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Abstract

The assignment of service requests to emergency departments is of paramount

importance both from a life-threatening and an economical viewpoints. In the

process of a more general project that aims at defining optimal allocation poli-

cies of patients to regional hospital network facilities (together with the po-

tential reorganization of the facilities), the Department of Epidemiology of the

Regional Health Service of Lazio, Italy, was interested in obtaining a completely

offline picture of the effect of an optimal assignment of requests to emergency

departments. This is in the spirit of evaluating the so-called Price of Anar-

chy, where the fully centralized (admittedly unrealistic) allocation is used as a

reference for both the state-of-the-art completely decentralized approach and

future reorganization ideas.

We have implemented and tested with real-world data of all service re-

quests of 2012 a Mixed-Integer Programming model that computes such an

optimal request allocation by minimizing travel and waiting times and penaliz-

ing workload unbalance among emergency departments in the region. Within

the development process we have studied special cases and relaxations of the

complete model showing interesting mathematical properties that are, in turn,

useful from a practical viewpoint, for example, in obtaining a real-time version

of the approach.

The present study is an important, quantitative step in the evaluation of

centralized allocation strategies like remote triage that could have a remark-

able impact in making the allocation process much more efficient and effective.

More precisely, the developed methodology as well as the software tools are cur-

rently used by the DEP-Lazio for the reorganization of the regional networks

of emergency healthcare.

1 Introduction

The Department of Epidemiology of the Regional Health Service of Lazio,

Italy (DEP-Lazio in the following), a regional center for Health monitoring
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and management, is currently involved in a project that aims at defining opti-

mal allocation policies of patients to regional hospital network facilities. The

reorganization of health centres in order to deliver services in an effective way

by taking into account economic sustainability is a topic of increasing impor-

tance for Regional Health Services in Italy. In recent years several inputs have

been given, through financial laws, to reorganize hospitals infrastructure in

order to increase efficiency. Reorganization policies can be considered, from

a strategic point of view, as composed by two main decision elements: the

definition of the subset of hospital facilities that should be active within the

regional territory and the allocation of demand of services to active facilities.

Because the reorganization of a Regional Health system in terms of facility

location and service allocation is a task of great complexity Regional managers

decided to start by focusing their attention on emergency departments (ED).

Indeed, EDs are a crucial access point to hospital network facilities and as

a consequence their management is a critical factor in order to improve sys-

tem effectiveness and efficiency. In Italy it is possible to state that the role

of EDs is even more important than in other European countries because, in

addition to real emergency and urgency services, they have to face a set of

demands that should instead be managed by Primary care units or by General

Practitioners. This is due to historical reasons associated with the develop-

ment of the system and, recently, to the increase of (often illegal) immigration.

The 2013-2015 operational programs of the Lazio Region require the activa-

tion of new clinical care pathways for emergencies, with a special priority for

life-threatening diseases, such as acute coronary syndrome, stroke and trauma.

For these situations, a timely medical intervention, performed in facilities with

the necessary equipment, can save the patient’s life and significantly improve

the prognosis. For example, with respect to patients suffering from ST Eleva-

tion Myocardial Infarction (STEMI), it is suggested to perform a percutaneous

coronary intervention (PCI) in hospitals with high volume of activity, equipped

with catheterization laboratory and highly qualified teams. Moreover, accord-

ing to clinical guidelines, it is strongly recommended to perform PCI within 90

minutes from the onset of the early symptoms. Therefore, it is essential that

STEMI patients can immediately be transferred to a specialized hospital. Un-

fortunately, preliminary analyses showed that the current emergency networks

are not able to provide an appropriate and timely healthcare assistance to all

residents, especially in areas far from the city of Rome, generally characterized

by a lower socioeconomic status.

Emergency department characteristics. An emergency department

can be defined as an health facility that is dedicated to the management of

emergency and urgency treatments, that is to say to that spontaneous or trau-

matic pathological conditions that need to be treated within a short period of

time. Emergency activities are, for their own nature, nonelective and patients

can reach ED facilities both by their own (walk-ins) or with the support of an

emergency vehicle. Due to the impossibility of planning patients arrival, EDs

have to provide an initial treatment for a wide number of diseases some of which

can be life-threatening. Because the set of patients that ask for treatments is

heterogeneous from the pathological point of view, the admission of patients is

driven by a priority-based policy. The stochastic nature of arrival times and

of pathological conditions can have a strong impact on workload and as a con-
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sequence on patient waiting times and quality of care. It is then fundamental

that the priority assignment is properly managed in order to meet patients’

needs according to their critical condition. The process of assigning priorities

to patients is defined as triage and it is usually coded at a regional or national

level. Triage is a set of procedures that ensure, in the best possible way, that

patients with a more critical condition are admitted before the others. The

priority level is usually represented by a color code (white, green, yellow and

red) that defines the increasing need of care. For each patient the priority is

usually defined just after the arrival by a dedicated operator. The definition of

triage procedures is then fundamental to guarantee an immediate care for the

patient, to identify the priority level and the medical area that may treat him

and, ranking lower priority patients, to reduce waiting times. Triage activities

can directly address the patient to the most appropriate hospital ward in case

of complex treatments, for less serious ones the patient can be directly treated

by emergency department physicians and discharged. It is then important for

health managers to plan EDs so as to meet a set of objectives that can be in

some cases conflicting. At first it is fundamental to guarantee quality of care

that is composed by treatment timeliness, according to the patient health con-

dition, and appropriateness, according to the patient pathological condition.

On the other hand the cost sustained to provide services has to be reduced as

much as possible by taking into account a minimum standard of care.

Paper Contribution. As already discussed, triage is currently the first

activity that is performed when a patient reach the ED. This means that ED

triage only determines the care pathway within the hospital structure. In other

words, the possibility that a better quality of care and/or a shorter waiting time

could have been reached if the patient would have been sent to another ED is

not considered.

The objective of the present study is to develop an hybrid model that con-

siders both ED workload and service allocation, evaluating what could be the

impact of a remote triage management that, anticipating the patient classifica-

tion, can address population requests to the first-aid structure, thus assuring

the best possible service level. In particular, the final allocation policy for

emergency department requests needs to maximize quality of care and service

timeliness. In order to develop a regional allocation approach we must suppose

that all requests can be filtered at a regional level. That is to say that walk-in

or ambulance referral that have not been screened by the triage management

center are not accepted. Clearly, this is only an hypothetical scenario that is,

however, potentially useful to define a reference solution (as well as a reference

methodology) in terms of service quality (to be defined below), so as to eval-

uate, in comparison, new and more sophisticated allocation policies. In other

words, the current case-study establishes a benchmark solution with respect to

which the cost of a completely decentralized and loosely planned allocation is

computed. In this sense we somehow follow the so-called price-of-anarchy view-

point [23] although the techniques applied here do not exploit game theory in

the computation of an equilibrium. Instead, we have implemented and tested

with real-world data of all service requests of 2012 a Mixed-Integer Program-

ming model that computes such an optimal request allocation by minimizing

travel and waiting times and penalizing workload unbalance among emergency

departments in the region. Within the development process we have studied
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special cases and relaxations of the complete model showing interesting mathe-

matical properties that are, in turn, useful from a practical viewpoint. Finally,

one of those special cases allowed us to devise a real-time version of the first-aid

requests allocation approach, which can be used as a Decision Support System

for the Triage Center daily operations.

The present study is an important, quantitative step in the evaluation of

centralized allocation strategies like remote triage that could have a remark-

able impact in making the allocation process much more efficient and effective.

More precisely, the developed methodology as well as the software tools are cur-

rently used by the DEP-Lazio for the reorganization of the regional networks

of emergency healthcare. Our findings will be shared with the Regional Di-

rectorate for health and social-health integration and the Regional Healthcare

Emergency Unit, which operatively manages the first aid requests in Lazio.

The joint analysis of the results by those who plan emergency healthcare pro-

grams and by those who operationally run them in the territory are expected

to be helpful to develop and quantitatively evaluate strategies to: (a) improve

health assistance for the population living in disadvantaged areas, (b) reduce

waiting times in emergency departments and (c) balance workload among EDs

of the Lazio region. More generally, considering that the technical equipment is

known for each hospital, this type of optimization (possibly coupled with simu-

lation) techniques can be effectively used to reorganize the emergency networks

in accordance with the hierarchical levels of the hospitals equipment complex-

ity. This is likely to result in optimization of the current “Hub and Spoke”

model, based on the distinction of the emergency departments in basic EDs,

first level EDs and second level EDs, depending on the provided intensity of

care and on the dimension of the hospital catchment area. Basic or Primary

care hospitals are characterized by a catchment area of 80,000 to 150,000 inhab-

itants and have a limited number of active medical specialization departments.

First level hospitals have a catchment area of 150,000 to 300,000 inhabitants

and Radiology and Ultrasound with X-ray CT as well as laboratory and blood

transfusion services should be available 24 hours per day. Second level hospitals

have a catchment area of 600,000 to 1,200,000 inhabitants and are equipped

with all medical specialization departments. Those facilities are supplied with

the most advanced technological devices in order to properly treat complex

patients.

Paper Organization. In Section 1.1 we review the literature reporting ED

and emergency medical services (EMS) management approaches. In Section 2

we discuss the details of the problem and we introduce the required notation

and definitions. In Section 3 a Mixed Integer Linear Programming (MIP)

approach is proposed and several properties and relaxations are discussed. In

Section 4 we extensively discuss computational experiments performed by solv-

ing the MIP model on real-world instances provided by DEP-Lazio. In Section

5 we propose a real-time algorithm for first-aid requests allocation. Finally,

in Section 6 we draw some conclusions and discuss the use of the proposed

optimization approach in current and future settings.
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1.1 Literature Review

Operations Research has been widely applied to study ED management issues,

such as capacity planning and patient flows, by using both optimization and

simulation techniques. Literature case-studies can be classified according to the

set of decisions that are taken into consideration, including capacity planning,

staff scheduling and general planning for future development of the facility.

Pure capacity planning case-studies evaluate the impact of resource resizing on

patients waiting times. It is then important to evaluate which is the degree

of complexity of a comprehensive simulation model. As an example, in [11]

the authors consider triage, prioritization and several staff level types as well

as imaging studies, laboratory studies, physical examination, nursing activity,

consultations, and bedside procedures. However, the model does not consider

technical resources reducing the potential analysis of supply shortages. In [4]

the authors show how capacity planning can provide an efficient patient flow

by calculating the maximum occupancy level of beds. In [33] the authors define

an analytical model to describe patient flows in emergency departments taking

into consideration scarce resources such as medical doctors, nurses, beds and

diagnostic machines. The model is used to evaluate the impact of resource

resizing policies. In a similar way in [21] the resizing of different resources

is compared in order to identify which is the one that mainly influences ED

performances. Patients arrival pattern can be also simulated in order to level

the peak of resource utilization, leading to a significantly better planning of

staff and resources [29]. Similarly, in [30] arrival analysis allows a reduction

of patient turnaround times. Finally in [7] optimal control policy is applied

to define the number of resources that should be used in order to prevent ED

overcrowding. ED capacity management can be also analyzed from a different

perspective through the evaluation of how budget restrictions and workforce

reduction can be faced while preserving operational performances [28]. In that

case-study patient flow patterns are fixed and the main goal of the problem is

to evaluate how staffing management can influence waiting times.

It is clear that ED performances cannot be improved only by means of re-

source resizing; advanced prioritization models as well as new organizational

designs can turn out to be more effective than simple capacity planning. In

[22] the authors evaluate the introduction of the so-called split-flow concept

that is an emerging approach to manage ED processes by a split of the patient

flow according to their acuity and enabling parallel processing. The model,

applied to a real ED, aims at reducing patients waiting times and system con-

gestion. In [9] a new prioritization model for patients is evaluated by taking in

consideration patient acuity mix, arrival patterns and volumes and trying to

minimize the walk-away for patients waiting for a long time. In [3] simulation

also proves to be of great potential for the evaluation of future expansion of an

ED by increasing the understanding of the processes involved. An integration

of simulation and optimization techniques is presented in [35] to reduce pa-

tient queuing time. Modeling the complex behavior of an ED is a challenging

task, due to interaction of human and physical resources. Medical staff, for

example, is rarely dedicated to one patient or task. Instead, the staff treats

several patients at a time while waiting for other processes. This diversity of

process interaction can be described as multitasking, a common feature of ED

operations even if rarely considered in planning models (see, e.g., [17]).

Till now we focused our review on emergency department planning by con-
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sidering this organizational unit as a unique component that is externally in-

fluenced only by patient arrivals. It is clear that ED inflow is strongly related

to the definition of catchment areas because a department, and Hospitals in

general, usually cover the health needs of a subset of the local population.

Through ‘covering’ we mean that a specific (regional) population cluster has as

a reference point for health needs a specific hospital that is usually defined on

a distance basis. It is then clear that if we widen the focus of analysis we can

develop capacity plans for hospitals and EDs taking in consideration the fact

that a reorganization can strongly influence the volume of activities and as a

consequence system performances both in terms of patient outcomes and qual-

ity of service. As an example, in [8] the authors propose a modeling framework

to analyze the supply and demand matching of public hospital beds addressing

the planning issues of hospital locations and service allocations, which include

new service distribution as well as existing service redistribution. In [5] an op-

timization model is formulated using integer programming and heuristics, the

goal of the case-study being to maximize coverage of severely injured patients

by locating trauma centers and aeromedical depots. Finally, in [18] the authors

propose a discrete-event geographical location/allocation simulation model for

evaluating various options for the provision of services including the location

of the service centers, service capacities, geographical distribution of patients,

and ease of access to the health services.

ED overcrowding can cause, as a domino effect, ambulance diversions and

an inefficient utilization of emergency medical services (EMS) tying up re-

sources and reducing response time [6]. As a consequence, a consistent branch

of research integrates ED workload management with ambulance management

so as to coordinate two services that are strongly interdependent. In [13] a

multi-dimension Markov chain queuing model is developed to coordinate am-

bulance traffic in order to solve the ED crowding problem. The case study

takes into consideration two hospital EDs and simulates both ambulance and

walk-in arrivals. Similarly, in [2] a Markovian queuing model is used to study

ED crowding and ambulance offload delays. An alternative approach to mini-

mize patients waiting time is proposed in [12], where the ambulance diversion

problem is analyzed by modeling a queuing game between two EDs. In that

article the authors demonstrate the potential benefit of a centralized planner

that maximizes the social optimum. A comparison of hospital selection poli-

cies in order to identify the one that mostly reduces ED crowding problems is

reported in [25].

It is clear that ambulance management cannot be reduced to the diversion

problem analyzed in the previous paragraph. Ambulance dispatching, after

a first-aid request is collected, and its relocation to the next waiting location

are real-time problems that emergency providers should efficiently solve. In

[27] an approximate dynamic programming approach is proposed to solve the

above-mentioned problem in a time-efficient manner.

2 Notation and Definitions

Given a positive integer τ , the time horizon of our analysis is modeled by dis-

crete ordered set T := {1, . . . , τ}, whose elements represent time slots based on

the shift work periods of ED medical operators. Let U be the set of districts

in which the territory under the authority of Lazio Region is partitioned, see
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Figure 1. Let V ⊆ U be the subset of districts in which an emergency depart-

Figure 1: Municipal districts of Lazio Region.

ment is located. Let d(u, v) be the expected time duration of a trip from u ∈ U
to v ∈ V . Throughout this paper we assume d(u, v) is constant over T . Of

course, this is not a completely harmless assumption because traffic conditions

might in fact play an important role, although emergency vehicles are (far) less

constrained by traffic. Let F be a set of first-aid medical treatments that can

be supplied by healthcare centers.

Emergency departments. Let S be the set of emergency departments

operating under the authority of Lazio Region. Each s ∈ S is modeled by a

quadruple composed by the following elements: (i) vs ∈ V is the district in

which s is located; (ii) Fs ⊆ F is the subset of specializations that s can offer;

(iii) ws : R → R is a function returning the expected time a patient has to

wait at s before receiving first-aid service; (iv) qs ∈ R|Fs| reports the quality

of service for each specific medical treatment in Fs, according to Lazio Region

Evaluation Program for medical operations results.

Triage codes and pathologies of interest. Let C be the set of emer-

gency department codes that can be assigned by triage diagnosis. Let P be

a subset of pathologies that are known to be significant within emergency de-

partment management. Each p ∈ P is characterized by a maximum estimated

time tmax(p) that a person suffering p could wait without medical control. Let

fp ∈ F a specific medical treatment for treating p.

Our analysis focuses on three pathologies, namely ST Elevation Myocardial

Infarction, Acute Myocardial Infarction (AMI) and Femoral Fracture (FF),

which have a remarkable impact on Lazio healthcare management system.

First-aid requests. Let R be the set of first-aid requests arising on the

Lazio Region area, during time horizon T . Each r ∈ R is modeled by a quadru-

ple (ur, tr, cr, pr), where: ur ∈ U and tr ∈ T are the district and the time slot

in which r arises, respectively, cr ∈ C is the expected triage code associated

with r, namely its presumed emergency level, and pr is the expected pathology,

as diagnosed in terms of subjective symptoms.
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First-aid requests assignment problem. We are given a set of emer-

gency departments S and a set of first-aid requests R arising from a defined

geographic area, during a fixed time horizon T . An assignment of first-aid

requests to emergency departments is feasible if the following conditions are

satisfied:

a) each request r = (ur, tr, cr, pr) ∈ R is assigned to exactly one emergency

department s = (vs, ws, Fs, qs) ∈ S;

b) s supplies suitable medical treatment for pr;

c) the expected duration of the trip from ur to vs does not exceed the

maximum estimated time for avoiding life-threatening, i.e., tmax(pr).

The goal is looking for feasible assignments that allow to maximize the overall

benefit, in terms of efficiency and effectiveness of supplied emergency depart-

ment services. In addition, condition (b) enforces the idea that the feasibility

of requests assignment should be strongly correlated to health care delivery

appropriateness [24].

3 A Mixed Integer Programming approach

In this section we introduce a basic MIP model for the problem (Section 3.1)

and we then discuss some interesting and useful mathematical properties (Sec-

tion 3.2) and relaxations (Section 3.3).

3.1 The Basic MIP model

In oder to define the backbone of the basic MIP model we need assignment

variables and constraints. More precisely, we introduce a binary variable xrs
with r ∈ R, s ∈ S for each assignment, such that xrs = 1 if and only if re-

quest r is assigned to emergency department s. Thus, the following constraints

guarantee a feasible assignment.∑
s∈S:
fpr∈Fs

xrs = 1 ∀r ∈ R (1)

xrs ≤ 1−min

{
1,

⌊
d(ur, vs)

tmax(pr)

⌋}
∀r ∈ R, ∀s ∈ S (2)

xrs ≥ 0 ∀r ∈ R, ∀s ∈ S (3)

Let observe that (1) forces each request r to be assigned to exactly one emer-

gency department that is able to supply the required medical treatment; thus,

both conditions (a) and (b) are satisfied. Moreover, (2) forbids any assignment

that does not respect condition (c).

Evaluating efficiency. As mentioned, the first required step is to appro-

priately define service quality indicators. Our model allows to evaluate the

efficiency of each assignment in terms of time components, and we do distin-

guish two in particular.

1. Travel time. An initial version of the model can evaluate how to assign

requests to emergency departments in order to minimize the overall time

needed to reach the first-aid facility. The travel time between the place
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where the call is made and the hospital is an element of paramount impor-

tance because, if the patient has compromised vital functions (conscious-

ness, respiration, heart rate, shock) and is in life-threatening conditions,

then the time needed to reach the closest hospital can strongly impact on

the probability of surviving.

2. Waiting time. As a second factor the workload of the emergency de-

partment, quantifiable as “waiting time”, has to be evaluated. Using data

from the Health Emergency Information System, it is possible to empiri-

cally estimate the workload of the hospital for each day of the week and

time of the day. For each ED we used 2012 data to sample waiting times

in correlation with the volume of first-aid requests per time period. In this

way we use the waiting time function as a proxy of the ED capacity. As

a consequence, the choice of the structure may be evaluated considering

penalty coefficients “proportional” to the estimated waiting time.

The first cost contribution is easily given by durvs , whereas the second is given

by function ws, which depends on the number n of patients waiting for medical

treatment (at emergency departments). In particular, ws allows to estimate the

needed waiting time for processing all first-aid requests assigned to s with the

aim of penalizing emergency department overload situations. In our analysis,

we have obtained ED waiting functions from a statistical study of DEP-Lazio.

For each ED and for each time slot, DEP-Lazio provided us a set of points

explaining the stochastic relation between the median waiting time and the

number of patient waiting for healthcare services. For any dataset that was

statistically relevant, we have retrieved ED waiting functions by suitably in-

terpolating the provided data points. Of course, the function obtained is only

approximately convex but this approximation has been validated by the statis-

tical office of DEP-Lazio. Finally, we model ws as a (convex) piecewise linear

function as follows.

Definition 1. Given ks nonnegative integers 0 < n1 < · · · < nks for each

s ∈ S, let

ws(n) :=

{
ashn+ bsh nh ≤ n < nh+1 ∀h = 1, . . . , ks − 1

asksn+ bsks n ≥ nks
(4)

such that the following conditions hold:

ash < ash+1 ∀h = 1, . . . , ks − 1 (5)

bs1 = 0 (6)

bsh+1 = bsh +
(
ash − ash+1

)
nh. ∀h = 1, . . . , ks − 1 (7)

In our study, parameters ash have been estimated by analyzing real waiting

time data provided by DEP-Lazio. Moreover, because ws is a piecewise convex

function, it is easy to check that the following property holds:

ws(n) = max
h=1,...,ks

{ashn+ bsh} , (8)

i.e., for any value of (the number of patients waiting for medical treatment) n

the slope of the linear segment such that ni ≤ n < ni+1 is the leading one in

(8). This is depicted in Figure 2.
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Figure 2: Example of piecewise linear convex function.

For each time slot t ∈ T , let z̄t be the average waiting time of all emergency

departments of Lazio. In order to balance the overall regional emergency de-

partment workload in each t, we introduce a fixed cost λt for each emergency

department whose waiting time ws exceeds the constant z̄t. In our computa-

tional experience, we discuss the impact of different choices of λt. Note that the

workload threshold z̄t has been provided by DEP-Lazio based on a stochastic

analysis, which considers ED median waiting time and the regional healthcare

service target.

Evaluating effectiveness. We evaluate the effectiveness of each assign-

ment by considering the quality of healthcare service for pathologies of interest.

Each hospital can be classified according to a penalty coefficient based on the

quality of care provided, as estimated by the indicators of outcome and process

of the Regional Program for the Evaluation of Outcomes [14, 26]. If, at the

time of the request, the patient’s symptoms are not clearly defined, a summary

measure of hospital quality of care (taking into account some of the most rel-

evant indicators and proceeding to their synthesis) is applied. Otherwise, if

a patient has more defined symptoms, the penalty coefficient may be applied

using specific indicators according to the pathological area.

For each emergency department s ∈ S, vector qs gives the quality for each

medical treatment supplied by s. In particular, the quality of care service

supplied by s for treating p is denoted by qsp and it is computed according

to two indicators, namely the ratio of medical treatments for p over the total

number of medical services supplied by s and the ratio of successful clinical

interventions for p. In our model, we relate qs components to time dimension

by introducing a suitable parameter γ, which expresses the amount of time

a patient is prepared to wait for achieving a one-percentage point improved

service.

MIP formulation. We are now ready to define the basic MIP formulation.

Let nst be a nonnegative integer variable representing the total number of first-

aid requests assigned to emergency department s during time slot t. Let zst
the workload of s during t, estimated by waiting time function w. Let yst be
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a binary variable such that yst = 1 if the total workload of s during t exceeds

the fixed threshold z̄t. Moreover, let n̄s be a nonnegative integer constant

corresponding to the expected total number of patients who have been waiting

or receiving medical treatments in s at starting time of first time slot of T .

Finally, let αt ∈ [0, 1] be a real-valued constant that reports the expected ratio

of patients who have required first-aid services during t−1, but are still waiting

or receiving medical treatments during t.

Thus, let MIP be the following mixed integer (linear) formulation of the first-

aid requests assignment problem:

min
∑
r∈R

∑
s∈S

d(ur, vs)xrs +
∑
t∈T

∑
s∈S

(zst + λty
s
t )− γ

∑
s∈S

∑
p∈P

qsp
∑
r∈R:
pr=p

xrs (9)

s.t.

ns0 = n̄s ∀s ∈ S (10)

nst =
∑
r∈R:
tr=t

xrs ∀s ∈ S, ∀t ∈ T (11)

zst ≥ ash
(
αtn

s
t−1 + nst

)
+ bsh ∀h ∈ {1, . . . , ks}, ∀s ∈ S, ∀t ∈ T (12)

zst ≤ z̄t +Myst ∀s ∈ S, ∀t ∈ T (13)

xrs ∈ A ∩ {0, 1}|R|×|S| ∀r ∈ R, ∀s ∈ S (14)

nst ∈ Z ∀s ∈ S, ∀t ∈ T ∪ {0} (15)

zst ∈ R ∀s ∈ S, ∀t ∈ T (16)

yst ∈ {0, 1} ∀s ∈ S, ∀t ∈ T (17)

where M is a suitably-large real-valued constant and A ⊂ R|R|×|S| is the poly-

tope given by assignment constraints (1)-(3).

Let us observe that any constraint (12) forces the corresponding zst variable

to assume the appropriate value of function w by exploiting property (8). In

particular, zst estimates the total waiting time of s during t by considering all

requests assigned at time slot t and the partial number of requests assigned at

time slot t− 1, obtained from ratio αt.

Moreover, it is easy to check that any constraint (13) forces the associated

yst to 1 if the total waiting time zst exceeds z̄t. Let us observe that yst can

get value 1 also when the previous condition is not satisfied: in that case, the

corresponding solution could be feasible but not optimal because the objective

function (9) is in minimization form.

3.2 Integrality Property of the Assignment Variables

In the following we show how to simplify model (9)–(17) by exploiting some

integrality property of the assignment part of the model. First of all, we need a

preliminary result that characterizes the polytope associated with assignment

variables and constraints.
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Proposition 1. Given |S| · |T | integers νst , let polytope P ⊂ R|R|·|S| be the

intersection between A and the polyhedron in R|R|·|S| defined by the inequalities∑
r∈R:

tr=t, fpr∈Fs

xrs = νst ∀s ∈ S, ∀t ∈ T. (18)

Then, P is integral and the problem of optimizing a linear function over P is

strongly polynomial.

Proof. Let H(N,A) be a digraph with node set N := R ∪ (S × T ) and arc set

A such that: (i) each node is in bijection with either a request r ∈ R or a pair

(s, t) ∈ S × T ; (ii) each arc is in bijection with an ordered pair (r, (s, t)) that

satisfies both conditions d(ur, vs) ≤ tmax(pr) and fpr ∈ Fs. Moreover, consider

the following formulation of P:∑
s∈S:

fpr∈Fs,
d(ur,vs)≤tmax(pr)

xrs = 1 ∀r ∈ R (19)

∑
r∈R:

tr=t, fpr∈Fs,
d(ur,vs)≤tmax(pr)

xrs = νst ∀s ∈ S, ∀t ∈ T (20)

0 ≤ xrs ≤ 1 ∀t ∈ R, s ∈ S (21)

where (19) and (20) are obtained by combining (2) respectively with (1) and

(18). Now, it is easy to check that the constraints matrix associated with (19)-

(21), called B, corresponds to the incidence matrix of H, thus B is totally

unimodular, so it follows that P is integral. In particular, P corresponds to

the feasible region of a flow problem associated with digraph H with demands

dr = −1 for each r ∈ R, d(s,t) = νst for each (s, t) ∈ S×T . Then, by [31], we can

conclude that optimizing a linear function over P is strongly polynomial.

Now, we are able to define an improved formulation in which the number of

integer variables is reduced from O(|R| · |S|+ |S| · |T |) to O(|S| · |T |).

Theorem 1. Let MIP′ be the mixed integer program obtained from MIP

by relaxing the integrality of variables xrs. Then, MIP and MIP′ have the

same optimum value and an optimal solution to MIP can be obtained from an

optimal solution to MIP′ in strongly polynomial time.

Proof. Let ω′ and ω be the optimal solution values of MIP′ and MIP, respec-

tively. In general, ω′ ≤ ω holds because MIP′ is a relaxation of MIP. Let

χ′ := (x′, n′, z′, y′) be an optimal solution of MIP′ and let consider polytope P
with νst = n′

s
t for all s ∈ S, t ∈ T . Then, let x? be an optimal solution obtained

by maximizing function
∑
r∈R

∑
s∈S d(ur, vs)xrs−γ

∑
s∈S

∑
p∈P qsp

∑
r∈R:
pr=p

xrs

over P. Due to Proposition 1, x? is integral and it can be computed in strongly

polynomial time. Because χ? := (x?, n′, z′, y′) is feasible for MIP′ and its cor-

responding objective function value is less or equal to ω′, we have that χ? is an

optimal solution of MIP′. Moreover, because χ? is feasible for MIP, we can

conclude that χ? is optimal also of MIP.
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3.3 Relaxing Workload Balance

Let MIP0 be the mixed-integer programming problem obtained from MIP′ by

relaxing constraints (13) (and assuming λ = 0). In particular, MIP0 models

the relaxation of MIP (9)–(17) in which emergency departments workloads are

not required to be balanced. In the following, we present a reformulation of

MIP0 as a generalized min-cost flow problem on a suitable network.

Let D(N,A) be a digraph with node set N and arc set A, let b : N → R
be a demand function associated with nodes, let l, µ : A → R+ and a : A →
R be capacity, gain and cost functions associated with arcs, respectively. A

pseudoflow is a function ϕ : A → R such that 0 ≤ ϕ(i, j) ≤ l(i, j) holds for

all arcs (i, j) ∈ A. The generalized min-cost flow problem consists of finding a

pseudoflow that minimizes the overall cost
∑

(i,j)∈A a(i, j)ϕ(i, j) subject to the

generalized flow-conservation constraints∑
(i,j)∈A

ϕ(i, j)−
∑

(j,i)∈A

µ(j, i)ϕ(j, i) = b(i) ∀i ∈ N.

For each e = (i, j) ∈ A, let ē := (j, i) be the reverse arc corresponding to e

and let Ā denote the set of reverse arcs associated with A. For reverse arcs, gain

and cost functions satisfy γ(ē) = 1/γ(e) and a(ē) = −a(e)/γ(e), respectively.

Moreover, given a pseudoflow ϕ, the residual capacity function lϕ : A∪ Ā→ R,

is defined as lϕ(e) = l(e) − ϕ(e) for each e ∈ A and lϕ(ē) = γ(e)ϕ(e). Then,

let Dϕ(N, Ā, b, lϕ, γ, a) be the residual network associated with ϕ. The gain

of a cycle belonging to Dϕ is the product of the gains of arcs that compose

the cycle. A cycle of Dϕ whose gain is strictly greater (resp. less) than one

unit is called flow-generating (resp. flow-absorbing). A bicycle is composed

by a flow-absorbing cycle and a flow generating cycle that are arc-disjoint and

connected by a path containing at least one node. We recall that a feasible

pseudoflow ϕ is optimal if and only if Dϕ does not contain any unit-gain cycle

or bicycle. For further details, the reader is referred to [16, 1].

The generalized min-cost flow is a well-known optimization problem that

has a wide range of applications in many scientific area, as discussed in [1].

It belongs to the field of generalized flow, so it reduces to min-cost flow by

assuming γ(e) = 1 for all e ∈ A. Since generalized min-cost flow is a special

case of linear programming, it can be solved in polynomial time by the ellipsoid

method [20]. In the literature, many other polynomial algorithms have been

addressed, which are based on linear programming as reported in [19, 32], or

exploit combinatorial approaches, like in [15, 34]. While min-cost flow can be

solved in strongly polynomial time [31], it is unknown whether the generalized

min-cost flow problem admits strongly polynomial algorithms. However, in [10]

it is shown that the problem is strongly polynomial if there is a fixed number

of arcs whose gain is either than one unit.

In the following we characterize an instance of generalized min-cost flow,

denoted by D(N,A, b, l, γ, a), which gives a combinatorial description of MIP0.

Let Ks := {1, . . . , ks} × T for each s ∈ S, Rt := {r ∈ R : tr = t}, R′t := Rt,

R′ := R, S′ := S and T ′ := T . Then, let D(N,A) be a digraph with node set

N = R ∪ S ∪ (S × T ) ∪K1 ∪ · · · ∪K|S| ∪ (S′ × T ′) ∪R′ ∪ S′,
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Figure 3: Example of network D(N,A).

and arc set A =
⋃8
j=1Aj such that

A1 := {(r, (s, t)) : r ∈ Rt, s ∈ S, t ∈ T with d(ur, vs) ≤ tmax(pr), fpr ∈ Fs}
A2 := {(s, (s, t)) : s ∈ S, t = 1}
A3 := {((s, t), (k, t)) : s ∈ S, t ∈ T, (k, t) ∈ Ks}
A4 := {((k, t), (s′, t′)) : s′ ∈ S′, t′ ∈ T ′, (k, t) ∈ Ks with s = s′, t = t′}
A5 := {((s′, t′), (s, t+ 1)) : s′ ∈ S′, t′ ∈ T ′ \ {τ} with s = s′, t = t′}
A6 := {((s′, t′ + 1), r′) : s′ ∈ S′, t′ ∈ T ′ \ {τ}, r′ ∈ R′t′}
A7 := {((s′, t′), r′) : s′ ∈ S′, t′ = τ, r′ ∈ R′τ}
A8 := {((s′, t′), s′) : s′ ∈ S′, t′ = 1}.

Figure 3.3 shows an example of D(N,A) for T = {1, 2}, S = {s1, s2}, R =

R1∪R2, ks1 = 4, ks2 = 3. Furthermore, let us consider the following functions:
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b(i) =



−1 i = r ∈ R
+1 i = r′ ∈ R′

−α1n̄
s i = s ∈ S

+α1n̄
s′ i = s′ ∈ S′

0 i = (k, t) ∈ Ks ∀s ∈ S
0 i = (s, t) ∈ (S × T ), (s′, t′) ∈ (S′ × T ′)

l(e) =



1 e ∈ A1 ∪A7

α1n̄
s e ∈ A2 ∪A8

nk − nk−1 e ∈ A3 ∪A4,∀k ∈ {1, . . . , ks − 1} with n0 = 0

|Rt| − nk e ∈ A3 ∪A4 for k = ks

|Rt| e ∈ A5

αt e ∈ A6

µ(e) =


αt e ∈ A5

1/αt e ∈ A6

1 e ∈ A \ (A5 ∪A6)

a(e) =


d(ur, vs)− γqsp e ∈ A1

ask e ∈ A3

0 e ∈ A \ (A1 ∪A3)

The following result states that the generalized min-cost problem associated

with D(N,A, b, l, µ, a) is a relaxation of MIP0.

Lemma 1. For each feasible solution χ to MIP0 there exists a feasible pseud-

oflow ϕχ associated with D(N,A, b, l, µ, a) such that χ and ϕχ have the same

cost.

Proof. Let χ := (x, n, z) be a feasible solution of MIP0. For each s ∈ S, let

hs be the largest integer in {1, . . . , ks} such that hs ≤ nst + αtn
s
t−1. Then,

let ϕχ be a pseudoflow associated with D(N,A, b, l, µ, a) such that, for each

r′ = r ∈ R, s′ = s ∈ S, t′ = t ∈ T

ϕχ(r, (s, t)) = xrs (22)

ϕχ(s, (s, 1)) = α1n̄
s (23)

ϕχ((s, t), (k, t)) =


nk − nk−1 k ∈ {1, . . . , hs}
nst + αtn

s
t−1 − nhs

k = hs + 1

0 k ∈ {hs + 2, . . . , ks}
(24)

ϕχ((k, t), (s′, t′)) = ϕχ((s, t), (k, t)) (25)

ϕχ((s′, t′), (s, t+ 1)) = nst with t ∈ T \ {τ} (26)

ϕχ((s′, t′ + 1), r′) = αtxrs with t ∈ T \ {τ} (27)

ϕχ((s′, τ), r′) = xrs with r ∈ Rτ (28)

ϕχ((s′, 1), s′) = α1n̄
s (29)

(30)
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It is easy to check that ϕχ is feasible: capacity and pseudoflow conservation

constraints are satisfied. Moreover, observe that (22) implies

∑
r∈R

∑
s∈S

d(ur, vs)− γ
∑
p∈P :
pr=p

qsp

xrs =
∑
r∈R

∑
s∈S

a(r, (s, t))ϕχ(r, (s, t)). (31)

By relation (8), the following condition holds:

zst = ashs+1

(
αtn

s
t−1 + nst

)
+ bshs+1 ∀s ∈ S, ∀t ∈ T. (32)

Then, by substituting (5)-(7) in (32), it follows that

zst = ashs+1(nst + αtn
s
t−1) +

hs∑
h=1

(ash − ash+1)nh =

ashs+1(nst + αt−1n
s
t−1 − nhs) +

hs∑
h=1

(nh − nh−1)ash =

a((s, t), (hs + 1, t))ϕχ((s, t), (hs + 1, t))

+

hs∑
h=1

a((s, t), (h, t))ϕχ((s, t), (h, t)).

(33)

Thus, relations (31) and (33) imply that χ and ϕχ have the same cost.

In general, the reverse is not true, i.e., there exist feasible solutions of

generalized min-cost flow over D(N,A, b, l, µ, a) that cannot be mapped into

feasible solutions of MIP0. However, latter problems are equivalent under

certain conditions, e.g., assuming αt = 1 for each t ∈ T . In this case, the

generalized min-cost flow over D(N,A, b, l, µ, a) reduces to the min-cost flow

problem over D(N,A, b, l, a). Since demands and capacities are integer, there

exist integral optimal flows corresponding to feasible solutions of MIP0 that

are optimal by Lemma 1. Furthermore, we can show the following result.

Theorem 2. Let us assume

min
r∈R

s,s̃∈S, s 6=s̃

{d(ur, vs)− d(ur, vs̃)} ≥ max
s,s̃∈S
s6=s̃

{
asks − a

s̃
1

}
. (34)

Then, optimal solution to MIP0 can be computed in strongly polynomial time.

Proof. Let ϕ? be an optimal pseudoflow to generalized min-cost flow problem

associated with D(N,A, b, l, µ, a). In general, ϕ? is not integral. Since the

residual network Dϕ? corresponding to ϕ? does not contain negative cycles,

it is easy to check that vertices (s, t), (k, t), (s′, t′) form strictly positive cost

cycles for each s ∈ S, t ∈ T with s′ = s and t′ = t. Thus, it follows that relation

(33) is satisfied. Moreover, (34) ensures that for each (r, (s, t)) ∈ A such that

0 < ϕ?(r, (s, t)) < 1, there exists at least a null cost cycle in Dϕ? that contains

arc (r, (s, t)) and ((s, t), (k, t)) with residual capacity greater than or equal to

1− ϕ?(r, (s, t)). Thus, an optimal integer pseudoflow ϕ′ can be obtained from

ϕ? by saturating O(|R|) null-cost cycles. Then, we have that ϕ′ corresponds

to a feasible solution χ′ of MIP0, so we conclude that χ′ is optimal by Lemma

1. Finally, by [10], it follows that χ′ can be computed in strongly polynomial

time.
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4 Computational Results

The computational experience focuses on a wide set of instances that are based

on real-world data from the Lazio emergency department system during the

entire year 2012.

First-aid requests characteristics have been retrieved from the Hospitals Infor-

mation System (HIS)1 and the Emergency Room Information System (ERIS)2

of regional healthcare services authority. In particular, HIS manages the Hos-

pital Discharge Register (HDR)3 database, which maintains information of all

hospital admissions and discharges, by integrating patients personal details,

healthcare services supplied and medical treatment results. Lazio’s HDR pro-

vides additional medical treatments information for STEMI, AMI and FF,

which are the pathologies of interest associated with our analysis. The ERIS

integrates HIS database by supplying specific and detailed information only for

emergency departments. The description of regional emergency departments,

with associated quality of service information, has been retrieved from statisti-

cal studies carried out by DEP-Lazio, which are based on regional and national

evaluation programs for medical operations results. For more details, we refer

the reader to [14, 26].

The time horizon T naturally refers to a day of the year 2012 and it has been

discretized into the following three time slots: daytime (8:00 am - 15:59 pm),

evening (16:00 pm - 23:59 pm), night (0:00 am - 7:59 am). Such decomposi-

tion has suitable operational relevance in terms of service level and expected

number of requests. Moreover, the effects of emergency department workloads

balancing have been evaluated by considering two different classes of values

for λt. A first class referring to MIP0 allows to consider solutions with un-

balanced workloads (λt = 0 for all t ∈ T ), whereas a second class referring to

MIP′ guarantees workload-balanced solutions. In latter case, we fix λt = z̄t
for all t ∈ T , in order to avoid requests allocations which cause undesirable

overloads of emergency departments with small capacity.

The computational experience has been carried out on a x86-64 GNU/Linux

machine (CentOS 6.3) with 8 cores @2GHz and 16GB of RAM. We have gener-

ated instances of MIP′ and MIP0 for each day of year 2012 by considering all

50 operating emergency departments of Lazio. Then, we have achieved optimal

solutions for all instances by using IBM ILOG Cplex 12.5.1.

Table 1 summarizes computational results for MIP′ instances by reporting av-

erage values for each month: in particular, i) the second column reports the

average number of emergency requests occurred in each day; ii) the third col-

umn reports the number of infeasible instances, i.e., the number of days of the

month in which at least one request could not be correctly assigned accord-

ing to the constraints of our model; iii) the forth column shows the average

optimal solution value of each day, while columns fifth and sixth indicate cost

contributions of waiting time functions (the sum of the zst variables in (9)) and

overall penalty time value (the sum of λty
s
t terms), respectively; iv) the last

two columns report the average Cplex performance (in terms of elapsed real

computational time and total branch&bound nodes) that has been observed

for solving each (feasible) instance of the month.

1Corresponding Italian acronym is SIO: “Sistema Informativo Ospedaliero”.
2Corresponding Italian acronym is SIES: “Sistema Informativo per l’Emergenza Sanitaria”.
3Corresponding Italian acronym is SDO: “Scheda di dimissione ospedaliera”.
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Month Mean |R| Infeas. Optimum Waiting time Penalty time Cplex time Cplex nodes

(2012) (day) MIPs (min) (min) (min) (sec) (average)

1 4,300.4 8 60,297.63 25,360.77 2,899.85 111.316 3,209.1

2 3,980.9 6 55,943.78 23,570.66 2,838.61 109.878 3,387.1

3 4,323.1 5 61,418.85 25,859.72 2,888.61 122.203 3,231.3

4 4,287.2 5 60,861.64 25,599.72 2,894.28 131.929 3,384.2

5 4,493.5 7 63,015.01 26,568.41 2,924.67 137.239 3,409.3

6 4,590.0 7 64,929.66 27,427.35 2,990.86 148.866 3,371.1

7 4,409.1 8 62,458.13 26,341.63 2,977.74 139.629 3,311.0

8 4,229.0 4 59,870.97 25,180.69 2,932.98 132.760 3,257.4

9 3,996.3 0 56,082.89 23,604.62 2,859.93 113.067 3,305.0

10 4,154.2 10 58,111.27 24,425.29 2,874.46 112.856 3,395.1

11 4,112.7 11 57,930.31 24,405.94 2,902.58 114.509 3,382.1

12 4,025.8 8 56,399.67 23,862.90 2,822.65 119.214 3,295.8

Table 1: Computational experience.

The results in Table 1 show that MIP′ can be solved relatively easily by a

sophisticated MIP solver like Cplex 12.5.1. The number of instances that turn

out to be infeasible is relatively small, namely around 20%. The influence of

the penalty term associated with workload unbalance amounts at 10% of the

term associated with the waiting time. In order to evaluate how important is

the penalization of such an unbalance we also solved MIP0 and the results are

rather easy to interpret. Because MIP0 is a relaxation of MIP′, as discussed

in Section 3.1, optimal values to MIP0 are on average better of 5.36% than

those of MIP′, but at the price of an increased waiting time cost contribution,

on average of 0.74%, due to the absence of workload balance. We omit detailed

results on MIP0 instances but it is worth mentioning that they are very easy

to solve both by using a combinatorial algorithm for generalized min-cost flow

or by solving MIP0 with a general-purpose MIP solver like Cplex. In the latter

case, no branching is ever necessary.

Finally, concerning the impact of the property studied in Section 3.2 that

led to a simplification of formulation MIP into MIP′, we have a rather inter-

esting situation. The simplified formulation MIP′ is faster than MIP, namely

6.01% in geometric mean over the 270 solved instances. However, the num-

ber of explored nodes is much higher, namely 24.29%. In other words, in the

case of MIP′ Cplex is much faster in exploring nodes, which is quite strange

because the only difference between the two formulations is that some of the

variables are declared continuous instead of binary, thus the LP relaxations

should be identical. However, as an example, a generic instance (January 17,

2012) goes from 186,006 binary variables to only 150, which might explain the

issue. Indeed, the presence of 186,006 binary variables potentially lead to many

time-consuming computational steps, for example, in the preprocessing, node

preprocessing, probing, cutting plane generation, branching selection, etc. A

“cleaner” formulation is overall preferable and, in practice, leads to speed up

the computation. Note, however, that it is a matter of tradeoff because the node

increase of MIP′ with respect to MIP shows that the above time-consuming

steps are in fact effective.

As pointed out in the Introduction, the aim of the present study is to

compute the optimal solution of a (unrealistic) fully centralized allocation of

first-aid requests to EDs, so as to be able to in the evaluation of both the
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state of the art and future reorganization ideas, some sort of Price of Anarchy

evaluation. To achieve this we compare in Table 2 real (observed) first-aid re-

quest assignments during year 2012 with the optimal solutions of model MIP′.

Specifically, Table 2 is organized as follows: i) second and third columns in-

dicate the number of infeasible assignments with respect to the violation of

constraints (2) (each patient has to reach an emergency department within a

suitable time according to kind of health emergency) and (1) (each request

has to be assigned to an emergency department with a suitable specialization

that allows to supply appropriate medical treatments), respectively; ii) the

forth column exhibits the average objective function value for each day, while

columns fifth and sixth specify cost contributions of waiting time functions

and overall penalty time value, respectively (analogously to Table 1); iii) the

last three columns report the average relative gaps between values of observed

assignments and optimal solution for the overall value and cost contributions

of waiting and penalty times, respectively.

Month Violated Violated Overall Waiting Penalty Overall Waiting Penalty

(2012) constr. (2) constr. (1) value (min) time (min) time (min) value (gap%) time (gap%) time (gap%)

1 2.0 360.4 101,437.07 47,964.39 3,851.36 40.18 46.69 24.58

2 2.0 299.2 91,175.49 42,848.48 3,818.35 38.86 45.01 25.79

3 1.6 362.6 102,101.16 48,415.55 3,870.28 40.05 46.73 25.38

4 2.0 361.1 101,898.65 48,231.42 3,862.21 40.57 47.24 25.13

5 1.5 370.4 105,827.41 50,405.02 3,886.48 40.37 47.19 24.80

6 2.0 383.1 110,125.15 51,671.08 3,923.45 41.27 47.19 23.76

7 1.8 343.5 108,814.64 48,679.28 3,944.40 42.90 46.07 24.47

8 2.5 361.5 109,621.28 46,288.93 3,949.02 45.15 45.39 25.72

9 1.9 301.8 93,799.83 43,309.37 3,874.65 40.19 45.43 26.19

10 2.0 320.5 96,755.77 45,338.37 3,852.34 39.32 45.33 25.32

11 1.7 335.2 95,445.33 45,136.85 3,838.66 40.06 46.79 24.52

12 1.8 357.5 94,010.21 44,578.50 3,818.23 40.00 46.22 26.16

Table 2: Comparing observed request allocations with optimized solutions.

The numbers in Table 2 immediately show that the solutions naturally ob-

tained without a centralized allocation strategy (for example a remote triage)

violate many of the constraints of MIP′, especially constraints (1) associated

with suitable specialization. This information is especially interesting from

a strategic (and practical) standpoint: such a remote triage conducted in an

effective way could have a remarkable impact to significantly reduce these vio-

lations that correspond to dangerous inefficiency of the system. The rest of the

numbers of Table 2 are instead interesting but not easy to interpret. In a sense

the objective function (9) is completely disregarded by the observed request

allocation system but maybe the part of it associated with the minimization of

the travel time. Thus, the absolute and relative difference of the components of

the objective function are less meaningful at this point in time, while they will

be more and more so when different reorganization settings will be evaluated.

5 Optimized real-time first-aid requests assignment

The offline assignment of all first-aid requests at once is very interesting from a

strategic viewpoint but does not immediately provide a tool that can support

health managers during the day-by-day operations. In order to implement

a regional remote triage approach it is then fundamental to define a real-time

approach that can manage the assignment of incoming requests (almost) online.
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Section 3.3 has introduced a reformulation of the first-aid assignment prob-

lem with unbalanced emergency department workloads MIP0 as a generalized

min-cost flow problem on a suitable instance D(N,A, b, l, γ, a). For this pur-

pose, the computational experience has shown that optimal solutions to one-day

instances can be efficiently computed requiring computational time less than

one second. As a consequence, the high performance of flow-based method

give rise naturally to the investigation of real-time optimization approaches for

the first-aid requests assignment problem. In this section, we discuss a basic

real-time paradigm that exploits the addressed flow-based reformulation.

The main idea consists in considering three sets of first-aid requests, namely

Rϑ−1, Rϑ and Rϑ+1, where ϑ ∈ T represents the current time slot. In partic-

ular, Rϑ−1 is the set of requests that have been assigned during previous time

slot, Rϑ contains all requests which have been assigned during the current time

slot, whereas Rϑ+1 is the set of forecast requests that are expected to occur

during the next time slot. We motivate this design feature by remarking that

closest past and future assignments have a notable impact on current deci-

sion because of emergency department workload functions. Moreover, observe

that forecasted requests can be suitably computed by analyzing the associated

time series and considering stochastic perturbation effects due to periodical

and exceptional events.

A basic real-time scheme can be initialized by a generalized min-cost flow

instance D(N,A, b, l, γ, a) with T := {ϑ − 1, ϑ, ϑ + 1}, Rϑ := ∅ and Rϑ−1,

Rϑ+1 containing requests assigned during ϑ− 1 and forecast requests expected

during ϑ+1, respectively. The main loop of the real-time scheme is activated for

each incoming request ρ, so instance D(N,A, b, l, γ, a) is consistently updated

by considering both ρ and workload balance information. Then, the instance

is solved in order to compute and fix the assignment of ρ. The workload

balance penalty λ can be considered by computing the set P of emergency

departments that are close to saturation condition, expressed by time threshold

z̄. In particular, given a current requests assignment, characterized by variables

nsϑ for each s ∈ S, we say that s ∈ P , i.e., s is close to saturation, if nsϑ
belongs to interval [nsz̄−1, nsz̄] with nsz̄ := minh=1,...,ks{

z̄−bsh
ash
} for each s ∈ S (in

other words, nsz̄ is the threshold for requests number of s such that ws(n
s
z̄) =

z̄). Thus, at each main loop iteration, the workload unbalance penalty can

be treated by temporary adding the fixed penalty cost λ to the cost of arc

(ρ, (s, ϑ)) ∈ A(D) for each s ∈ P . Algorithm 1 reports such basic real-time

approach.
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Algorithm 1: Real-time first-aid requests assignment algorithm

Input: Rϑ−1, Rϑ+1

Result: Optimal real-time first-aid assignments

Rϑ ← ∅;
N ← Rϑ−1 ∪Rϑ+1;

Generate D(N,A, b, l, γ, a);

P ← ∅;
foreach incoming request ρ do

Rϑ ← Rϑ ∪ {ρ};
N ← Rϑ−1 ∪Rϑ ∪Rϑ+1;

Update D(N,A, b, l, γ, a);

a′ ← a;

while P 6= ∅ do

Select s from P ;

a(ρ, (s, ϑ))← a(ρ, (s, ϑ)) + λ;

P ← P \ {s};
end

Solve generalized min cost flow over D(N,A, b, l, γ, a);

Assign request ρ accordingly;

a← a′

end

Algorithm 1 exploits several ingredients proposed in the previous section,

namely, the original MIP model, its relaxation MIP0, and the availability

of a quick combinatorial solution of it, for proposing the first online first-aid

requests allocation based on a centralized triage. We have not yet investigated

the computational performance of this approach because remote triage policies

are still under development in Lazio but this basic algorithm constitutes the

starting point of the follow-up of our project.

6 Conclusions and Future Work

The assignment of service requests to emergency departments is of paramount

importance both from a life-threatening and an economical viewpoints. Within

a more general project that aims at defining optimal allocation policies of

patients to regional hospital network facilities, the Department of Epidemiology

of the Regional Health Service of Lazio (Italy) was interested in obtaining a

completely offline picture of the effect of an optimal assignment of requests to

emergency departments. This is in the spirit of evaluating the so-called Price of

Anarchy, where the fully centralized (admittedly unrealistic) allocation is used

as a reference for both the state of the art completely decentralized approach

and future reorganization ideas.

We have implemented and tested with real-world data of all service requests

of 2012 a Mixed Integer Linear Programming model that computes such an

optimal request allocation by minimizing travel and waiting times and penal-

ize workload unbalance among emergency departments in the region. Within

the development process we have studied special cases and relaxations of the

complete model showing interesting mathematical properties that are, in turn,

useful from a practical viewpoint. Finally, one of those special cases allowed

us to devise a real-time version of the first-aid requests allocation approach,
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which can be used as a Decision Support System for the Triage Center daily

operations.

The present study is an important, quantitative step in the evaluation of

centralized allocation strategies like remote triage that could have a remark-

able impact in making the allocation process much more efficient and effective.

More precisely, the developed methodology as well as the software tools are cur-

rently used by the DEP-Lazio for the reorganization of the regional networks

of emergency healthcare. Our findings will be shared with the Regional Di-

rectorate for health and social-health integration and the Regional Healthcare

Emergency Unit, which operatively manages the first aid requests in Lazio. The

joint analysis of the results by those who plan emergency healthcare programs

and by those who operationally run them in the territory are expected to be

helpful to develop and quantitatively evaluate strategies to: (a) improve health

assistance for the population living in disadvantaged areas, (b) reduce waiting

times in emergency departments and (c) balance workload among EDs of the

Lazio region. A future step in the direction of improving the above goals is to

include scheduling rules and patient priorities according to suitable functions

measuring single patient waiting times. A possibility under investigation is to

adjust the mathematical model by taking into account the workload of each

first-aid request based on its priority code, thus obtaining a weighted version

of constraints (11).

More generally, considering that the technical equipment is known for each

hospital, this type of optimization (possibly coupled with simulation) tech-

niques can be effectively used to reorganize the emergency networks in accor-

dance with the hierarchical levels of the hospitals equipment complexity. In

addition, the fleet of emergency vehicles currently in use, namely 3 helicopters

to support first-aid activities (located in Viterbo, Rome and Latina) and 219

between ambulances and medical cars, must be taken into account more ac-

curately. The emergency vehicles are located in 149 stations throughout the

region, grouped into 5 Operative Centers. The fleet management is the topic of

the follow up project “Optimization of the cardiac network in the Lazio region:

appropriateness, timeliness and equity in access to emergency care”.

The presented project and the follow up one are likely to result in optimiza-

tion of the current “Hub and Spoke” model, based on the distinction of the

emergency departments in basic EDs, first level EDs and second level EDs,

depending on the provided intensity of care.
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[3] I.K. Altιnel and E. Ulaş. Simulation modeling for emergency bed require-

ment planning. Annals of Operations Research, 67(1):183–210, 1996.

[4] A. Bagust, M. Place, and J.W. Posnett. Dynamics of bed use in ac-

commodating emergency admissions: stochastic simulation model. BMJ,

319(7203):155–158, 7 1999.

[5] C.C. Branas, E.J. MacKenzie, and C.S. ReVelle. A trauma resource alloca-

tion model for ambulances and hospitals. Health Serv Res, 35(2):489–507,

Jun 2000.

[6] C.W. Burt, L.F. McCaig, and R.H. Valverde. Analysis of ambulance

transports and diversions among {US} emergency departments. Annals

of Emergency Medicine, 47(4):317 – 326, 2006.

[7] A. Chockalingam, K. Jayakumar, and M.A. Lawley. A stochastic control

approach to avoiding emergency department overcrowding. In Proceedings

of the Winter Simulation Conference, WSC ’10, pages 2399–2411. Winter

Simulation Conference, 2010.

[8] S.C.K. Chu and L. Chu. A modeling framework for hospital location and

service allocation. International Transactions in Operational Research,

7(6):539–568, 2000.

[9] J.K. Cochran and K.T. Roche. A multi-class queuing network analysis

methodology for improving hospital emergency department performance.

Computers & Operations Research, 36(5):1497 – 1512, 2009.

[10] E. Cohen and N. Megiddo. Algorithms and complexity analysis for some

flow problems. Algorithmica, 11(3):320–340, 1994.

[11] L.G. Connelly and A.E. Bair. Discrete event simulation of emergency

department activity: a platform for system-level operations research. Acad

Emerg Med, 11(11):1177–1185, Nov 2004.

[12] S. Deo and I. Gurvich. Centralized vs. decentralized ambulance diversion:

A network perspective. Management Science, 57(7):1300–1319, 2011.

[13] P. Enders. Applications of stochastic and queueing models to operational

decision making. PhD thesis, Tepper school of Business, Carnegie Mellon

University, 2010.

[14] D. Fusco, A.P. Barone, C. Sorge, M. D’Ovidio, M. Stafoggia, A. Lallo,

M. Davoli, and C.A. Perucci. P.re.val.e.: outcome research program for

the evaluation of health care quality in lazio, italy. BMC Health Serv Res,

12:25, 2012.

[15] A.V. Goldberg, S.A. Plotkin, and É. Tardos. Combinatorial algorithms for
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