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Compressive Sensing of Full Wavefield Data

for Structural Health Monitoring Applications
Tommaso Di Ianni, Luca De Marchi, Member, IEEE, Alessandro Perelli,

and Alessandro Marzani

Abstract

Numerous non destructive evaluations and structural health monitoring approaches based on guide

waves rely on analysis of wavefields recorded through scanning laser Doppler vibrometers (SLDVs) or

ultrasonic scanners. The informative content which can be extracted from these inspections is relevant.

However, the acquisition process is generally time-consuming posing a limit in the applicability of such

approaches. In order to reduce the acquisition time, in this work a random sampling scheme based on

Compressive Sensing (CS) is used to minimize the number of points in which the field is measured. The

CS reconstruction performance is mostly influenced by the choice of a proper decomposition basis to

exploit the sparsity of the acquired signal. Here, different basis have been tested to recover the guided

waves wavefield acquired on both an aluminum and a composite plate. Experimental results show that

the proposed approach allows to reduce the measurement locations required for accurate signal recovery

to less than 34% of the original sampling grid.

Keywords

Lamb waves, Compressive sensing, Defect detection, NDE, Full wavefield imaging.

I. INTRODUCTION1

During last decades, the constant need to improve the operational safety of structures is driving2

the development of nondestructive evaluation methods and monitoring systems aimed at the ongoing3

assessment of the health conditions of the structures. Structural health monitoring (SHM) includes4

a wide range of diagnostic techniques that allow the real-time evaluation of both the existence and5

entity of defects, reducing life-maintenance costs of structural components. For what concern plate-like6

components, diagnostic methods bases on guided wave [1], [2] have emerged as a viable option among7

ultrasonic methods because of the ability of such waves to travel long distances with reduced energy loss.8
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In particular, the visualization of the guided waves full wavefield propagating into the structure can show9

the waves interaction with structural features, turning out to be a suitable tool to automatically detect the10

presence of flaws [3].11

A common way to obtain wavefield data consists of exciting the structure using a piezoelectric PZT12

transducer while acquiring guided wave responses at the user-defined spatial and temporal resolution13

by means of a scanning laser Doppler vibrometer [4], [5]. Such vibrometer measures the out-of-plane14

surface velocity in a grid of equispaced points over the structure. In such application, to reduce the effect15

of acquisition noise, multiple time traces are acquired at every scan point, making such a process rather16

time consuming.17

However, if the wavefield signal can be sparsely decomposed in a limited number of basis functions a18

novel sensing paradigm can be applied. Such paradigm is based on the Compressive Sensing theory [6]19

which asserts that, thanks to sparsity, a signal can be acquired and recovered from a limited number (much20

smaller than what Shannon/Nyquist theorem suggests) of linear measurements without loss of information.21

CS methods have been used for ultrasonic data reduction [7], [8], [9], [10], and in exploration seismology22

[11] [12] to speed up the data acquisition phase. In these latter papers, it has been shown that a very23

good reconstruction of the wavefield can be achieved by using a random sampling procedure with some24

constraints enforced to limit the maximum sample distance, i.e. spatial gap.25

In the contest of guided wave inspections, CS has been used as a powerful mean to perform signal26

decomposition and analysis [13], to extract the multimodal dispersion curves [14] as well as to expedite27

the acquisition process in ultrasonic propagation imaging [15]. In this work, a CS-based approach aimed28

at minimizing the SLDV full wavefield acquisiton phase is presented.29

Besides the different application domains, CS methodologies can be distinguished on the basis of two30

distinctive features: (i) the selected dictionary of basis functions which produces the sparse representation31

of the considered signal, and (ii) the measurement mechanism, which substitutes the traditional Nyquist-32

based data collection techniques.33

A variety of dictionaries have been developed for representing multidimensional signals [16]. These34

dictionaries can be either based on an analytic formulation (i.e. Analytical Dictionaries such as Fourier,35

Wavelets, Gabor atoms), or defined on the basis of a set of realizations of the data (Learned Dictionaries).36

In this work, Analytical Dictionaries have been used. In fact, the characteristic of guided wave propagation37

are strongly dependent on the material and geometrical properties of the inspected medium, and this would38

require a specific and time-consuming dictionary learning procedure applied each time the material or39

simply the thickness or temperature of the inspected material change. Analytical dictionaries may be less40
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effective than Learned Dictionaries for a given experimental setup, but can be fruitfully employed in41

many applicative contexts without any repeated training. Beside of that, analytical formulations allow for42

fast implicit decompositions, and consequently less computationally-intensive signal recovery procedures.43

In our approach, the number of scan points acquired in a standard laser vibrometer acquisition is44

decremented by using two different subsampling techniques: the first one is the so called jittered sampling45

which as been already used in seismic applications [11]; the second one is the Farthest point sampling46

[17] which is based on an iterative strategy.47

The implemented procedure takes into account both suitable sparsity-promoting domains and sample-48

points distribution strategies, achieving the best recovering result possible starting from highly incomplete49

wavefield data. In order to prove its effectiveness, the approach has been validated on signals from50

experimental setups with different kinds of structural defects.51

The paper is organized as follows: Section II deals with the definition of CS theoretical framework.52

Two approaches for sampling-points distribution are described in Section III, whereas a review of sparsity53

promoting decomposition bases suited for guided wave inspections is provided in Section IV. In Section54

V, experimental results concerning the reconstruction of the sub-sampled wavefield are shown. Finally,55

conclusions and further developments are summarized in Section VI.56

II. COMPRESSIVE SENSING OF WAVEFIELD DATA57

Compressive Sensing [18] is a theoretical framework which relies on two principles, namely sparsity58

and incoherence. The first one expresses the idea that a signal’s information content can be represented59

into a small amount of data when expressed in terms of a proper basis. While incoherence is related to60

the idea that the elements of the sparsifying basis are poorly correlated with the sampling functions.61

Let Σ(x, y, t) be the wavefield signal in the spatial and temporal domain, s ∈ Rn is its sampled version,62

acquired according the Nyquist sampling theory. We are interested to recover s from a small set of linear63

measurements64

yi = ⟨Σ(x, y, t), φi(x, y)⟩, i = 1, . . . ,m, (1)

being φi the sampling functions. In under-sampled situations the number of available measurements m65

is much smaller than the dimension of the signal n, and the recovery problem is in general ill-posed and66

admits infinite solutions. Such limitation can be overcome if some further assumptions can be posed.67

Let us consider a vector α ∈ Rn such that s = Ψα, with Ψ ∈ Rn×n. We define the representation68

produced by the basis Ψ as K−sparse if K is the number of nonzero elements of α. Furthermore,69
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consider a sampling matrix Φ ∈ Rm×n obtained organizing columnwise the sampling functions φi. We70

define coherence the measure of the largest correlation between any two elements of the basis Ψ and Φ:71

µ(Φ,Ψ) =
√
n · max

1≤i,j≤n
|⟨φi, ψj⟩|, (2)

with µ ∈ [1,
√
n]. The CS asserts that if the signal has a K−sparse representation in a basis Ψ with72

K ≪ n, and if the sensing matrix Φ is sufficiently uncorrelated with Ψ, i.e. µ ∼ 1, then the signal s73

can be recovered by solving a ℓ1 norm minimization problem. More specifically, in [19], it was proven74

that the number of measurements required for the exact recovery depends on the sparsity parameter K,75

and quadratically on µ:76

m ≥ C · µ2(Φ,Ψ) ·K log(n) (3)

In practical applications, measurements are affected by noise:77

y = ΦΨα+ z, (4)

where z is the noise term. Moreover, real world data are not exactly sparse. Despite this fact, when the78

coefficients of vector α decay exponentially in absolute value, the signal is still compressible, and the79

approximation of α which retains its K largest entries can be recovered [6] by solving the following80

sparsity-promoting problem:81

min ∥α̃∥ℓ1 subject to ∥ΦΨα̃− y∥ℓ2 ≤ ϵ, (5)

where ϵ bounds the amount of noise in the data.82

III. SAMPLING-POINTS DISTRIBUTION PATTERNS83

As detailed in the previous section, the design of an efficient compressive sensing protocol requires84

to define a suitable sampling scheme (Φ) and the sparsity-promoting dictionary Ψ in order to satisfy85

the incoherence condition(2). In this work, the waveform measurement is the one produced by scanning86

devices such as SLDVs in the spatial and temporal domain, and n is the number of samples which87

should be acquired to respect the Shannon sampling theory (i.e.the full-resolution sampling grid). By88

assuming that the SLDV measurements are almost ideally point-like, the sub-sampling matrix Φ is given89

by the Dirac (identity) basis in which are removed the rows corresponding to n −m locations. In this90

section, different strategies to select the preserved m samples are presented and discussed. It should be91

anticipated that the subsampling is performed just in the spatial domain, since no advantage in terms of92

reconstruction accuracy or reduction of measurement time is achieved by subsampling the wavefield also93

in the time domain.94
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The CS recovery is affected by strong coherent aliases when a simple regular subsampling is performed.95

Such aliases can be avoided with random sub-sampling schemes [20]. Starting from a uniform full-96

resolution grid on a 2D spatial domain, a possible under-sampling scheme can be easily achieved taking97

a random subset of measurements on the grid. Unfortunately, such a scheme can affect the quality of the98

recovery procedure. In fact, there may be excessively large gaps between scan-points causing the fault of99

the reconstruction in these areas. Alternatively, the so called Jittered sampling (JS) can be adopted [21].100

The jittered subsampling implemented in this work is a bidimensional extension of the one presented101

in [11] and it is based on the following steps: i) regularly decimate the full-resolution grid, and ii)102

subsequently perturb the coarse-grid sample points on the fine grid. More specifically, a discrete uniform103

distribution for the perturbation around the coarse-grid points is considered, so that each location is104

equally likely to be sampled. Further details are provided in Appendix A.105

A possible alternative is in the Farthest Point sampling (FPS) method [17], which starts from an106

initial small set of random placed samples, and adds iteratively sampling points on the inspected region,107

selecting the next sample to be the farthest point from all previously selected ones, until a certain stopping108

condition is reached (e.g. the desired number of sampling points). The Jittered and FPS sampling schemes109

are illustrated in Fig.1110

(a)

*

(b)

Fig. 1: (a) Jittered subsampling scheme, the dots represent the scanpoints obtained by regularly

subsampling the full resolution grid, their position is then randomly perturbed (bigger circles) to define

the scanpoint to be acquired in the CS procedure; (b) Farthest Point sampling, the circles represent the

initial set of sampling points; such set is enlarged by selecting iteratively the farthest (marked by an

asterisk) among the vertices of the Voronoi diagram (solid lines).

For each step of the FPS procedure, the farthest point is found by computing the Voronoi diagram111

[22] from the previous samples, and then selecting the farthest among the Voronoi diagram vertices as112
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additional sampling point. When the Voronoi diagrams are computed on the basis of the pure Euclidean113

distance, the FPS method progressively limits the maximum gap between sampling points, thus producing114

a rather uniform sampling distribution. When needed, the sample density can be also adaptively varied115

by following the strategy presented in [17].116

IV. SPARSITY-PROMOTING DICTIONARIES FOR WAVEFIELD IMAGES117

Let us focus now the discussion on the matrix Ψ. Such matrix transforms the signal from the sparse118

representation domain to the domain in which the measurements are acquired (i.e. the spatial and temporal119

domain, as specified in the previous section). In this work, we will evaluate as sparse representation120

domains the ones spanned by the Fourier exponentials, Curvelets, or Wave Atoms. This means that Ψ121

will be the matrix operator which computes the Fourier, Curvelet or Wave Atom inverse transforms,122

respectively.123

A. Fourier domain124

The dispersive and multi-modal characteristics of guided wave propagation have been extensively125

studied. A guided wave which travels a distance |x− xs1| from an ideal actuator (point-like source) can126

be modelled in the frequency domain as a dispersive system whose response is:127

S0(f, x) = S0(f, xs1) ·
M∑
i=1

AM (f)e−j|x−xs1|kM (f) (6)

being S0(f, xs1) the Fourier Transform of the excitation pulse at the actuation position xs1, kM (f)128

the frequency-wavenumber dispersion curve for mode M and AM (f) its dispersive attenuation in the129

range of frequencies considered. It follows that in the Fourier domain, the full wavefield components are130

concentrated on the dispersion curves kM (f) of the propagating wavemodes. The sparsifying effect of131

the Fourier decomposition can be observed in Fig. 2.132

Space-time traces related to the simulation of Lamb wave propagation in a 1mm-thick aluminum133

plate, considering a 3-cycle sine wave centered at 30 kHz as excitation pulse, are depicted in Fig. 2(a).134

More specifically, the Semi-analytical Finite Element (SAFE) formulation developed in [23] has been135

used to compute the time waveforms at different distances, considering the following nominal properties136

for aluminum: Young modulus E = 69 GPa, Poisson’s coefficient ν = 0.33 and density ρ = 2700137

kg/m3. The frequency/wavenumber representation of the same signal is depicted in Fig. 2(b). It is worth138

noticing that the Fourier representation of the simulated wavefield is much sparser than the time-space139
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Fig. 2: Simulated propagation of Lamb waves in an aluminum plate. An acoustic source is placed at

x = 0.25. Two wave modes (A0 and S0) are excited. Because of dispersion, the number of non-negligible

samples is quite high in the space-time domain. In the Fourier domain, the signal is confined on the k(ω)

curves, and the representation is consequently much more sparse.

representation, since the information is compressed in few non-negligible Fourier coefficients along the140

dispersion curves of two wave modes (A0 and S0).141

The sparsifying properties of the Fourier transform can be shown also by looking at Fig. 3. In this142

figure, such operator is applied to the spatial wavefield captured on a given instant in a simulated setup143

similar to the previous one (although just the A0 wave is captured in the considered snapshot). It is worth144

noticing how the transform produces a very sparse representation in the wavenumber domain.145

The representation offered by the Fourier transform has been fruitfully used ([24]) to separate the146

waves scattered by defects from the incident ones. Fourier bases are consequently good candidates for147

the construction of the sparsifying dictionary in the CS recovery procedure. It is also worth noticing that148

the inverse Fourier transforms operator is maximally incoherent with the sampling matrix, because µ149

attains its minimum at µ = 1 for the Fourier-Dirac pair.150

B. Curvelets domain151

The curvelet transform (CT) [25] provides a compact architecture for sparse representation of images152

with singularities along curves. For a given 2D function, the transform performs a decomposition in a153

frame of “needle-shaped” waveforms (named curvelets) that are localized not only in position (the spatial154
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Fig. 3: Simulated propagation of Lamb waves in an aluminum plate. A snapshot of the wavefield related

to a 300 × 300mm2 area is depicted. (a). The Fourier transform produces a very sparse representation

in the wavenumber domain. (b)

domain) and scale (the wavenumber domain), but also in orientation. The curvelets construction is based155

on a tiling of the wavenumber domain performed by a couple of strictly bandpass classes of functions.156

Let ξ = (ξ1, ξ2) be the wavenumbers along 2D spatial axes. Curvelet functions are indexed by three157

parameters: a scale ν, a direction l and a position index x = (x1, x2) which specifies the translation bν,lx158

of the curvelet waveform. The product of concentric square functions W̃ν(ξ) and sheared angle functions159

Vν(ξ) defines Cartesian windows in the wavenumber domain:160

Ũν,l(ξ) = W̃ν(ξ)Vν(Sθl , ξ), (7)

where Sθl is the shear matrix161

Sθl =

 1 0

− tan θl 1

 , (8)

and angles θl are chosen to define a set of equispaced slopes tan θl = l·2⌊ν/2⌋, with l = −2⌊ν/2⌋, . . . , 2⌊ν/2⌋−162

1. The set of windowing functions W̃ν provides a decomposition of the wavenumber plane in Cartesian163

coronae, each divided by sheared functions Vν of Nν = 4 · 2⌈ν/2⌉ trapezoids. According to Fig. 4a, the164

number of shears doubles in each second square. On the other hand, in the space domain the wavenumber165

localization of Ũν,l implies the rapid decay away from a 2−ν by 2−ν/2 rectangle with major axis orthogonal166

to the direction θl (see Fig. 5a), so that the support’s length and width obey the parabolic scaling relation167

length ≈ 2−ν/2, width ≈ 2−ν ⇒ width ≈ length2, (9)
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An example of curvelet atom for ν =, l = and x = is provided in Fig. 5a.168

In three dimensions (2 spatial and 1 temporal dimensions), the theory is essentially the same, except169

that curvelets are now 3D basis functions of side-length 2−ν/2 in two directions and thickness 2−ν in the170

orthonormal direction, so that the parabolic scaling relation still holds, and ξ = (ξ1, ξ2, ξ3) is now related171

to wavenumbers and frequency. 3D curvelets provide valuable sparse representations of 3D objects with172

singularities along smooth surfaces.173

For a given (either 3- or 2D) signal s whose Fourier transform is S(ξ), the curvelet coefficients can174

be computed as175

c(ν, l, x) =

∫
S(ξ)Ũν,l(ξ)e

i⟨bν,lx ,ξ⟩dξ. (10)

Therefore a practical implementation performs three steps: 1) data are transformed into the frequency176

domain by forward fast Fourier transform (FFT), 2) transformed data are multiplied by the set of window177

functions Ũν,l and 3) curvelet coefficients are obtained from windowed data by inverse FFT. The com-178

putational complexity is O(N2 log2N). Further details about discrete curvelet transform implementation179

can be found in [25] and [26], while the code (Curvelab package) which computes the curvelet transform180

employed in this study is available at [27].181

It has been proved that the curvelet operator is the one that produces the sparsest representation of182

wave propagation phenomena [28], and such property potentially allows to reduce the number of sample183

locations, following (3). However, Curvelets and discrete Dirac delta are less incoherent with respect to184

the Fourier-Dirac pair, and this may adversely affect the recovery (see [29]).185

C. Wave Atoms domain186

Wave atoms [30] represent another tool for multiscale analysis, allowing to expand a multidimensional187

function in a linear combination of localized, directional waveforms. Similarly to curvelets, wave atoms188

provide a tiling of the frequency/wavenumber plane (see Fig. 4(b)) which has been proven to sparsely189

represent oscillatory patterns [30].190

In the space domain, wave atoms are smoothed oscillating functions whose support is approximately191

a square of size 2−ν by 2−ν at scale ν, with oscillation of wavelength ∼ 2−2ν transverse to the ridge,192

while in frequency domain each tile is a 2ν by 2ν square, at a distance ∼ 22ν from the origin, as showed193

in Fig. 4(b).194

Note that the subscript ν indexes the different “dyadic coronae”, whereas direction and position are195

indexed by l and x, respectively. Fig. 5(b) exhibits a wave atom for ν =, l = and x =, which shows a196

more isotropic aspect ratio w.r.t. curvelet in Fig. 5(a).197
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All the transformations considered in this section (including curvelets and wave atoms) make a central198

use of discrete Fourier transform algorithms such as the Fast Fourier Transform (FFT). Due to its implicit199

periodicity, FFT may cause reconstruction artifacts across boundaries. A way of avoiding this unwanted200

outcome is to work on the discrete cosine transform of the original domain, in place of the Fourier201

transform, with no penalty on redundancy or computational complexity. The complete mathematical202

treatment can be found in [31], while the code used in this study is available at [32].203

wavenumber

w
a
v
e
n
u
m
b
e
r

(a)

wavenumber

w
a
v
e
n
u
m
b
e
r

(b)

Fig. 4: (a) Curvelet dyadic decomposition of the wavenumber plane; (b) wave atom tiling of the wave

number plane.
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Fig. 5: Examples of basis functions: (a) curvelet atom; (b) wave atom
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V. EXPERIMENTAL RESULTS AND DISCUSSION204

The results of the CS reconstruction of a wavefield signal acquired on two distinct setups were evaluated205

in order to assess the proposed approach. The first setup is constituted by a 1.5 mm thick 6061 aluminum206

plate (638 mm × 558 mm wide). The presence of a defect was emulated by a 12 mm diameter cylindrical207

mass bonded on the surface of the plate. A 10 mm diameter PZT transducer was used to excite the guided208

field in the structure, while the plate response was recorded through a Polytec PSV400M2 SLDV over a209

rectangular area of 150 mm × 155 mm, in a grid of 141 × 151 equispaced points.210

The second setup is constituted by a glass fibre reinforced polymer (GFRP) plate (4 unidirectional211

glass fibre layers oriented along x axis, thickness equal to 3.2 mm). Three 0.5 mm wide and 70% of the212

specimen thickness deep notch cuts were machined by a sharp tool. The excitation signal was generated213

by an arbitrary waveform generator, amplified to 400Vpp by a dedicated PZT amplifier. The excitation214

signal was applied to a round piezoelectric transducer (10 mm diameter). Out of plane displacements215

were registered by a SLDV on dense grid of (385 × 389) equally spaced points.216

The CS procedure was implemented in Matlab using the SPGL1 toolbox [33] which iteratively solves217

the sparsity-promoting problem in Eq. (5), with the support of the suite Sparco [34]. The outcomes of218

the procedure were compared in terms of both computational time and Signal to Noise Ratio (SNR),219

defined as220

20 · log10
(

∥u(x1, x2, t)∥
∥ur(x1, x2, t)− u(x1, x2, t)∥

)
, (11)

where u is the signal acquired on the dense grid, and ur is the recovered wavefield signal, by varying221

the number of iterations of the SPGL1 algorithm (detailed in Appendix B), and the sparsifying basis.222

To qualitatively judge the performance of the presented approach, the recovery of two snapshots related223

to the different setups are illustrated in Fig. 6 and 7. In Fig. 6(a), the signal acquired on the aluminum224

plate at a given time instant is shown along with the ones recovered with different dictionaries (Fig.225

6(c)-(f)). The recovery was performed starting from less than 34% measurements with respect to the226

original grid (the JS mask is illustrated in Fig. 6(b) with black square dots). It is worth noticing the227

substantial agreement of all the recovered signals to the acquired one, which proves the effectiveness228

of the procedure. Furthermore, the presented results are much more accurate than the ones achieved by229

simply interpolating the sub-sampled signal, as can be seen by looking at the linear interpolation results230

depicted in Fig. 6(c). Similarly, the recovery of the wavefield acquired on the composite panel is very231

effective, as can be seen in Fig. 7.232

In Fig. 8, the results of the implemented procedure applied to the first setup are depicted in terms of233
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Fig. 6: (a) Original full wavefield on aluminum plate at a given time instant, (b) JS mask used to

undersample the acquisitions, (c) linear interpolation, (d) Full wavefield recovered with FFT 3D, (e)

Wave Atom, (f) 2D Curvelet domain by less than 34% measurements respect to the original sampling

grid.
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Fig. 7: (a) Original full wavefield on composite plate at a given time instant, (b) JS mask used to

undersample the acquisitions, (c) linear interpolation, (d) Full wavefield recovered with FFT 3D, (e)

Wave Atom, (f) 2D Curvelet domain by less than 34% measurements respect to the original sampling

grid.February 10, 2015 DRAFT
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the number of iteration a priori set for the recovery algorithm SPGL1. By looking at Fig. 8 (a), it can234

be noticed that the quality of the reconstruction reach its maximum value after about 90 iterations in all235

the considered cases. In particular, the best performance in terms of SNR is achieved by adopting the236

Wave atom or the 3D Fourier transform as sparsifying operators.237

It is important to point out that our main aim it to evaluate the capability to preserve the informative238

content of the signal (i.e. high SNRs) while reducing the number of acquisition points, because such239

reduction implies a parallel reduction of the acquisition time and consequently a more efficient usage240

of the scanning equipment. In fact, in the proposed approach the computational resources necessary to241

perform the reconstruction can be used off-line, while the acquisition process can run independently.242

Despite this, it also is interesting to evaluate the computational time which is necessary to perform243

the full-resolution signal recovery. In this sense, the best trade-off between SNR and computational244

time is the one offered by the 3D Fourier (3D FT) basis which provides high SNRs even with few245

iterations and a very fast processing. In such a case, the solver converges in about 30 iterations in few246

minutes of computational time with an Intel i5™ Processor. Conversely, for Curvelet (2D CT) and247

Wave Atom 2D domains (WA), the results are mainly similar in terms of SNR, but they require several248

hours of computational times. The 3D Curvelet basis (3D CT) recovery has relatively poor performances,249

this result is somehow in contrast with the effective and sparse representation of wavefield recordings250

produced by the Curvelet transform ([35]). One possible explanation is in the relatively small support251

of curvelet atoms which may produce artefacts in case of sparse subsampling, because of the relatively252

high coherence among sparsifying dictionary and measurement functions.253

The recovery algorithm achieves high values of SNR with a reduced number of SPGL1 iterations254

when high percentages of scanpoints are retained. The results in term of recovery time using a jittered255

undersampled grid for the cases of 33% and 90% retained scanpoins are shown in Table I. The number256

of iteration for the SPGL1 recovery algorithm has been set to 30 and 15 in order to achieve an SNR257

equal to 30dB in both cases.258

As can be observed in Table I, the number of SPGL1 iterations is not directly proportional to the com-259

putational time, so that the percentage of retained scanpoints just partially influences the computational260

cost of the reconstruction procedure.261

In Table II the results of the reconstruction of the second setup wavefield signal in the 3D Fourier basis262

with 30 iterations by means of Random, Jittered and FPS distributions are shown. For each sampling263

strategy, 20 realizations were considered. The minimum and maximum values of the achieved SNRs are264

reported, retaining the 15% and 33% of the original grid scanpoints. Even though the Farthest Point265
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Fig. 8: (a) SNR performances achieved, and (b) computational time needed to recover the full wavefield

with different sparsifying basis as a function of the number of iterations of the SPGL1 algorithm. The

dot-dashed lines indicate the performances achieved by the simple linear interpolation.

TABLE I: Computational Time of the CS recovery obtained from: a) full wavefield signal random

subsampled in 33% locations respect to the original grid distributed with 2D Jittered approach (30 iteration

for the SPGL1 algorithm); b) considering 90% of the grid points (15 iteration for the SPGL1 algorithm).

Dictionary Computational Time (a) [min] Computational Time (b) [min]

3D FFT 12.31 9.03

2D FFT 8.99 6.57

3D CT 81.00 71.27

strategy produces a more uniform distribution, JS yields a better recovery in terms of SNR. This is in266

line with the results reported in [36], for seismic data acquisitions. The performance achieved with the267

FPS strategy is inferior even w.r.t the pure random selection of scan-points. However, this is true for268

a global metric such as the SNR but not for the maximum of the local error (i.e. ||ur − u||∞). It was269

verified that on the same dataset the maximum local error produced by the random distribution is 7%270

higher w.r.t. the FPS, and 13.% higher w.r.t. the JS, on average.271

A possible benefit of the FPS strategy is the capability for progressive sampling, which allows to vary272

dynamically the resolution during the acquisition process. Such capability can be extremely useful when273

high sample density is needed in areas with fine details: FPS samples distribution can be altered defining274
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TABLE II: Reconstruction SNRs in the Fourier domain after 30 iterations of the CS problem solver for

different sampling-point distribution strategies (15% or 33% samples preserved, 20 grids generated for

each strategy).

Sampling SNR [dB] (15%) SNR [dB] (33%)

scheme min max min max

Random 15.94 17.37 27.72 29.46

Jittered 16.63 17.55 29.43 30.74

FPS 14.46 15.49 24.83 26.23

an alternative weighted-metric over the spatial domain, therefore providing a valuable adaptive sampling275

scheme (see Sec. III, and [17]).276

VI. CONCLUSIONS277

In this paper, a CS framework for acoustic wavefield acquisitions was presented. The proposed frame-278

work aims at minimizing the number of scan-point locations over the surface of the inspected structure.279

Both sampling-point distribution strategies and sparsity-promoting dictionaries were investigated in order280

to produce the best recovery for a sub-sampled wavefield signal obtained with a scanning laser Doppler281

vibrometer.282

The decomposition of the signal in the Fourier domain turned out to be the more effective solution,283

leading to a very fast and accurate recovery starting from less than 34% of measurements with respect284

to the original sampling grid. This result can be ascribed (i) to the fast algorithms which compute the285

Fourier transform, (ii) to the sparse representation of Lamb wave signals offered by the Fourier domain,286

as well as (iii) to the high incoherence of Fourier exponentials with the examined sampling schemes, and287

demonstrates the great potential of the CS approach.288

Among the future developments, an adaptive sampling-point distribution strategy could be developed289

taking advantage of the progressiveness of the FPS scheme. It is possible indeed to introduce case-specific290

metrics in order to place each new sampling-point in the position that minimize the local recovery error,291

further improving the tradeoff between the number of scan-points and accuracy in the reconstructions.292

APPENDIX A: JITTERED SUBSAMPLING SCHEME

Let us assume that the full resolution grid is a cartesian grid of scanpoints in which each vertex has

coordinates (i ∗ ∆, j ∗ ∆), with i ∈ [0, 1, ..., I], j ∈ [0, 1, ..., J ] and ∆ being the spatial spacing (set
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according to the Nyquist sampling theorem). If γ is the downsampling factor, the coordinates of the

Jittered subsampled grid are given by:

x1 = is ·
∆
√
γ
+ ϵi, is ∈ [0, 1, ..., I · √γ]

x2 = js ·
∆
√
γ
+ ϵj , js ∈ [0, 1, ..., J · √γ]

where the random variables ϵi and ϵj are independently and identically distributed (i.i.d.) according to

a uniform distribution on the interval [−∆/
√
γ,∆/

√
γ].

APPENDIX B: SPGL1 ALGORITHM

The Spectral Projected Gradient for ℓ1 minimization (SPGL1) algorithm computes the solution of 5

by solving the sequence of the following subproblems:

ατi = arg min
α̃∈Rn

∥ΦΨα̃− y∥ℓ2 subject to ∥α̃∥ℓ1 ≤ τi

The algorithm starts by defining the first tentative solution α0 and the initial value for the parameter

τ0 = ∥α0∥ℓ1 . Then the updating of τ is performed by traversing the Pareto curve described by the

function η(τ) = ∥ΦΨατi − y∥ℓ2 :

τi+1 = τi +
η(τi)− ϵ

η′(τi)

The iterations are stopped when ∥ΦΨατi − y∥ℓ2 = ϵ or some alternative stopping conditions (e.g. the

maximum number of iterations) are met.
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[9] C. Quinsac, A. Basarab, and D. Kouamé, “Frequency domain compressive sampling for ultrasound imaging,” Advances in

Acoustics and Vibration, vol. 2012, 2012.

[10] N. Wagner, Y. C. Eldar, and Z. Friedman, “Compressed beamforming in ultrasound imaging,” Signal Processing, IEEE

Transactions on, vol. 60, no. 9, pp. 4643–4657, 2012.

[11] W. Tang, J. Ma, and F. J. Herrmann, “Optimized compressed sensing for curvelet-based seismic data reconstruction,”

preprint, vol. 280, 2009.

[12] F. J. Herrmann, M. P. Friedlander, and O. Yilmaz, “Fighting the curse of dimensionality: compressive sensing in exploration

seismology,” Signal Processing Magazine, IEEE, vol. 29, no. 3, pp. 88–100, 2012.

[13] A. Perelli, T. Di Ianni, A. Marzani, L. De Marchi, and G. Masetti, “Model-based compressive sensing for damage

localization in lamb wave inspection,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 60,

no. 10, 2013.

[14] J. Harley and J. Moura, “Sparse recovery of the multimodal and dispersive characteristics of Lamb waves,” Journal of the

Acoustical Society of America, vol. in press.

[15] D. Mascarenas, S. Chong, G. Park, J. Lee, and C. Farrar, “Application of compressed sensing to 2-d ultrasonic propagation

imaging system data,” in Proc. 6th European Workshop on Structural Health Monitoring, 2012, pp. 1–8.

[16] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proceedings of the IEEE,

vol. 98, no. 6, pp. 1045–1057, 2010.

[17] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi, “The farthest point strategy for progressive image sampling,” IEEE

Transactions on Image Processing, vol. 6, no. 9, pp. 1305–1315, September 1997.

[18] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete

frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, February 2006.

[19] E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse problems, vol. 23, no. 3, p. 969,

2007.

February 10, 2015 DRAFT



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. , NO. , 2015 19

[20] G. Hennefent and F. J. Herrmann, “Simply denoise: wavefield reconstruction via jittered under-sampling,” Geophysics,

vol. 73, no. 3, pp. 19–28, May 2008.

[21] R. L. Cook, “Stochastic sampling in computer graphics,” ACM Transactions on Graphics, vol. 5, no. 1, pp. 51–72, January

1986.

[22] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations - Concepts and Applications of Voronoi Diagrams. John Wiley

& Sons, Chicester, 2000.

[23] A. Marzani and S. Salamone, “Numerical prediction and experimental verification of temperature effect on plate waves

generated and received by piezoceramic sensors,” Mechanical Systems and Signal Processing, vol. 30, no. 0, pp. 204 –

217, 2012.

[24] M. Ruzzene, “Frequency-wavenumber domain filtering for improved damage visualization,” Smart Materials and Structures,

vol. 16, pp. 2116–2129, October 2007.

[25] J. Ma and G. Plonka, “The curvelet transform,” IEEE Signal Processing Magazine, vol. 27, no. 2, pp. 118–133, March

2010.

[26] E. Candès, L. Demanet, D. Donoho, and L. Ying, “Fast discrete curvelet transforms,” Applied and Computational

Mathematics, California Institute of Technology, Tech. Rep., 2005.

[27] [Online]. Available: http://www.curvelet.org

[28] E. J. Candes and L. Demanet, “The curvelet representation of wave propagators is optimally sparse,” Communications on

Pure and Applied Mathematics, vol. 58, no. 11, pp. 1472–1528, 2005.

[29] F. J. Herrmann and G. Hennenfent, “Non-parametric seismic data recovery with curvelet frames,” Geophysical Journal

International, vol. 173, no. 1, pp. 233–248, 2008.

[30] L. Demanet, “Curvelets, wave atoms and wave equations,” Ph.D. dissertation, California Institute of Technology, 2006.

[31] L. Demanet and L. Ying, “Curvelets and wave atoms for mirror-extended images,” Proc. SPIE, Wavelets XII, vol. 6701,

no. 67010J, September 2007.

[32] [Online]. Available: http://www.waveatom.org

[33] E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,” SIAM J. on Scientific

Computing, vol. 31, no. 2, pp. 890–912, November 2008.

[34] E. van den Berg, M. P. Friedlander, F. J. Herrmann, R. Saab, and O. Yilmaz, “Sparco: A testing framework for sparse

reconstruction,” Department of Computer Science, University of British Columbia, Tech. Rep., 2007.

[35] L. D. Marchi, E. Baravelli, M. Ruzzene, N. Speciale, and G. Masetti, “Guided wave expansion in warped curvelet frames,”

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 59, no. 5, pp. 949–957, May 2012.

[36] R. Shahidi, G. Tang, J. Ma, and F. J. Herrmann, “Application of randomized sampling schemes to curvelet-based sparsity-

promoting seismic data recovery,” Geophysical Prospecting, vol. 61, no. 5, pp. 973–997, September 2013.

Tommaso Di Ianni was born in Torremaggiore, Foggia, Italy, in 1988. He received the Master of Science degree in Electronic

Engineering in 2014 at the University of Bologna with a thesis on Compressive Sensing based Damage Detection. Actually, he

is pursuing the Ph.D.degree at the Technical University of Denmark.
February 10, 2015 DRAFT



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. , NO. , 2015 20

Luca De Marchi received the Dr.Eng. and Ph.D. Degrees in Electronic Engineering respectively in 2002 and 2006 from the

University of Bologna. At the end of 2002, he joined the Department of Electronics, Computer Sciences and Systems (DEI)

at the University of Bologna. Currently, he is also with the Advanced Research Center for Electronic Systems (ARCES). His

current research interests are in ultrasonic signal analysis for structural health monitoring applications.

Alessandro Perelli was born in Senigallia, Ancona, Italy, in 1985. He received the Master of Science degree in Electronic

Engineering in October 2010 and his Bachelor of Science in Electronic Engineering in 2007, both at the University Polytechnic

of Marche, Ancona (Italy). Since September 2012 he has been a visiting research scholar at the Ultrasound Group of University

of Leeds. In 2014 he received the Ph.D. degree in Electronic Engineering at the Department of Electronics, Computer Science

and Systems DEI - University of Bologna. Since 2014 is Research Associate at the University of Edinburgh.

Alessandro Marzani received the B.S. in civil eng. from the Univ. of Bologna, Italy, in 2001; the M.S. in structural eng.

from the Univ. of California, San Diego, USA, in 2004; and the Ph.D. in eng. of materials and structures from the Univ. of

Calabria, Cosenza, Italy, in 2005. Since 2014, he is an Associate Prof. of Structural Mechanics at the Department of Civil,

Chemical, Environmental and Materials Engineering (DICAM), Univ. of Bologna. His research interests include guided wave-

based nondestructive and monitoring techniques of materials and structures, signal processing strategies, and numerical modeling.

February 10, 2015 DRAFT


