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Streamwise velocity and wall-shear stress are acquired simultaneously with a hot-wire and an
array of azimuthal/spanwise-spaced skin friction sensors in large-scale pipe and boundary layer
flow facilities at high Reynolds numbers. These allow for a correlation analysis on a per-scale
basis between the velocity and reference skin friction signals to reveal which velocity-based
turbulent motions are stochastically coherent with turbulent skin friction. In the logarithmic
region, the wall-attached structures in both the pipe and boundary layers show evidence of self-
similarity, and the range of scales over which the self-similarity is observed decreases with
an increasing azimuthal/spanwise offset between the velocity and the reference skin friction
signals. The present empirical observations support the existence of a self-similar range of
wall-attached turbulence, which in turn are used to extend the model of Baars et al. (J. Fluid

Mech., vol. 823, 2017, R2) to include the azimuthal/spanwise trends. Furthermore, the region
where the self-similarity is observed correspond with the wall height where the mean momentum
equation formally admits a self-similar invariant form, and simultaneously where the mean and
variance profiles of the streamwise velocity exhibit logarithmic dependence. The experimental
observations suggest that the self-similar wall-attached structures follow an aspect ratio of
7 : 1 : 1 in the streamwise, spanwise and wall-normal directions, respectively.

Key words:

1. Introduction

Following the discovery of quasi-periodic features within wall-bounded turbulence that are
thought to be associated with the physical mechanism that governs turbulence — from production
at the expense of the mean flow to eventual dissipation due to viscous forces at the fine scales
(Robinson 1991), substantial efforts have been made to better understand these critical processes
(Jiménez 2011). The quasi-periodic features remain coherent across a finite three-dimensional
domain, and in this study we focus on the coherent structures that reside in the inertial range of
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the energetic scales that become increasingly prominent at high Reynolds number, and therefore
account for a large portion of overall turbulence production (Smits et al. 2011). One of the
challenges of examining high Reynolds number flows is to capture the broadband turbulence over
the extensive range of scales, which by definition of Reynolds number (Re) corresponds to the
separation of scales between the smallest and the largest energetic motions present within a flow.
From an experimental point of view, the range of scales accessible is typically constrained by
the physical size of the sensor at the small scales and the facility for the large scales. Hence, our
approach here is to utilise large-scale facilities, that allow high Re flows while still maintaining
the smallest energetic length scales such that they are accessible using conventional techniques.
Here, we present novel pipe flow experiments where an azimuthal array of skin friction signals
are simultaneously sampled with a velocity sensor. Due to the simplicity of axially symmetric
mean flow, the fully developed pipe flow is a classical configuration to examine wall-bounded
turbulence. The results from the pipe flow are also compared against a turbulent boundary layer
dataset, where simultaneous skin friction measurements with velocity have been acquired.

One of the conceptual models for wall-bounded flows which has received considerable atten-
tion is the attached eddy hypothesis (AEH) proposed by Townsend (1976). The AEH idealises
wall-bounded flow as a collection of inertia-driven coherent structures that are self-similar and
are randomly distributed in the plane of the wall. The AEH prescribes these coherent structures,
or eddies, to scale with the distance from the wall with the height of the eddies following a
geometric progression (Perry & Chong 1982). To assess the self-similarity of coherent structures
in a wall-bounded flow, del Álamo et al. (2006) examined their size based on dimensions of
a vortex core identified by thresholding the discriminant of the velocity gradient tensor, using
direct numerical simulation (DNS) datasets. They find that the tall vortex clusters which extend
from the near wall (below 20 viscous units) to the logarithmic region, scale with wall height.
Furthermore, work by Hwang (2015) suggests that these self-similar structures can self-sustain
and therefore play a key role in driving the wall-bounded turbulence. Experimentally, fully
resolving the velocity gradient tensor is challenging, and typically the streamwise velocity is
used as a surrogate. For example, Hellström et al. (2016) uses Proper Orthogonal Decomposition
(POD) on instantaneous snapshots of the streamwise velocity from a radial–azimuthal plane in a
pipe flow. They find that the POD mode shapes of the radial–azimuthal structure within the pipe
flow follow a self-similar progression that obeys wall scaling. That is, the various POD mode
shapes show a one-to-one relationship between azimuthal mode number and their characteristic
wall-normal extent. An excellent overview of key assumptions and limitations associated with
AEH is provided by Marusic & Monty (2019).

When examining flow data in the context of the AEH, a common objective is to search
for scaling laws in energy spectra (Baidya et al. 2017; Nickels et al. 2005) and wall-normal
profiles of the turbulent stresses (Marusic et al. 2013). In energy spectra of the streamwise
velocity component, a k−1

x behaviour in the inertial range (where kx corresponds to the streamwise
wavenumber) would reflect a self-similar wall-attached structure of the turbulence envisioned
in Townsend’s AEH. Likewise, a semi-logarithmic wall-normal decay in the variance of the
streamwise velocity also reflects such a structure. For several decades it has been challenging to
observe these scaling laws in raw velocity data and conclusive empirical evidence has remained
elusive (Marusic et al. 2010). Davidson & Krogstad (2008) propose that the one-dimensional
spectrum is not an ideal tool to investigate the self-similar behaviour due to an aliasing effect,
whereby a large wavenumber, whose wavenumber vector is inclined with respect to the direction
of measurement, is interpreted as a contribution to the one-dimensional u-spectra at a lower
wavenumber (Tennekes & Lumley 1972), presumably contaminating the k−1

x behaviour. Indeed,
a clear trend towards self-similarity is evident in two-dimensional u-spectra (here the spectral
energetic content can be examined as a function of streamwise and spanwise wavenumbers) with
increasing Re, although this behaviour does not necessarily translate to a more prominent k−1

x
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behaviour once an integration is performed along the spanwise wavenumbers to obtain the one-
dimensional spectra (Chandran et al. 2017). Instead of k−1

x behaviour in the one-dimensional
u-spectra, Davidson & Krogstad (2008) advocate (∆u)2 ∼ log(rx) scaling for the structure
function as an indicator of self-similarity, where ∆u = u(x + rx) − u(x) is the difference in the
streamwise fluctuating velocity, u, separated in the streamwise direction, x, with a displacement
rx. Subsequent assessment performed by de Silva et al. (2015) showed a decade of log(rx)
behaviour in the structure function for high Re boundary layer flow. Noticeable deviations from
the logarithmic behaviour occur however for the pipe flow at a comparable Re (Chung et al.

2015). Chung et al. (2015) suggest that these differences in the (∆u)2 behaviour between the
pipe and boundary layer flows are due to a crowding effect in the pipe, whereby a restriction
is imposed on the width of the structures by its geometry. Furthermore, at an even higher Re

(Reτ ∼ 106) universality of (∆u)2 ∼ log(rx) behaviour is retained between the pipe and boundary
layer flows. More recently, Yang et al. (2017) generalise the scaling of structure functions in
arbitrary directions in the three-dimensional space based on the AEH.

In this paper, we will follow the approach of using a correlation-based metric to examine
the wall-attached structure of the wall-bounded turbulence. As opposed to an assessment of
(∆u)2 ∼ log(rx) behaviour, which is based on correlation statistics at a single wall height
practically computed by assuming Taylor’s hypothesis, we here employ synchronised measures
of turbulence at two wall-normal positions. A reference turbulent skin friction at the wall is
acquired using hot-film sensors glued to the wall. These measurements are complemented by
a sequence of velocity measurements performed at various wall-height (z) locations. Using the
two-point measurements, it can be revealed to what degree the turbulent scales in the flow remain
coherent with the wall-reference signal. The aim of this paper is to characterise the coherent
part of the velocity signal, associated with the wall-attached structures (Baars et al. 2016), as a
function of its wavelength (λx = 2π/kx), transverse offset (∆s) and wall-normal offset (z); and to
extend the observations by Baars et al. (2017) in the λx–z plane to incorporate the ∆s trends.

2. Experimental set-up

Tables 1 and 2 list the experimental conditions and sensors utilised for the pipe and boundary
layer datasets considered in this paper, while details of each experiment are given in subsequent
paragraphs. Here, we report the friction Reynolds number, Reτ = LOUτ/ν, where LO, Uτ and
ν correspond to the outer length scale (pipe radius and boundary layer thickness), mean friction
velocity and kinematic viscosity, respectively. While the pipe radius, R, can be directly measured;
the boundary layer thickness, δ, is determined here by fitting the mean velocity profile to a
modified Coles law of the wall/wake formulation (see Perry et al. 2002). In addition, x, y and
z denote the streamwise, spanwise and wall-normal directions, respectively; and superscript ‘+’
indicates normalisation by viscous units (e.g. U+ = U/Uτ, z+ = zUτ/ν and ∆t+ = ∆tU2

τ/ν).
Capitalisation and overbar denote time-averaged quantities, while lower cases correspond to
fluctuations from the time-averaged mean values.

2.1. Pipe flow

The pipe flow experiments are conducted at the Centre for International Cooperation in
Long Pipe Experiments (CICLoPE) facility belonging to the University of Bologna, located
in Predappio, Italy. The inner diameter of this unique large-scale facility is 0.9 m, with the
measurement station located at the downstream end of a 111 m long pipe, where a fully developed
turbulent pipe flow, for the first- and second-order statistics, is established (Örlü et al. 2017).
The large dimension for the outer length scale, R, corresponding in this case to the pipe radius,
allows access to high Reynolds numbers while the smallest energetic scales still remainO(10µm)



4 R. Baidya et al.

Flow type Reτ Symbol UCL, U∞ R, δ Uτ
ν

Uτ
Ts

TsUCL

R
,

TsU∞

δ
(ms−1) (m) (ms−1) (µm) (s)

Pipe
10 000 N 9.8

0.45
0.34 46 115 2500

21 500 � 22.9 0.74 21 100 5000
39 500 � 43.5 1.35 11 60 5800

Boundary 14 000 ♦ 20.3 0.33 0.67 23 300 19 000layer

Table 1: Summary of experimental conditions. UCL and U∞ denote the centreline and free-stream
velocities in the pipe and boundary layer flows, while T s correspond to the total sampling time
at each wall-normal location, z.

Flow type Reτ

Hot-wire details Hot-film details
d l l+ OHR 1/∆t ∆t+ l l+ OHR 1/∆t ∆t+

(µm) (mm) (Hz) (mm) (Hz)

Pipe
10 000

2.5 0.5
11

1.8 65 000
0.12

1.5
33

1.05 6500
1.2

21 500 24 0.59 72 5.9
39 500 44 1.97 131 19.7

Boundary 14 000 2.5 0.5 21 1.8 60 000 0.47 0.9 38 1.05 60 000 0.47layer

Table 2: Summary of velocity and skin friction sensors utilised. OHR denote the overheat ratio
used for each sensor, while 1/∆t corresponds to the sampling frequency.

and therefore can be resolved using conventional techniques (Talamelli et al. 2009). For further
technical and flow characterisation details on the facility, the readers are referred to Bellani
& Talamelli (2016), Willert et al. (2017) and Örlü et al. (2017). The current experimental
set-up consists of an array of 51 skin friction sensors located at various azimuthal positions
spanning from 0–2π along the pipe circumference simultaneously sampled with a hot-wire probe,
nominally located at the same x location as the hot-films. In addition, the hot-wire probe can be
traversed from near the wall to the pipe centreline as shown in figure 1(a). It should be noted
that the large pipe also allows the skin friction to be better resolved in the azimuthal direction
by virtue of being able to accommodate a larger number of sensors along the circumference (see
figure 1), compared to an alternate approach to high Reynolds numbers that relies on small ν/Uτ,
typically achieved through reduction of the kinematic viscosity (e.g. Zagarola & Smits 1998).

The velocity sensor is a hot-wire consisting of a Wollaston wire mounted onto a modified
55P15-type Dantec probe and etched to expose a 2.5µm diameter platinum core of 0.5 mm
length. The platinum wire is heated and maintained at a constant temperature with an overheat
ratio of 1.8 using a Dantec StreamLine Pro anemometer system. Furthermore, here we maintain
a hot-wire length (l) to diameter (d) ratio of 200 to avoid contamination from end conduction
(Ligrani & Bradshaw 1987). Before and after each experiment, the hot-wire is traversed close to
the centreline (∼ 0.93R due to the limited range of the traverse) and the mean voltage is calibrated
in situ against the centreline velocity, which is measured using a Pitot-static tube. This allows
construction of a one-to-one relationship between the flow velocity and the anemometer output
voltage. Although this means that calibration is not performed in a near-potential flow, the ratio
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(a)

Hot-wire
traverse

S p 1–19
Log array

S p 19–36
Linear array I

S p 36–51
Linear array II

∆S p 19 ≈ 0.22R

∆S p 36 ≈ 0.12R

R

∆s

(b)

R = 0.45 m δ ≈ 0.33 m

x
y

z

(c)

Hot-wire
traverse

S b 1–10
Linear array

∆S b 1 ≈ 0.08δ

δ

∆s

Figure 1: Schematic of experimental set-ups. (a,c) Show locations of hot-film (�) and hot-wire
sensors (not to scale) for the pipe and boundary layer flows, while (b) shows comparison of the
outer length-scales R and δ respectively, in physical units.

√
u2/U at the centreline is sufficiently small to make insignificant differences to the potential flow

calibration (Monty 2005; Örlü et al. 2017). An intermediate calibration relationship between the
hot-wire voltages and velocities is generated for each wall-normal point during the measurement,
based on an assumption that deviations between pre- and post-calibration curves are the result
of a linear drift in the hot-wire voltage with time. Figure 2(a,b) shows comparisons of the
streamwise velocity mean profiles from the pipe experiments (denoted by symbols) against
the dataset of Ahn et al. (2015). Despite the departure from ideal calibration conditions, the
U profiles from the current datasets show good agreement with the DNS of Ahn et al. (2015)
( ) in the inner region when scaled in viscous units. In addition, a good agreement with the
DNS is also observed for the deficit profiles in the outer region. Unlike the mean, the measured
variance profiles are dependent on the sensor spatial resolution (Hutchins et al. 2009; Ligrani &
Bradshaw 1987). For the variance profiles shown in figures 2(c) and (d), the spatial resolution in
the azimuthal direction varies from 6 viscous units between the adjacent grids (at the wall) for
the DNS to 40 viscous units for the Reτ ≈ 40 000 dataset from the current experiment. However,
since the influence of the spatial resolution diminishes with an increasing z, a good collapse of
the u2 profiles is observed for the region z/R > 0.1 in the outer scaling. Our U and u2 results
and the conclusions drawn agree with the findings of Örlü et al. (2017) from the same facility.
Note, the present analysis is particularly insensitive to slight calibration differences (including the
mismatch in the z locations between the hot-wire probe and Pitot-static tube during calibration)
since only relative changes in the skin friction and u velocity are considered.
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Figure 2: Streamwise velocity statistics from the pipe experiments. Panels (a,b) and (c,d) show
the mean and variance profiles, respectively. The symbols denote different Re cases, i.e. N: Reτ ≈
10 000 (l+ = 11), �: Reτ ≈ 22 000 (l+ = 24) and �: Reτ ≈ 40 000 (l+ = 44), while the dashed
( ) lines correspond to the statistics from Ahn et al. (2015) at Reτ ≈ 3000 (2πR+/Nθ = 6,
where Nθ is the number of grids in the DNS along the azimuthal direction).

j

∆
S

p
j/

R

Log array Linear
array I

Linear
array II

∆s/R

0 2π/3 4π/3 2π

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Figure 3: Azimuthal spacing, ∆S p, between the adjacent sensors in the hot-film array, for the
pipe experiment.

Senflex hot-film sensor arrays from Tao systems are used to measure the skin friction. The
three configurations depicted in figure 1(a) are used: a log array, a linear array I and a linear
array II. The closely spaced sensors around the hot-wire traverse plane capture the small-
scale contributions to the two-point statistics between u and uτ, while the coarsely spaced
sensors capture the large-scale contributions (these lose coherence much more gradually with
increasing azimuthal offset, ∆s). The azimuthal offsets of the sensors in the log array increase
logarithmically from ∆s/R ≈ 0.006 to 0.22. Following the log array, the spacing in the linear
array I is maintained at ∆s/R ≈ 0.22 from the 20th to 35th sensor. This spacing is halved to form
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linear array II. Furthermore, the sensors S p 1–17 are printed on to a single substrate, allowing the
azimuthal offsets to be precisely set, while the remainder are manually positioned and the offsets
recorded. The hot-wire is set to traverse nominally in the same plane as S p 2. Figure 3 shows
the azimuthal offset between the adjacent hot-film sensors for the pipe experiment, where ∆S p j

denotes the spacing between the j and j+1th sensors. To calibrate the hot-film sensors, the mean
voltage outputs are recorded against the mean shear stress, obtained from measuring the axial
pressure drop in the pipe before and after each experiment. The calibration curve for the hot-
films follows a similar technique described for the hot-wire previously. However, since the hot-
films are fixed in space, the voltage drift over time can be estimated throughout the measurement
without the need for interpolation. Each of the 51 hot-films is operated by individual Melbourne
University Constant Temperature Anemometer (MUCTA), Dantec StreamLine, AA labs AN1003
and Dantec Multichannel Constant Temperature Anemometers, each set to an overheat ratio of
1.05.

To ensure that the 51 hot-film voltages and the hot-wire voltage are acquired simultaneously,
a common clock signal is utilised across five data translation DT9836 data acquisition boards
used for analogue-to-digital conversion. To accommodate a faster temporal response expected
from the hot-wire, it is sampled at a higher frequency than the hot-films. Furthermore, the two
frequencies are chosen such that their ratio is an integer, thus allowing the hot-wire signal to
be downsampled at the hot-film sampling frequency. In addition, a common hot-film voltage is
shared between the five acquisition boards which is then used to verify the synchronicity of the
acquisition. The hot-wire and hot-film details are summarised in table 2.

2.2. Boundary layer flow

The boundary layer dataset is from Hutchins et al. (2011), which was acquired at the high
Reynolds number boundary layer facility located at the University of Melbourne. The boundary
layer thickness at the measurement location is approximately 0.33 m. As with the pipe exper-
iments, this large δ allows access to the high Re regime using conventional techniques (see
figure 1b for comparison against the pipe facility in physical units). Consistent with the pipe
measurements, a 2.5µm platinum Wollaston wire with a length to diameter ratio of 200 is used as
a velocity sensor, while ten Dantec 55R47 glue-on-type hot-film sensors are used to measure the
skin friction. The spanwise spacing between all ten hot-films is kept constant (∆S b 1–9 ≈ 0.08δ)
and the hot-wire is located nominally above the sixth sensor, S b 6, as illustrated in figure 1(c).
The hot-films and hot-wire are operated using AA labs AN1003 CTA systems with overheat
ratios of 1.05 and 1.8, respectively. The hot-wire sensor is calibrated in the free stream against a
Pitot-static tube before and after the measurement and linearly interpolated based on the working
section temperature recorded during the measurement. The hot-film sensors are calibrated via
an empirical relationship between the free-stream velocity and the mean wall-shear stress. For
further details, the reader is referred to Hutchins et al. (2011).

3. Basic features of the data

The limited temporal response of a typical hot-film sensor, combined with spatial averaging
effects due to finite sensor size, precludes full resolution of the small-scale skin friction contri-
butions. This is evident when the ratio between the standard deviation and mean measured skin
friction, σ(τ)/τ, is calculated. Direct numerical simulation and resolved experiments indicate
σ(τ)/τ ≈ 0.3–0.4 with a weak Re dependency at high Re (de Silva et al. 2014), while the
ratio reported by hot-film experiments is typically approximately 0.1 (Alfredsson et al. 1988).
Despite the inability of hot-film sensors to accurately capture the amplitudes of the skin friction
fluctuations, they still retain many of the characteristic features of the resolved skin friction
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uτ

/√
u2
τ

P(
u
τ
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0.3

0.4

0.5

Figure 4: Probability density function of fluctuating friction velocity, P(uτ). The solid symbols
correspond to hot-film dataset from a pipe flow at Reτ ≈ 10 000 (N), 22 000 (�) and 40 000
(�). Further, the open symbol (♦) and dashed line ( ) show P(uτ) from a boundary layer flow
at Reτ ≈ 14 000, obtained using hot-films and high-magnification PIV (de Silva et al. 2014),
respectively. The solid line ( ) indicates the standard normal distribution.

measurements (Alfredsson et al. 1988). Hence, in this paper, we will report fluctuating friction
velocities relative to the measured standard deviation, rather than the absolute value.

3.1. Single- and two-point statistics

Figure 4 shows the probability density function (pdf) of friction velocity, P(uτ), from the
current dataset, where uτ =

√
τ/ρ and ρ the density of the fluid. As is evident from the figure,

the data merge across the range of Reynolds numbers examined, once uτ has been normalised by
its standard deviation. Furthermore, this agreement extends to boundary layer flows where the
friction velocity is measured using hot-films (♦). Also note that, in contrast to pdf of wall-shear
stress, P(τ), which is positively skewed (de Silva et al. 2014), P(uτ) is near symmetric. The
missing contributions from small scales in the hot-film measurements are primarily associated
with the unresolved skin friction contributions from the near-wall dynamics. In contrast, the well-
resolved large-scale contributions are associated with larger structures residing in the logarithmic
region. Since the u velocity is less Gaussian in the near wall (z+ . 20) than in the logarithmic
region, this leads to a more Gaussian pdf when compared to a better-resolved dataset ( )
obtained using high-magnification particle image velocimetry (PIV) techniques (de Silva et al.

2014) (e.g. the skewness and kurtosis of uτ recorded by the hot-film are 0.15 and 2.9 respectively,
in contrast to −0.55 and 7.2 obtained from the high-magnification PIV dataset).

Figure 5(a,b) shows the two-point correlation of uτ, Ruτuτ from the current dataset as functions
of longitudinal (streamwise) and transverse offsets, respectively. It should be noted that the
streamwise offset, ∆x in (a) is obtained through use of Taylor’s frozen turbulence hypothesis
(Taylor 1938), where a convection velocity, Uc, is used to convert the hot-film signal from the
temporal to the spatial domain. Following work of Hutchins et al. (2011), who examined space–
time correlation of two hot-film sensors separated in x, the convection velocity for the large-scale
uτ fluctuations is estimated to be the mean velocity at the z location where the very-large-scale
u fluctuations are strongest (i.e. the large-scale uτ features convect at the same rate as the very-
large-scale u fluctuations residing in the logarithmic region). This wall height approximately
corresponds to z+ =

√
15Reτ according to Mathis et al. (2009), hence based on the logarithmic
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Figure 5: Two-point correlation of fluctuating friction velocity, Ruτuτ . The correlation coefficients
are shown as functions of (a) the longitudinal (Ruτuτ (∆x, 0)) and (b) transverse (Ruτuτ (0,∆s))
offsets. The solid symbols correspond to pipe flow at Reτ ≈ 10 000 (N), 22 000 (�) and 40 000
(�), while the open symbols (♦) correspond to boundary layer flow at Reτ ≈ 14 000. For the
insets, a logarithmic scale is used for the displacements, ∆x and ∆s, between the two points.

law we obtain
Uc

Uτ
=

1
κ

ln
√

15Reτ + A, (3.1)

where κ = 0.39 and A = 4.3 are the Kármán constant and the logarithmic intercept for
canonical wall-bounded flows (Marusic et al. 2013). Although the frozen turbulence hypothesis
is known to breakdown for the small scales in the near-wall region (del Álamo & Jiménez 2009;
Piomelli et al. 1989), since the hot-film sensors only resolve large-scale contributions, it is a
reasonable approximation for the signals obtained from these sensors. For the transverse offset,
the correlation is calculated from two sensors separated by distance ∆s in the azimuthal and
spanwise directions for the pipe and boundary layer flows, respectively. It should be also noted
that, while only selective ∆x locations (corresponding to a specific ∆t offset in the uτ time series)
are shown in figure 5(a), ∆s locations from each hot-film pair are shown in figure 5(b).

As is evident from figure 5(a,b), good agreement is observed for Ruτuτ from the current dataset
(N, � and �) for both streamwise and azimuthal offsets, when normalised by the outer length
scale. This is because the correlations beyond ∆x/R,∆s/R > O(0.1) are dominated by the large-
scale motions which scale with the outer length scale. Similar results have been observed for two-
point correlations of streamwise velocity (Hutchins & Marusic 2007a). However, for small ∆x,
the collapse of Ruτuτ across different Re is no longer expected when normalised by the outer length
scale, since the scale separation between the viscous and inertially dominated scales increases
with increasing Re. This is also evident in the experimental data when a logarithmic scale is
used for ∆x (e.g. figure 5a inset), where Ruτuτ at ∆x/R ∼ 0.1 no longer exhibits a collapse.
Notably, the collapse of Ruτuτ for a large ∆x extends to the boundary layer case (♦) when the
streamwise offset distance is normalised by its respective outer length scale, as seen in figure 5(a).
However, figure 5(b) shows that unlike the streamwise offset, Ruτuτ from the pipe and boundary
layer flows exhibit discernible differences in the transverse direction even after the offset has
been normalised by the outer length scale. A similar difference between internal (channel and
pipe) and external (boundary layer) flows is reported by Monty et al. (2007) for correlations of
u. They attribute the differences to variations in the coherent structures that extend beyond the
logarithmic region (z/R, z/δ > 0.15). In internal flow, these coherent structures are persistent,
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Figure 6: Instantaneous fluctuating friction velocity, uτ, recorded by hot-film sensors at Reτ ≈
40 000. (a) Shows a three-dimensional view of uτ along a pipe surface, while its projection on to
a flat plane is shown in (b).

while in the external flow they breakdown more readily into smaller eddies, resulting in Ruτuτ

decreasing faster in the transverse direction. As a result, the anti-correlated region where Ruτuτ is
most negative shifts from ∆s/R ≈ 0.6 to ∆s/δ ≈ 0.4 between the internal and external flows (see
figure 5b), replicating the Ruu behaviour observed in the logarithmic region (Sillero et al. 2014).

3.2. Instantaneous visualisations

Figure 6 shows an instantaneous view of the friction velocity from the current dataset, at Reτ ≈
40 000. Since the spacing between the hot-films is 0.1R – 0.2R for the two linear arrays (covering
almost 85 % of the total pipe circumference), the R-scaled features dominate the instantaneous
view. These R-scaled features are associated with very-large-scale motions (VLSMs) (Kim &
Adrian 1999) that largely reside in the logarithmic region and whose influence extends down
to the wall (Hutchins & Marusic 2007a). Thus, these footprints impose large-scale uτ features
that meander and extend over O(10R) in the streamwise direction with a width of O(R) in the
azimuthal direction (Monty et al. 2007).
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4. Spectral coherence with respect to the wall

In order to assess the scale-based linear coupling between the streamwise velocity fluctuations,
u, and the fluctuating friction velocity at the wall, we employ a spectral coherence analysis.
We use the spectral domain equivalent of a physical two-point correlation, known as the linear
coherence spectrum, to compute the correlation per scale (Baars et al. 2017). The coherence
spectrum, γ2

L
, is defined as

γ2
L(∆s, z; λx) =

∣∣∣∣
〈

û(z; λx) ûτ
∗(∆s; λx)

〉∣∣∣∣
2

〈 ∣∣∣ û(z; λx)
∣∣∣2
〉 〈 ∣∣∣ ûτ(∆s; λx)

∣∣∣2
〉 =

∣∣∣φuuτ (∆s, z; λx)
∣∣∣2

φuu(z; λx) φuτuτ (∆s; λx)
, (4.1)

where, û(z; λx) = F [u(z)] denotes the Fourier transform of u(z) in the x direction; while the
asterisk (∗), angle brackets (〈 〉) and vertical bars (| |) designate the complex conjugate, ensemble
averaging and modulus, respectively. Thus, φuuτ corresponds to the cross-spectrum between u

and uτ, while φuu and φuτuτ denote the u- and uτ-energy spectra, respectively. The denominator
of (4.1) is such that γ2

L
normalisation occurs per-scale (and hence provides the square of a scale-

specific correlation coefficient) and for all scales is bounded within 0 6 γ2
L
6 1. This property

of γ2
L

is especially useful when using the hot-film data, as its scale-dependent energy attenuation
does not affect a per-scale normalised correlation (Baars et al. 2017; Bendat & Piersol 2010).

As described in § 3.1, temporal data are obtained from both hot-film and hot-wire sensors.
Thus, γ2

L
is calculated in the frequency domain and converted to λx by invoking Taylor’s hypoth-

esis. Here, the local mean velocity at z (corresponding to the wall-normal location where the
u velocity is acquired) is used as the convection velocity. This procedure results in coherence
spectra that agree well with that calculated directly from DNS (Baars et al. 2017), with the
exception of the near-wall small scales, where the assumed convection velocity no longer holds
(del Álamo & Jiménez 2009; Piomelli et al. 1989). As the focus of this paper is on the logarithmic
region, the errors associated with Taylor’s hypothesis will not affect the conclusions drawn.

4.1. Comparisons between pipe and boundary layer flows

Figure 7(a,(b)) shows γ2
L

between the streamwise velocity, u, and the friction velocity, uτ, as a
functions of wavelength λx. The solid circles (�) in both (a) and (b), correspond to the coherence
spectrum for the pipe flow when u is acquired at z/R ≈ 0.01 and is measured directly above uτ,
as illustrated in (c). Similarly, the empty circles (�) correspond to the coherence spectrum for the
boundary layer flow, where u is measured 0.01δ above uτ.

As stated in the introduction, one of the aims of this paper is to extend the observation of
Baars et al. (2017), which supports wall-bounded turbulence obeying the AEH. Figure 8 shows a
sketch illustrating relative scales in the AEH, where a hierarchy of self-similar structures is used
to represent the logarithmic region in a wall-bounded flow. The size of each hierarchy level is
shown in a different colour, and the hierarchy follows a geometric progression with a common
ratio of 2 up to a height equal to the outer length scale. In this schematic the population density
halves in the x and y dimensions for each increment in the hierarchy level. Thus, in figure 8
a total of four hierarchy levels are shown, and eddies at each level have an extent in the x, y

and z directions characterised here by L i,Wi and Hi, respectively. Here, subscript i = 1– 4 is
used to denote each hierarchy level, with the smallest and largest followingH1 ∼ O(ν/Uτ) and
H4 ∼ O(δ), respectively (Perry & Chong 1982). It should be noted that in reality, these structures
are forward inclined relative to the flow direction (Robinson 1991). Since, however, only the
magnitude of the coherence (and not the phase) is considered here, this detail is not relevant to
the present discussion. Now, consider probes placed at � (measuring uτ) and � (measuring u)
as illustrated in figure 8(a), leading to recorded signals from these probes as in figure 8(b). It is
therefore evident that the signal from the � sensor misses contributions from the smallest eddies
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Figure 7: Coherence spectrum, γ2
L
, between the streamwise velocity, u, and the friction velocity,

uτ, as a function of wavelength λx. The solid (�, N, �) and open (�, △, ♦) symbols respectively
correspond to the pipe and boundary layer (BL) flows. Also, the pipe and boundary layer flows
are at Reτ ≈ 22 000 and 14 000, respectively. (a) Two wall-heights z/R, z/δ ≈ 0.01 (�, �) and
0.07 (N, △) at ∆s ≈ 0; and (b) two hot-film offsets ∆s/R,∆s/δ ≈ 0 (�, �) and 0.07 (�, ♦) at
z/R, z/δ ≈ 0.01 are shown. (c) Schematic of hot-wire and hot-film positions used to generate (a)
and (b), where � symbol denotes the reference skin friction sensor.
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Figure 8: (a) Schematic showing a hierarchy of attached eddies used to model wall-bounded
flows. Here, four hierarchy levels are shown, where a volume of influence from each is
represented by a differently coloured cuboid, while the symbols indicate probe locations. (b)
The contribution to u or uτ signals at four locations (as indicated by corresponding symbols in a)
over a streamwise distance a; L i,Wi andHi denote the streamwise, spanwise and wall-normal
extent of an ith hierarchy level eddy.

when compared to the signal from the � sensor. In contrast, the large-scale component of these
signals is still mostly coherent, leading to a steady decay in γ2

L
from ∼ 0.8 to 0 with decreasing

λx, as observed in figure 7(a,b).
Figure 7(a) shows the effect of increased separation between u and uτ in the z direction. Here,
△ symbols correspond to a case where u is obtained at a higher z location than the � symbols as
illustrated in figure 7(c). A decrease in γ2

L
is observed at all scales in both the pipe and boundary

layer flows with increased z separation. In terms of the AEH, this relates to a reduction in
the number of common members of the hierarchy encountered with increased z, as shown by
idealised u signals at � and △ in figure 8(b). Similarly, figure 7(b) shows the effect of increased
separation between u and uτ in the transverse direction, with the ♦ symbol corresponding to a
case where u is obtained with an azimuthal/spanwise offset, ∆s, compared to the � symbols
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Figure 9: Coherence spectrum between uτ and u, γ2
L
, as a function of wavelength, λx, and wall-

normal location, z, where u is measured. (a,c) Pipe Reτ ≈ 22 000 and (b,d) boundary layer
Reτ ≈ 14 000 flows, where z is shown in linear and logarithmic scale on the top (a,b) and bottom
(c,d) rows, respectively. The grey scale contours correspond to coherence when the hot-film
sensor (�) is at an offset of ∆s ≈ 0 from the hot-wire (�), while the line contours show coherence
at an offset of ∆s/R,∆s/δ ≈ 0.07 (�). Both line and grey scale contours are at levels 0.1:0.1:0.9,
and the dash-dotted lines indicate the λx =Axz z relationship, whereAxz = 14 corresponds to
empirically observed aspect ratio between λx and z for the self-similar hierarchy.

as indicated in figure 7(c). Again, a decrease in γ2
L

at all scales is observed in both the pipe
and boundary layer flows with increased ∆s separation, but the decrease is much more severe
compared to that observed for an equivalent increase in z. As discussed later, these differences
can also be explained by considering an idealised model based on the AEH.

Figure 9 shows coherence spectra as functions of λx and z. The left (a,c) and right (b,d)
figures correspond to γ2

L
for the pipe and boundary layer flows, respectively. The top (a,b) and

bottom (c,d) figures correspond to the same coherence spectra, but z is shown in the linear and
logarithmic scales, respectively. It should be noted that there exists a slight discrepancy in Reτ
between the two flows (22 000 for the pipe compared to 14 000 for the boundary layer), however
across this range, we expect the Reτ effects on the large-scale features to be minimal when scaled
by the outer length scales (Hutchins & Marusic 2007a,b). Consequently, here we present λx and
z normalised by R and δ respectively for the pipe and boundary layer flows.

From figures 9(a) and (b), it is evident that the large-scale component of u motions remains
coherent over a larger z extent for the pipe compared to the boundary layer flow when normalised
by the corresponding outer length scale, in agreement with the observations of Monty et al.
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(2007). In an internal flow such as a pipe, instances exist where a large-scale u event remains
coherent over a z extent larger than R (i.e. penetrates beyond the centreline while starting at
the wall) (Sillero et al. 2014), while δ for the boundary layer flow is closer to the outermost
edge of the turbulent region, and beyond which only a non-turbulent flow exists (Chauhan et al.

2014). This mismatch in the outer length scale used for the normalisation relative to the size
of the largest coherent motions presumably leads to some of the differences observed between
the coherence spectra from the pipe and boundary layer flow in the wake region. It should be
noted that, a choice of δ99 (i.e. the z location where U = 0.99U∞) as the outer length scale for
the boundary layer instead of δ, yields a better agreement in the wake region as evident from
the z = 0.6 δ99 position indicated on figure 9(b). Despite the modification to the choice of outer
length scale, the differences in the u-spectra between the internal and external flows still persist,
since as demonstrated by Monty et al. (2009), it is not possible to achieve a full merging of the u-
spectra across the entire large wavelength range, irrespective of the outer length-scale definition
chosen.

Another potential source of difference between the internal and external flows in figure 9(a,b),
may be due to use of Reynolds decomposition in obtaining the u fluctuations. While this is a
standard practice, if multiple states with different mean exist in a flow (such as turbulent and non-
turbulent regions), all states are reduced to a single common mean (Kwon et al. 2016). Hence,
the use of Reynolds decomposition can exacerbate observed differences between internal and
external flows under outer scaling, as demonstrated by Kwon (2016), who improved the collapse
of the two-point correlation of a boundary layer and a channel using an alternate decomposition
that separated the turbulent and quiescent core/non-turbulent regions. However, it should also
be noted that both choices for the u fluctuations provide similar results in the logarithmic and
near-wall regions as the turbulent portion dominates at these z locations.

The grey scale contours in figure 9 correspond to the coherence spectra between uτ and u for
∆s ≈ 0, while the line contours show γ2

L
when an azimuthal/spanwise offset of ∆s/R,∆s/δ ≈

0.07 exists between the hot-film and hot-wire (see inset, symbols � and �). Based on the attached
eddy model illustrated in figure 8, we would expect the two hot-film sensors to share large-scale
uτ features since they share a common footprint from eddies that span across both sensors. This
is indeed reflected in figure 9, where the two coherence spectra at ∆s = 0 and ∆s/R,∆s/δ ≈ 0.07
show good agreement for λx/R, λx/δ > 3 and z/R, z/δ > 0.2 (top-right regions encapsulated
by the dotted lines in figure 9c,d). As the effect of the differing outer boundary conditions
between the internal and external flow is diminished closer to the wall, a good agreement is
also observed between the pipe and boundary layer flows (see figure 9c,d) in the logarithmic
region. This includes the iso-contours of the coherence spectra following a λx ∼ z scaling
(shown as dot-dashed lines). This behaviour is consistent with the AEH, which assumes that
the coherent structures are self-similar and scale with the distance from the wall (Townsend
1976). The dash-dotted lines in figure 9(c) and (d) show the relationship λx =Axz z, where
Axz = 14 corresponds to λx where wall-shear stress and u velocity starts to exhibit coherence in
the logarithmic region (Baars et al. 2017). Thus, these features are much longer in x compared
to their z-extent (i.e.Axz ≫ 1), indicating that the coherent motions in u are likely associated
with multiple streamwise aligned eddies travelling in a packet (Adrian et al. 2000), rather than a
single isolated eddy.

Here, we propose to characterise the dimensions (L ×W × H) of the self-similar attached
eddies based on γ2

L
iso-contours, following Baars et al. (2017). Note that, while the attached

eddies are confined in the wall-normal direction by the presence of the wall, no such confinement
exists in the spanwise direction leading to differences in how γ2

L
approaches zero as a function of

∆s and z (e.g. figure 7). As an example, consider the idealised, discrete eddy, scenario shown in
figure 8, when an eddy passes over a reference skin friction sensor. As illustrated in figure 10(b),
this requires the reference skin friction sensor (denoted by symbol �) to be located within the
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Figure 10: An illustration of size of an ith hierarchy level eddy, L i ×Wi × Hi, extracted based
on λx, ∆s and z where γ2

L
= Γ (Γ is a threshold). (a) Wall-parallel (x–y plane) view of volume

of influence and (b) cross-plane (y–z plane) view (along A–A in figure 10a) showing different
scenarios where the volume of influence passes over a reference skin-friction sensor (�). The
blue and red regions in (a) and (b) denote negative and positive u, respectively, while x′, y′ and
z′ are coordinates relative to the eddy. The solid lines in (c,d) show idealised coherence as a
function of offset distances z and ∆s between the two sensors in the wall-normal and spanwise
directions, respectively. The dashed line in (d) shows an equivalent step-like profile proposed.

low shear stress footprint of the eddy with an equal probability. For a case when the shear stress
and velocity sensors are spanwise aligned, the velocity recorded at a wall-normal offset z, u(z),
is perfectly correlated with the wall-shear stress sensor (γ2

L
= 1) if z < Hi, otherwise the two

signals remain uncorrelated (γ2
L
= 0), regardless of the spanwise position of the eddy, leading to

a step like γ2
L

as a function of z as shown in figure 10(c). In contrast, for a case when ∆s , 0,
the likelihood that influence of the eddy extends to y = ∆s is no longer equal to unity even when
z < Hi. This is because unlike the ∆s = 0 case, there are instances when the eddy does not span
across the two sensors as illustrated in figure 10(b). Furthermore from the figure, it is evident that
the portion of eddies that reach y = ∆s decreases linearly with increasing ∆s until ∆s = Wi,
from which point onwards the signals from the two sensors remain uncorrelated. Therefore,
γ2

L
= max(1 − ∆s/Wi, 0) for this idealised case, as illustrated in figure 10(d). In order to resolve

the difference in γ2
L

as a function of ∆s and z, here we propose that the linear γ2
L

dependency with
∆s can be transformed to an equivalent step-like function observed for z by preserving the area
under the graph, in a similar manner to how an integral scale is inferred from Ruu. It should also
be noted that the procedure is related to a ‘coherence height’ as defined by Jiménez et al. (2004).
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In the present case, however, the integration is carried out in the spanwise direction. Based on
these arguments, we propose to extract Hi andWi based on z and ∆s locations where γ2

L
= Γ

(here Γ corresponds to a threshold), leading toHi = z
∣∣∣
γ2

L
=Γ

andWi = 2∆s
∣∣∣
γ2

L
=Γ

, respectively. For

the streamwise extent since the coherence spectra are employed, L i = 0.5λx

∣∣∣
γ2

L
=Γ

, as negative u

fluctuations only remain coherent over half of the total wavelength, and because of association
with the Fourier transform a positive u fluctuation portion of the same size follows to form one
full wavelength as indicated in figure 10(a) (blue and red regions denote negative and positive u,
respectively). In the later section, we obtain the mean dimensions,L i ×Wi ×Hi, of the attached
eddies that lead to a self-similar hierarchy in the logarithmic region, and show that they agree
with previous studies that have examined the in-plane dimensions at a similar Re.

4.2. Effects of Reynolds number

Figure 11(a,(b)) shows the coherence spectra from the pipe flow at Reτ ≈ 10 000 and 40 000
respectively. The grey scale and line contours again denote two transverse offset scenarios∆s ≈ 0
and ∆s/R,∆s/δ ≈ 0.07, as in figure 9. Increasing Re is accompanied by a larger scale separation
between the viscous and inertial scales, and therefore also by an increase in the number of
hierarchy levels required to model a wall-bounded flow. Indeed, this is reflected in an extended
range of scales for which the γ2

L
= 0.1 iso-contours (for the ∆s ≈ 0 scenario) follow the λx ∼ z

scaling with increasing Re for the pipe flows, as observed in figure 12. Also shown in figure 12 as
vertical dotted lines are λ+x =Axz z+inertial relations for each Re case, where z+inertial = 2.6

√
Reτ and

3.6
√

Reτ for the pipe and boundary layer flows, respectively (Morrill-Winter et al. 2017; Wei
et al. 2005). Here, zinertial corresponds to wall height where the mean viscous force first becomes
sub-dominant in the mean momentum balance, and notably the γ2

L
= 0.1 iso-contours in the

near-wall region closely align with the λ+x =Axz z+inertial relation for both the pipe and boundary
layer flows. Note that the z-independent trend of γ2

L
iso-contours observed in the experiment is

not present in the coherence spectra from DNS (Baars et al. 2017). Hence, the experiments are
unable to capture the wall-attached structures that reside in the region z < zinertial. A potential
cause for this is a small but finite spanwise misalignment that exists in the experiments between
the skin friction and velocity sensors, which would lead to an attenuation of γ2

L
. A lower limit

for the λx ∼ z scaling in the γ2
L
= 0.1 iso-contours is indicative of the presence of different

physical mechanisms of the wall-attached turbulence in the region close to the wall, which are
not captured by the experiments. The current results suggest that these mechanisms are closely
associated with an increased prominence of the viscous term in the mean momentum balance
for the near-wall region (Morrill-Winter et al. 2017; Wei et al. 2005). It should be noted that
the theory associated with the mean momentum balance shows that the scales of motions in the
inertial domain are proportional to z, and thus the wall-distance scaling is an analytical result,
rather than requiring assumptions as in AEH.

Unlike the ∆s ≈ 0 case, an extension in the range of λx values that remain coherent does
not occur at ∆s/R,∆s/δ ≈ 0.07 with Re (e.g. dashed lines in figures 11a,b). This behaviour
can be related to the transverse offset remaining fixed in the outer scale for these datasets, and
effectively acting as a low-pass filter based on the outer scale where scales smaller than the
cutoff λx do not remain coherent. In other words, the range of scales that are coherent is fixed
between O(0.1R) and O(R) for both cases, leading to coherent scales that are separated by a
factor of R/0.07R ∼ O(10) regardless of Re. Furthermore, for the large-scale contributions, the
iso-contours in figures 11(a) and (b) show good agreement, consistent with the AEH.

4.3. Effects of transverse offset

Figure 13 shows the effect of azimuthal offset ∆s for the γ2
L
= 0.1 iso-contours from Reτ ≈

40 000 pipe flow. An azimuthal offset between the uτ and u sensors leads to a loss of common
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Figure 11: Value of γ2
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for a pipe flow at (a) Reτ ≈ 10 000 and (b) Reτ ≈ 40 000. The grey scale
and line contours are as in figure 9.
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Figure 12: γ2
L
= 0.1 contours between u and

uτ signals at ∆s ≈ 0 for pipe and boundary
layer flows. The symbols are as in figure 5,
while the vertical dotted lines correspond to
λ+x =Axz z+inertial relations for each cases.
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Figure 13: γ2
L
= 0.1 contours between u and

uτ signals at Reτ ≈ 40 000 as function of ∆s;
∆s/R ≈ 0 (⊳), 0.02 (▽), 0.03 (♦), 0.06 (△)
and 0.13 (⊲).

contributions encountered by the two sensors at the smaller scales since these scales do not span
across the offset. Thus, a departure from the ∆s ≈ 0 contour occurs for any ∆s offsets larger than
the width of the smallest attached eddy in the hierarchy,W1, with the departure occurring at a
higher λx when ∆s increases further.

To further assess the effect of transverse offset, figure 14 shows the coherence spectrum as
a function of λx and ∆s. While figure 11(b) shows coherence spectra between a reference uτ
and u as the z offset is varied, in figure 14 the ∆s offset (see inset, symbols � and �) is varied
instead. Similar to figure 11(b), two scenarios are considered where now the grey scale and line
contour correspond to cases when the u sensor is at z/R ≈ 0.01 and 0.07 respectively (see inset,
symbols � and �). It should also be noted that figure 14(a,b) are the same, except for ∆s being
shown in linear and logarithmic scale, respectively. The iso-contours at z/R ≈ 0.01 and 0.07
agree well, at large λx and ∆s, while an increase in z location where u is acquired leads to a
loss of coherence below a cutoff λx that scales with the distance from the wall. Furthermore,
unlike figure 11(b) the iso-contours do not obey a λx ∼ ∆s (shown as dot-dashed line) scaling,
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Figure 14: Value of γ2
L
, as a function of wavelength, λx, and hot-film sensor offset distances

along the circumference, ∆s, for the pipe flow at Reτ ≈ 40 000. The grey scale and line contours
correspond to coherence when the hot-wire is at z/R ≈ 0.01 (�) and 0.07 (�) respectively, with
the hot-film (�) at an azimuthal offset of ∆s. Both contours are at levels 0.1:0.1:0.9, while ∆s is
shown in (a) linear and (b) logarithmic scale.

even at Reτ ≈ 40 000, and instead λx ∼ ∆s1.3 behaviour is observed (shown as dotted line)
for λx/R ∼ O(1) and ∆s/R ∼ O(0.01). This is contrary to the AEH which predicts λx ∼ ∆s

behaviour owing to eddy self-similarity and the wall scaling in both the y and z directions. The
failure of λx ∼ λy behaviour has also been noted by del Álamo et al. (2004) who examined
the two-dimensional spectra of u from DNS. This failure, however, could be related to low Re

effects, as Chandran et al. (2017) found evidence that the λx ∼ λy scaling may still emerge at
the large scales at a higher Re (Reτ ∼ O(106)) leading to an emergence of λx ∼ ∆s scaling for
these scales. Hence, the current dataset at Reτ ≈ 40 000 may not be sufficiently high to see the
λx ∼ ∆s behaviour. Furthermore, similar to the λx ∼ λy scaling in the two-dimensional spectra,
the λx ∼ ∆s scaling of γ2

L
contours are expected (at a sufficiently high Re) to first emerge at a

z location corresponding to the lower limit of the logarithmic region. This is because here the u

contributions from all hierarchy levels exist, while at a higher z the contributions from hierarchy
levels where Hi < z diminish. The dash-dotted line in figure 14 indicates λx =Axy∆s, where
Axy = 28 now is the predicted self-similar behaviour based onHi =Wi (i.e.Axy = 2Axz since
z
∣∣∣
γ2

L
=Γ
= 2∆s

∣∣∣
γ2

L
=Γ

, see figure 10). Furthermore, since λx is expected to be twice as large as the

region of streamwise coherence L i (see figure 10a), this leads to an aspect ratio of 7 : 1 : 1 for
the self-similar eddy in the x, y and z directions, respectively. It has to be noted that Krug et al.

(2019) found a clear dependence of this aspect ratio on the level of stratification, via analysis
of atmospheric surface layer data. For our adiabatic wall case, the aspect ratio agrees well with
the dimensions of attached eddies found in DNS, while the streamwise extent is slightly longer
than that typically reported from DNS (del Álamo et al. 2006; Hwang 2015). However, the value
obtained for the streamwise extent of the attached eddies is consistent with the observation of
Chandran et al. (2017) that at a comparable Re an energetic ridge in the two-dimensional u-
spectra follow an aspect ratio of 7 : 1 in the x and y directions.

4.4. Extending the model of Baars et al.

Figure 15(a–d) shows a model for γ2
L

based on results shown in §§ 4.1–4.3 and following the
AEH. In (a), γ2

L
as a function of both λx and z is shown at a constant ∆s, and hence the contours

at the lower value of ∆s where ∆s ≈ 0 is equivalent to the model of Baars et al. (2017). In this
model, the contribution to γ2

L
from each hierarchy level remains uniform across λx >AxzHi. The
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Figure 15: A model for γ2
L

following the attached eddy hypothesis. (a-c) Correspond to the case
with four hierarchy levels, with (a) and (b) showing γ2

L
at a constant ∆s and z, while (c) illustrates

the iso-contours of γ2
L

as functions of λx, ∆s and z. Meanwhile, (d) shows the iso-contours for
the case with ten hierarchy levels, which corresponds to a higher Re scenario.

hierarchy scaling prescribed by the AEH, Hi ∼ 2(i−1)H1, leads to a triangular region in the γ2
L

iso-contours bounded by AxzH1 . λx .AxzHNH
. Here NH denotes the number of hierarchy

levels used in the model, which is Re dependent (e.g. NH = 4, for the examples shown in figures
8 and 15a-c). When ∆s > 0.5W1, the lower bound of the triangular region increases, since an ith
hierarchy level with widthWi < 2∆s does not remain coherent across the two points, leading to
γ2

L
≈ 0 at the smaller scales as shown in figure 15(a).

Figure 15(b) shows γ2
L

as a function of ∆s and λx at a constant z. Although the λx ∼ ∆s

scaling indicated in the figure did not materialise for the experimental data, evidence points
towards its emergence at sufficiently high Re, when Reτ ∼ O(106) (Chandran et al. 2017). Thus
in the asymptotic limit, the hierarchy of eddies are expected to be truly self-similar (i.e. the wall
scaling holds in all three directions - x, y and z), and therefore we expect a triangular region
for the γ2

L
contours in the λx–∆s plane in an analogous manner to the λx–z plane. Furthermore,

the triangular region through this slice is now bounded by AxzW1 . λx .AxzWNH
(since

Hi ∼ Wi) when z <H1, since contributions to γ2
L

from all hierarchy levels are captured at those
locations (see figure 15b at a lower z location). Beyond this wall height, the lower bound of the
triangular region increases due to loss of coherence from the smaller members of the hierarchy.

Combining the results from figure 15(a,(b)), figure 15(c) depicts the full three-dimensional
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picture of γ2
L

contours as a function of λx,∆s and z. Here, the triangular regions observed on
constant ∆s and z planes now correspond to the face of a skewed pyramid, as eddies that do
not meet the Wi > 2∆s and Hi > z criteria do not remain coherent over the two points used
to calculate γ2

L
. At a higher Re, the number of hierarchy levels required in the model increases,

leading to a more extended pyramidal region for the γ2
L

iso-contours as shown in figure 15(d).

5. Summary and conclusions

Experiments in the large-scale pipe and boundary layer facilities are conducted to examine
wall-attached structures at high Reynolds number. The use of large-scale facilities enables access
to high Reynolds number flows while retaining resolvable small-scale features using conven-
tional measurement techniques. For the pipe experiment, an array of 51 azimuthally spaced
skin friction sensors are simultaneously sampled in concert with a traversing velocity sensor.
The boundary layer experiment features an array of 10 spanwise-spaced skin friction sensors,
which are also simultaneously acquired with a velocity sensor. The velocity measurements, in
conjunction with a reference skin friction signal at the wall, are used for a coherence analysis in
the spectral domain (Baars et al. 2016). Furthermore, the array of skin friction sensors enables
examination of the linear coherence spectrum, γ2

L
, as a function of the streamwise wavelength

(λx), azimuthal/spanwise offset (∆s) and wall-normal offset (z).
At a comparable Reynolds number, the pipe and boundary layer γ2

L
exhibit a similar depen-

dence on λx, ∆s and z. In general, a reduction in γ2
L

is observed as the two points are moved
apart due to loss of contributions from the common structure spanning across the two points.
When normalised by the respective outer length scales, the differences between the pipe and
boundary layer flows is evident for γ2

L
in the wake region. However, in the logarithmic region

(where the effect of the boundary conditions is minimal), good agreement in γ2
L

is observed
between the pipe and boundary layer; namely, the iso-contours of γ2

L
exhibit a λx ∼ z behaviour

in both flows (see figure 9). This is consistent with the attached eddy hypothesis (Townsend
1976), which assumes the λx ∼ z scaling due to the existence of a hierarchy of self-similar
eddies that scale with distance from the wall. Moreover, the region where the present empirical
observations indicate self-similar behaviour correspond tp where the mean momentum equation
formally admits a self-similar invariant form, and simultaneously where the mean and variance
profiles of the streamwise velocity exhibit logarithmic dependence.

A loss in coherence at an increased azimuthal/spanwise separation between the velocity and
skin friction sensors leads to a reduction in the range of scales that follow the λx ∼ z scaling.
Thus, a hierarchy of self-similar eddies is expected to manifest a pyramidal region for the γ2

L

iso-contours in (λx,∆s, z) space as shown in figure 15. Based on experimental observations, we
presume these self-similar eddies to follow an aspect ratio of 7 : 1 : 1 in the streamwise, spanwise
and wall-normal directions, respectively.
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