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1 Introduction

The worldline quantum field theory (WQFT) description of classical scattering is a pertur-
bative path integral formalism which simplifies the classical limit procedure of scattering
amplitudes in gravity [1]. WQFT is based on a relation between elastic (or inelastic)
scattering amplitudes in the absence of matter loops and a worldline path integral repre-
sentation of the dressed Feynman propagator.1 The relation between the S-matrix, and
dressed propagators requires a procedure to put the latter on-shell after having removed
the external legs. The prescription for obtaining such propagator was pioneered by Frad-
kin long time ago [10] and applied in ref. [11] to study high energy scattering in gravity.

1Roughly speaking, in perturbation theory, a dressed propagator represents a resummation of tree-level
Feynman diagrams of a particle propagating in a background (see figure 1). Dressed propagators have been
developed in a worldline representation for a variety of models, see e.g. [2–9].
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Once the worldline path integral is under control and the correspondence to the S-matrix
made explicit, expectation values can be computed from a partition function expressed as
a worldline path integral. One can then derive Feynman rules of the theory which allow the
calculation of these expectation values directly. This is the WQFT approach to classical
scattering observables. WQFT shares some similarities with the Effective Field Theory
(EFT) approach to gravitational dynamics [12–14] with the important difference that in
WQFT worldline degrees of freedom are also quantized. The WQFT formalism has been
further developed to describe Bremsstrahlung [15], spinning black holes [16, 17] and colored
massive particles [18].

The direct relation between the WQFT formalism and on-shell scattering amplitudes
motivate us to find a similar treatment of the classical scattering of light in the presence
of a scalar/spinning object.2 Treating quantum gravity as an EFT [20–22] it was recently
found that there are small quantum corrections that differentiate the scattering of a mass-
less particle from that of light off a heavy mass object [23–25], thus testing the equivalence
principle [26]. Since these differences are absent in the classical limit, one can recover de-
flection angles by taking the massless limit of the scattering of massive particles, see e.g.
ref. [27]. In particular, as studied a long time ago by Amati, Ciafaloni and Veneziano [28],
one can employ the eikonal phase to extract classical deflection angles in gravity through
differentiation. More recently, this approach has received a renewed interest [29–46]. An-
other route to the problem was taken in ref. [47], where the Kosower-Maybee-O’Connell
(KMOC) formalism [48–50] for classical observables was generalized to describe the classi-
cal limit of massless particles. In one of the applications of ref. [47], the geometric-optics
regime was used to extract the deflection angle from scattering amplitudes, since it is in
this limit in which the amplitude can be related to a beam of light through the precise
definition of the classical observable. As we shall see, our WQFT construction requires this
exact regime to extract the deflection angle through the eikonal phase.

In this paper, we construct the appropriate WQFT to deal with photons with a first
goal of realizing the equivalence between the scattering of a photon and a massive scalar
with that of a massless and a massive scalar in the geometric-optics regime. The second
goal is a simplified approach to the calculation of the scattering angle. Unlike the case of a
matter particle propagating in a gravitational background, the dressed photon propagator
depends on a matrix-valued action and therefore the worldline path integral must include
a path ordering. The path ordering can be avoided by rewriting the path integral in terms
of auxiliary variables at the cost of introducing additional integrals. These variables are
inherently quantum — they describe the quantum polarization of the spin 1 particle —
but ultimately they do not play any role in our classical computation. This insight plays
a key role to show the aforementioned equivalence.

Once the dressed propagator is obtained and put on-shell, we can follow the WQFT
setup to derive its Feynman rules and compute the eikonal phase. The Feynman rules
that we find depend in general on the auxiliary variables. Building on the insights of

2The different approaches to describe this system and their relation with the eikonal phase is nicely
reviewed in ref. [19].
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ref. [47], we consider the geometric-optics regime, which leads to a great simplification of
the calculations. As we shall see, this regime implies the vanishing of terms proportional
to the spin-tensor and serves as a check of our setup. Then, the calculation of the eikonal
phase and derived quantities, such as the deflection angle and the impulse, dramatically
simplifies.

The rest of the paper is organized as follows: in section 2, we review the WQFT formal-
ism and introduce our conventions. In section 3, we derive the dressed photon propagator
required for the implementation of WQFT and define the eikonal phase. In section 4 we
compute the eikonal phase and deflection angles at LO and NLO. Our conclusions are
presented in section 5.

2 Review

2.1 The gravitationally dressed scalar propagator

In order to introduce our notation and conventions, let us consider first the case of a single
scalar massive particle of massm. We will use the mostly minus signature for the Minkowski
metric ηµν = diag(1,−1,−1,−1) and set the gravitational coupling to κ2 = 32πGN , where
GN is the Newton constant. The gravitational action is given by the usual Einstein-Hilbert
action

SEH = − 2
κ2

ˆ
d4x
√
−gR , (2.1)

whereas the action for the massive scalar field including a non-minimal coupling of the
scalar field to the background curvature is given by

Sm =
ˆ

d4x
√
−g

[
gµν∂µϕ

∗∂νϕ+ (ξR−m2)ϕ∗ϕ
]
. (2.2)

Here ξ is a free dimensionless coupling. Requiring Weyl invariance in the massless case
fixes this coupling to ξ = 1

6 (ξ = d−2
4(d−1) in arbitrary dimensions), but here we shall keep it

arbitrary. In order to relate scattering amplitudes and path integrals, we first rewrite the
scalar propagator in an external gravitational field in a proper time representation

iG(x, y; g) = 〈y| 1
Ĥ − iε

|x〉 = i
ˆ ∞

0
dT 〈y|e−iT (Ĥ−iε)|x〉 , (2.3)

where T is the Fock-Schwinger proper time. The Hamiltonian operator Ĥ corresponds to
the Klein-Gordon operator fixed by the action (2.2) and is given by

Ĥ = gµν∇µ∇ν +m2 − ξR = 1√
−g

∂µ
√
−ggµν∂ν +m2 − ξR . (2.4)

It can be viewed as arising from a classical particle Hamiltonian obtained by setting ∂µ →
−ipµ in the last expression, finding H = −gµνpµpν + m2 − ξR. The particle action in
hamiltonian form can be written as

Sp =
ˆ 1

0
dτ(pµẋµ − eH), (2.5)

– 3 –
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where e is the einbein that gauges translations on the worldline, leading to a reparametriza-
tion invariant description of the worldline. The einbein reproduces the effect of the proper
time T upon gauge fixing e(τ) = T . Then, rescaling the proper time τ to range in the
interval [0, T ], we obtain the particle action in configuration space

Sp =
ˆ T

0
dτ
[
−1

4gµν ẋ
µẋν −m2 + ξR

]
. (2.6)

In order to define a path integral free of spurious UV divergences and regularization
ambiguities, one must introduce auxiliary worldline ghost variables and a finite counterterm
to the worldline action (2.6). Let us mention that these issues are only related to the one-
dimensional worldline theory, and are not related to regularization of spacetime. The case
of UV divergences on the worldline can be addressed by defining the path integral measure
as follows

Dx := Dx
∏

0<τ<T

√
−g(x(τ)) = Dx

ˆ
DaDbDc exp

[
−i
ˆ T

0
dτ 1

4gµν(aµaν + bµcν)
]
, (2.7)

where the final form contains the standard translationally invariant measures, indicated by
the symbol D as opposed to the symbol D. The second equality exponentiates the determi-
nant factor and leads to standard perturbation theory on the worldline. As regularization
ambiguities play no role in the upcoming discussion, let us just mention that three options
to fix such ambiguities are known, and correspond to the time slicing (TS) regulariza-
tion, mode regularization (MR), and worldline dimensional regularization (DR) [51]. The
appropriate counterterms in these schemes can be written as follows

SCT =
ˆ T

0
dτ
(
−1

4R− VTS/MR/DR

)
, (2.8)

where the additional terms VTS/MR/DR are scheme dependent.3 The path integral in con-
figuration space associated with the propagator is finally given by (see figure 1).

G(x, y; g) =
ˆ ∞

0
dTe−im2T

ˆ x(T )=y

x(0)=x
Dx

ˆ
DaDbDc (2.9)

exp
{
−i
ˆ T

0
dτ
[1

4 (gµν ẋµẋν + aµaν + bµcν) +
(1

4 − ξ
)
R+ VTS/MR/DR

]}
.

It can be solved in perturbation theory with standard gaussian integration [53, 54]. In order
to apply this technique, we consider the splitting of the position variable into a straight
line and a quantum fluctuation qµ

xµ(τ) = bµ + vµτ + qµ(τ). (2.10)

At this point the dressed propagator represents a resummation of tree-level Feynman di-
agrams in which the straight line parameters bµ and uµ depend on boundary conditions

3They are given by VTS = −1/4 gµνΓβµαΓανβ , VMR = 1/12 gµνgαβgρσΓρµαΓσνβ , and VDR = 0. Counterterms
for supersymmetric versions of the nonlinear sigma model can be found in [52].

– 4 –
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Figure 1. Dressed propagator with external massive particles off-shell.

one wishes to impose, and the quantum-fluctuation variables acquire Dirichlet boundary
conditions (DBC), namely q(0) = q(T ) = 0. As we will review shortly, relating dressed
propagators and scattering amplitudes in the classical limit requires to appropriately ex-
press the boundary conditions carried by the parameters of the straight line in terms of
the physical parameters of the scattering.

2.2 Relation to scattering amplitudes

Consider the elastic scattering of two spinless massive particles of masses m1 and m2 in the
absence of matter loops. Each massive particle is described by his own dressed propagator,
which we can write as Gi(x, y; g), i = 1, 2 with obvious labeling of the worldline variables
and masses. The dressed propagators are connected but not amputated. In order to define
the S-matrix we must amputate the external legs and put them on-shell. In momentum
space the amputated on-shell dressed propagator reads

Gc(p, p′; g) := lim
p2,p′2→m2

i(p2 −m2) i(p′2 −m2)
ˆ

d4xd4y eip·x−ip′·yG(x, y; g) . (2.11)

The overall effect of putting the dressed propagator on-shell amounts to eliminate the
proper time integral in (2.9) and set the region of integration over τ in the action to
τ ∈ (−∞,+∞), as shown in ref. [1].

Let us now consider the weak field approximation gµν = ηµν + κhµν , and add to the
Einstein-Hilbert action the gauge-fixing term

Sgf =
ˆ

d4x (∂νhµν − 1/2∂µhνν)2 , (2.12)

which imposes a weighted version of the de Donder gauge ∂νhµν = 1/2∂µhνν . The full
action is then

Sg = SEH + Sgf . (2.13)

The on-shell version of the dressed propagators can then be used to relate the elastic
scattering amplitude in the absence of matter loops as follows

A(p1p2 → p′1p
′
2) = N

ˆ
Dgµν eiSgGc1(p1, p

′
1; g)Gc2(p1, p

′
2; g) , (2.14)

where N is a normalization factor. The classical limit on the right hand side is taken and
understood as the usual one in QFT, i.e., considering only graviton Born diagrams (see
figure 2). To avoid the proliferation of factors of 2π, we will adopt the short-hand notation

d̂nx := dnx
(2π)n , δ̂n(x) := (2π)nδn(x) . (2.15)

– 5 –
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Trees

(a) elastic

Trees

(b) inelastic

Figure 2. Diagrams resummed by the method. The blob represent trees including disconnected
ones.

We define the eikonal phase as in refs. [28, 55] by

eiχ := 1
4m1m2

ˆ
d̂dq δ̂(q · v1)δ̂(q · v2)eiq·bA(p1p2 → p′1p

′
2) , (2.16)

where b := b2 − b1 is the impact parameter and q := p′1 − p1 = p2 − p′2 is the momentum
exchange. The eikonal phase and the QFT S-matrix (in the classical limit) in the worldline
theory can be nicely related as [1]

ZWFT = eiχ, (2.17)

which links the free energy of the WQFT and the eikonal phase. The path integral repre-
sentation of the partition function can be written as

ZWFT := N
ˆ
Dhµν

ˆ 2∏
i=1

Dxi

ˆ 2∏
i=1

(DaiDbiDci) eiSg (2.18)

exp
[
−i

2∑
i=1

ˆ ∞
−∞

dτi
mi

2 gµν(ẋµi ẋ
ν
i + aµi a

ν
i + bµi c

ν
i )
]
,

where the normalization factor N ensures that ZWFT = 1 in the free theory. Expectation
values of operators O(h, {xi}) are obtained as

〈
O(h, {xi})

〉
WQFT = Z−1

WFT

ˆ
Dhµν

ˆ 2∏
i=1

Dxi

ˆ 2∏
i=1

(DaiDbiDci) eiSgO(h, {xi}) (2.19)

exp
[
−i

2∑
i=1

ˆ ∞
−∞

dτi
mi

2 gµν(ẋµi ẋ
ν
i + aµi a

ν
i + bµi c

ν
i )
]
.

2.3 Worldline Feynman rules

The path integral can be solved perturbatively using worldline Feynman rules which keep
track of the expansion in power of the coupling κ and take care of the Wick contractions
between fields and the quantum fluctuations qi. The role of the auxiliary ghost variables
ai, bi, ci is to cancel divergences which are of quantum nature. Since we are not interested
in those corrections, it is enough to summarize the Feynman rules associated with the
fields hµν and the deflections qµ(τ). In order to make contact more naturally with on-
shell scattering amplitudes, we scale the worldline parameters of the particle action as
τi → σi/mi such that the background split in configuration space reads

xµi (σi) = bµi + pµi σi + qµi (σi) , (2.20)

– 6 –
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where pµi = miv
µ
i . The Fourier transforms to momentum space and energy space4 for

hµν(x) and qµ(σ), respectively are defined by

hµν(x) =
ˆ

d̂4` e−i`·xhµν(`), qµ(σ) =
ˆ

d̂ω e−iωσqµ(ω). (2.21)

Let Pµνρσ := (ηµ(ρην)σ − 1
2ηµνηρσ), where the parenthesis of Lorentz indices denotes

symmetrization with unit weight, e.g. v(µ
1 v

ν)
2 = 1

2(vµ1 vν2 +vν1v
µ
2 ). The propagators then read

qµ qν
ω

= −iη
µν

2

( 1
(ω + iε)2 + 1

(ω − iε)2

)
, hµν hρσ = i Pµνρσ

k2 + iε ,

(2.22)

i.e., we use time-symmetric propagator for worldlines and Feynman propagators for gravi-
tons. The choice of iε prescription determines the precise interpretation of the background
parameters. Let us briefly summarize the findings of ref. [1] (see also ref. [16]). With
retarded (advanced) propagators the background parameters bµ, vµ are associated with
their undeflected trajectories when τ → −∞ (τ → +∞). The time-symmetric prescription
averages between these options

vµ = 1
2
(
vµ−∞ + vµ+∞

)
+O(G2

N ), bµ = 1
2
(
bµ−∞ + bµ+∞

)
+O(G2

N ), (2.23)

which are the background parameters we will use in our calculations of scattering angles
from the eikonal phase. Therefore, the relation of the momenta of massive particles pµi =
mivi is associated with the average four velocities. At the maximum order we consider
(2PM) in this paper, the difference between the far past or future background parameters
are of order O(GN ) and it follows that bµ±∞ = bµ + O(GN ). Therefore it will be not
necessary to distinguish between |b−∞| and |b|. The interactions are then described by
the rules

hµν

k = −iκ2 e
ik·bδ̂(k · p)pµpν , (2.24)

qρ(ω)
ω

hµν

k = κ

2 e
ik·bδ̂(k · p+ ω)

(
2ωp(µδν)

ρ + pµpνkρ
)
. (2.25)

Additional Feynman rules with more fluctuations along the worldline arise from higher
order terms of the perturbative expansion. They are required for the calculation of the
impulse and radiation. The interested reader can check ref. [1].

4Given the rescaling we performed in the worldline action, the worldline parameter [σ] ∼ L2 then implies
that [ω] ∼ L−2 to keep dimensionless the plane wave exponential in Fourier transforms.
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3 Photons and WQFT

Our goal is to derive the partition function that describes scattering of photons and massive
scalar/spinning particles in a gravitational background. To achieve this goal, we derive the
photon propagator dressed by gravitons and its worldline path integral representation.
Then, we can use this expression to express the amplitude in terms of path integrals as in
eq. (2.14) where one of the dressed propagators is associated with a photon.

3.1 Derivation of the gravitationally dressed photon propagator

Let us now add to the Einstein-Hilbert action, the action of Maxwell theory minimally
coupled to gravity

Sγ = −1
4

ˆ
d4x
√
−g gµαgνβFµνFαβ . (3.1)

Its gauge symmetry, δAµ(x) = ∂µα(x), δgµν(x) = 0, can be covariantly gauge-fixed using
standard BRST methods. The procedure is as follows. One replaces the gauge parameter
α(x) by the anticommuting ghost c(x), and from the gauge algebra obtains the anticommut-
ing BRST variation s (the so-called Slavnov variation). It is required to be nilpotent, and
is then extended to the non-minimal fields needed for gauge fixing, the antighost c̄(x) and
auxiliary B(x), which are Graßmann odd and even, respectively. The BRST symmetry is

sAµ = ∂µc , sc = 0 , sc̄ = B , sB = 0, (3.2)

and can be easily verified to be nilpotent (s2 = 0). It is used to obtain the gauge-fixed
total action by adding to the lagrangian contained in (3.1) the manifestly BRST invariant
term sΨξ, where Ψξ =

√
−g c̄

(
∇µAµ + ξ

2B
)
is the gauge fermion chosen to produce a Rξ

gauge in curved space. The fields c, c̄ and B are all taken to be scalars under change of
coordinates, so to keep covariance manifest. One finds

sΨξ =
√
−g

(
B∇µAµ + ξ

2B
2 − c̄∇µ∂µc

)
∼
√
−g

(
− 1

2ξ (∇µAµ)2 − c̄∇µ∂µc
)
, (3.3)

where in the last step the auxiliary field B has been eliminated by its own algebraic
equations of motion. We choose the value ξ = 1, that implements the Feynman gauge.
The total gauge-fixed BRST invariant action, Stot = Sγ +

´
d4x sΨξ, contains a ghost

action that we disregard (at tree-level ghosts do not contribute) and terms that identify
the photon propagator reads

Sγ, gf =
ˆ

d4x
√
−g

[
−1

4FµνF
µν − 1

2(∇µAµ)2
]

=
ˆ

d4x
√
−g

[1
2A

µĤµ
νAν

]
, (3.4)

where the second form is obtained by performing partial integrations. It produces the
second order differential operator

Ĥµ
ν = δµ

ν∇2 −Rµν , (3.5)

whose inverse gives the photon propagator in a curved background, i.e. the dressed propaga-
tor of our interest. The operator Ĥµ

ν may be interpreted as a first-quantized Hamiltonian.

– 8 –
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For that purpose, we find it convenient to use flat indices by introducing a vielbein eaµ(x),
so the metric is given by gµν(x) = ηabe

a
µ(x)ebν(x). This allows to present the Hamiltonian as

Ĥa
b = δa

b∇2 −Rab, (3.6)

where the covariant derivative contains also the spin connection ωµa
b(x), as it acts on

vectors Aa(x) = eµa(x)Aµ(x) with flat indices, so the covariant derivative is ∇µAa = ∂µAa+
ωµa

bAb. On a more general Lorentz tensor, the covariant derivative takes the form ∇µ =
∂µ − i

2ωµ
abSab, with Sab the Lorentz generators in the representation of the tensor.

Then, as in section 2.1, we find that the Hamiltonian (3.6) can be reproduced by
quantization of a relativistic particle now with matrix-valued action given by

(Sp[x; g])ab =
ˆ 1

0
dτ
(
− 1

4T gµν ẋ
µẋνδa

b − 1
2 ẋ

µωcdµ (Scd)ab + TRa
b − 1

4TRδa
b
)
, (3.7)

which contains the Lorentz generator in the spin-1 representation

(Scd)a b = i
(
ηcaδd

b − ηdaδc b
)
. (3.8)

We have already gauge-fixed the einbein e(τ), required to have a reparametrization invari-
ant description of the worldline, to the Fock-Schwinger proper time T , used in heat kernel
methods to exponentiate the inverse of a differential operator as in (2.3). The last term in
the action is the counter-term for regularization (DR) of the path integral, that we have
already anticipated. It is the same one that appears in the scalar particle case, see eq. (2.8).

The particle action leads to a quantum mechanical transition amplitude, represented
by the following worldline path integral

Da
b(x0, y0; g) =

ˆ ∞
0

dT 〈y0, a|e−iTĤ |x0, b〉 =
ˆ ∞

0
dT
ˆ x(1)=y0

x(0)=x0

DxT
(
eiSp[x;g]

)
a

b, (3.9)

where T denotes path ordering. It furnishes a representation of the photon propagator
in a graviton background. The path ordering prescription in the path integral generates
the correct gauge transformation of the quantum mechanical transition amplitude, which
behaves as a bi-tensor under the local Lorentz gauge group that acts of the flat indices (see
ref. [56] for more details on this worldline model and the counterterm).

For perturbative calculations, we find it useful to introduce auxiliary bosonic variables
Qa and Q̄a, that allow to treat dynamically the spin degrees of freedom of the photon
while encoding simultaneously the time-ordering prescription.5 The quantization of these
variables produces an enlarged Hilbert space, which must be reduced to the appropriate one
corresponding to the spin of the photon by a projection mechanism. The latter is achieved
by coupling the new variables to a U(1) worldline gauge field, with an additional Chern-
Simons coupling set to achieve projection precisely onto the required Hilbert subspace. At
the end, the gauge fixing of the additional U(1) gauge field leaves just an integration over
an angle φ, a modulus that describes gauge invariant configurations. In the following, we

5The same construction can be done using fermionic variables as well.
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use the variable z = eiφ, and the modular integration is obtained by integrating z over the
unit circle of the complex plane. This construction has been exemplified in [57–59] and [4]
for worldlines with the topologies of a loop and an interval, respectively (see also [60] for
a pedagogical description in the case of the bi-adjoint particle). Eventually, the net effect
of introducing the auxiliary variables Qa and Q̄a with their U(1) coupling is to bring the
dressed propagator of the photon into the form

D(x0, y0, u, ū; g) =
˛ dz

2πi
ezū·u

z2

ˆ ∞
0

dT
ˆ x(1)=y0

x(0)=x0

Dx
ˆ λ̄(1)=0

λ(0)=0
DλDλ̄ eiS , (3.10)

where the auxiliary variables have been decomposed as

Q̄a(τ) = zūa + λ̄a(τ), Qa(τ) = ua + λa(τ) (3.11)

with λa and λ̄a denoting the quantum fluctuations, and with the remaining classical parts
ua and ūa describing the initial and final polarization of the photon depending on the
modulus z as indicated. It requires a worldline action that now reads

S =
ˆ 1

0
dτ
(
− 1

4T gµν ẋ
µẋν + iλ̄aλ̇a −

1
2 ẋ

µωcdµ (Scd)a bQ̄aQb + TRa
bQ̄aQb −

3
4TR

)
. (3.12)

The splitting of the auxliliary variables into background and fluctuations is analogous to
the splitting of the path xµ(τ) into a classical part plus quantum fluctuations satisfying
Dirichlet boundary conditions performed earlier. Note that in ref. [61] this precise worldline
model (but with fermionic auxiliary variables and treated only on a loop) appears as the
one corresponding to the ghost sector of gravity covariantly quantized.

3.1.1 Examples

The relation between the dressed propagator and the on-shell amplitude given in section 2.2
is not the only way to obtain scattering data from the dressed propagator. Arguably the
simplest way to obtain scattering data is to consider the LSZ procedure already at the level
of the dressed propagator which leads to tree-level Feynman diagrams. After applying the
LSZ procedure, the dressed propagator in eq. (2.9) leads to the sum of Feynman diagrams
whose topology corresponds to gravitons attached to the matter line as depicted in figure 1.
Similarly, the simplest cases of the dressed photon propagator are those where there is no
graviton attached to the photon line and the case where a single graviton is attached to
the photon line, or in other words the free photon propagator and the 3-point vertex,
respectively. It is instructive to consider these cases separately to see the role of the
auxiliary variables and the counterterms in the action (3.12) before going to the semi-
classical matching.

Free photon propagator. The free photon propagator is obtained by switching off the
interactions in (3.12) and setting gµν = ηµν . Then, the worldline action reduces to

Sfree =
ˆ 1

0
dτ
(
− 1

4T ηµν (ẋµẋν + aµaν + bµcν) + iλ̄aλ̇a
)
. (3.13)
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Expanding the coordinates as x = x0 +(y0−x0)τ+q(τ), the free path integral on quantum
fluctuations produces the measure (4πT )−2, while the classical trajectory has the simple
action Scl = −(x0 − y0)2/4T , and we are left with

D(x0, y0, u, ū; g) =
˛ dz

2πi
ezu·ū

z2

ˆ ∞
0

dT
(4πT )2 e−i (x0−y0)2

4T = ūµ∆µν(x0 − y0)uν , (3.14)

which leads to the causal photon propagator in Feynman gauge once stripping off the
auxiliary variables, i.e.,

∆µν(x− y) = ηµν

ˆ ∞
0

dT
(4πT )2 e−i (x−y)2

4T =
ˆ

d̂4p
iηµν
p2 eip·(x−y). (3.15)

Photon-photon-graviton vertex. Let us now consider the more interesting case of a
single graviton. In this case, we have to take into account quantum fluctuations, which we
implement by performing a background expansion of the metric tensor and the configura-
tion space variables as

gµν(x(τ)) = ηµν + κεµν(`)ei`·x(τ), xµ(τ) = xµ0 + (y0 − x0)µτ + qµ(τ) (3.16)

with the quantum fluctuations qµ(τ) acquiring DBC, i.e. qµ(0) = qµ(1) = 0. Notice that we
have Fourier expanded the graviton field as a unique plane wave to insert just one graviton
in a photon line with momentum `. The contributions to the three-point amplitude arise
from the interactions which we organize as follows:

Skin :=
ˆ 1

0
dτ
(
− 1

4T hµν(x) (ẋµẋν + aµaν + bµcν)
)
, (3.17)

Sspin :=− 1
2

ˆ 1

0
dτ ẋµωcdµ (Scd)a bQ̄aQb, (3.18)

SRic := T

ˆ 1

0
dτRa bQ̄aQb, (3.19)

Sct :=− 3
4T
ˆ 1

0
dτR. (3.20)

Except for Skin the remaining interactions have to be background-field expanded up to
O(κ) in order to give contributions to the three-point amplitude. Next, we rewrite the
dressed propagator in momentum space introducing the external momenta of the photons
p1, p2, so that

D̃(p1, p2, u, ū) =
ˆ

ddx0ddy0 e
ip1·x0e−ip2·y0D(x0, y0, u, ū; g)

= δ̂ (p1 − p2 + `)
˛ dz

2πi
ezu·ū

z2

ˆ ∞
0

dT
(4πT )

d
2
e−

iξ2
4T

ˆ
ddξ e−iξ·p2

〈
ei(Skin+Sspin+SRic+Sct)

〉
,

(3.21)
where the expectation value evaluated on the free theory, i.e., w.r.t. the action (3.13).
In the second equality we have performed the change of variables 2x+ = y0 + x0, ξ =
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y0− x0 to factor out the momentum conservation delta function. We can now perform the
perturbative expansion of the path integral.6 After evaluating all the contributions from
each term we strip-off the auxiliary variables as in the free photon propagator example
and amputate the external legs (see also ref. [4] for a similar treatment in the case of
Yang-Mills).

We list here the final results of the on-shell procedure for each contribution from the
perturbative expansion. For the kinetic term (including the regulating ghost interaction)
and the spin connection vertex, we obtain

Aαβkin = − iκ
4 (p1 + p2)µ (p1 + p2)ν εµν(`) ηαβ , Aαβspin = iκ

2
(
pβ1η

α(µp
ν)
2 + pα2 η

β(µp
ν)
1

)
εµν(`),
(3.22)

respectively. The Ricci tensor vertex contribution reads

AαβRic = iκ
2
[
− ηµν

(
pβ1p

α
2 + s12η

αβ)+ 2ηαβp(µ
1 p

ν)
2

+ pβ1η
α(µp

ν)
2 + pα2 η

β(µp
ν)
1 − s12η

α(µην)β
]
εµν(`),

(3.23)

where s12 = 2p1 · p2. Finally, the counter-term vertex generates

Aαβct = 3iκ
4
(
s12η

µνηαβ − 2ηαβp(µ
1 p

ν)
2

)
εµν(`). (3.24)

In all of these contributions the free indices contract the external photon polarization
vectors. In this way, adding the above terms we obtain the three point vertex

1α

3µν

2β

= iκ
2

(1
2s12η

αβηµν − s12η
α(µην)β − 2ηαβp(µ

1 p
ν)
2

+ 2pβ1p
(µ
2 η

ν)α + 2pα2 p
(µ
1 η

ν)β − ηµνpβ1p
α
2

)
,

(3.25)

where the momentum conservation delta function has been stripped off. Higher point
examples follow a similar procedure but with a more involved structure. However it is
obvious already that the dressed propagator contains much more information than required
in the classical limit. Moreover, it raises the question of what is the role, if any, of the
auxiliary variables in the classical limit. Remember that they were introduced only to keep
track of time-ordering which is requirement forced upon us by the quantization via path
integrals. The key element to answer this question is the matching between the scattering
amplitude and a pair of dressed propagators which we discuss next.

3.2 From dressed propagators to amplitudes

Following ref. [11] the semi-classical amplitude, i.e., the scattering amplitude with no
diagrams with intermediate scalar loops, can be obtained as follows. Let us consider the

6In order to perform such a task one need to use the DBC propagator ∆(τ, σ) = (τ − 1)σθ(τ −σ) + (σ−
1)τθ(σ − τ) alongside with the two point function of the auxiliary variables 〈λa(τ)λ̄b(σ)〉 = δa

bθ(τ − σ)
with θ(0) = 1/2.
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correlator

〈Ω|TAµ(x1)Aν(x2)ϕ(x′1)ϕ†(x′2)|Ω〉 = N−1
ˆ
DgDADϕDϕ∗eiSAµ(x1)Aν(x2)ϕ(x′1)ϕ∗(x′2),

(3.26)
where N is some normalization constant and S = Sg + Sm. Remember that the semi-
classical contributions to the scattering amplitude are obtained by disregarding diagrams
with scalar and graviton loops (including graviton-photon loops), which is the usual ~
power counting in path integrals. In this way, the integration over the scalar and the gauge
fields generates the dressed propagators, namely

〈Ω|TAµ(x1)Aν(x2)ϕ(x′1)ϕ†(x′2)|Ω〉 = Ñ−1
ˆ
Dg eiSgDµν [x1, x2; g]G[x′1, x′2; g]. (3.27)

In order to define the S-matrix we need the on-shell amputated propagator, which is
constructed by the same prescription as in the scalar case, i.e.,

Dc(p, p′, u, ū; g) := lim
p2,p′2→0

(ip2 ip′2)
ˆ

d4x0d4y0 e
ip·x0−ip′·y0D(x0, y0, u, ū; g). (3.28)

The overall effect of this procedure can then again be obtained by the prescription of
replacing integration region for τ from (0, T ) to (−∞,∞) as in ref. [1]. The last step is to
introduce physical polarization vectors, which so far have been kept track thanks to the
auxiliary variables u and ū (see previous examples). This can be achieved by setting

uρūσ → ε∗ρ(p)εσ(p′), (3.29)

and therefore the scattering amplitude in the semi-classical limit can be written as

A (γϕ→ γϕ) = Ñ−1
ˆ ( 2∏

i=1
dxidx′i

)
e−ip1x1+ip2x2e−ip′1x′1+ip′2x′2

×
ˆ
Dg eiSEHε∗µ(p1)εν(p2)Dc

µ
ν [x1, x2; g]Gc[x′1, x′2; g]

(3.30)

where we have rewritten the dressed photon propagator in flat space-time using tetrad
fields and at this point we will not distinguish between indices.

The above formula does not give yet the contributions required to study classical light
bending since we still need to take consider the geometric optics regime. The reason is that
to obtain the classical limit of amplitudes with spin an expansion of polarization vectors in
powers of ~ is still required [49]. The relation (3.30) integrates out loops but does not pro-
duce an expansion of the polarization vectors which only appear after applying (3.29). The
geometric optics regime corresponds to the situation in which we may simply replace εν(p2)
by εν(p1), i.e., where the polarizations remain the same after the scattering event [47]. It
is well-known that in this regime, up to factors, the scattering amplitude thus obtained
is equivalent to the amplitude between one massless and one massive scalar, see e.g. [19].
Assuming this equivalence, one could build up the WQFT for a massless scalar and a mas-
sive one by taking the massless limit of one of the dressed propagators in (2.14) but this
is of no interest to us. Instead we are interested in starting from first principles building
up the dressed photon propagator and deriving such equivalence. In fact, this constitutes
a consistency check of our setup.

– 13 –
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3.3 Partition function and derivation of Feynman rules

Once the relation to on-shell scattering amplitudes has been made the WQFT formalism
instructs us to build up the following partition function

Z[u, ū] =
˛ dz

2πi
ezū·u

z2

ˆ
Dgµν

ˆ
Dx1

ˆ
Dx2

ˆ
Dλ

ˆ
Dλ̄ eiS , (3.31)

where the full action reads

S = Sg[g] + Sp1 [x1, λ, λ̄, z; g] + Sp2 [x2; g], (3.32)

and Sg was defined in eq. (2.13). After rescaling the worldline parameter as τ → σ/m we
write the scalar massive point particle action as

Sp2 [x2; g] = −
ˆ +∞

−∞
dσ 1

2gµν ẋ
µ
2 ẋ

ν
2 . (3.33)

Now the point particle action can be read off from the dressed propagator of the photon
in a gravitational background and gives

Sp1 [x1, λ̄, λ; g] = −
ˆ +∞

−∞
dσ
(1

2gµν ẋ
µ
1 ẋ

ν
1 − iλ̄ · λ̇+ 1

2 ẋ
µ
1ω

cd
µ (Scd)a bQ̄aQb

)
. (3.34)

We have also rescaled the worldline parameter of the photon action

τ = σ

E
(3.35)

introducing a parameter E with dimension of energy, whose physical meaning will become
clear later on. For the photon worldline, we have neglected the Ra b vertex both with the
counter-terms since they are sub-leading in the classical limit (see example below). Notice
here that the integration regions are now from σ ∈ (−∞,+∞) in agreement with the
procedure to set dressed propagators on-shell. The partition function can now be solved
perturbatively by performing wick contractions. This task can be implemented by deriving
worldline Feynman rules which take care of the perturbative expansion.

Finally, we need to integrate over the modulus z and consider the geometric optics
regime. This regime can be applied in a similar way we did in the amplitude case using
eq. (3.29) but we find more convenient to consider it directly from the partition function
by defining

Zgeom-opt := −Z(u, ū)
∣∣∣
ū→u

, (3.36)

where the minus sign is due u · ū = −1, which is consistent with our metric signature. This
definition incorporates the geometric optics limit by disregarding terms of O(~) coming
from polarization vectors as discussed at the end of last section. In addition, without loss
of generality, we have chose a basis of real polarization vectors since in that limit any choice
leads to the same result.
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The Feynman rules to keep track of the perturbative expansion and obtain the partition
function are now easy to derive. First, performing a background expansion of the tetrads
and the spin connection alongside the metric tensor we have

eaµ = ηaµ + κ

2h
a
µ −

κ2

8 hµαh
αa +O(κ3), (3.37)

ωµ
ab = −κ∂[ahb]µ −

κ2

2 h
ν[a
(
∂b]hµν − ∂νhb]µ + 1

2∂µh
b]
ν

)
+O(κ3), (3.38)

which can be inserted in the action in (3.34) alongside with the background expansion of
the configuration space variables

xµ(σ) = bµ + pµσ + qµ(σ) (3.39)

and auxiliary variables as in eq. (3.11). Notice that the momentum pµ is massless for the
case of the photon. The Fourier transform of the fluctuations of the auxiliary variable are
given by

λa(σ) =
ˆ

d̂ω e−iωσλa(ω), λ̄a(σ) =
ˆ

d̂ω eiωσλ̄a(ω). (3.40)

Finally, Fourier expanding the graviton field as

hµν(b+ pτ + q) =
∞∑
n=0

(−i)n

n!

ˆ
d̂4` e−i `·(b+pτ) (q(τ) · `)n εµν(`) (3.41)

and plugging the above expansion in the action, we can obtain the Feynman rules associated
with the photon worldline. From now on we will not distinguish between curved and tangent
indices.

The 2-point functions associated with the fluctuations lead to the photon worldline
propagator

qµ qν
ω

= −iη
µν

2

( 1
(ω + iε)2 + 1

(ω − iε)2

)
, (3.42)

where, as in the case of the massive worldline, we use time-symmetric propagators. The
Feynman rules associated with the photon worldline interactions read

hµν

k = iκ
2 e

ik·bδ̂(k · p)
(
−pµpν + izkαp(νηµ)β(Sαβ)ρ σūρuσ

)
, (3.43)

qρ(ω)

hµν

k = κ

2 e
ik·bδ̂ (k · p+ ω)

[(
pµpνkρ + 2ωp(µδν)

ρ

)
(3.44)

−izkα
(
ηβ(µ(pν)kρ + ωδν)

ρ )
)

(Sαβ)λ δūλuδ
]
,

where the solid photon line represents a fluctuation of the worldline photon line. At this
order we also have vertices related to the fluctuations of auxiliary variables which we obtain
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by expanding the spin connection vertex in (3.34) as well, leading to

hµν

k

λσ(ω)
= −κ2 e

ik·bδ̂(ω + k · p)z kαp(νηµ)β(Sαβ)ρ σūρ, (3.45)

hµν

k

λ̄ρ(ω)
= −κ2 e

ik·bδ̂(k · p− ω)kαp(νηµ)β(Sαβ)ρ σuσ, (3.46)

where the arrow distinguishes between λ̄a and λa which scale differently with z. Other
rules can be easily derived, e.g., the rule for a 2-fluctuation reads

qρ(ω1)

qσ(ω2)

hµν

k

= iκ
2 e

ik·bδ̂ (k · p+ ω1 + ω2)
[1

2p
µpνkρkσ + ω1kσp

(µδν)
ρ + ω2kρp

(µδν)
σ

+ω1ω2δ
(µ
ρ δ

ν)
σ −

i
2zk

α(Sαβ)λ δūλuδ
(
p(µην)βkρkσ + ω1η

β(νδµ)
ρ kσ

)]
.

(3.47)
At the order we are interested we have computed all the required Feynman rules associated
with the photon worldline. In addition to the rules associated with the scalar worldline in
section 2 this is all we need to compute the eikonal phase.

3.4 Definition of the eikonal phase and deflection angle

Let us move on with the definition of the eikonal phase in the geometric optics regime.
The eikonal phase is related to the partition function as

Zgeom-opt = eiχ, (3.48)

and hence by the usual definition of the eikonal phase

eiχ := 1
4mE

ˆ
d̂4q δ̂(q · v1)δ̂(q · v2)eiq·bA(φγ → φγ), (3.49)

we can relate the scattering amplitude to the free energy of the WQFT in the geometric
optics regime. Here E is the energy of the photon. The rescaling we introduced in eq. (3.35)
then makes the job of obtaining the eikonal phase directly in terms of momenta. We write

iχ = i(χ1 + χ2 + . . . ), (3.50)

where χi is of order O(κ2i). Following [24] we define the deflection angle in the small angle
approximation at each order in perturbation theory by

θi = − 1
E

∂χi
∂|b|

. (3.51)
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3.4.1 Example

In order to illustrate our methods let us give a simple example. The three-point amplitude
M(γγh) is formally vanishing in the optical regime so let us consider its off-shell version
Mµν(γγh) instead. Consider the 3-point vertex of (3.25) and suppose we are interested
in the limit where the graviton is soft. Let pµ2 = pµ1 + ~q̄µ where q̄ is interpreted in the
classical limit as a wave-number related to the graviton. The polarization vector thus
satisfies εµ(p2) = εµ(p1) + O(~). We also parameterize the incoming photon momentum
as p1 = Evµ = (E, 0, 0, E) where E is the energy of the photon. Then, up to terms
proportional of ~, we obtain

Mµν(p1, p2) = iκ pµ1pν1 +O(~) = iκE2vµvν +O(~), (3.52)

where we have used the on-shell condition on the momenta p1 and p2 and the transversality
of the photon polarization vectors.

The equivalent object in WQFT is obtained from the LO Feynman rule (3.43). The
partition function then simply reads

Z(z, u, ū) = − iκ
2

ˆ
d̂4q eiq·bδ̂(q · p) [pµpν + 2zpν(q · ū uµ − ūµ q · u)] . (3.53)

Clearly, in order to match this expression with the previous it must be that the extra terms
must vanish. To see that this is the case let us consider the integration of the kernel over
z. Exchanging the integration orders and using the identity

1
2πi

˛
dz e

zū·u

zk+1 =


(u·ū)k
k! , k ≥ 0,

0, otherwise,
(3.54)

we obtain

Z(z, u, ū) = − iκ
2 uρūσ

ˆ
d̂4q eiq·bδ̂(q · p)pµ

[
pνηρσ − 2iqλ(Sλν)ρσ

]
. (3.55)

Notice that the dependence on (ū, u) on the first term appears due to this identity. Fur-
thermore, using the anti-symmetry of (Sλν) σ

ρ yields to the following relation

Zµνgeom-opt =
ˆ

d̂4q eiq·b δ̂(q · p)
(
− iκ

2 p
µpν

)
, (3.56)

where we stripped off the graviton polarization vector. Therefore, up to an irrelevant sign,
we see that in the geometric optics regime the leading order Feynman rule matches the
classical limit computed in eq. (3.52) as expected.

3.5 Massless limit vs photon worldline in WQFT

On general grounds we expect that the contributions related to the spin-terms should not
contribute in the geometric optics regime since assuming the equivalence principle one
may replace the photon worldline by the worldline of a massless scalar. We had a taste
of this in the calculation of the lowest order partition function (3.56). For the general
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Figure 3. Dressed propagator with external photon lines on-shell.

case let us consider the diagram shown in figure 3 which appears as a sub-topology of our
worldline diagrams. Let K denote the mathematical expression of this diagram and let
ki be the momenta associated with each graviton line which we will consider as outgoing.
The momentum of the photon worldline is labeled by pµ.

This diagram is still to be integrated over z and hence the identity (3.54) implies
that after integration all terms proportional to zi vanish for i > 1. The same identity
produces the factor u · ū, which gives a non-vanishing contribution associated with the
term independent of z. In other words only the terms independent of z and proportional
to z contribute. Now let us rewrite the Feynman rule of a single vertex in the form

V µ1ν1
i (p, ki) := iκ

2 e
−iki·p(−pµipνi + zBµiνi

i ), (3.57)

where
Bµiνi
i := ikαi p(νiηµi)β(Sαβ)ρ σūρuσ.

From the Feynman rules and on the support of the Dirac delta functions this diagram can
be organized as follows

Kµ1···µnν1...νn = in

2nκ
n

(
n∏
i=1

δ̂(ki · p)eiki·b
)
Kµ1···µnν1···νn , (3.58)

where the only non-vanishing contributions are proportional to z due to (3.54). Hence

Kµ1ν1···µnνn = (−1)npµ1pν1 · · · pµnpνn − z
n∑
i=1

pµ1pν1 · · · p̂µipνi · · · pµ1pν1Bµiνi
i , (3.59)

where the hat means that the factor should be excluded. Since the coefficient Bµiνi
i de-

pends on a single factor of the spin tensor we can use the anti-symmetry of (Sλν) σ
ρ and

that ū → u thus concluding that all terms proportional to z vanish the geometric optics
regime as expected.7 The same exercise can be done in the case where fluctuations on the
photon worldlines or auxiliary variables are considered obtaining the same result. A simple
realization of this will be shown explicitly in the next section. Let us conclude by stressing
that it is only the combination of the geometric optics regime and the identity (3.54) that
makes these terms vanishing. This provides an alternative path to show the equivalence
between the massless limit of scattering amplitudes involving two massive particles and the

7For complex polarization vectors a similar proof can be devised.
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amplitudes of photons and a single massive particle in the classical limit, which in WQFT
can be understood as disregarding the spin tensor.

Classical deviations from the geometric-optics regime — known as the gravitational
spin Hall effect8 — have been studied from first principles in ref. [63] for the case of
propagation of light and ref. [64] for propagation of gravitational waves.

4 Calculation of deflection angles

The WQFT setup is now complete so we are ready to apply it to perturbative calculations
of the deflection angle based on the eikonal phase. An example of the calculation of the
momentum impulse is shown in appendix A for the interested reader. In section 3, we
have considered only the case of a spinless massive particle but it is easy to generalize it to
the case of spin. The treatment of classical spinning massive particles in WQFT has been
discussed at length in ref. [17] so we will build on these results. For the spinning case we
will conform ourselves with a LO calculation up to quadratic order in spin.

We will use the result of section 3.5 which implies that the spin tensor plays no role
in our computations. Therefore the integration over the modulus z is trivial (see example
in section (3.4.1)) and produces the contraction of the auxiliary variables ū ·u = −1 in the
geometric optics regime. For calculations we will parametrize the momenta of the particles
as p1 = Ev1 and p2 = mv2, where v2

1 = 0 and v2
2 = 1. It will also be useful to choose the

rest frame of the massive particle such that v1 = (1, 0, 0, 1) and v2 = (1, 0, 0, 0). Finally,
recalling that bµ is space-like we define |b| ≡

√
−b2.

4.1 The spinless case

Let us now move to the evaluation of the eikonal phase and the deflection angle in the
spinless case. At LO there is a single diagram contributing to the eikonal phase while at
NLO there are four diagrams that have the correct power counting. The latter are shown
in figure 4.

4.1.1 Leading order

At this order the Feynman rules give a single diagram, and from our definition of the
eikonal phase in section 3.4, the LO eikonal phase reads

iχ1 = q = −iκ2 (p1 · p2)2

4

ˆ
d̂4q δ̂(q · p1)δ̂(q · p2)e

iq·b

q2 . (4.1)

To regulate the divergent integral in this expression we find convenient to use a cut-off
regulator. The regulated integral then reads

I =
ˆ

d̂4q
δ̂(q · p1)δ̂(q · p2)

q2 eiq·b = 1
4πp1 · p2

log
(
|b|2

L2

)
. (4.2)

8See ref. [62] for a review and references therein.
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k − qk

q

(a)

q

k k − q

(b)

k k − q

(c)

k k − q

(d)

Figure 4. NLO diagrams.

To obtain this result we have set up a differential equation for I such that the derivative
produces a finite expression following similar steps as in ref. [50] with minor changes related
to the parametrization of momenta. Remember that in d = 4 we set p1 = E(1, 0, 0, 1) and
p2 = m(1, 0, 0, 0). Therefore we obtain

χ1 = −2GN (p1 · p2) log
(
|b|2

L2

)
, (4.3)

where we have used κ2 = 32πGN . Finally, using the rest frame of the massive particle
we have

θ1 = − 1
E

∂χ1
∂|b|

= 4GNm
|b|

, (4.4)

which matches the result from general relativity.

4.1.2 NLO

Moving on with the NLO calculation, let us start with the diagrams involving the 3-graviton
vertex.9

Diagram (a). This diagram vanishes identically. In order to see this first notice that
this diagram contains as a subtopology the diagram in figure 3. Therefore, from eq. (3.58)
the integrand of this subtopology is proportional to

δ̂(p1 · q)δ̂(p1 · k)pµ1
1 pµ2

1 pν1
1 p

ν2
1 . (4.5)

Upon using the 3-graviton vertex Feynman rule and p2
1 = 0, we obtain identically zero

due to the Dirac-delta constraints. This result is independent of the other subtopology
containing the matter worldline.

9We use the conventions of ref. [65]. See also ref. [66].
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Diagram (b). This diagrams evaluates to

q

k k − q
= −iκ

4m2

32

ˆ
d̂4q δ̂(q · p1)δ̂(q · p2)e

iq·b

q2

ˆ
d̂4k δ̂(k · p2)N1(q, k, p1)

k2(k − q)2 ,

(4.6)
where N1(q, k, p1) = (p1 · p2)2(k2 + (k− q)2) +m2(k · p1)2. The terms multiplying (p1 · p2)2

lead to tadpole integrals which are vanishing. Using our parametrization of momenta let
us focus on the integral

I1 =
ˆ

d̂4kδ̂(k · v2) (k · v1)2

k2(k − q)2 = vµ1 v
ν
1

ˆ
d̂4k δ̂(k · v2) kµkν

k2(k − q)2 . (4.7)

On the support of the Dirac-delta constraints δ̂(q · v1)δ̂(q · v2) this integral can be reduced
by performing a simple Passarino-Veltman reduction leading to

I1 = vµ1 v
ν
1

8 (3qµqν + q2(v2µv2ν − ηµν))
ˆ

d̂4k
δ̂(k · v2)
k2(k − q)2 = q2σ2

8

ˆ
d̂4k

δ̂(k · v2)
k2(k − q)2 , (4.8)

where we have defined σ = v1 · v2 to write the result in a Lorentz invariant form. Then we
are left to calculate the integral

IB :=
ˆ

d̂4q δ̂(q · v1)δ̂(q · v2)eiq·b
ˆ

d̂4k
δ̂(k · v2)
k2(k − q)2 , (4.9)

which can be computed following ref. [27] adapted to our case. The result is

IB = 1
16π|b| . (4.10)

Let us now move on to diagrams with the topology of a box.

Diagram (c). This diagram evaluates to

k k − q = i(p1 · p2)4κ4

32

ˆ
d̂4q δ̂(q · p1)δ̂(q · p2)eib·q

ˆ
d̂4k

δ̂(k · p1)k · (k − q)
(k · p2)2k2(k − q)2 .

(4.11)
The integral reduction produces integrals with double poles on the same side of the complex
plane. Following ref. [67] these integrals vanish after closing the contour in the opposite
direction.10

10For time symmetric propagators one simple applies this argument twice for each iε prescription.
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hµ1µ1
1

q1

hµ2ν2
2

q2

Figure 5. Subtopology of diagram with photon fluctuation.

Diagram (d). Let us show that in this case the spin tensor does not contribute in the
geometric optics regime. For that consider a simpler version of the exercise in section 3.5 but
now including a single fluctuation as shown in figure 5. Focusing on the terms proportional
to z we find that the integrand is proportional to the tensor structures

iηµ1ν2pµ2
1 (S ν1

α )ρσuρūσqαi , ip1
µ1p1

ν1qi
ν2(S µ2

α )ρσuρūσqαi , i = 1, 2, (4.12)

which vanish in the geometric optics regime. The other contributions simplify to

k k − q = iκ
4(p1 · p2)2

32

ˆ
d̂4qδ̂(q · p1)δ̂(q · p2)eiq·b

ˆ
d̂4k

δ̂(k · p2)N2(q, k, p1)
(k · p1)2k2(k − q)2 ,

(4.13)

where N2 = (p1 · p2)2(k2 − k · q) + 2m2(k · p1)2. The integral reduction produces finite
integrals with double poles on the same side of the complex plane which we can set to zero.
Therefore the only surviving term is the one that cancels the double, which is proportional
to (4.9).

Therefore after adding up the contributing diagrams (b) and (d) the result of the
eikonal phase reads

χ2 = κ4 15
256m(p1 · p2) 1

16π|b| , (4.14)

and using our parametrization of momenta the scattering angle reads

θ2 = − 1
E

∂χ2
∂|b|

= 15π
4
G2
Nm

2

|b|2
, (4.15)

in agreement with the massless limit of the scattering angle of two massive objects in which
one of the masses goes to zero.

4.2 Spinning massive particle

The case of a spinning massive particle can be treated along the same lines. The description
in ref. [17] is based on the inclusion of supersymmetry at the level of the worldline action.
The WQFT thus constructed is valid at quadratic order in spin. Here we conform ourselves
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with summarizing the LO Feynman rule for this case. Performing the same rescaling as in
the previous section we have the Feynman rule

hµν

k = −iκ2 e
ik·bδ̂(k · p)

(
pµpν + im(k · S)(µpν) − 1

2m
2(k · S)µ(k · S)ν

)
, (4.16)

where (k · S)µ := kνSνµ. Therefore at LO the eikonal phase is computed from a single
diagram obtaining

iχ1 = q = −iκ2 (p1 · p2)2

4

ˆ
d̂4q δ̂(q · p1)δ̂(q · p2)e

iq·b(1 +NS)
q2 ,

(4.17)
with the numerator NS is given by

NS = − im
p1 · p2

(p1 · S · q)−
m2

2(p1 · p2)2 (p1 · S · q)2 . (4.18)

Specializing the spin tensor defined in ref. [17] for the case at hand, let us parametrize it as

Sµν = 2s
|b|

(
b[µ(v1 − σv2)ν]

)
. (4.19)

Hence, after reintroducing the dimensionless velocities, we can rewrite the numerator as

NS = −isb · q
|b|
− s2 1

2|b|2 (b · q)2 . (4.20)

To complete the calculation we need to evaluate the following type of integrals

Iµ1µ2...µn :=
ˆ

d̂4q δ̂(q · v1)δ̂(q · v2)eiq·b q
µ1 · · · qµn
q2 . (4.21)

The simplest case Iµ1 can be computed from (4.2). For the case Iµ1µ2 we adapt the
procedure of ref. [49] to our case. Noting that the results must lie in the plane orthogonal
to the four velocities the integral Iµ1µ2 can be written as

Iµ1µ2 = c1b
µ1bµ2 + c2Πµ1µ2 , (4.22)

where Πµ1µ2 is a projector which explicitly reads

Πµ1µ2 = ηµ1µ2 + vµ1
1 vµ2

1 − v
µ1
2 vµ2

1 − v
µ1
1 vµ2

2 (4.23)

Therefore employing the traceless property of Iµ1µ2 and (4.2) we obtain

Iµ1µ2 = 1
πb4σ

(
bµ1bµ2 − 1

2b
2Πµ1µ2

)
. (4.24)
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After some algebra we compute

χ1 = κ2 p1 · p2
8π

(
−1

2 log
(
|b2|
L2

)
− s

|b|
+ s2

2|b|2

)
, (4.25)

which leads to the scattering angle

θ1 = 4
(

1
|b|
− s

|b|2
+ s2

|b|3

)
GNm, (4.26)

in agreement with the massless limit of the Kerr-result of ref. [17] (see also refs. [68, 69]).

5 Conclusions

We have extended the worldline quantum field theory formalism to classical observables to
the case of scattering of light off a massive particle. We have constructed in a worldline
representation the gravitationally dressed photon propagator. Then, following the WQFT
formalism, we have identified the partition function and derived the Feynman rules to
compute the eikonal phase and the deflection angle from it.

The dressed photon propagator is built from a matrix-valued particle action whose
path integral requires time ordering. To get rid of the latter, we have introduced auxiliary
variables that at the same time describe explicitly the spin degrees of freedom. They
play an important role at the quantum level to obtain the correct amplitudes as we have
seen in section 3.2. However, time ordering is a quantum requirement and hence the
geometric optics regime makes the terms related to the spin-tensor vanish, thus providing
an alternative realization of the equivalence between the amplitude of two massive particles
and that of a massive particle and a massless. This simplifies the calculation of the eikonal
phase dramatically and only two diagrams are required to calculate the NLO contribution.
We have computed the NLO scattering deflection angle for spinless and LO for spinning
particles, finding full agreement with the results by other methods. Our calculation is
compatible with the eikonal approach based on on-shell scattering amplitudes.

An alternative approach to construct a worldline representation of the photon propa-
gator would be to consider the N = 2 spinning particle, which has been used to describe
the quantum theory of spin 1 and differential forms in refs. [57, 58, 70, 71]. Indeed, in
ref. [17] this model has been used to describe spinning black holes. However, the approach
we have used here is closer to the standard QFT setup. It would be interesting to compare
against the massless limit of the purely worldline approach of ref. [17] based on the N = 2
spinning particle.

Our dressed propagator can also be applied to the description of light by light scatter-
ing, and it would be interesting to study amplitudes made up of dressed photon propagators
in the case where the spin tensor contributes. Another interesting route would be to explore
the so-called generalized Wilson line [72–75] for photons. Dressed photon propagators are
also useful in describing the propagation of light in an arbitrary medium [76] so it would be
interesting to consider coupling to matter in addition to gravity. In this case, the geometric-
optics regime is not applicable and terms associated with the spin-tensor are expected to
contribute.
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A Next to leading order photon impulse

In the WQFT one can define the observables related to the point particle mechanics, by
making use of Noether theorem which in such case is nothing else but Ehrenfest theorem.
Let us first define the impulse of the photon as [1]

∆pµ =
ˆ +∞

−∞
dσ
〈d2qµ

dσ2

〉
=
ˆ +∞

−∞
d̂ω
(
−ω2〈q̃µ(ω)δ̂(ω)〉

)
. (A.1)

The leading order calculation is straightforward and can be obtained by the evaluation of
a single diagram which, unlike the eikonal phase, has two kinematic fluctuations, namely

∆(0)pµ = q = −κ2 (p1 · p2)2

4
∂I

∂bµ
= 4GN (p1 · p2) bµ

|b|2
, (A.2)

where the tree level integral I has been evaluated in (4.2).
Let us move now to the next to leading order photon impulse. The topologies which

are vanishing for the eikonal phase do also vanish here in the same way. Particularly, the
diagram with the three-graviton vertex with the two gravitons starting from the photon
line is exactly zero once using momentum conservation and the delta constraints. Thus,
the only non-vanishing contributions arise from

q

k k − q
= − im2κ4

32

ˆ
d̂4q δ̂(q · p1)δ̂(q · p2)e

iq·b

q2

ˆ
d̂4k δ̂(k · p2)N1(q, k, p)qµ

k2(k − q)2

(A.3)
with the numerator N1 = (p1 ·p2)2 (k2 + (k − q)2)+m2(k ·p1)2, and the other contributing
diagram is

k k − q = i(p1 · p2)2κ4

16

ˆ
d̂4q δ̂(q · p1)δ̂(q · p2)eiq·b

ˆ
d̂4k δ̂(k · p2)N2(q, k, p) (q − k)µ

k2(k − q)2(k · p1)2 ,

(A.4)

where N2 = (p1 ·p2)2k ·(k−q)+2m2(k ·p1)2. Let us briefly review the integration procedure.
We first focus on eq. (A.3). For this one we just need to evaluate the integral

I1 =
ˆ

d̂4q δ̂(q · v1)δ̂(q · v2)e
iq·b

q2

ˆ
d̂4k δ̂(k · v2) (k · v1)2

k2(k − q)2 = 1
128π|b| (A.5)

– 25 –



J
H
E
P
0
2
(
2
0
2
2
)
2
0
9

since we can rewrite the whole expression in the r.h.s. of eq. (A.3) as

− iEm2κ4

32
1
i
∂

∂bµ
I1 = −1

4πG
2
Nm(p1 · p2) b

µ

|b|3
. (A.6)

Let us move now to the next diagram, which can be recast as follows

k k − q = im2k4E2

16

ˆ
d̂4q δ̂(q · v1)δ̂(q · v2)eiq·b (2Iµ2 + Iµ3 ) , (A.7)

where

Iµ2 =
ˆ

d̂4k
δ̂(k · v2)(q − k)µ

k2(q − k)2 , Iµ3 =
ˆ

d̂4k
δ̂(k · v2)k · (k − q)(q − k)µ

k2(q − k)2(k · v1)2 . (A.8)

Let us perform the tensor reduction of the above integrals. The first one can be decomposed
as Iµ2 = Aqµ +Bvµ2 such that, using the delta constraint q · v1 = q · v2 = 0, one finds that
B = 0. Contracting with qµ one finds that

A = 1
2

ˆ
d̂4k

δ̂(k · v2)
k2(k − q)2 . (A.9)

In this way one is able to evaluate the first contribution in (A.7) as

im2κ4E

8

ˆ
d̂4q δ̂(q · v1)δ̂(q · v2) eiq·bIµ2 = 4πG2

Nm(p1 · p2) b
µ

|b|3
. (A.10)

Before proceeding further, let us point out that adding up the two contributions just
evaluated i.e. (A.6) and (A.10) one obtains

15π
4 G2

Nm(p1 · p2) b
µ

|b|3
, (A.11)

which corresponds to the impulse obtained from the NLO eikonal phase, without any
iteration of the scattering data. However, we still need to evaluate the first piece in (A.7).
For this task we write

Iµ3 = Aqµ +Bvµ2 + Cvµ1 . (A.12)

Then, using that vµ2Mµ = 0 one obtains B = −σC, which allows us to rewrite Iµ3 =
Aqµ+C (vµ1 − σv

µ
2 ). In this way, after contracting with qµ, one finds that the integral thus

obtained are tadpoles therefore concluding that A = 0. Contracting with vµ1 and using
integral reduction allows us to fix the remaining coefficient, namely

C = 1
2q

2
ˆ

d̂4k
δ̂(k · v2)

(k2 + iε)((k − q)2 + iε)(k · v1 + iε) = − i
2q

2
ˆ

d̂4k
δ̂(k · v1)δ̂(k · v2)
k2(k − q)2 , (A.13)

where we performed the change of variables k− q → −k′ in the last equality and the Dirac
delta representation

δ̂(x) = i
( 1
x+ iε −

1
x− iε

)
, (A.14)
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which enables us to rewrite the full contribution related to I3 as the square of I which
has been evaluated previously, see eq. (4.2).

Finally, putting all pieces together and performing the extra momentum integration,
one obtains the next to leading order photon impulse

∆pµ = 4GN (p1 · p2) b
µ

|b|2
+G2

Nm
(p1 · p2)
|b|

(15π
4

bµ

|b|2
− 8
|b|

(vµ1 − σv
µ
2 )
)

(A.15)

where we reintroduced σ = v1 · v2 to write the result in a Lorentz invariant form.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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