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The interaction of humans with microorganisms represents a subtle balance between
harm and good. Some microorganisms can act as pathogens for humans but not for other
organisms [1], and the same microorganism can even be pathogenic for humans or not
depending on its location in or on the body [2,3]. When microorganisms become pathogens,
they clearly represent a threat to human life. Understanding host–pathogen interactions
is the cornerstone for developing diagnostic tools as well as designing preventive and
therapeutic proceedings [4]. Host–pathogen interactions are considered highly dynamic
processes between diverse microbial pathogens and hosts in all stages of infection, from
invasion to dissemination [5].

Immense breakthroughs have been achieved in the field of host–pathogen interaction,
establishing the principles of eradication [6,7] and allowing for the control of several
pathogens, thus leading to significant improvements in the life expectancy of humankind.
Unfortunately, still a lot remains unsolved. In fact, the changing climate, together with
massive urbanization and the intense global travelling behaviors of humans are quickly
changing the plethora of pathogens [8] to which we are exposed. This translates to the
need for continuous technological innovation, an ability to promptly identify them, and
the ability to study interactions with their hosts.

The current COVID-19 pandemic has demonstrated how the use of innovative technolo-
gies such as mRNA vaccines [9] allow for approvals for new vaccines within 300 days [10].
This global experience has undoubtedly promoted the use of innovative technologies in
the field of infectious diseases, which are life saviors during situations that require rapid
response [11].

One of the main limitations to unravelling the complexities behind host–pathogen
cross-talk is often represented by the lack of an appropriate model for studying the different
stages of infection [12]. While scientists rely on animal models to study infection for a
specific pathogen, for other pathogens, this is not always possible [13]. Moreover, animal
models are costly and, in some cases, ethically debatable [14]. For these reasons, 3D in vitro
tools represent an interesting alternative to minimizing or to entirely replacing animal use
in pre-clinical studies.

The Special Issue “New Tools in 3D Host–Pathogen Interactions” has gathered six
publications, including three original articles and three reviews, that clearly underline the
need and the interest of the scientific community in increasing the use of 3D cell cultures,
aiming to understand the intricate mechanisms behind host–pathogen interactions.

Shigella is described by the World Health Organization (WHO) as the leading bacterial
cause of diarrhea and the second-leading cause of diarrhea-associated mortality in 2016, es-
pecially in children < 5 years of age. It accounts for approximately 212,000 deaths and about
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13% of all diarrhea- associated deaths worldwide [15,16]. Treatments for shigellosis are
available and mostly consist of antibiotics that are not always accessible for the most highly
affected populations, which are mainly located in low- and middle-income countries [17].
Moreover, the rising drug resistance to fluoroquinolones and cephalosporines [18], reduc-
ing the effectiveness of the treatment, places this genus of bacteria among pathogens of
concern, with a need for the development of new antimicrobials and vaccines [15]. The
lack of preclinical models for Shigella is concerningly delaying the identification of such
new tools. Pilla et al. [19] showed how the use of an enteroid model can represent a useful
tool in validating molecules of interest for the management of shigellosis. Their findings
provide clear evidence that human enteroids are a relevant model for mimicking both
invasion and intracellular replication of Shigella sonnei and, consequently, for the testing of
vaccine candidates.

Even though much remains to be carried out to promote 3D human cellular systems
as routine models for studying host–pathogen interactions, promising advancements
have been made in the field of human–staphylococcal interactions. Staphylococcus aureus
(S. aureus) is a Gram-positive bacteria, part of the human nose and skin microbiota, but it
also causes a wide variety of clinical manifestations both in the community and in healthcare
facilities [20]. Since the 1960s, methicillin-resistant S. aureus (MRSA) has emerged [21],
posing a worldwide threat in terms of antimicrobial resistance (AMR). In 2019, MRSA has
been included as a new AMR indicator in the Sustainable Developmental Goals (SDGs)
monitoring framework [22]. Chronic and prolonged infections with S. aureus represent the
highest burden of disease, with decreasing likelihood of treatment success as the infection
becomes established [23]. In this Special Issue, two different publications [24,25] showed
the potential of 3D models in gaining more insight towards controlling the burden caused
by such a threatening pathogen. Hofstee et al. [24] showed that staphylococcal abscess
communities cause myeloid-derived suppressor cell (MDSC) expansion from bone marrow
cells and identified possible mediators to be targeted as an additional strategy for treating
chronic S. aureus infections. Parente et al. [25] developed a 3D model of osteomyelitis (OM),
a bone condition primarily induced by S. aureus infections, based on co-cultures of S. aureus
and murine osteoblastic MC3T3-E1 cells on magnesium-doped hydroxyapatite/collagen I
(MgHA/Col) scaffolds that closely recapitulate the bone extracellular matrix. This model
shows great potential for the study of OM caused by S. aureus infections.

The Zika virus (ZIKV) has received particular attention in the past years, following
the big epidemics reported in south America in 2016 [26]. The clinical relevance of ZIKV is
mostly connected to fetal or early life infections that can lead to neurological disorders that
severely impact the quality of life and life expectancy of affected individuals [27]. Addi-
tionally, in this case, the lack of appropriate animal models heavily limits progress towards
unraveling host–pathogen interaction mechanisms for the identification of effective vac-
cines. In their review, Marrazzo et al. [28] discussed the use of brain organoids as valuable
models for ZIKV infection, underlining the advantages of these models in accelerating
research. As described by Hopkins et al. [29], brain organoids represent invaluable models
in studying several pathogenic disorders that affect the brain and the nervous system. In
their review, they thoroughly discussed the effectiveness and advantages of the use of these
models and recognized the existing cost and technology limitations. Nevertheless, these
two examples clearly highlight the call for more investments to improve the technology in
this field, since the outcomes promise to be invaluable in terms of scientific findings.

Finally, Baddal and Marrazzo [30] described different microfluidic human tissue
models by taking advantage of modeling pathophysiology in a dynamic 3D host–pathogen
microenvironment. In particular, they reviewed organ-on-chip technology as a tool for
refining organ-specific responses during infection, such as in the lung, intestine, kidney,
and blood–brain barrier.

In conclusion, we believe that this Special Issue illustrates the potential of advanced
in vitro models based on 3D cell cultures as significant tools useful in improving knowledge
about host–pathogen interactions. At the same time, it clearly shows how limited the use of
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these tools still is. We hope that this Special Issue contributes to widening the awareness and
stimulating researchers to further develop and use 3D tools in the field of host–pathogen
interaction.

Conflicts of Interest: The authors declare no conflict of interest.
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