIR (susceptible (S), infected (I), and recovered (R)) model, proposed in 1927 by Kermack and
McKendrick (Kermack & McKendrick, 1927), several generalizations have been formulated over the years by increasing the
number of compartments, such as, for example, the susceptiblee exposede infectiouse recovered (SEIR) and the susceptible
- exposed - infected - recovered - dead (SEIRD) schemes. Further extensions have been proposed to model the COVID-19
outbreak considering the different social distancing policies and control measures applied in the various geographic areas
to contain the epidemic spread. More compartments have been added, making the models more and more complex (see
(Parolini et al., 2021; Zhu& Gallego, 2021; Friji, Hamadi, Ghazzai, Besbes,&Massoud, 2021; Giordano et al., 2021), to mention
only a few of the most recent).

In this paper we intend to consider the effects of the vaccine on the epidemic spread during the first months since the
vaccination campaign started. We introduce a new scheme, named SEIRDV, that extends the SEIRD model with the
compartment of vaccinated people. Among the vaccine-related papers within the COVID-19 literature several hypothetical
scenarios are analysed based on different prioritisation policies according to vaccine efficacy and its availability (Roy, Dutta,&
Ghosh, 2021). Other papers focus on the possible benefits of combining vaccination with nonpharmaceutical interventions
(NPIs) such as surveillance, social distancing, social relaxation, quarantining, patient treatment/isolation (see (Acu~na-Zegarra,
Díaz-Infante, Baca-Carrasco, & Liceaga, 2021; Rachaniotis, Dasaklis, Fotopoulos, & Tinios, 2021) and references therein).
Following the approach in (Goebel, Sanfelice, & Teel., 2012), we introduce a switching rule that governs the SEIRDV model
state at any given time. Besides producing optimal fit to epidemic data, introducing such a hybrid approach allows us to
represent disease evolution when restriction policies and virus variants cause changes in fundamental parameters such as
infection rate, recovery periods, and death rates. Although switched models are widespread in various engineering appli-
cations, studies about epidemic models are less common; see, for example (Liu& Stechlinski, 2012), (SIRV) (El Koufi, Bennar&
N. Yousfi, 2021)(SIR) and (Maher et al., 2021) (SEIRD). In particular the authors in (Maher, Majdalawieh,& Nizamuddin, 2021)
propose a hybrid SEIRD model with a mortality rate represented by an inverse exponential function where the residual
correction is based on the ARIMAmethod. Themodel, tested on US COVID-19 statistic data in the period FebruaryeSeptember
2020, made precise predictions for up to 2 months ahead. The reader can also refer to (Maher et al., 2021) for an exhaustive
bibliography.

Concerning the model parameters, it is well known that COVID-19 epidemic data cannot be accurately represented by any
compartmental approach with constant parameters all over the epidemic duration. To face this problem, some authors use
variable parameters in the time interval (for example (Giordano et al., 2021)) or change the fitting function (see (Friji et al.,
2021)). In our approach all the model parameters are constant in each switching time interval, except for the infection rate
which is a time-dependent forcing function modelled as piecewise continuous.

The model calibration is carried out by solving a sequence of constrained minimizations of the weighted least-squares
residuals between the measured epidemic data and the value of the state variables, which satisfy the initial value ordinary
differential system representing the SEIRDV model.

This paper is an extension of our previous work (Piccolomini and Zama, 2020), where we proposed a SEIRD model (before
the availability of vaccines), with two different forcing functions, to monitor the first phase of the evolution of COVID-19 in
Italy (2020/02/24e2020/05/24). Compared to (Piccolomini and Zama, 2020) we modify the model as follows: we include the
vaccinated compartment, we represent the proposed scheme into the hybrid models theoretical frame, and finally we change
the expression of the forcing functions. Moreover in the calibration phase, we addweights in the fitting objective function and
bounded constraints, thus improving the model computational effectiveness and accuracy.

In the experimental section, we report the results obtained by our simulations on the Italian national and regional
epidemic data in the period 2020/12/27e2021/06/17. The inclusion of two different expressions for the infection rate function
allows us to obtain different possible scenarios which prove to be very useful in the prediction phase. Concerning the
effectiveness of COVID-19 vaccines, recent studies (Lopez Bernal et al., 2021) have shown its relation to the new Sars-Cov-2
variants and the type of Vaccines used. Following (Cai, Li, & Song, 2018) we test an extension of SEIRDV, which includes
vaccination efficiency and report prediction results using the values reported in (Lopez Bernal et al., 2021). No significant
change is observed in the prediction phase since the vaccination campaign is at its first beginning. Nevertheless, we believe
that such an extension and the distinction in vaccination doses and ages will significantly improve the monitoring of the
autumn-winter epidemic spread.
1.1. Contributions

We summarize here the main contributions of this paper.

C We propose a SEIRDV scheme by adding the Vaccinated compartment to the well known SEIRD model.
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C We consider a dynamical switched framework where the interval length is chosen on the basis of the Bayesian In-
formation Criterium.

C We represent the infection rate as a continuous time dependent function comparing a linear and an exponential
piecewise formulation.

C We introduce a model extension that takes into account the reduced vaccine efficacy and present a preliminary
experiment in the hypothesis of mass vaccination with a single vaccine dose.
1.2. Limitations

The present study is concerned with modelling and prediction COVID-19 evolution during the first six month of vacci-
nation campaign in Italy. We consider vaccination data regarding a single vaccine dose without distinguishing the vaccine
type.

The rest of the paper is organized as follows. In Section 2, we present the proposed switched SEIRDV model; in Section 3
we describe the calibration procedure implemented and the results obtained on data from Italy and Emilia-Romagna region.
The results of prevision on the same data are reported in Section 4 and conclusions are drawn in Section 5. Finally Appendix A
concerns the SEIRDVmodel with constant parameters and Appendix B reports an extension of the SEIRDV model considering
a partial vaccine efficacy.

2. Switched forced SEIRDV model

The movement restriction policies adopted worldwide as well as the occurrence of different virus variants cause changes
in the value of the infection rate and possibly of other model parameters over time. In order tomonitor the model parameters
from themeasured data flexibly, we propose a hybrid switched SEIRDV compartmental model and represent the infection rate
as a continuous time-dependent function, modelled according to the epidemic data. Given the SEIRDV compartmental model
(A.1) described in appendix Appendix A, with parameters (a, b, g, h, n), we split the time interval [t0, T] into p sub-intervals
Dk ¼ [tk�1, tk] (k ¼ 1, …, p and tp ¼ T) and define a switching rule Q setting the values of the model parameters as follows:

QðtÞ ¼ ðak; bk;gk; hk; nkÞT ; t2Dk:
Then the hybrid model is represented as (Goebel et al., 2012):�
u0
Q0
�

¼
�
FQðt;uÞ

0

�
; u ¼ ðSðtÞ; EðtÞ; IðtÞ;RðtÞ;DðtÞ;VðtÞÞ (1)

with state variable (u,Q)T and FQ(t, u) is the right-hand-side of system (A.1), and with model parameters represented by the
piecewise constant function Q(t).

However, using a constant value for the infection rate bk does not represent the epidemic behaviour in a sufficiently
flexible way (Piccolomini and Zama, 2020); therefore, we introduce a continuous time-dependent infection rate b(t). In this
case, the epidemic model is known in the literature as forcedmodel (see for example (Keeling & Rohani, 2011) chp 6). In this
paper, we represent the infection rate as piecewise linear and exponential interpolating functions, yielding to SEIRDV_pwl
and SEIRDV_pwe models, respectively.

Let us define bk(t) the restriction of b(t) to the interval Dk, k ¼ 1, …, p, and set the values bk ≡b(tk), k ¼ 0, …, p . The
SEIRDV_pwl defines the infection rate as:

bkðtÞ ¼
t � tk

tk�1 � tk
bk�1 þ

t � tk�1
tk � tk�1

bk; t2Dk; (2)

whereas SEIRDV_pwe defines the infection rate as follows:
bkðtÞ ¼ bk�1e
�rðt�tk�1Þ=ðtk�tk�1Þ; r ¼ �log

�
bk

bk�1

�
; t2Dk: (3)
We observe that for both models it holds:

bkðtkÞ ¼ bkþ1ðtkÞ; k ¼ 1;…; p� 1

hence b is continuous in [t0, T].
The evolution of the global hybrid forced model, represented in Fig. 1, shows the changes of the epidemic model at each

switching interval Dk represented by the values of the model parameters defined as Qk ≡Q(t), t 2 Dk.
The restriction of the dynamical model (1) on each interval Dk, is represented in Fig. 2, where the model populations, for

t 2 Dk, are given by (Sk, Ek, Ik, Rk, Dk, Vk).
3



Fig. 1. The evolution of the global hybrid model, related to the values of the parameters Qk.

Fig. 2. Dynamical model (1) restricted to the interval Dk.
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3. Calibration of switched forced SEIRDV

This section focuses on the parameters calibration describing both the computational procedure in paragraph 3.1, and the
numerical results in paragraph 3.2.

3.1. Calibration procedure

We describe the calibration procedure in the interval [t0, T] supposed of n days. We calibrate the parameters on the sub-
intervals Dk, k ¼ 1,…pwith uniform size L¼ Pn/pR and n ¼ L , p. In the case ns L , p, the length of the last interval Dp is set as
n� (p� 1)L if 0 < n� p , L� PL/2R. In the case n� L , p > PL/2R, the number of the intervals is increased by one (p¼ pþ 1), and
the length of the last interval is n � (p � 1)L. In this way we avoid that the last interval is has too small with respect to the
previous ones.

Generally, we are interested in keeping L as large as possible to guarantee a proper balancing between the data fit and the
model complexity, evaluated in terms of the number of parameters to be calibrated. In paragraph 3.2 we discuss the details of
the choice of a proper value for L.

Assuming mass vaccination and using the vaccination data V available from the databases, we can avoid the estimation of
the parameter n by rewriting the last equation of (A.1) as V 0 ¼ U and first equation of system (A.1) as follows:

S0 ¼ �b

N
SI � U (4)
where the function UðtÞ is the linear interpolation of the finite difference approximation of V0 at each day. Let V1, V2,…, Vn be
the values obtained from the vaccination database on days 1, …, n, we consider the finite difference approximation of V0:

V 0
k ¼

�
Vk � Vk�1; k ¼ 2;…;n

0; k ¼ 1
We describe now the parameter estimation process in a single sub-interval Dk. We collect the observed data about
infected, recovered, dead compartments in vectors I, R and D of size L and we stack them into the matrix Y2RL�4, Y ¼ [I, R, D,
V]. Considering Z2RL�4 as the restriction of u(t;Q) (defined in (1) with FQ(t, u) given by (4)) to the components I(t), R(t), D(t),
V(t) computed in Dk, we calculate the model parameters Qk ¼ (ak, bk, gk, dk) solving a weighted constrained nonlinear least
squares problem of the form:
4
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Qk ¼ arg min
Q2B

X4
j¼1

XL

i¼1
ðZi;j � Yi;jÞ2

,
mj; mj ¼

1
L

XL

i¼1
Yi;j: (5)

where the positive weights mj are introduced to compensate different data scales. The bounded set B is defined as

B ¼
n
Q2R4 : lbi � qi � ubi; i ¼ 1;…; 4

o

where the upper bounds ubi ¼ 1, i ¼ 1 …, 4 and lower bounds lb ¼ [10�4, 10�4, 10�4, 0] guarantee that the values reported in
the literature are contained, without imposing a too strict constraint.

To solve the minimization problem (5) numerically, we use iterative solvers as discussed in paragraph 3.2. Fig. 3 sche-
matically represents the calibration steps of the global hybrid model in the whole interval [t0, T]. The scheme highlights that
the results Qk of the minimization problem on Dk is taken in input as starting guess in the minimization problem on Dkþ1.

To suitably choose the first starting guessQ0, which has a fundamental role in the quality of the final solution, we compute
the solution ~Q of problem (5) on a unique short time interval of about ten days using as starting guess (1/6, 0.02, 0.05, 0.001)
as discussed in appendix Appendix A.We setQ0 ¼ ~Q. The forward differential problem (4) is solved by a fourth order variable
step Runge-Kuttamethod. The initial conditions in each sub-intervalDk are given by the observed values of the compartments
I, R, D, V in the initial day of Dk.

Concerning the starting value E0 of the exposed compartment which is not available from data, we propose a heuristic
procedure by relating it with the delay time td between the contact with the infectious agent and the onset of symptoms of
infection (see paragraph 3.2 for more details).

The starting value of susceptible S0 is the difference between the total population N and the sum of all the other com-
partments at time t0.
3.2. Results of calibration

The results presented in this section have been obtained by implementing the SEIRDV_pwl and SEIRDV_pwe algorithms in
Matlab 2021a. The codes are available on https://github.com/fzama63/COVID-SEIRDV.

We highlight that a single vaccine dose is considered without distinction among the vaccine types. Since up to now there
are not precise results about the vaccine immunity duration and efficacy, we suppose that the vaccine produces a complete
unlimited immunization. In AppendixB we present a possible extension of the proposed model including limited vaccine
efficacy and immunity duration. However, at the moment of these experiment the situation is not clearly defined and this
extension will require a more detailed analysis.

3.2.1. Data description
Epidemic data are downloaded from the repository open source Github https://github.com/pcm-dpc/COVID-19 of the

Italian Civil Protection Department, containing the official data provided by the Ministry of Health (see (Morettini, Sbrollin,
Marcantoni& Burattini, 2020) for a detailed description).We consider here the global national data (N¼ 60360000) as well as
the regional data from Emilia-Romagna (N ¼ 4445900). Information about vaccine administration is obtained in the Github
repository: https://github.com/italia/covid19-opendata-vaccini. Although most vaccines are administered in two different
doses we consider, in our study, as vaccinated the people who received the first dose. We highlight that the vaccination
campaign started quite slowly in Italy and that in the period of interest about 70% of vaccinated people had received only the
first dose. Furthermore, little evidence of low vaccine efficacy or re-infection had been reported at that time and optimal
immunization properties were reported after a single vaccine dose (see https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/986361/Vaccine_surveillance__report__week_19.pdf).
3.3. Metrics for results evaluation

To analyse the numerical solution of the calibration in the interval [t0, T] constituted of n days, we compute, for any
considered population, a relative residual defined as:
Fig. 3. Calibration steps of the global hybrid model parameters Qk.
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RRES ¼
Pn

i¼1ðXi � XdiÞ2Pn
i¼1Xd

2
i

and the Bayesian Information Criterion (BIC) (Burnham & Anderson, 2004), defined as follows:

BICðXÞ ¼ NqlogðnÞ þ log

 Pn
i¼1ðXi � XdiÞ2

n

!

where Nq is the number of the estimated parameters, Xdi represents the acquired compartment data and Xi is the corre-
sponding value computed by the calibrated model at day i, i ¼ 1, …, n. The BIC takes into account the number of model
estimated parameters and tends to penalize the inclusion of additional parameters. The lower this quantity, the better the
model will be.
3.4. Implementation details

We have solved the constrained least squares problems (5) by means of the lsqnonlin Matlab function from the Opti-
mization Toolbox compareing the trust-region reflective (TR) method with the Levemberg Marquardt (LM) one, which
overperforms the Broyden-Fletcher-Goldfarb-Shanno (BFGS) as noted in (Friji et al., 2021).

The initial value differential problem (A.1) has been solved with the ode45 Matlab function.
To set a convenient initial value E0 for the exposed compartment, in the hypothesis that previously acquired data is not

available, and using the new infected value (Inew), available in the epidemic data repository, which represents the number of
daily new cases. We test, for td ¼ 1, …, 10, the SEIRDV_pwl and SEIRDV_pwe algorithms setting E0 ¼ Inew(t0 þ td) in a time
interval of 30 days, from 2020/12/27 to 2021/01/26. Among the computed E0 values, we choose the one minimising the RRES
of the I compartment.

As shown in Fig. 4(a), the smallest RRES is obtained when td ¼ 3 for SEIRDV_pwl with RRES¼ 0.064819 and when td ¼ 4 for
SEIRDV_pwe, with RRES¼ 0.064879. Hence we continue throughout this section setting E0¼ 11223 with td ¼ 3 and I given by
SEIRDV_pwl.
3.5. Analysis of the results

We define the calibration period of n ¼ 85 days, from 2020/12/27 to 2021/3/21 (we remind that in Italy vaccination
campaign started on 2020/12/27) and run the calibration of SEIRDV_pwe and SEIRDV_pwl models.

The first aspect of our analysis concerns the choice of the number of switches. We split the whole time interval into sub-
intervals of fixed length L (except for the last onewhich can be of different size). We observe that the number of parameters to
be identified is proportional to the number of switches. Hence, increasing the number of switches, the computational cost
raises whereas the fit error decreases. In order to choose the best value L we try all the values in the interval [5, 85] days and
and choose L as:
Fig. 4. (a): RRES vs td. (b):
P

DBIC(X) vs Lwith X ¼ (I, R, D). In both figures SEIRDV_pwl is plotted with blue dash-dotted line and SEIRDV_pwe with red dashed line.
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L ¼ arg min
X

X¼ðI;R;DÞ
DBICðXÞ

where DBIC(X) ≡ BIC(X) � BICmin(X) and BICmin(X) is the minimum BICmin(X) all over the values of the interval days [5, 85].
Fig. 4(b) plots

P
X¼(I,R,D)DBIC(X) in the interval [5, 85] with red dot-dashed line for SEIRDV_pwe and blue line for

SEIRDV_pwl model. The minimum value is reached when L ¼ 21, hence throughout this section, we split the calibration time
into four sub-intervals of length L ¼ 21 as follows:

D1 ¼ ½2020=12=27; 2021=01=17� D2 ¼ ½2021=01=17; 2021=02=07�
D3 ¼ ½2021=02=07; 2021=02=28� D4 ¼ ½2021=02=28; 2021=03=21�: (6)
We compare in Table 1 the two tested Levenberg- Marquardt and Trust-Region optimization algorithms, reporting the
number of function evaluations FCount and the relative residual RRES for the infected, recovered and dead compartments. We
find that for both exponential and linear infection rates, the TR method is computationally the most efficient (smallest
number of function evaluations) and it is also slightly more precise than LM. Therefore we continue our analysis applying the
TR method.

In Fig. 5 (a) and (b) we plot the calibrated functions of infected and the difference between the SEIRDV_exp and
SEIRDV_pwl results. In Fig. 6 (a) and (b) the recovered and dead calibrated functions, together with the corresponding data,
are reported. We can appreciate the good quality of data-fit of SEIRDV_pwl and SEIRDV_pwe.

In Fig. 7 we plot the values of both the infection rate function b(t) (on the left) and the reproduction number function Rt(t)
(on the right) computed as follows:

Rt ¼ bðtÞ
ĝðtÞ; ĝðtÞ ¼

8>><
>>:

gk tk�1 < t < tk; 1< k< p
ðgk þ gk�1Þ=2 t ¼ tk; 1< k<p

g1 t ¼ t1
gp t ¼ tp

(7)

obtained by extending (A.2) to time dependent parameters b and g.
We observe in Fig. 7 that the red line relative to the exponential model changes more rapidly than that of the linear model

when the epidemic spread increases (D3 and D4 intervals). To analyse the behaviour of the infection rate in the considered
sub-intervals, we average the values of the calibrated function b(t), represented in Fig. 7 (a), on the intervals [D1, D2], getting
0.0287 for both the methods, and in the period [D3, D4] obtaining 0.0478 and 0.0483 for SEIRDV_pwl SEIRDV_pwe, respec-
tively. These values show that both methods capture the increase of the infection rate that causes the growth of the epidemic
curve in Fig. 5(a) in the interval [D3, D4]. Moreover, the decreasing values of b(t) and Rt in the interval D4 (Fig. 7) suggest that
the end of epidemic growth could be close, as soon as Rt becomes less than one.

We nowdiscuss the parameters computed in the calibration step and reported in Table 2. Concerning the incubation rate a,
both models report a decreasing behaviour in the period D1 � D4. It corresponds to an incubation period between 1.1 and 4.6
days.

The removal rate g is very similar for both methods and gives the following removal periods: 34 d(D1), 25.9 d(D2),
26.9 d(D3), 34.2 d(D4) producing the average removal period of 30.3 d.

Regarding the parameter h, we observe that the average value 2.5% obtained by both models slightly underestimates the
reference value 3%, reported by Johns Hopkins University Coronavirus Resource Center, https://coronavirus.jhu.edu/data/
mortality.

4. Prediction

We use SEIRDV to predict the future behaviour of the disease evolution in short-medium m-days interval [T, Tm], with
Tm ¼ T þ m.

Writing the last equation of the SEIRDV model (A.1) as:
Table 1
Number of function evaluations FCount and relative residual RRES obtained by LM and TR solvers for SEIRDV_pwl and SEIRDV_pwe. In bold the best results
obtained for each algorithm.

model method FCount RRES

I R D

SEIRDV_pwl TR 130 0.0083 0.0018 0.0009
LM 4113 3926 0.0087 0.0021

SEIRDV_pwe TR 125 0.0080 0.0018 0.0012
LM 3928 0.0085 0.0020 0.0014
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Fig. 5. Calibration results on infected compartment. (a) Data from 2020/12/27 until 2021/03/21 (magenta circles), SEIRDV_pwl calibration (black dashed line),
SEIRDV_pwe calibration (green continuous line). (b) Difference between SEIRDV_pwe and SEIRDV_pwl (red circles).

Fig. 6. Calibration results. (a) Recovered compartment. Data from 2020/12/27 until 2021/03/21 (orange circles), SEIRDV_pwl calibration (black dashed line),
SEIRDV_pwe calibration (green continuous line). (b) Dead compartment. Data from 2020/12/27 until 2021/03/21 (cyan circles), SEIRDV_pwl calibration (black
dashed line), SEIRDV_pwe calibration (green continuous line).

Fig. 7. Forcing b functions (on the left) and Reproduction index Rt (on the right) for SEIRDV_pwl (blue dash-dotted line) and SEIRDV_exp (red dashed line)
models.

E. Antonelli, E.L. Piccolomini and F. Zama Infectious Disease Modelling 7 (2022) 1e15
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Table 2
Parameters a, g, h calibrated in the different time intervals (6).

parameter model D1 D2 D3 D4 mean

a SEIRDV_pwl 0.8762 0.4286 0.3045 0.2461 0.4638
SEIRDV_pwe 0.8762 0.4260 0.3231 0.2188 0.4610

g SEIRDV_pwl 0.0295 0.0386 0.0371 0.0292 0.0336
SEIRDV_pwe 0.0295 0.0386 0.0372 0.0293 0.0336

h SEIRDV_pwl 0.0290 0.0238 0.0216 0.0238 0.0246
SEIRDV_pwe 0.0290 0.0238 0.0216 0.0238 0.0246
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V 0 ¼ U

we obtain the vaccination rate np as the ratio between U and S.
In this paper we have adopted the following two strategies for prediction.

1. We set in (A.1) the parameters Qp ¼ (ap, bp, gp, hp, np) computed in the last calibration interval Dp and we run the model
over a unique time interval [T, Tm]. In our simulations we use both the SEIRDV_pwl and SEIRDV_pwe proposed approaches.

2. We set in (A.1) the parametersQs¼ (ap, bp, gp, hp, s , np), with s > 1, to simulate an increased vaccination rate. We compute
also in this case the prediction using both the linear and exponential b functions.
4.1. Results of prediction on national data

In this paragraph, we apply the calibrated SEIRDV_pwl and SEIRDV_pwe to make predictions. To test the forecast reli-
ability, we compute a prediction in the interval D5 ¼ [2021/03/21, 2021/04/20] using the data available in that period to
measure the precision of our forecast in terms of the Infected peak time and value.

In Fig. 8 we show the predicted curve for infected population. With the red dashed curve we plot the prediction obtained
by using the first strategy described, i.e. using the values of all the parameters calibrated in D4. With the continuous blue line,
we plot the prediction obtained by considering the first strategy for all the parameters except b(t), which is now set as the
function interpolating the curve between the blue and red star (representing the infection rate calibrated in 2021/02/28 and
2021/03/21, respectively). Comparing the prediction curves relative to SEIRDV_pwl (Fig. 8 (a)) and SEIRDV_pwe (Fig. 8 (b))
with the epidemic data represented by magenta empty circles we can see that the exponential model is more accurate.

We highlight that the reported forecast refers to the vaccination rate n ¼ 0.0018. From Table 3 we can see that the peak of
infected people is reached on 2021/04/09 and 2021/04/03 with SEIRD_pwl and SEIRD_pwe, respectively. Comparing to the
data, the SEIRD_pwe prevision is more accurate.

In the second and third lines of the table, we report the number of infected in the peak day together with the date of peak if
we suppose to increase the vaccination rate. Graphically, the behaviour of infected is plotted in Fig. 9, wherewe represent the
predictions given by the twomodels in 40 days using the vaccination rates in Table 3. Comparing the two models, we see that
the SEIRDV_pwe gives the more realistic prediction.
Fig. 8. Prediction for the Infected compartment in Italy from 2021/03/22 to 2021/04/20. Data (magenta circles), prediction with b(t) calibrated in the last interval
D4 (red dashed line) and prediction with b(t) interpolating the values of b in red and blue stars (blue continuous line). (a) SEIRDV_pwl (b) SEIRDV_pwe.
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Table 3
Results of the prediction experiment in Italy obtained with different vaccination rates: number of Infected people and day of the peak for SEIRDV_pwl and
SEIRDV_pwe. The peak of available data is on 2021/03/28 with 573235 Infected people.

vaccination rate administration SEIRDV_pwl SEIRDV_pwe

per day #(infected) peak day #(infected) peak day

0.0018 108215 628504 09/04/21 594604 03/04/21
0.0045 270537 622139 07/04/21 592549 02/04/21
0.0072 534288 617322 06/04/21 590882 01/04/21

Fig. 9. 40 days prediction for the infected compartment in Italy by considering different vaccination rates n ¼ 0.0018 (dark continuous line), n ¼ 0.0045 (dark
dashed-dotted line) and n ¼ 0.0072 (dark dotted line): (a) SEIRDV_pwl, (b) SEIRDV_pwe.
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4.2. Results of prediction on regional data

Finally, we present the prediction obtained using more homogeneous and smaller-scale data acquired in the Emilia-
Romagna region after performing the calibration on the same sub-intervals as in (6). In Fig. 10 we plot the prediction ob-
tainedwith the same procedure as in Fig. 8. Differently towhat happens for the Italian case, in the linearmodel (Fig.10 (a)) the
prediction obtained with the red curve is entirely inaccurate, whereas for the exponential model (Fig. 10 (b)) the red and blue
lines define a region containing the infected data. Therefore, SEIRDV_pwe can be used to make reliable predictions with both
strategies. Finally, in Fig. 11 we show the results for increasing vaccination rates, as done in Fig. 9 for the national data. The
SEIRDV_pwl forecasts are now closer to the infected data compared to SEIRDV_pwe, differently from what happened in the
national case.
Fig. 10. Prediction for the infected compartment in Emilia-Romagna from 2021/03/22 to 2021/04/20. Data (magenta circles), prediction with b(t) interpolating
the values of b between the red and blue stars (blue continuous line), prediction with b(t) calibrated in the last interval D4. (a) SEIRDV_pwl (b) SEIRDV_pwe.

10



Fig. 11. 40 days prediction for the Infected compartment in Emilia-Romagna by considering different vaccination rates v ¼ 0.0018 (dark continuous line),
v ¼ 0.0045 (dark dashed-dotted line) and v ¼ 0.0072 (dark dotted line): (a) SEIRDV_pwl, (b) SEIRDV_pwe.
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4.3. Towards the 80% vaccination

In this experiment we extend the calibration period to the present date (2021/06/12) (using L ¼ 21 as in the previous
experiments and p ¼ 8) and run the simulations to forecast the time at which 70%e80% population has received the first
vaccine dose. As already observed, the twomodels have a very similar behaviour in the calibration phase and this behaviour is
confirmed also by the forecast data reported in Table 4. The increase of 60% in the vaccination rate causes a reduction of about
twenty days to obtain 70% vaccinated population and about one month for 80%. We report in Fig. 12(a) the vaccination data
(pink circles), the fitted vaccinated population (black dashed line), together with the forecasts obtained with the calibrated
vaccination rate (black continuous line) and with an increased vaccination rate 30% (dot dashed line) and 60% (dotted line),
computed by SEIRDV_pwe.We highlight with dashed lines the values of vaccinated individuals corresponding to 70% and 80%
of the whole population.

In Fig. 12(b) we represent the reproduction number Rt of both SEIRDV_pwl and SEIRDV_pwe which confirms the positive
effect of the current vaccination campaign.
5. Conclusions

We have proposed two switched SEIRDV compartmental models, each involving six populations (susceptibles, exposed,
infected, recovered, dead and vaccinated) to analyse COVID-19 spread from the beginning of the vaccination campaign in Italy.
We have considered as vaccinated peoplewho have received one dose of vaccine in Italy. The two schemes differ in the forcing
time-dependent infection rate function. We have calibrated the models from data in the first three months of the vaccination
campaign with switch time intervals of about 20 days. Thirty days forecasts are discussed by changing the infection and the
vaccination rates according to two different strategies.

We summarize here the primary outcomes. Both models compute very similar parameters which fit the literature ranges.
The data fit is very faithful for all the considered compartments with a relative residual value less than 1%. The infection rate
function in SEIRDV_pwe changes more rapidly when the epidemic spread increases. The thirty days forecasts, from mid-
March to mid-April 2021, show that the SEIRDV_pwe predicts the infected peak and values more accurately than
SEIRDV_pwl, even if both methods predict the peak day a few days later than the observed data.

Using regional data from Emilia-Romagna, the 30 days prediction is more accurate and SEIRDV_pwe outperforms
SEIRDV_pwl.
Table 4
Results of the prediction experiment in Italy obtained by the vaccination rate (first row) calibrated on 17/06/2021 and with a 30% and 60% increase. Dates at
which a single vaccine dose is given to 70%e80% people.

vaccination rates administration per day SEIRDV_pwl SEIRDV_pwe

70% 80% 70% 80%

0.0109 657156 19/08/21 11/10/21 19/08/21 11/10/21
0.0142 854303 05/08/21 14/09/21 05/08/21 14/09/21
0.0163 985735 29/07/21 02/09/21 29/07/21 02/09/21
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Fig. 12. (a) Vaccination data (pink circles), fitted Vaccinated (black dashed line), forecast obtained by SEIRDV_pwe considering the calibrated vaccination rate
(black continuous line), an increase of 30% (dot dashed line) and 60% (dotted line) of vaccination rate . (b) Reproduction number Rt obtained by both SEIRDV_pwl
(blue dash dot line) and SEIRDV_pwe (red dashed line) at the fitted vaccination rates.
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Finally, we applied the model calibrated to 2021/06/17 to predict when 70%e80% of the population has received one
vaccine dose. At the present vaccination rate, 80% immunization is reached on 2021/10/11, whereas with an increase of 60%
(best scenario) it is reached on 2021/09/02.

The experiment of the preliminary extension of the proposed model accounting for the limited duration of vaccine effi-
cacy, shows that different vaccination rates give very similar infected curves. Hence, in the initial phase of the vaccination
campaign, the epidemic evolution was not sensible to the number of vaccines administered.

Future studies and extensions of the proposed model will also include the possibility of re-infection and the distinction
between one and two vaccination doses. We believe that such an extension, together with a more detailed population age
structure, will give its decisive contribution in the autumn-winter epidemic spread.
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Appendix A. The SEIRDV model with constant parameters

The SEIRDV model characterized by constant parameters is obtained from the SEIRD model (Piccolomini and Zama, 2020)
by adding the new compartment V representing the vaccinated population. The following differential system represents the
populations’ dynamics:

S0 ¼ �b

N
SI � nS;

E0 ¼ b

N
SI � aE

I0 ¼ aE � gI

R0 ¼ gð1� hÞI
D0 ¼ ghI

V 0 ¼ nS

(A.1)

where the total population, assumed of constant size N, is subdivided into six compartments: susceptible (S), exposed (E),
infected (I), recovered (R), dead (D) and vaccinated (V). System (A.1) is solved starting from an initial time t ¼ t0 where the
values S(t0), E(t0), I(t0), R(t0), D(t0), V(t0) are assigned on the basis of the available data and integrated up to a final time T. The
parameter b � 0 represents the infection rate, accounting for the susceptible people infected by infectious people. Thus, its
value is related to the number of contacts between susceptible and infected. Standard models, as well as our SEIRDV, assume
this relationship to be linear. A reference value b0 ¼ 0.02 to be used as starting guess in our model has been obtained by
running switched forced SEIRD (Piccolomini and Zama, 2020) up to December 2019.

The parameter a > 0 represents the incubation rate for the transition from exposed to infected states. Such value relates to
the incubation period AI as follows: AI ¼ 1/a. The average incubation for COVID-19 ranges from 2 to 14 days (d) (see https://
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www.worldometers.info/coronavirus/coronavirus-incubation-period/). According to (Lauer et al., 2020), more than 97
percent of people who contract SARS-CoV-2 show symptoms within 11.5 days of exposure. Recently a comparative study
assesses the incubation period of COVID-19 around 6.5 days (Alene et al., 2021). The cited studies assess the value of a in the
interval [0.14, 0.5]. Hence we consider a0 ¼ 1/6 as starting guess in our model.

The parameter g> 0 representing the removal rate relates to the average infectious period TI as g¼ 1/TI. At the beginning of
the COVID-19 outbreak, an average value TI x 20 d has been measured (Zhou et al., 2020), hence g2 [0.03, 0.1]. The starting
guess used in this case is g0 ¼ 1/20.

After the period TI, the infected people split into recovered and dead with weights 1 � h and h, respectively (0 � h � 1).
Hence the parameter h represents the fraction of the removed individuals who die and its value depends on environmental
situations that change over time, such as the population age, the virus spread, medical care availability and treatments. We
use as starting guess for this value is h0 ¼ 0.001. Finally, the parameter n > 0 represents the vaccination rate. Its value is
particularly useful in the prediction phase to obtain different scenarios.

Important information about the epidemic development is obtained from the number of infection cases generated from a
single infectious individual, i.e. the basic reproduction number R0, defined as follows (see details in AppendixA.1):

R0 ¼ b

g
: (A.2)
It is well known that the epidemic occurs when R0 > 1; however, this information refers to the initial stage, assuming that
the entire population is susceptible. In the case of COVID-19, estimates of R0 in the interval [1.5, 6.68] were obtained during
the first months of 2020 (Achaiah et al., 2020).

Appendix A.1

Concerning the analysis of stability and equilibrium solutions of a compartmental model with different vaccination
policies, please refer to (Etxeberria-Etxaniz, Alonso-Quesada,&De la Sen, 2020) and references therein. Using the relationN¼
S(t)þ E(t)þ I(t)þ R(t)þ D(t)þ V(t), we can eliminate the last equation in (A.1) and define a disease free equilibrium (S*, E*, I*,
R*, D*), with I* ¼ E* ¼ R* ¼ D* ¼ 0. Following the next generation matrix approach (van den DriesscheJames, 2002; Brauer,
Castillo-Chavez, & Castillo-Chavez, 2012), we compute the basic Reproduction Number R0, defined as the number of sec-
ondary cases generated by a single infected. Let X ¼ [E,I]T be the state at infection of system (A.1), then the exposed and
infected equations can be written as: X0 ¼ F(X) þ W(X) where

FðXÞ ¼
�
bSI=N

0

�
; WðXÞ ¼

�
aE

�aE þ gI

�

The Jacobian matrices of F and W at the disease free equilibrium are:

F ¼
�
0 bS*=N
0 0

�
; W ¼

�
a 0
�a g

�

According to (van den DriesscheJames, 2002) the basic reproduction number R0 is the maximum eigenvalue of the next
generation matrix NGM ¼ FW�1, i.e.

NGM ¼ F
�
1=a 0
1=g 1=g

�
¼ S*b

Ng

�
1 1
0 0

�

In the assumption that at disease free state S*¼ Nwe obtain (A.2). We note that it coincides with the R0 value of a standard
SEIR model (Keeling & Rohani, 2011).

Appendix B. Model extension considering vaccination efficacy

Since it us known that the vaccine efficacy is not complete, we propose here a preliminary experiment extending the
SEIRDV model in (4) as suggested in (Cai et al., 2018). The extended model is represented by the following equations:
13
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S0 ¼ �b

N
SI � U;

V 0 ¼ U � r
b

N
VI

E0 ¼ b

N
SI � aE þ r

b

N
VI

I0 ¼ aE � gI

R0 ¼ gð1� hÞI
D0 ¼ ghI

(B.1)

where the parameter r2 [0,1]measures the vaccine efficacy.We observe that if r¼ 0 the vaccine is perfectly effective and the
model coincides with (4).

We present some experiments where we change the vaccine efficacy according to the values reported in (Lopez Bernal
et al., 2021) in the case of a single dose. In particular, using the vaccine efficacy VC ¼ 48.7% against Alpha variant proposed
in (Lopez Bernal et al., 2021), we set r¼ 1e0.487¼ 0.513, since the Alpha variant was widely diffused in Italy at the time of our
experiments.

Fig. B.13. 40 days prediction for the infected compartment in Italy by considering different vaccination rates v ¼ 0.0018 (dark continuous line), v ¼ 0.0045 (dark
dashed-dotted line) and v ¼ 0.0072 (dark dotted line): (a) SEIRDV_pwl, (b) SEIRDV_pwe.

Fig. 9 represents the infected populations obtained by the model (B.1) with the linear and exponential infection rates
calibrated as in section (3.2) with the vaccination rates given in Table 4. We observe that the decreased vaccine efficacy does
not affect the infected curve behaviour and the peak day. On the contrary, the reduced efficacy of the vaccine causes the
infected curves at different vaccination rates to be closer each other (compared to Fig. 9). Comparing the two models, we
notice that the exponential model is closer to the infected data and the number of infected people is significantly lower.
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