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Brain-computer interfaces (BCIs) represent a new frontier in the effort to maximize the

ability of individuals with profound motor impairments to interact and communicate.

While much literature points to BCIs’ promise as an alternative access pathway, there

have historically been few applications involving children and young adults with severe

physical disabilities. As research is emerging in this sphere, this article aims to evaluate

the current state of translating BCIs to the pediatric population. A systematic review was

conducted using the Scopus, PubMed, and Ovid Medline databases. Studies of children

and adolescents that reported BCI performance published in English in peer-reviewed

journals between 2008 andMay 2020 were included. Twelve publications were identified,

providing strong evidence for continued research in pediatric BCIs. Research evidence

was generally at multiple case study or exploratory study level, with modest sample sizes.

Seven studies focused on BCIs for communication and five on mobility. Articles were

categorized and grouped based on type of measurement (i.e., non-invasive and invasive),

and the type of brain signal (i.e., sensory evoked potentials or movement-related

potentials). Strengths and limitations of studies were identified and used to provide

requirements for clinical translation of pediatric BCIs. This systematic review presents the

state-of-the-art of pediatric BCIs focused on developing advanced technology to support

children and youth with communication disabilities or limited manual ability. Despite a

few research studies addressing the application of BCIs for communication and mobility

in children, results are encouraging and future works should focus on customizable

pediatric access technologies based on brain activity.

Keywords: brain-computer interface, children, youth, assistive technology, severe disability, communication,

environmental control

INTRODUCTION

Technology is often exploited as a tool to support children affected by severe brain disorders or
injury in their daily activities. These technologies are especially pertinent to children who are not
capable of using speech to communicate or who are limited in motor skills and require mobility
aids. Worldwide, only 1 in 10 people have access to assistive technology devices when required
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[World Health Organization (WHO), 2020] and in Canada 95%
of 3,775,920 individuals living with a disability use at least one aid
or device to assist movement, communication, learning, or daily
activities of life (Berardi et al., 2020).

The need for novel assistive technology and techniques for
neurorehabilitation effective for children is high (Mikołajewska
and Mikołajewski, 2014). One of the most advanced technical
solutions is the brain-computer interface (BCI). BCIs can be
defined as a link between the brain and an extra-corporeal
apparatus, whereby signals from the brain can directly control the
external device entirely bypassing the peripheral nervous system
(Wolpaw et al., 2000). BCIs utilize changes in brain activity
occurring when we react to stimuli, perform specific mental
tasks, or experience different psychological or emotional states.
Non-invasive BCIs typically detect and utilize electromagnetic
potentials directly related to ensemble neuronal firing, or the
associated hemodynamic changes including regional changes in
relative oxyhemoglobin and deoxyhemoglobin concentrations
(Proulx et al., 2018; Schudlo and Chau, 2018; Sereshkeh et al.,
2018, 2019) and changes in arterial blood flow velocities
(Myrden et al., 2011, 2012; Goyal et al., 2016), due to
neurovascular coupling. Clinically, BCIs enable brain-based
control of communication aids and environmental technologies
(Moghimi et al., 2013; Rupp et al., 2014), assist in diagnosis (De
Venuto et al., 2016; Lech et al., 2019), and enhance rehabilitation
therapies (Daly and Wolpaw, 2008; Pichiorri and Mattia, 2020).

A long-term objective of translational BCI research is
providing a channel for communication and environmental
control for people with severe and multiple physical disabilities
who otherwise lack the means to interact with people and
the environment around them (Wolpaw et al., 2002). Hence,
BCI-based control has been explored for: computer cursors
(Wolpaw et al., 2002; Wirth et al., 2020); virtual keyboards
(Birbaumer et al., 1999; Thompson et al., 2014a; Hosni et al.,
2019); augmentative and alternative access systems (Thompson
et al., 2013, 2014b; Brumberg et al., 2018); prosthetic devices
(McFarland and Wolpaw, 2008; Vilela and Hochberg, 2020);
wheelchairs (Punsawad and Wongsawat, 2013; Yu et al.,
2017); entertainment/gaming (Holz et al., 2013; Van de Laar
et al., 2013; Cattan et al., 2020); Internet browsing (Mugler
et al., 2010; Milsap et al., 2019); and painting (Münßinger
et al., 2010; Zickler et al., 2013; Kübler and Botrel, 2019).
Given these explorations, BCIs have potential to serve as
an alternative access method for people with severe motor
deficits (Huggins et al., 2014), who are not well-served by
commercially available access solutions. Nonetheless, research
on novel BCI solutions for target populations has been
limited to laboratory settings (Fager et al., 2012; Wolpaw
and Wolpaw, 2012; Guy et al., 2018) and able-bodied adults
(Pires et al., 2011; Oken et al., 2018). A modest subset of
BCI studies has recruited adults with disabilities, including:
amyotrophic lateral sclerosis (Nijboer et al., 2008; Huggins et al.,
2011; Oken et al., 2014); multiple sclerosis (Papatheodorou
et al., 2019); brainstem stroke (Sellers et al., 2014); muscular
dystrophy (Zickler et al., 2011); acquired brain injury (Huang
et al., 2019) and cerebral palsy (CP) (Taherian et al.,
2016).

The adult BCI focus is at least partially attributable to the
relative ease of acquiring from this population, robust brain
signals that can be well-characterized. While the findings of
adult studies are promising, BCI algorithms optimized for adults
cannot be directly applied to pediatric users due, in part, to age-
related differences in the brain responses of interest (Volosyak
et al., 2017; Manning et al., 2021). For example, compared
to adults, children exhibit less language lateralization (Holland
et al., 2001), attenuated movement-related cortical potentials
(MRCPs) (Pangelinan et al., 2011), and greater attentional effects
on the latencies of auditory evoked potentials (Choudhury
et al., 2015). Well-established BCI tasks for adults, such as
verbal fluency, a verbal working memory task that requires
to recall words associated with a common criterion from
memory (Schudlo and Chau, 2018), are not suitable for children
without developmentally appropriate modifications (Gaillard
et al., 2003; Schudlo and Chau, 2018). Children with congenital
impairments may have atypical brain anatomy and functional
organization that preclude the simple translation of time-
honored BCI protocols, including those validated in adults with
acquired impairments.

Developmental differences may also manifest behaviorally.
Children may experience difficulties maintaining focus (Gavin
and Davies, 2007; Kinney-Lang et al., 2020) and their brain
signals can contain excessive movement artifacts (Bell andWolfe,
2007). It is imperative that research expands beyond able-bodied
adults and involves more end-users, including children, ensuring
any new developments are optimized from an individual’s
perspective. Differences in brain structure, topography, cognitive
processing pathways and psycho-behavioral predisposition ought
to be considered (Weyand and Chau, 2017).

Mikołajewska and Mikołajewski (2014) published a mini-
review of BCI applications in children identifying several
issues unique to pediatric applications of BCI and a paucity
of research thereof. Among these pediatric-specific challenges
included the absence of guidelines for processing brain signals
from children, heightened neural plasticity including evolving
cortical organization and frequency content of signals, and child
engagement considerations such as fear, comfort, and positioning
(Mikołajewska and Mikołajewski, 2014). Notwithstanding these
concerns, the need for pediatric BCI research remains high given
the lack of viable access technologies for children and youth with
severe and multiple disabilities (Myrden et al., 2014).

Brain Computer Interfaces
BCI systems deploy either invasive or non-invasive signal
acquisition modalities. Invasive BCIs monitor brain activity on
a cortex’s surface using electrocorticography (ECoG), within
the gray matter using intracortical microelectrodes (Simeral
et al., 2011) or in deep subcortical structures using depth
electrodes (Krusienski and Shih, 2011; Herff et al., 2020). Non-
invasive BCIs instead measure electrophysiological activity with
electroencephalography (EEG) or magnetoencephalography
(MEG), or hemodynamic activity using magnetic resonance
imaging (MRI), near-infrared spectroscopy (NIRS) or
transcranial Doppler ultrasound (Myrden et al., 2011, 2012).
A third category, the hybrid BCI, is defined as systems using
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two or more measurement modalities such as NIRS-EEG and
EEG-electrocardiogram (Pfurtscheller et al., 2010; Zephaniah
and Kim, 2014) either simultaneously or sequentially.

BCIs can be categorized according to the paradigm invoked
for eliciting machine-discernible brain signals. Reactive BCI
paradigm elicits an event-related potential (ERP). Popular ERPs
leveraged in BCIs include the P300, which is evoked by an
oddball stimulus and characterized by a large positive deflection
that occurs between 200–250 to 700–750ms after stimulus onset
(Amiri et al., 2013; He et al., 2020), and the steady-state visual
evoked potential (SSVEP) and auditory steady-state response,
wherein brain responses are evoked, respectively, by flickering
lights or pure tones at specific frequencies. Active BCI paradigms
elicit machine-discernible brain signals for BCI control via
deliberate mental tasks such as motor imagery (MI), which
involves the mental rehearsal of: a given movement (Rejer, 2012);
mental arithmetic, music imagery (Weyand and Chau, 2015);
spelling (Obermaier et al., 2003); covert speech (Birbaumer
et al., 2010); observing pictures (Kushki et al., 2012); among
others. Typical BCI taxonomies include passive BCIs that simply
monitor the user’s psychological state (Myrden and Chau, 2016,
2017).

Once acquired, signals generated by a BCI task are fed through
a processing pipeline. Signal processing procedures for BCIs
can be “offline” (retrospective) or “online” (suitable for real-
time applications). A typical BCI processing pipeline (Bamdad
et al., 2015) for communication and mobility is depicted
in Figure 1. Typical pipeline elements include algorithms to
suppress artifacts, extract features, and classify the signals.
Pipeline outputs are then used to control an assistive device that
supports communication or mobility.

Objectives and Research Question
This article appraises the pediatric BCI literature systematically,
considering specific inclusion criteria and highlighting the
current information processing methods applied to pediatric
brain signals. Through this systematic review, we set out to
address two research questions: (1) What is the state of science

in applying BCIs to support communication and manual ability
in the pediatric population?; (2)What is current knowledge about
the necessary considerations to render BCIs suitable for children?

METHODS

Study Design
This systematic review included all levels of research evidence
and aimed to integrate best practice systematic review
methodology, the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al.,
2009).

Search Strategy
Identification Process
Based on a preliminary search-string with the PubMed database,
the syntax was developed for the search across three databases
during May 2020: Scopus, PubMed, and Ovid. The SPIDER
(Sample, Phenomenon of Interest, Design, Evaluation, Research
type) tool was used to structure the search related to the
research questions (Cooke et al., 2012). Electronic database
searches were performed using the following key-terms related to
“Sample:” pediatric or pediatric; or child or children; or youth(s)
or adolescent(s) or teen(s) or teenager(s). These were combined
with the following “Phenomenon of Interest” terms: BCI or brain
computer interface or brain-computer interface or brain-machine
interface or brain machine interface or mind machine interface
or direct neural interface or neural control interface. The search
strategy did not specify design, evaluation, or research type in
order to capture all potentially relevant articles. These terms
were considered in the inclusion and exclusion criteria. After
retrieving studies from the searches, duplicates were removed
and the paper titles, abstracts, and associated meta-data were
compiled into a single table for further review.

Screening Process: Inclusion and Exclusion Criteria
All research within Oxford levels of evidence I–IV (Howick et al.,
2011), including case studies and single-case experimental design

FIGURE 1 | Typical BCI processing pipeline. The input signal acquired from the human brain is filtered (signal processing), classified and transferred to an output

device (device interface), forming the BCI application.
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studies reporting objective outcome measures were eligible for
inclusion, if they: (1) reported in full text; (2) were published
in English in peer-reviewed journals between January 2008 and
May 2020; (3) included children and adolescents, under the age
of 19 (Sawyer et al., 2018), using BCIs; (4) described the design
of the protocol used for data collection (“Design”); (5) measured
outcomes related to the performance of the BCI (“Evaluation”);
and (6) included quantitative methods (“Research type”). Studies
that presented only aggregate results from participating adults
and children were excluded. Those studies that related to the
general diagnosis of brain disorders or diseases were excluded.
Publications related to passive BCI without a final goal of
developing assistive technology devices were excluded. Gray
literature and unpublished works were not eligible for inclusion.
Strictly qualitative research, book chapters, review articles, and
conference publications were excluded.

Eligibility Process: Study Selection, Data Collection

Process, and Synthesis of Results
Two of the five authors (SO and SCH) conducted the search
across the databases and produced a list of articles based
on the title and abstract according to the inclusion criteria.
A two-step procedure was carried out independently by four
authors (SO, SCH, PK, RS) to identify articles for inclusion.
The first step involved screening titles and abstracts for potential
eligibility and, thereafter, screening the full text of potentially
eligible articles. Four authors independently completed data
extraction. An almost perfect level of agreement was obtained
for title and abstract screening (Cohen’s kappa coefficient,
k = 0.96, percentage of agreement 98%). After a full-text
review of the eligible papers, articles were excluded for any
of the following reasons: the performance was reported for a
heterogeneous group composed of adults and children without
a two-group comparison (e.g., only averaged accuracy was
reported, or children and adults’ classification performance was
not distinguishable); BCIs were not developed for pediatric
participants; BCIs developed for adults but included a limited
number of children (only one or two adolescents not sufficient
for a two-group comparison); only adult participants were
included in the study; results were not reported in terms of
BCI performance; the study was not related to BCIs; passive
BCIs were applied; the study did not include participants’ data;
participants’ ages were not reported. Twelve articles remained
eligible for further review. Twelve articles remained eligible for
further review.

Data Extraction and Analysis
For each eligible study, the following data were extracted:
number of participants and their ages; study design and data
acquisition protocol; signal features; classifier; and performance
metrics. It was not appropriate to conduct a meta-analysis or any
statistical analyses of the results due to the small number and
heterogeneity of the included studies. Instead, key findings were
summarized and presented narratively clustering the selected
full-text papers into two sub-groups based on the functional
activities identified (communication or manual ability) and the
type of measurement applied (non-invasive or invasive). No

additional articles were found by consulting the references of the
included full-text articles.

Quality Appraisal and Risk of Bias
Considering the heterogeneity of the 12 articles, the “QualSyst”
quality assessment tool (Alberta Heritage Foundation forMedical
Research) was used to gauge the quality of the overall body of
evidence (Kmet et al., 2004). We applied a 14-criteria checklist
for quantitative studies, where raters scored each criterion as
being fully (2 points), partially (1 point), or not (0 points)
fulfilled. A summary score was calculated for each paper as the
sum of the scores across all applicable criteria and expressed
as a percentage of the total possible score. When a specific
criterion was not applicable to a given study, the criterion
was omitted from the calculation of the summary score. Two
reviewers (SO and SCH) independently assessed the quality
(inter-rater reliability, k = 0.77 and 86% level of agreement)
and the risk of bias for all the included studies. The sample
sizes of the multiple-case-study articles were reported in terms
of the number of pediatric participants recruited in the studies.
Adult participants were not included in Tables 1–6. To further
elucidate the overall quality of the evidence, each of the included
articles received a quality grade as: limited (score of ≤50%);
adequate (>50 and ≤70%); good (>70 and ≤80%); or strong
(>80%) (Lee et al., 2008). Discrepancies were discussed between
the two reviewers and consensus was reached. The risk of bias
was identified for each study by two authors (SO and SCH)
using the Agency for Healthcare Research and Quality (AHRQ)
criteria (Viswanathan et al., 2017). The risk of bias was assessed
through the evaluation and discussion of each article in terms
of selection, performance, attrition, detection, and reporting
(inter-rater reliability, k = 0.94 and 95% level of agreement).
Responses for each criterion were scored as “low risk,” “high
risk,” “unclear,” and “not applicable.” Low risk of bias was
assumed when studies met all the risk-of-bias criteria, medium
risk of bias if at least one of the risk-of-bias criteria was not
met and high risk of bias if three or more risk-of-bias criteria
were not fulfilled. An unknown risk of bias was considered as
high risk.

RESULTS

Study Selection and Taxonomy
The search strategy identified 850 potential papers; 340 duplicates
and 151 reviews, book chapters, conference articles were
removed. Then 359 titles and abstracts were reviewed and
203 were removed, according to the inclusion criteria (section
Screening Process: Inclusion and Exclusion Criteria), leaving
156 articles that required full-text review. Twelve articles were
subsequently identified as eligible for inclusion and grouping
into sub-categories: seven relating to communication (Beveridge
et al., 2017, 2019; Taherian et al., 2017; Norton et al., 2018;
Zhang et al., 2019; Vařeka, 2020); and five concerning mobility
(Sanchez et al., 2008; Breshears et al., 2011; Pistohl et al., 2012,
2013; Jochumsen et al., 2018). The flowchart in Figure 2 details
outcomes of: identification; screening; eligibility; inclusion steps.
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FIGURE 3 | Taxonomy of the selected articles. SSVEP, steady state visual evoked potential; mVEP, motion-onset visual evoked potential; ERD, event-related

desynchronization; MRCP, movement-related cortical potential.

We categorized the selected papers (see Figure 3). At the first
level of the taxonomy, we grouped papers according to the type
of measurement, either non-invasive or invasive. Under the non-
invasive category, we further subdivided papers by the type of
brain signals harnessed, which includes three types of sensory
evoked potentials, MRCP, or event-related desynchronization
(ERD). This taxonomy roughly reflects the readiness for
clinical translation, with the non-invasive alternatives being
more readily implementable. For each study, we adhere to a
uniform presentation structure, highlighting the participants,
task paradigm, analytical approach, and key findings.

Objectives, participants’ information (e.g., age, health
conditions, participant number), methods and findings related to
online and offline BCI performance are reported in Tables 1–4.

Non-invasive Pediatric BCIs
Eight studies (Ehlers et al., 2012; Beveridge et al., 2017, 2019;
Taherian et al., 2017; Jochumsen et al., 2018; Norton et al., 2018;
Zhang et al., 2019; Vařeka, 2020) in this category used EEG as the
non-invasive modality for interrogating the pediatric brain. The
study by Jochumsen et al. (2018) is the only one on non-invasive
pediatric BCI related to manual ability. The other seven non-
invasive BCI studies (Ehlers et al., 2012; Beveridge et al., 2017,
2019; Taherian et al., 2017; Norton et al., 2018; Zhang et al., 2019;
Vařeka, 2020) focused on new systems to support communication
and computer interaction.

Evoked Potentials
Five studies harnessed evoked brain responses: steady-state visual
evoked potential (SSVEP) (Ehlers et al., 2012; Norton et al., 2018);
motion-onset visual evoked potential (mVEP) (Beveridge et al.,
2017, 2019); P300 (Vařeka, 2020) following the presentation of a
visual stimulus.

Ehlers et al. (2012) investigated the influence of development-
specific changes in the background EEG on stimulus-driven
BCI with 37 typically developing (TD) children and 14 adults,
aged 6–33, using SSVEPs and mouse control and spelling
tasks. Only online results but no chance level were reported.
Participants navigated a letter matrix to spell six words, two in
three different stimuli conditions (low, medium, high frequency),
by focusing on one of five target LEDs (corresponding to
four directions and a select command) placed around a screen
where the letter in the middle of the matrix was highlighted.
Participants practiced by spelling their names; however, the
youngest participants were assisted by the investigator in locating
the target LED given their less developed visual searching
abilities. Ehlers et al. (2012) used the Bremen-BCI (Friman et al.,
2007) to classify five different SSVEP targets. Poor signals due to
insufficient electrode contact were given a low weight or ignored.
Classification of signals used to generate the correct-to-complete
commands ratio was based on a 2 s sliding window every
125ms. Accuracies, regarding correct-to-complete commands
ratio, were lower than 60% for pediatric participants. Results
showed low classification performance (accuracy: ∼40%) for
the young subjects (age 7–10 years), based on stimulation of
7 and 11Hz. When a low-frequency (7–11Hz) visual stimulus
was presented to participants, adults consistently achieved higher
accuracies (∼78%) than those achieved by the three groups of
children (group 1 accuracy:∼40%; groups 2 and 3:∼50%). In the
medium frequency (13–17Hz) condition, differences in achieved
accuracies were found only between the adults (accuracy:∼78%)
and youngest group of children with an average age of 6.73
years (group 1 accuracy: ∼55%; group 2: 50%; group 3: 75%). In
contrast, no difference between the four groups was found when
a high-frequency (30–48Hz) stimulus was presented (group 1

Frontiers in Human Neuroscience | www.frontiersin.org 6 July 2021 | Volume 15 | Article 643294

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


O
rla

n
d
ie
t
a
l.

B
ra
in
-C

o
m
p
u
te
r
In
te
rfa

c
e
s
fo
r
C
h
ild
re
n

TABLE 1 | Research articles on pediatric non-invasive BCIs: study objectives and data collection details.

References Study objective Sample size

[females]

Age

(years)

Diagnosis Applications BCI

paradigm

Mode of

operation

Signal

type

Data acquisition Task and sessions

Ehlers et al.

(2012)

Examine age-related

performance

differences on an

SSVEP-BCI

N = 51 [31]

Pediatric

Group 1:

N = 11 [6]

Group 2:

N = 12 [9]

Group 3:

N = 14 [3]

6–33

Pediatric

Avg. 6.73

Avg. 8.08

Avg. 9.86

TD Mouse control/

spelling

SSVEP

# stimuli: 3

Low: 7–11Hz

Medium:

13–17Hz

High: 30, 32,

34, 36, 38Hz

Synch EEG Location: parietal and

occipital (PZ, PO3, PO4,

O1, OZ, O2, O9, O10)

# Channels: 8

Hardware and Software:

-Ag/Ag-Cl EEG electrodes

-Wet system

-BCI2000 -C++

(Bremen BCI)

Task: cursor control to

complete a spelling

task

# Sessions: 1

Session duration:

45min

Task duration:

2min per run (6 words

and at least 20

commands per word)

Norton et al.

(2018)

Compare the

performance of

9–11-year-old

children using

SSVEP-based BCI

to adults

N = 26 [n/a]

Pediatric

N = 15 [n/a]

9–68

Pediatric

9–11

TD Graphical

interface

comprising

three white

circle targets

SSVEP

# stimuli: 3

[6.2,

7.7, 10Hz]

Synch EEG Location: PO3, POZ, PO4,

O1, OZ, O2

# Channels: 6

Hardware and Software:

-Tin electrodes

-Wet system

-BCI2000

Task: focus visual

attention on one of

three white circle

targets

# Sessions: 1

Session duration: 5

trials/stimulus (15 trials

total) for training, 20

trials/stimulus (60 trials

total) for testing.

Task duration: 5 s

Beveridge

et al. (2017)

Evaluate mVEP

paradigm for

BCI-controlled video

game

Pediatric

N = 15 [4]

Pediatric

13–16

TD Neurogaming mVEP

# stimuli: 5

Synch EEG Location: Cz, TP7, CPz,

TP8, P7, P3, Pz, P4, P8,

O1, Oz, and O2

# Channels: 12

Hardware and Software:

-g.LADYbird

-g.BSamp and

g.GAMMAbox

-MATLAB®

-Unity 3D

Task: 3D car-racing

video game

# Sessions: 1

Session duration: 1 h

Task duration:

1,000ms to activate 5

stimuli (300 trials per

calibration and 60

per testing)

Beveridge

et al. (2019)

Study trade-off

between accuracy

of control and

gameplay speed

using an mVEP BCI

N = 48 [10]

Pediatric

N = 15 [4]

13–40

Pediatric

13–16

Pediatric data is pulled from Beveridge et al. (2017) to compare to newly collected adult data. Adult protocol

differed slightly from pediatric protocol (e.g., slow medium and fast lap rather than 3 slow laps + compare

experienced vs. naive adults).

Vařeka (2020) Compare CNN with

baseline classifiers

using large subject

P300 BCI dataset

Pediatric

N = 250 [112]

7–17 No

identifying

physical

symptoms

were asked

or recorded

Guess the

number game

P300

# stimuli:

1-9 flashings

Synch EEG Location: Fz, Cz, Pz

# Channels: 3

Hardware and Software:

-BrainVision

standard V-Amp

-Neurobehavioural

Systems Inc.

-BrainVision Recorder

-MATLAB®

Task: P300

# Sessions: 1

Session duration:

Task duration:

1,000ms (532 trials)

(Continued)
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TABLE 1 | Continued

References Study objective Sample size

[females]

Age

(years)

Diagnosis Applications BCI

paradigm

Mode of

operation

Signal

type

Data acquisition Task and sessions

Taherian et al.

(2017)

Employ a

commercial EEG

based BCI with

people with CP

N = 8 [4]

Pediatric

N = 5 [2]

7–43

Pediatric

P1: 17

P2: 17

P3: 7

P4: 9

P5: 9

Spastic

quadriplegic

CP

Puzzle games MI-ERD Synch EEG Location: unknown

number—includes C3 and

C4

# Channels: 14

Hardware and Software:

-Emotiv EPOC BCI headset

-Saline felt electrodes

-Emotiv software

Task: imagined arm

movements associated

with the ability to move

a virtual cube

# Sessions: 5–7

Session duration:

30min

Task duration: 16–55

8 s trials

Jochumsen

et al. (2018)

Movement intention

detection in

adolescents with CP

from single-trial EEG

Pediatric

N = 8 [1]

11–17

P1: 16

P2: 15

P3: 11

P4: 15

P5: 13

P6: 15

P7: 17

P8: 16

Hemiplegia

or diplegia

CP with

GMFCS of

I-V

Neurorehabilitation Movement

preparation—

MRCP/

dorsiflexions of

the ankle joint

Asynch

(self-

paced)

EEG Location: F3, FZ, F4, C3,

CZ, C4, P3, PZ, P4

# Channels: 9

Hardware and Software:

-Neuroscan EEG amplifiers

-Wet system

-EMG for

movement detection

-MATLAB®

Task: dorsiflexion of

the ankle joint

# Sessions: 1

Session duration: 15

min—avg. 65 ± 18

movements performed

per participant

Task duration: 4–6 s

Zhang et al.

(2019)

Evaluate if children

can use simple BCIs

Pediatric

N = 26 [7]

6–18

P1–2: 6

P3: 8

P4: 9

P5–7: 10

P8–9: 11

P10–11: 12

P12–14: 13

P15–16: 14

P17: 15

P18–19: 16

P20–22:17

P23–26: 18

TD Mouse control

and remote-

controlled

car

MI and

goal-oriented

thinking—ERD

Synch EEG Location: AF3, AF4, F3,

F4, F7, F8, FC5, FC6, P7,

P8, T7, T8, O1, O2

# Channels: 14

Hardware and Software:

-Emotiv EPOC BCI headset

-Saline felt electrodes

-Emotiv software

Tasks: imagine

opening and closing

both hands,

“goal-oriented

thoughts,” and rest

# Sessions: 2

Session duration:

<1 h

Task duration: eight

8 s trials per task for

training; 10–20 s trials

with 5 s rest for testing

CP, cerebral palsy; avg., average; MI, motor imagery; N, number of participants; P#, pediatric participant number; SSVEP, steady state visual evoked potential; synch, synchronous; asynch, asynchronous; TD, typically developing; CNN,

convolutional neural network; mVEP, motion-onset visual evoked potential; EEG, electroencephalography; EMG, electromyography; ERD, event-related desynchronization; MRCP, movement-related cortical potential; GMFCS, gross

motor function classification system; n/a, not applicable.
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TABLE 2 | Research articles on pediatric non-invasive BCIs: signal processing techniques and results (only for pediatric age).

References Online/offline/# of classes Signal processing and

features

Classifier or analysis Results

Ehlers et al.

(2012)

Online only

5 classes:

5 visual stimulation frequency

targets in low, medium, or high

frequency range

Chance level: n/a

Fs: 2,048Hz

Filtering:

High-pass (fc = 0.1Hz)

Low-pass (fc = 552.96Hz)

Features:

Minimum energy

combination spatial filter

Classifier:

Bremen-BCI

Outcome Measure:

(i) Accuracy

Offline accuracy: n/a

Online accuracy:

Low-frequency stimulation

Group 1: 40%; Group 2: 50%;

Group 3: 50%

Medium-frequency stimulation

Group 1: 55%; Group 2: 50%;

Group 3: 75%

High-frequency stimulation

Group 1: 38%; Group 2: 45%;

Group 3: 55%

Additional measures: n/a

Norton et al.

(2018)

Offline and Online

3 classes: 3 SSVEP targets

Chance level: n/a

Fs: 128Hz

Filtering: Bandpass

1–30Hz

Features:

(i) Threshold

(ii) Window-length

Classifier:

Canonical correlation

analysis

Outcome Measure:

(i) Classification accuracy

(ii) Latency

(iii) Nykopp bitrate

Offline accuracy:

11 of 14 children exceeded the

threshold of success: 40–100%

Online accuracy:

P: 79%

Additional measures:

Latency: 2.106 s

Nykopp bitrate: 0.5 bits s −1

Beveridge

et al. (2017)

Offline

5 classes:

5 target locations for mVEP

and

2 classes:

Leave one out cross validation

among the 5 targets

Online

5 target locations classified using

target vs. non-target binary

classification

Chance level: 20% (0 bpm) for 5

class-classifier

50% for 2 class-classifier

(theoretical chance level)

Fs: 250Hz, resampled to

20Hz

Filtering:

Baseline-corrected,

Low-pass filter (fc = 10Hz)

Features:

(i) mVEP components (e.g.,

P100, N200, and P300):

data averaged over 5 trials

(12 feature vectors per

stimulus)

Classifier: LDA

Outcome Measure:

(i) Classification accuracy

(ii) ITR

Offline accuracy (LOOCV &

5-class):

P1: 84.58 & 76.67 P9: 94.79 &

98.33

P2: 94.58 & 96.67 P10: 78.75 &

71.67

P3: 84.79 & 81.67 P11: 90.42 &

91.67

P4: 83.54 & 70.00 P12: 77.50 &

68.33

P5: 86.46 & 85.00 P13: 88.75 &

85.00

P6: 77.29 & 76.67 P14: 82.29 &

75.00

P7: 88.96 & 85.00 P15: 72.92 &

70.00

P8: 91.88 & 81.67 Mean: 85.17

& 80.89

Online accuracy:

P1: 54%* P9: 75%*

P2: 88%* P10: 51%*

P3: 45%* P11: 58%*

P4: 65%* P12: 60%*

P5: 83%* P13: 85%*

P6: 61%* P14: 82%*

P7: 82%* P15: 40%*

P8: 92%* Mean: 68%**

Additional measures:

ITR

P1: 4 bpm* P9: 13 bpm*

P2: 19 bpm* P10: 4 bpm*

P3: 3 bpm* P11: 6 bpm*

P4: 8 bpm* P12: 7 bpm*

P5: 16 bpm* P13: 17 bpm*

P6: 7 bpm* P14: 16 bpm*

P7: 16 bpm* P15: 2 bpm*

P8: 21 bpm* Mean: 11 bpm**

(Continued)
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TABLE 2 | Continued

References Online/offline/# of classes Signal processing and

features

Classifier or analysis Results

Beveridge

et al. (2019)

Offline

5 classes:

5 target locations for mVEP

and 2 classes:

LOOCV among the 5 targets

Online

5 target locations classified using

target vs. non-target binary

classification

Chance level: 20% (0 bpm) for 5

class-classifier

50% for 2 class-classifier

(theoretical chance level)

Fs: 250Hz, resampled to

20Hz

Filtering:

Baseline-corrected,

Low-pass filter (fc = 10 Hz)

Features:

(i) mVEP components (e.g.,

P100, N200, and P300):

data averaged over 5 trials

(12 feature vectors per

stimulus)

Classifier:

LDA

Outcome Measure:

(i) Classification accuracy

(ii) ITR

(iii) mVEP latency

(iv) mVEP amplitude

-Same results as Beveridge et al.

(2017)

-Online results showed that BCI

naïve adults achieved higher

accuracies than BCI naïve

children (the difference is not

always statistically significant)

Vařeka (2020) Offline only

10 classes: 10 P300 targets

Chance level: n/a

Fs: 1,000Hz

Filtering:

Baseline-corrected,

amplitude threshold 100 µV

Features:

(i) Averaged time intervals

and feature scaled to zero

mean and unit variance

Classifier:

LDA, SVM, and CNN in

leave one out cross

validation

Outcome Measure:

(i) Accuracy

(ii) Precision

(iii) Recall

(iv) AUC

Offline accuracy:

Single-trial classification

accuracy 62–64%

Accuracy with trial averaging

76–79%

Online accuracy: n/a

Additional measures:

(i) Single-trial classification

(ii) Precision-−61.5–63.5%***

(iii) Recall-−60.5–67.5%***

(iv) AUC-−62–66%***

all tested models achieved

comparable classification results

Taherian et al.

(2017)

Online only

2 classes:

Left and right arm motor imagery

Chance level: n/a

Fs: n/a

Filtering:

Proprietary Emotiv software

Features:

Proprietary Emotiv software

(Cognitiv suite)—ERD

Classifier:

Emotiv

classifier—proprietary

output from Emotiv

Software Development Kit

Outcome Measure:

(i) peak performance score

Offline accuracy: n/a

Online accuracy: n/a

Additional measures:

Peak performance score for left

and right arm

Jochumsen

et al. (2018)

Offline only

2 classes: idle vs.

movement-related activity

Chance level: 60–65%

Fs:1,000Hz

Filtering: 4th order zero

phase shift Butterworth

bandpass 0.1–45Hz,

baseline correction

Features:

(i) Mean amplitudes

(ii) Absolute band power

(iii) Template matching

(iv) All features combined

Classifier:

Random forest classifier in

LOOCV

Outcome Measure:

(i) Classification accuracy

Offline accuracy:

75–85%

Online accuracy: n/a

Additional measures: n/a

Zhang et al.

(2019)

Online only

2 classes: MI/goal-oriented

thought and rest

Chance level: 70% (0.40

Cohen’s Kappa)

Fs: 2,048Hz resampled to

128Hz

Filtering:

Proprietary Emotiv software

Features:

Proprietary

Emotiv software—ERD

Classifier:

Emotiv classifier—PNN and

RBF

Outcome Measure:

(i) Cohen’s kappa

Offline accuracy: n/a

Online accuracy: n/a

Additional measures:

Average Kappa score of 0.46,

range of 0.025–0.9

Fs, sampling frequency; fc, cut-off frequency; SSVEP, steady state visually evoked potential; mVEP, motion-onset visual evoked potential; MI, motor imagery; ITR, information transfer

rate; LOOCV, leave-one-out cross-validation; CNN, convolutional neural network; LDA, linear discriminant analysis; SVM, support vector machine; AUC, area under the ROC curve;

*Averaged across all 3 laps (estimated from bar graph); **Averaged across all 3 laps; ***Estimated from bar graph-range includes achieved averages for all three classifier results; ERD,

event-related desynchronization; PNN, probabilistic neural network; RBF, radial basis function; bpm, bits per minute; P#, pediatric participant number; n/a, not applicable.

accuracy: ∼38%; group 2: ∼45%; group 3: 55%; adults: ∼62%).
An age-specific shift was observed in the peak synchronization
frequency. Peak synchronization increases from 8 to 9Hz in

the lowest age group to 10–11Hz in adults. Aborted attempts
decreased with increasing age and increased as the accuracy level
decreased (particularly evident in the high drop-out rates of the
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TABLE 3 | Research articles on pediatric invasive BCIs: Study objectives and data collection details.

References Study objective Sample size

[females]

Age (years) Diagnosis Applications BCI

paradigm

Mode of

operation

Signal

type

Data acquisition Task and sessions

Sanchez et al.

(2008)

Present techniques

to spatially localize

motor potentials

Pediatric

N = 2 [2]

14–15

P1: 14

P2: 15

Intractable

epilepsy

Neuroprosthetics Arm reaching

and pointing

Synch ECoG Location:

sensorimotor cortex

# Channels: 36 and

32

Hardware and

Software:

-MATLAB®

Task: arm reaching

and pointing

# Sessions: 1

Session duration: 6

task repetitions

Task duration: 5 s

Breshears et al.

(2011)

Decodable nature of

pediatric brain

signals for the

purpose of

neuroprosthetic

control

N = 11 [n/a]

Pediatric

N = 6 [1]

9–46

Pediatric

9–15

P1: 15

P2: 11

P3: 15

P4: 9

P5: 12

P6: 13

Intractable

epilepsy

Neuroprosthetics/mouse

control

MI or motor

execution

(hand

opening/closing,

tongue

protrusions,

phoneme

articulation)

Synch ECoG Location: motor,

temporal, and

prefrontal areas,

depending on the

patient

# Channels: 48 or

64

Hardware and

Software:

-AdTech

electrode arrays

- g.tec amplifier

-BCI2000

-MATLAB®

Task: move a cursor

on a screen along

one-dimension using

motor execution or

imagined movement

# Sessions: 1

Session duration:

10–37min

Task duration: 2–3 s

Pistohl et al.

(2012)

ECoG signal

decoding for hand

configurations in an

everyday

environment

Pediatric

N = 3 [3]

14–16

P1: 14

P2: 16

P3: 15

Epilepsy Neuroprosthetics/reach-

to-grasp

Motor

execution

Asynch

(self-

paced)

ECoG Location:

electrodes residing

over hand-arm

motor cortex as

identified through

anatomical location

and electrical

stimulation

# Channels: 48 or

64

Hardware

and Software:

-IT-Med

clinical EEG-System

Task: reach-to-grasp

movements (self-paced

and largely self-chosen

movements)

# Sessions: 1

Session duration: –

Time of analyzed

data:

P1: 32min (303 grasps)

P2: 35.3min (338

grasps)

P3: 25.4min (320

grasps)

Task duration: 60ms

per grasp

Pistohl et al.

(2013)

Time of grasps from

human ECoG

recording from the

motor cortex during

a sequence of

natural and

continuous

reach-to-grasp

movements

Pediatric

N = 3 [3]

14–16

P1: 14

P2: 16

P3: 15

Same as Pistohl et al. (2012) as the participants and experimental paradigm is the same.

N, number of participants; ECoG, electrocorticography; P#, pediatric participant number; MI, motor imagery; synch, synchronous; asynch, asynchronous; n/a, not applicable.
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TABLE 4 | Research articles on pediatric invasive BCIs: signal processing techniques and results (only for pediatric age).

References Online/offline/# of

classes

Signal processing and features Classifier/outcome measures Results

Sanchez

et al. (2008)

n/a

Chance level: n/a

Fs: 381.5Hz

Filtering: FIR filter (1–6 kHz)

Features:

(i) Equiripple FIR filter: 1–60Hz,

60–100Hz, 100–300Hz,

300 Hz−6 kHz

(ii) FIR filter topology trained using the

Wiener solution

Classifier: n/a

Outcome Measure:

(i) Pearson’s r

Offline accuracy: n/a

Online accuracy: n/a

Additional measures:

Pearson’s r for X-position;

Y-position

P1: 0.39 ± 0.26; 0.48 ± 0.27

P2: 0.42 ± 0.26; 0.45 ± 0.25

Highest r achieved with 300

Hz−6 kHz feature

Breshears

et al. (2011)

Online only

2 classes:

Imagined or performed

motor movement vs. rest

Chance level: 50%

(theoretical chance level)

Fs: 1,200Hz

Filtering:

Autoregressive spectral coefficients in

2Hz frequency bins from 0 to 250Hz

for each electrode

Features:

(i) Spectral power of filtered frequency

bins

(ii) Spectral power of electrodes

Classifier:

Real-time translational algorithm

based on the weighted linear

summation of the identified features

(showing power increases were

assigned positive weights, or power

decreases were assigned

negative weights)

Outcome Measure:

(i) Accuracy for each action

Offline accuracy: n/a

Online accuracy:

P1: 70.8–99.0%

P2: 72.7–77.4%

P3: 82.7–85.1%

P4: 75.0–100%

P5: 88.8 %

P6: 93.3 %

Additional measures: n/a

Pistohl et al.

(2012)

Offline

2 classes: precision grip,

whole-hand grip

10-fold cross-validation (20

repetitions)

Chance level: 50%

(theoretical chance level)

Fs: 256Hz

Filtering: Re-referenced to common

average, average voltage subtracted,

normalized voltage, low pass filtered

component (fc ∼5Hz)

Features:

(i) Signal components

Classifier:

rLDA

Outcome Measure:

(i) Decoding accuracy

(ii) Temporal evolution of

grasp discriminability

Offline accuracy:

P1: 97%

P2: 84%

P3: 96%

Online accuracy: n/a

Additional measures:

Temporal evolution of grasp

discriminability: 0.2 s

Pistohl et al.

(2013)

Offline only

2 classes: grasp and no

grasp

Chance level: n/a

Fs: 256 or 1,024 Hz

Filtering:

LFC: 2nd order Savitzky-Golay filter

(window length: 250ms)

Features:

(i) LFC

(ii) Frequency band amplitudes within

consecutive bands of 4Hz width from

0 to 128Hz. Band pass filtering by

4th order elliptic digital filter design

Classifier:

rLDA in 10-fold cross-validation

Outcome Measures:

(i) True positive ratio (TPR)

(ii) False positive ratio (FPR)

(iii) False positive min−1 (FP-rate)

Offline accuracy:

After 0.25 s (TPR/FPR/FP-rate):

P1: 0.75/0.26/2.5

P2: 0.50/0.36/2.7

P3: 0.75/0.25/3.1

After 0.50 s (TPR/FPR/FP-rate):

P1: 0.92/0.10/0.9

P2: 0.69/0.12/0.9

P3: 0.91/0.08/1.0

After 0.75 s (TPR/FPR/FP-rate):

P1: 0.97/0.05/0.4

P2: 0.74/0.05/0.4

P3: 0.96/0.03/0.4

Online accuracy: n/a

Additional measures: n/a

Fs, sampling frequency; fc, cut-off frequency; rLDA, regularized linear discriminant analysis; FPR, false positive ratio; TPR, true positive ratio; FP-rate, false positive rate; P#, pediatric

participant number; LFC, low-pass filtered component; FIR, finite impulse response; n/a, not applicable.

youngest age group under low-frequency stimulation). Lastly,
the authors discovered the inability to adequately control a BCI
using the low-frequency rates. The age factor gains influence with
decreasing stimulation frequency.

Similarly, Norton et al. (2018) used the SSVEP paradigm to
compare the performance between 15 TD children (aged 9–
11) and 11 adults (aged 19–68) in a laboratory environment
using a graphical interface. Offline and online results but no
chance level were reported. Authors included a minimum offline
accuracy requirement for the online analysis. Authors did not
specify the number of sessions in their study. We assumed
that participants performed only one session preceded by BCI
calibration. Participants were asked to focus their attention on

three white circles, each alternating between white and black
at three different frequencies (6.2, 7.7, and 10Hz) on the
screen. During calibration, participants were directed to focus
on the circle highlighted by an on-screen arrow. Participants
subsequently repeated the same task without the arrow to test
the system online. Norton et al. (2018) applied a calibration
phase and a longer experimental phase to classify three different
SSVEP targets. If the calibration phase accuracy was <85%,
the participant could not proceed to the experimental phase
(online phase). Eleven children and all adults met the minimum
accuracy requirement. Children and adults achieved similar
performance during the experimental phase (accuracy: 79 vs.
78%; latency: 2.1 vs. 1.9 s; bitrate: 0.05 vs. 0.56 bits s−1).
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Feature extraction and classification were based on the canonical
correlation analysis (CCA) and used to determine the SSVEP
targets. Norton et al. (2018) used a method similar to that
applied by Lin et al. (2006) wherein EEG signals from multiple
channels were used to calculate the CCA coefficients considering
the stimulus frequencies in the systems. The frequency with the
highest coefficient indicates the SSVEP frequency. This study
demonstrated that children can use an SSVEP-based BCI with
higher accuracy (average accuracy: 79%) than Ehlers et al. (2012)
when low-frequency stimulus is applied. However, their good
performance could be dependent on the different environments.
Participants completed a target selection task and not a text-entry
task. Also, they applied different stimulus frequencies.

Beveridge et al. (2017) evaluated whether 15 TD adolescents
(aged 13–16) could gain control of an mVEP-BCI paradigm
for video game playing. Offline and online accuracy of target
vs. non-target stimuli classification (chance level: 50%) and 5-
class discrimination results (chance level: 20%) were reported.
Participants were engaged in a 3D car racing video game that
involved changing lanes at several checkpoints performing three
laps. As participants approached a checkpoint, one of the five
motion stimuli was presented above each of five lanes with
an arrow indicating the target lane for positioning the car.
Participants attended to the motion stimulus associated with
the target lane. If the target lane was selected correctly by the
BCI, participants were rewarded with points and speed boost.
The authors collected 300 mVEP trials from 12 gel-based EEG
electrodes to calibrate a classifier tested with additional 300
trials. Beveridge et al. (2019) subsequently reported performance
achieved by BCI-naïve and BCI-experienced adults with a near-
identical protocol. For this review, Beveridge et al. (2017) and
Beveridge et al. (2019) were considered identical as they relied
on the same adolescent dataset. The two studies by Beveridge
et al. (2017, 2019) report results from a single adolescent
mVEP dataset. The collected mVEP data were resampled
from 250 to 20Hz and filtered. Data were averaged over five
trials to generate 12 feature vectors for each stimulus which
corresponded to the 12 EEG channels. Offline and online
accuracies and information transfer rate (ITR) were reported for
each participant. Participants achieved 85.17% offline accuracy
through a leave-one-out cross-validation, and 68% accuracy and
11 bits per minute during online trials. The authors reported
Cz, P7, and O1 as the most discriminative channels across
participants. Beveridge et al. (2019) also compared the group of
BCI naïve teenagers with nine BCI naive adults. Adults achieved
higher classification accuracies compared to teenagers (average
accuracies in 3 laps: 75.4 vs. 68%), but the difference between
adults and teenager was significant only in the third lap.

Lastly, Vařeka (2020) entailed large-scale offline analysis
of P300 visually-evoked potential signals collected from 250
children (aged 7–17) without any identifying physical symptoms,
playing “Guess the Number.” This game requires participants
to focus on a self-selected number between 1 and 9 as a series
of numbers (1–9) flash on a screen in random order. When
flashed, the selected number elicits a P300 response. Thus, the
algorithm predicts the selected number. Offline results but no
chance levels were reported. Vařeka (2020) collected 532 trials

using three channels. The study aimed to compare convolutional
neural networks (CNNs) against linear discriminant analysis
(LDA) and support vector machines (SVM). The author applied a
baseline to correct each epoch and eliminated epochs containing
amplitudes exceeding 100 µV. Epochs were divided into 20
equal-sized intervals wherein the amplitudes were averaged.
Features were classified separately using CNN, LDA, and SVM.
All classifiers produced similar classification accuracies. Single-
trial classification accuracies ranged between 62 and 64%,
while trial averaging raised accuracies to 76–79%. Precision,
recall, and area under a receiver operating characteristic
(ROC) curve (AUC) were 61.5–63.5%, 60.5–67.5%, and 62–66%,
respectively, for single-trial classification. Averaging groups of
one to six neighboring epochs instead of single trials improved
classification accuracies.

Motor-Related Activities
Three studies investigated motor-related activities with children
(Taherian et al., 2017; Jochumsen et al., 2018; Zhang et al., 2019).

Two studies applied a MI paradigm (Taherian et al., 2017;
Zhang et al., 2019) and EMOTIV system, a commercially
available headset. Although both studies reported the use of the
same EEG device (EMOTIV Epoc R©), Zhang et al. (2019) referred
to a dry system while Taherian et al. (2017) described a wet
device. Zhang et al. (2019) reported that the electrode foam pads
were immersed in a saline solution to ensure reliable connection
before being placed on the child’s head. Both studies should
have described the EMOTIV Epoc R© as a headset with saline-
soaked felt pads. These sensors are not wet in the traditional
sense, but they are not considered truly dry. Both studies
explored the possibility of implementing an EEG-based visual
motion BCI and they used the Emotiv Software Development Kit
(SDK) for the analysis and classification. Both studies extracted
modulation features. Classification results were obtained based
on ERD phenomenon.

Taherian et al. (2017) evaluated the feasibility of implementing
an EEG-based BCI using the 14-saline-based electrode version of
this headset in five children (aged 9–17) with spastic quadriplegic
CP. The EMOTIV is packaged with software that provides visual
feedback of cognitive tasks and a gamified training protocol.
Participants donned the EMOTIV Epoc R© headset and completed
six 30-min training sessions where they were guided through
the EMOTIV software to move a virtual cube up, down, left, or
right using MI of the limbs. EEG signals were processed using
CognitivTM Suite provided by EMOTIV Epoc R©. The Cognitiv
system processes the brainwaves and matches them to the
patterns of thought trained, relying on ERD, detected on the EEG
signals within the frequency range of 0.2 and 43Hz (Lang, 2012).
The authors developed a puzzle game and participants were asked
to complete the puzzle after each training session. The puzzle
was completed in an online paradigm using the same MI tasks
from the training sessions while continuous visual feedback was
provided. When participants were able to produce MI tasks with
precision, they were rewarded with a puzzle piece. Participants
completed five to seven sessions. Unfortunately, Taherian et al.
(2017) reported only online performance scores for left and right
arm for some participants in graphs and do not report accuracy,
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latency, or bitrate. Performance values were approximated and
based on graph readings. All participants experienced challenges
following protocol for various reasons related to their condition,
including: difficulties focusing; seizures during trials; anxiety;
equipment discomfort; lack of enjoyment when playing. All
pediatric participants demonstrated inconsistent and unreliable
control of BCI. They concluded that existing commercial BCIs
are not designed according to the needs of end-users with CP.

Zhang et al. (2019) conducted a cross-over interventional
study on 26 TD children (aged 6–18) to estimate the performance
of two tasks (driving a remote-control car and moving a
computer cursor). Children participated in two sessions where
they performed a MI task (imagery of opening and closing
both hands to move the car or the cursor) and a “goal-oriented
thought” task (think of moving the car or the cursor toward a
target). During each session, participants completed eight trials
as training data for the BCI followed by 10 testing trials to
evaluate the system performance. The BCI’s goal was to complete
the designated task (car or cursor) using one of two strategies
(MI or goal-oriented thought). We assumed that Zhang et al.
(2019) used the Emotiv SDK to extract ERD features using
an 8-s window. They reported good performance using the
EPOC headset and Radial Basis Probabilistic Neural Network to
distinguish between baseline and training epochs. Zhang et al.
(2019) reported online results (chance level: 70% classification
accuracy, 0.4 Cohen’s kappa) in terms of Cohen’s kappa scores
(range 0.025–0.90). Performance correlated with increasing age,
but sex was not associated. A Cohen’s kappa of 0.4 or higher
indicated successful control.

Jochumsen et al. (2018) deployed motor execution tasks to
elicit MRCP in the motor cortex. MRCP is an event-related
potential locked to the onset of a movement, reflecting the
preparatory brain activity. They detectedMRCPs in 8 adolescents
with hemiplegia or diplegia CP (aged 11–17) via EEG, with
the goal of maximizing motor learning by temporally aligning
afferent feedback with the cortical manifestation of movement
intention. Offline classification accuracy (chance level: 60–65%)
was reported. Participants dorsiflexed an ankle at self-determined
pace during a single 15-min session. Electromyographic signal
was used to divide continuous EEG into epochs. Mean
amplitudes, absolute band power, and template matching were
extracted from each channel after filtering. Template matching
was obtained by calculating the cross-correlation between the
template of the movement epochs (averaged epochs for each
channel for each participant) and the epochs. A random forest
discriminated movement intention epochs from idle epochs
using a leave-one-out cross-validation and achieved up to
85% accuracy.

For study objective, population, and tasks of non-invasive
BCIs see Table 1. For signal processing techniques and results see
Table 2.

Invasive Pediatric BCIs
Four articles (Sanchez et al., 2008; Breshears et al., 2011; Pistohl
et al., 2012, 2013) included in this category used ECoG as
invasive modality for interrogating the pediatric brain. Three
of these studies applied motor execution paradigms while one

additionally invokedMI (Breshears et al., 2011). Studies recruited
individuals with epilepsy who had implanted electrode grids used
to monitor brain activity prior to surgery.

First invasive pediatric BCI study was presented by Sanchez
et al. (2008). They explored motor control paradigm with
two adolescents aged 14 and 15 years who had an electrode
array implanted to monitor their intractable epilepsy prior to
surgery. Participants engaged in six repetitions of arm reaching
and pointing tasks. ECoG signals were decoded from pre-
motor, motor, somatosensory, and parietal cortices using a linear
adaptive finite impulse response (FIR) filter trained with Wiener
solution. Sanchez et al. (2008) reported the first example of
the ability to decode pediatric ECoG signals for an online BCI
model. They processed ECoG signals collected during reaching
and pointing task by first filtering the data between 1 and
6 kHz. Features from each channel were fed into the above FIR
filter topology to generate estimate of arm trajectory. Pearson’s
correlation was used to determine how closely the decoded
signals matched the true arm’s trajectory. The highest Pearson’s
correlations were achieved using the 300 Hz−6 kHz frequency
band feature.

Breshears et al. (2011) demonstrated the decodable nature of
ECoG signals frommotor and/or language (Wernicke’s or Broca’s
area) cortices by six pediatric participants (aged 9–15) who
required invasive monitoring for intractable epilepsy. To move
a cursor on the screen, children performed a motor (e.g., hand
opening and closing, repetitive tongue protrusion) or phoneme
articulation (oo, ah, eh, ee) task. Participants were asked to move
the cursor along one dimension to hit a target on the opposite side
of the screen during a single online session. Trials were grouped
into runs of up to 3min with a rest period of <1min. Breshears
et al. (2011) applied an autoregressive spectral estimation in 2Hz
bins ranging between 0 and 250Hz to decode ECoG signals. For
each electrode and frequency bin, power increases or decreases
in the significant task-related spectral power were identified
by calculating the r2 correlation between baseline spectra and
activity spectra for each active task. Online performance accuracy
(chance level: 50%) was calculated considering the number of
successes (i.e., hit the target) divided by the total number of
movements after each block. Results were compared to a previous
study (Leuthardt et al., 2004; Wisneski et al., 2008) conducted
with five adult participants (aged 23–46). The results showed
that the pediatric participants’ performance matched the adults’
one and signals can be decoded and affected in the same way as
adult brain signals. Within 9min of training, children achieved
70–99% target accuracy in experiments where multiple cognitive
modalities were used to achieve an imagined action to control a
cursor on the screen. Children controlled the cursor using hand
movements using β (15–40Hz) and γ (60–130Hz) frequency
ranges and, two with tongue movements using high-γ (107.5–
155Hz) frequency range. Four of the six participants began
with achieved accuracies <70%. Two participants were able to
generate BCI control using imagined movement rather than
over performance of the task. The mean accuracy was 81% and
the mean training time was 11.6min. The adult group required
12.5min and reported a mean accuracy of 72%. Table 4 outlines
the range of accuracies for each participant using one or different
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movements. These findings form proof of concept that decoding
signals from the pediatric cortex is possible and may be used for
BCI control.

Turning attention specifically to grasping movements,
Pistohl et al. (2012) conducted a single-session of study with
three pediatric participants (aged 14–16) who had electrodes
implanted for pre-surgical epilepsy diagnostics. Participants’
self-initiated reach-to-grasp of a cup with either precision or
whole-hand grip, relocated the cup and finally returned their
hand to a central resting position. Participants completed
between 303 and 338 trials. Pistohl et al. (2012) focused on
two-class classification of precision grip and whole-hand grip
on offline analysis (chance level: 50% classification accuracy).
Common average reference and low-pass filtering were applied.
The authors utilized an rLDA classifier and reported decoding
accuracy and temporal evolution of grasp discriminability. The
three participants achieved between 84 and 97% decoding
accuracy. Temporal evolution of grasp discriminability
was 0.2 s.

Subsequently, Pistohl et al. (2013) utilized the same data to
automatically detect the time of grasping movements within a
continuous ECoG recording. After filtering, authors extracted
frequency band amplitudes and trained an rLDA classifier to
distinguish two classes, occurrence of the grasp and no grasp.
Ten-fold cross-validation was used to test detection performance
for each subject. Offline results were reported. Based on the
previous work, we assumed that the chance level considered was
50% but the authors did not report it. Results showed amplitudes
recorded in the high-gamma range from hand-armmotor-related
channels were used to achieve the best performance. Local
maxima between 56–128Hz and 16–28 Hz. Low-pass filtered
components, 16–28 and 56–128Hz amplitudes reported best
classification results when used together to feed the classifier.
Sensitivity and specificity depended on temporal precision of
detection and on the delay between event detection and when the
event occurred.

For study objective, population, and tasks of invasive BCIs
see Table 3. For signal processing techniques and results
see Table 4.

Quality Assessment and Risk of Bias
The quality of the included studies ranged from 45% (Taherian
et al., 2017) to 91% (Zhang et al., 2019), with a median score
of 0.70 and an interquartile range of 0.60–0.76. For breakdown
of quality, appraisal markings see Table 5. Ten included papers
present primary exploratory research using a multiple case study
design, and two present cross-sectional studies (Ehlers et al.,
2012; Zhang et al., 2019). Overall, the quality of the studies was
adequate. One study was assessed as limited (Taherian et al.,
2017), six as adequate (Sanchez et al., 2008; Breshears et al.,
2011; Pistohl et al., 2013; Beveridge et al., 2017, 2019; Norton
et al., 2018), three as good (Ehlers et al., 2012; Pistohl et al.,
2012; Jochumsen et al., 2018), and two as strong (Zhang et al.,
2019; Vařeka, 2020). However, some of the algorithms used
by Zhang et al. (2019) are proprietary, making it difficult for
the reproducibility of the experiments because the EMOTIV
SDK may require buying a license to access some of the

APIs. For the quality assessment of the signal processing, we
considered sufficient reporting information about the features
extracted and the classification algorithms applied. Also, we did
not take into account open science (data and software/code
sharing) and the reproducibility of the obtained results for
the quality assessment. We highlight that Vařeka (2020) is
the only included study that made publicly available data and
software code. Table 6 and Figure 4 report the domain-level
judgments for each study and a summary bar plot of the
distribution of the risk-of-bias assessment within each bias
domain. Breshears et al. (2011), Ehlers et al. (2012), Norton
et al. (2018), and Beveridge et al. (2019) are the only studies
comparing children to adults. Only six studies (Ehlers et al.,
2012; Beveridge et al., 2017, 2019; Jochumsen et al., 2018;
Norton et al., 2018; Zhang et al., 2019) considered important
inclusion and exclusion criteria for selection bias: information
related to the dominant hand; previous experience with BCI;
use of medication; individual participants’ age; gender; history
of brain injury. Four studies (Sanchez et al., 2008; Breshears
et al., 2011; Pistohl et al., 2012, 2013) included children with
epilepsy but did not control for epilepsy-related brain activity or
differences in the electrode positioning. Vařeka (2020) required
large numbers of participants but did not report individual
participants’ ages or handedness or report results for male
vs. female. In terms of maintaining fidelity to the study
protocol, nine studies implement the same protocol consistently
across participants. Three studies applied protocols including
a different number of sessions and trials across participants
(Breshears et al., 2011; Ehlers et al., 2012; Taherian et al.,
2017). Missing data (e.g., participants who dropped out or
researchers’ excluded trials or low performance) were considered
and handled appropriately only in one study (Norton et al.,
2018). Three studies took missing data into consideration
but did not discuss or analyze them appropriately (Ehlers
et al., 2012; Taherian et al., 2017; Zhang et al., 2019). We
did not consider questions related to assessors blinded to the
intervention or exposure status of participants, because blinding
is not appropriate for BCI studies. Two studies did not assess
outcomes using valid and reliable measures (Ehlers et al.,
2012; Taherian et al., 2017). Ehlers et al. (2012) reported an
unclear definition of the performance evaluation (e.g., correct-
to-complete commands ratio). Taherian et al. (2017) did not
include a reliable measure in their protocol (i.e., performance
score). Table 7 summarizes the performance evaluation metrics
used in the 12 studies in this review. In terms of confounding
variables assessed, we considered participants’: age; gender;
fatigue; psychological factors. Only one study did not introduce
bias through confounding variables (Zhang et al., 2019). One
article did not pre-specify outcomes (Taherian et al., 2017).
Regarding bias that might affect these 12 studies, we highlight
only five studies reported concerns due to the small sample
sizes (Sanchez et al., 2008; Breshears et al., 2011; Jochumsen
et al., 2018; Zhang et al., 2019). Vařeka (2020) is the only
study that recruited many participants. Self-reporting risk of
bias was applicable only for one study (Zhang et al., 2019),
which included: questionnaires for psychological and cognitive
information; BCI workload.
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TABLE 6 | Risk of bias.

References Source of bias

Selection bias Performance bias Attrition bias Detection bias Reporting bias Overall bias

Sanchez et al.

(2008)

+ – ? + – High

Breshears et al.

(2011)

+ – ? + – High

Ehlers et al. (2012) – – + + – Medium

Pistohl et al. (2012) + – ? + – High

Pistohl et al. (2013) + – ? + – High

Beveridge et al.

(2017)

– – ? + – Medium

Taherian et al. (2017) + + + + + High

Norton et al. (2018) – – – + – Low

Jochumsen et al.

(2018)

– – ? + – Medium

Beveridge et al.

(2019)

– – ? + – Medium

Zhang et al. (2019) – – + – – Low

Vařeka (2020) + – ? + – High

+, high-risk of bias; ?, uncertain/non-applicable risk of bias; –, low-risk of bias.

FIGURE 4 | Bar plot visualization of risk-of-bias assessments.

Evaluation Factors
Evaluation factors usually reported for BCI studies are: usability;
performance; user’s satisfaction; evaluation of psychological
factors; brain workload; fatigue; quality of life; cognitive
evaluation (Nicolas-Alonso and Gomez-Gil, 2012; Choi et al.,
2017). Only one study reported subject fatigue using a 5-
point Likert scale questionnaire (Zhang et al., 2019). Zhang
et al. (2019) used a self-report questionnaire to investigate the
psychological factors of participants during BCI experiments.
Taherian et al. (2017) justified the absence of self-report
questionnaires due to the severity of participants’ conditions and
limited communication capabilities. In terms of performance,

most of the studies reported accuracy rates (see Table 7). Norton
et al. (2018) was the only study with a self-report questionnaire
for the usability of the BCI system.

DISCUSSION

Pediatric BCIs
The primary objective of this systematic review was to examine
studies related to the use of BCIs in pediatric populations. We
described the current state-of-the-art for pediatric BCIs and
assessed the quality and the risk of bias of the 12 articles.
The included studies raise several challenges addressed in
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TABLE 7 | Performance evaluation metrics used in the 12 studies on pediatric

BCIs.

References Performance

Sanchez et al. (2008) →Accuracy

Breshears et al. (2011) →Accuracy

Ehlers et al. (2012) →Accuracy

Pistohl et al. (2012) →Correlation coefficients

Pistohl et al. (2013) →TPR/FPR/FP-rate

Beveridge et al. (2017) →Accuracy

→ITR

Taherian et al. (2017) →Performance score

Jochumsen et al. (2018) →Accuracy

Norton et al. (2018) →Accuracy

→Latency

→Bitrate

Beveridge et al. (2019) →Accuracy

→ITR

→Latency

Zhang et al. (2019) →Cohen’s kappa

Vařeka (2020) →Accuracy

→Precision

→Recall

→AUC

FPR, false positive ratio; TPR, true positive ratio; FP-rate, false positive rate; AUC, area

under ROC curve; ITR, information transfer rate.

the following sections where we describe considerations for
future research to make BCI technologies suitable for children.
We also identify requirements to render BCIs suitable for
clinical translation.

BCIs for Communication: State-of-the-Art
Regarding studies investigating BCIs for communication, a wide
range of methods were implemented yielding various levels of
success. Seven studies involved non-invasive EEG as the signal
acquisition modality (Ehlers et al., 2012; Beveridge et al., 2017,
2019; Taherian et al., 2017; Norton et al., 2018; Zhang et al., 2019;
Vařeka, 2020). Five studies analyzed evoked potentials (Ehlers
et al., 2012; Beveridge et al., 2017, 2019; Norton et al., 2018;
Vařeka, 2020) and two used movement-related potentials as the
control signal (Taherian et al., 2017; Zhang et al., 2019).

Two studies took advantage of the active mental task MI
(Taherian et al., 2017; Zhang et al., 2019). Taherian et al.
(2017) deployed a consumer-grade EEG headset with five youth
with spastic quadriplegic CP to decode left and right arm MI.
This was the first study that involved children and computer
access with a commercial EEG-BCI using the EMOTIV Epoc R©

hardware, but participants achieved poor accuracies (0.08–0.56
peak performance score range). Zhang et al. (2019) utilized
the same low-cost commercial EEG headset as Taherian et al.
(2017) to compare MI and “goal-oriented thinking” as tasks to
control either a toy car or computer cursor with TD children.
Participants achieved an online Cohen’s kappa score of 0.46
pointing to successful control of the BCI. Importantly, they found
performances were higher when users were controlling toy car vs.
computer cursor. These results were attributed to the increased

engagement of the children when controlling the car. This study
points to the potential of low-cost BCIs being successfully used
as a binary switch with pediatric users. It is unclear whether
the poor results achieved by Taherian et al. (2017) are due to
neurological differences of children with CP compared to TD
children. It is possible that the physical and cognitive limitations,
common among children with CP, were the source of differences
in achieved accuracies.

Many limitations in current methods emerge when translating
BCIs for communication to the target population (e.g., children
with severe disabilities). For example, in the study by Taherian
et al. (2017), participating children had unique head shapes that
limited the ability of the electrodes on the BCI to gain contact
with the scalp. Additionally, individuals with CP have been
known to produce large muscular artifacts due to involuntary
movements. Since the authors were unable to record raw EEG
data, it is unclear whether artifacts disrupted signal acquisition,
ultimately affecting their training data. The embedded EMOTIV
system used by Taherian et al. (2017) may not have adequate
artifact reduction methods, which would significantly affect
the classification of the signals. Lastly, the authors reported
another issue due to the severity of participants’ conditions.
They foundmany difficulties conducting 30min training sessions
and mentioned the impossibility of collecting enough EEG
data to adequately train the classifiers. Moreover, participants
were unable to learn to reproduce specific MI tasks within
the timeframe of the study. In contrast, Zhang et al. (2019)
demonstrated that a goal-oriented strategy works better than MI
task with children and it may be useful for teaching MI tasks
to children with disabilities. They found a BCI illiteracy rate
higher in children than in adults and emphasized the potential
difficulty children experience when reproducing their thought
strategy in each trial. These issues might be resolved by including
additional training phases in the study acquisition protocol for
pediatric BCIs. The lack of customization of commercial headsets
for pediatric head sizes may also justify reduced performances
of children as compared to adults. For this reason, Zhang
et al. (2019) had many difficulties placing the electrodes in
locations dictated by the international 10–20 system in pediatric
BCI studies.

The other five communication-focused studies utilized the
reactive tasks known as SSVEP (Ehlers et al., 2012; Norton et al.,
2018), mVEP (Beveridge et al., 2017, 2019), and P300 (Vařeka,
2020). The two studies investigating SSVEP (i.e., where the user
visually fixates on a flashing target to indicate its selection)
utilized the EEG signal acquisition modality and achieved mixed
results. There are three main performance measurements of
an SSVEP-based BCI: accuracy (probability of predicted target
matching the target), latency (mean time from target onset
to classification), and bit rate (transfer information rate, e.g.,
the amount of information conveyed per time unit). Ehlers
et al. (2012) tested an SSVEP-BCI with five visual targets
achieving quite poor results with 40 TD children. Accuracies
ranged from 38 to 75%. Results reported by Ehlers et al. (2012)
demonstrated that mean accuracy rates depend on age and
frequency of the stimulation (10–11Hz). The adult comparison
group obtained consistently higher accuracy rates compared to
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all three children samples and an age-specific shift can be seen
in the peak synchronization frequency. Their findings align with
those reported by Roland et al. (2011). Using an ECoG and EEG-
BCI, Roland et al. (2011) found that higher frequency bands show
significant correlations with age in participants aged 11–59 years.
This full-text was excluded because authors did not report BCI
performance. Norton et al. (2018) built upon the work of Ehlers
et al. (2012) by improving an SSVEP-BCI for TD children. Eleven
of the 15 children exceeded the threshold of successful BCI
control during offline sessions and attained an average of 79%
online classification accuracy. This result was statistically similar
to results achieved by the participating adult cohort. While
the achieved bit rates of pediatric participants were lower than
adults, this study points to the promise of successful control of
SSVEP-BCIs by pediatric users. As noted in Norton et al. (2018),
there are many methodological differences between their study
and Ehlers et al. (2012), which may explain result differences.
Methodological discrepancies include differences in the task
controlled by the BCI, slightly different stimulation frequencies,
involvement of a calibration phase, dissimilar environmental
settings, and exclusion of participants after a poor calibration
phase. Lastly, Norton et al. (2018) is the only study where
performance is reported in terms of accuracy, latency, and bit
rates. The latency is the average amount of time between the
onset of the stimuli and the classification of the predicted target
(Norton et al., 2018). Norton et al. (2018) showed that children
were slower than adults, although this result was not significant.

The two studies by Beveridge’s group (Beveridge et al., 2017,
2019) involve racetrack video games and are the first studies
with pediatric subjects using mVEP-BCI applications. The
overarching goal of these two articles is to explore a BCI task that
is less visually fatiguing than commonly investigated alternative
BCI tasks such as SSVEP and P300. They demonstrated the
feasibility of mVEP paradigm achieving an average accuracy of
up to 72% but did not apply any measurement or questionnaires
to evaluate visual fatigue among participants. The absence
of a qualitative and quantitative evaluation of visual fatigue
limits the reliability of these two papers despite the high
performance reported.

Vařeka (2020) is the first study that includes a large group of
pediatric participants (e.g., 250) and that applied deep learning
algorithms (e.g., CNN) in BCIs for children. The study showed
that LDA, SVM, and CNN had similar classification performance
(62–64% accuracy) using P300 features. The article reports higher
performance (∼77% accuracy) when the BCI employs averaging
of P300 trials. Comparing trial groupings of various sizes (1–6
trials), average classification accuracy increases with each group
size increase. Vařeka (2020) reports an important limitation of
CNN for BCIs: LDA and SVM showed faster computational
time than CNN (300ms, 1,600ms vs. 46 s CPU/26 s GPU).
Vařeka (2020) is the only study conducted in a school setting.
The authors suggest that the school setting likely hindered the
children’s performance. This is corroborated by the fact that
30.3% of epochs were rejected due to noise. Artifact correction
was not possible due to the limited number of EEG channels used
(only three electrodes). The authors could have employed a larger
number of channels to increase spatial resolution and likely also
the performance accuracy.

BCIs for Mobility: State-of-the-Art
Five studies exploring BCIs for mobility have involved children
in the last 12 years (Sanchez et al., 2008; Breshears et al., 2011;
Pistohl et al., 2012, 2013; Jochumsen et al., 2018). Four of the five
studies utilized invasive techniques and acquired ECoG signals
(Sanchez et al., 2008; Breshears et al., 2011; Pistohl et al., 2012,
2013).

Sanchez et al. (2008) investigated ECoG amplitude
modulation for motor control tasks (e.g., reaching and grasping)
for the first time with a small group of pediatric participants.
Sanchez et al. (2008) generated online predictive models to
decode motor commands in the primary motor cortex. The
predicted trajectories showed moderate correlations with actual
trajectories. However, the estimates involved very large variances
representing the models’ inability to distinguish the motor
activity from noise in a realistic setting.

Breshears et al. (2011) conducted the first study on pediatric
ECoG-BCI presenting a comparison of results between adult
and pediatric participants. Breshears et al. (2011) demonstrated
that recent advances in neuroprosthetic research may be applied
to BCI applications with children. The technology is ready to
move beyond single case studies to be tested in wide-spectrum
experimentation of BCI for mobility involving a pediatric
population. They showed that prepubescent and peripubescent
children can rapidly and effectively achieve control of a computer
cursor (accuracy: 70–99%), after short training times of 8–
18min, using a multitude of different cognitive modalities and
their associated cortical physiologies. Although neurofeedback
on brain signals has been used previously with children, its use
was primarily for diagnostic and therapeutic purposes, rather
than the express purpose of control alone.

Pistohl et al. (2012, 2013) reported good performance in
arm and grasp movement prediction with their ECoG-BCI. The
authors recorded from hand and arm areas of the human motor
cortex as sites likely to be utilized in future BCI applications.
While predictions were quite reliable at sub-second precision,
the observed temporal deviations might still be too large for
applications requiring very precisely timed movement control.
Their grasping detection method based on linear discriminant
analysis on ECoG recordings from the motor cortex can
predict events 125–250ms before their occurrence, without
accuracy loss.

Jochumsen et al. (2018) investigated motor preparation and
execution tasks performed by childrenwith CP and collected with
EEG. This is the only non-invasive mobility study captured by
this review. Participants achieved accuracies as high as 85% when
classifying ankle dorsiflexion activity vs. idle. Jochumsen’s group
also demonstrated that children with CP can generate motor-
related cortical potentials that are visually discernable, creating
the possibility of motor decoding using non-invasive modalities
such as EEG with children with CP.

Pediatric Participants and Sample Size
The 12 publications included were specifically targeting BCIs for
use with children (Sanchez et al., 2008; Breshears et al., 2011;
Ehlers et al., 2012; Pistohl et al., 2012, 2013; Beveridge et al.,
2017, 2019; Taherian et al., 2017; Jochumsen et al., 2018; Norton
et al., 2018; Zhang et al., 2019; Vařeka, 2020). These studies
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generally included a limited number of pediatric participants and
combined children and youth. Three of the papers compared
adults and children (Ehlers et al., 2012; Taherian et al., 2017;
Beveridge et al., 2019), however only Beveridge et al. (2019)
discussed possible differences in performance due to cognitive
and neurological differences between participants. Thirteen full-
text articles were excluded because they included only a few
pediatric participants among a heterogeneous age group, without
developing a specific protocol for pediatric ages (e.g., Pistohl
et al., 2008; Schalk et al., 2008; Perego et al., 2011; Milekovic
et al., 2012; Zhang et al., 2013). An additional 28 papers were
excluded due to the inclusion of a homogenous group of
adults and children, without special consideration for differences
between the two groups of participants (e.g., Treder et al., 2011;
Weyand et al., 2015). It is critical that researchers acknowledge
the physiological differences between adults and children when
studies involve participants spanning the pediatric and adult
age ranges.

Overall, the sample sizes of pediatric participants in the
studies were small, ranging from two (Sanchez et al., 2008) to
250 (Vařeka, 2020). Half of the studies involved fewer than 10
pediatric participants (Tables 1, 3). Only one study exceeded
51 participants (Vařeka, 2020). Despite a large sample size,
Vařeka (2020) did not perform any statistical analysis among
results nor did they stratify participants into small age groups
to determine effect of age on performance. Median number of
pediatric participants in reviewed studies was 11. In total, 370
pediatric participants were enrolled across 12 studies, with 250
contributed by Vařeka (2020). Excluding Norton et al. (2018)
who did not report participant sex, 42% of children and youth
were female. Average age of pediatric participants across studies
was 13.3 ± 3.2 years. For mobility-related BCI studies, most
of the participants clustered around mid-adolescence (14–16
years) while for communication BCI studies, participants were
mostly scattered between 9 and 18 years. Notably, across all
studies, only four participants were <9 years old. Figure 5

shows the age distribution of pediatric participants excluding
Ehlers et al. (2012), Beveridge et al. (2017, 2019), Norton et al.
(2018), and Vařeka (2020). Age data extracted from Zhang
et al. (2019) data were interpolated and extracted from a
graph reported in the article. Two studies (Ehlers et al., 2012;
Norton et al., 2018) reported only the average of participants’
ages. Future studies should continue to increase sample sizes,
as this will allow for more powerful investigations of age
on performance.

Inclusion of Individuals With Disabilities
It is important to note the scarcity of studies involving individuals
with disabilities in both the pediatric and adult BCI literature.
Kübler et al. (2013) stated that <10% of published BCI papers
include participants with severe motor disability, despite this
group being the ultimate target population of the research.
Among the papers examined in this review, only Taherian et al.
(2017) and Jochumsen et al. (2018) included participants of the
target population (namely, CP) of pediatric age. Jochumsen et al.
(2018) involved youth with CP performing a motor task and
found that the participants demonstrated MRCP. Researchers

questioned whether MRCP could be discriminated due to the
atypical movements and reorganized motor cortical networks of
individuals with CP (Papadelis et al., 2018).

The progression of research involving adult participants has
progressed from involving typically developed adults to including
adults with disabilities. Just as it has been for BCI studies
involving adult participants, BCI research projects should first
include able-bodied children and then immediately extend to
children with disabilities. BCI studies should be designed as
prospective cohort studies with strong experimental designs
involving pediatric participants with severe motor disabilities
rather than solely TD controls. Several studies have investigated
the use of BCIs for attention-deficit hyperactivity disorder
treatment in children showing promising results (Kulseng et al.,
2007; Sigurdardottir et al., 2010; Felton et al., 2012; Rohani
et al., 2014; Gabis et al., 2015). P300 is typically used in this
training and the successful results indicate that the BCIs can
accurately distinguish P300 signals in the participating children.
Unfortunately, we could not include these studies because they
were published in conference proceedings or they did not report
BCI performance measures.

BCI User Experience of Children
So far, studies have only reported that photosensitivity of some
children may preclude the use of some BCI paradigms. None of
the studies in this review reported any adverse events. Potential
disadvantages of BCIs include the time and effort required to
learn to use a BCI system and the speed at which information can
be transferred. Additionally, the inconvenience of the setup and
cleanup of the hardware associated with the technology as well
as its discomfort and portability may compromise integration
into daily life. These considerations will need to be balanced
with the promise that BCI holds to facilitate communication and
quality of life for people who have explored all other options
available. Researchers have the responsibility to provide accurate
and balanced information for the young potential participants
and their families. Assent should be encouraged, and long-
term follow-up embedded within the study design. Moreover,
as reported in a notable review on augmentative and alternative
communication (AAC) by Akcakaya et al. (2014, p. 24): “some
children with disabilities would certainly benefit from using BCIs
for communication and control, and researchers should begin to
investigate this possibility.” BCIs have the potential to be used as
assistive technology devices for pediatric users but only Breshears
et al. (2011) addressed the use of a BCI for AAC devices. This
study explores BCI assistive technologies for mobility support
and customized communication devices activated using tasks
such as vocalization (e.g., oo, ah, eh) or tongue protrusion. These
tasks can be used to control a laptop, showing how a BCI can
support children with disabilities in their daily life.

Mental Tasks and Brain Signals
With respect to the mental tasks used in the 12 articles,
motor-related tasks, P300, SSVEP, and mVEP paradigms
were investigated.

Seven studies applied motor-related BCIs (Sanchez et al.,
2008; Breshears et al., 2011; Pistohl et al., 2012, 2013; Taherian
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FIGURE 5 | Age distribution in pediatric BCIs. Ehlers et al. (2012), Norton et al. (2018), Beveridge et al. (2017, 2019), and Vařeka (2020) were not considered as they

did not provide a specific age breakdown for their participants.

et al., 2017; Jochumsen et al., 2018; Zhang et al., 2019). Three
studies (Breshears et al., 2011; Taherian et al., 2017; Zhang
et al., 2019) applied MI paradigms. Three articles (Taherian
et al., 2017; Jochumsen et al., 2018; Zhang et al., 2019) applied
motor potential BCIs. There are many benefits to the use of
movement-related BCI tasks (Taherian et al., 2017; Zhang et al.,
2019), such as the ability to perform the task without intact
visual abilities. Additionally, motor-related control may allow
for control signals that are intuitive, such as imagining moving
the right hand to turn a wheelchair to the right. Lastly, high
achieved accuracies unlock the potential to control devices with
as many degrees of freedom as physical movement. However,
many researchers questioned the feasibility of MI tasks for
children with congenital movement conditions, such as CP (Lust
et al., 2016). The concept of MI is abstract and may be difficult
for some children to understand. Furthermore, children with
severe physical disabilities who have never had functional control
of their limbs might find it very challenging to perform MI
tasks. The included studies focusing onmovement-initiated BCIs
(Breshears et al., 2011; Pistohl et al., 2012, 2013; Jochumsen
et al., 2018) made excellent first steps toward decoding neuronal
activity related to movement. For target users who are unable to
perform these movements, the BCIs must be prepared to detect
the imagination of these movements for these tasks to be useful.

Five included studies (Ehlers et al., 2012; Beveridge et al.,
2017, 2019; Norton et al., 2018; Vařeka, 2020) investigated the
use of evoked potential paradigms (P300, SSVEP, and mVEP).
One of the main benefits of using evoked-potentials for BCIs
is the ability to create a system with extremely large degrees of
freedom as the detection of one evoked potential allows for quick
selection among several presented options. The use of mVEP
(Beveridge et al., 2017, 2019) and P300 (Vařeka, 2020) is quite

new in BCI research. P300 is the most successful BCI task in
adult users due to its low training time to gain proficiency and
high achievable accuracies (Abiri et al., 2018). P300 allows users
to select among dozens of options and might be considered
the best method for applications for assistive technology and
AAC devices. Vařeka (2020) showed for the first time the
feasibility of P300 with children reaching promising classification
performance (62–79% accuracy). One of the findings of Vařeka
(2020) study is the large variability of P300 components present
in children’s signals. This is probably due to the large age range
(7–17) used as participants’ inclusion criterion. Unfortunately,
due to the rate of flashing options, P300 may have the potential
to induce photo-epileptic seizures in users with epilepsy or in
young users who are unaware of their photosensitivity. For the
same reason, SSVEP tasks must also be used with caution with
children with disabilities, especially for children with CP who
often have visual impairments (Gabis et al., 2015). mVEPsmay be
a possible alternative to flash-based BCIs and have been applied
in BCI spelling applications (Hong et al., 2009) and neurogaming
(Beveridge et al., 2016) in adults. Beveridge et al. (2017) is
the first study that applied mVEP paradigm with children and
youth obtaining reasonable online performance at 70% accuracy.
mVEP-based BCIs are similar to P300 BCIs as users focus on
a single option among several. The mVEP paradigm relies on
N200 ERPs generated when visual motion occurs on the option
that the user is focusing their attention on. This paradigm may
be more suitable for children who are photosensitive as it does
not involve any flashing lights. Overall, these evoked tasks require
immense focus and maintenance of gaze on the computer screen
for the brain potentials to be evoked. This can be challenging
to achieve for children with disabilities, especially for those who
often have involuntary movements, such as children with CP.
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Additionally, evoked potential paradigms require intact sensory
function. Children with CP often have visual impairments which
preclude the use of these evoked tasks (Gabis et al., 2015).

An alternative to visual evoked potentials is the P300-based
BCI that uses covert speech or mental singing. Both tasks have
been extensively investigated in adult BCI research and should be
explored with children as it requires intact hearing alone. Age-
related differences in EEG responses have been explored in prior
works related to auditory stimuli (Kolev and Yordanova, 1997;
Sanders and Zobel, 2012). Although auditory evoked potentials
are not fully mature until at least 16 years of age, research
indicates that children around 5 years of age show spatially
selective attention on auditory evoked potentials when listening
to one of the two simultaneously presented non-verbal sounds
(Sanders and Zobel, 2012). These findings are further supported
by research studies (Kolev and Yordanova, 1997; Sanders and
Zobel, 2012), which show clear evidence that auditory P300
signals in pediatric age should be investigated in future research.

Overall, when selecting a mental task for children, it is critical
to implement tasks that are intuitive and require low effort. Ehlers
et al. (2012) reported pediatric-specific deficits in the ability to
perform a visual search task that the adult participants could
perform. Additionally, user fatigue and visual annoyance are
factors to consider when selecting a task. This systematic review
revealed that only three studies (Breshears et al., 2011; Pistohl
et al., 2013; Zhang et al., 2019) focused on mental tasks geared
toward children and youth. Norton et al. (2018) noted that two
children were visibly distracted during their calibration phase
and attributed this to their choice of boring tasks. Beveridge et al.
(2017, 2019) justified lower classifier performance speculating
fatigue and reduction of interest or waning concentration, but
they did not introduce any qualitative assessment and they
did not ask participants about these factors. It is critical that
engaging tasks are selected for these studies. Zhang et al. (2019)
specifically focused on comparing two types of activities: a toy
car and a computer cursor. They found improved BCI control
when children were controlling a toy car. This may be due to
the improved engagement the toy created for the participating
children. Future studies should focus on creating engaging tasks
to foster the optimal performance of the children and collect
qualitative and quantitative evaluation factors to describe how
children’s performance vary along with their development.

Signal Acquisition Modality
Eight of the studies investigating BCIs as an access technology
involved the non-invasive EEG signal acquisition modality
(Ehlers et al., 2012; Beveridge et al., 2017, 2019; Taherian
et al., 2017; Jochumsen et al., 2018; Norton et al., 2018; Zhang
et al., 2019; Vařeka, 2020). The remaining four studies involved
invasive ECoG-BCIs with children with intractable epilepsy
(Sanchez et al., 2008; Breshears et al., 2011; Pistohl et al., 2012,
2013). As a result, electrode arrays were placed according to the
requirements of the clinical epilepsy evaluation. Thus, not all the
desired regions were included for motor task detection.

When discussing the use of ECoG-BCI research with children,
it is important to consider whether brain signal acquisition is safe
for a developing brain and whether there are negative long-term
effects. While the meta-analysis was not an appropriate approach

for this review, in general, studies involving ECoG yielded more
successful outcomes than those involving EEG. This is likely due
to the larger detectable frequency range, higher spatial resolution
of ECoG than EEG (mm vs. cm), improved signal-to-noise ratio,
and the potential to control more complex devices that require
detecting small and specific patterns of brain activity.

EEG Signal Challenges
Main challenges faced when developing pediatric BCIs have
previously been outlined by Ding et al. (2008) and Giedd et al.
(1999) describing the ongoing development of a child’s brain
and its reorganization in presence of a brain injury and in those
with atypical brain organization (Johnston, 2009; Deng, 2010;
Pannek et al., 2014). EEG potentials generated by developing
pediatric brains differ from adults, rendering signal features
commonly extracted for successful adult BCIs potentially useless.
Neurodevelopmental consequences of brain injury result in
additional differences in EEG signal patterns when compared
to able-bodied adults. Children’s psychological and physiological
state can influence the performance as the prefrontal cortex
continues to rapidly develop until the age of 25 (Arain et al.,
2013). Structural and functional MRI studies involving tasks
used in BCI systems can be referenced to inform electrode
positioning and source localization. Also, age-specific head-
models are missing in EEG and MRI studies. Finally, challenges
exist regarding EEG signal acquisition. High-density, gel-based,
and wired EEG devices involving long training sessions are not
ideal for children, especially those with disabilities. Children
can experience more sensory sensitivities to gel, abrasion, and
headgear. There is not a wide range of dry, active, and/or wireless
headsets available for pediatric head sizes, nor for those with
differences in head shape (Sellers et al., 2009; Slater et al., 2012;
Hairston et al., 2014).

ECoG Signal Issues
Since the participants of the presented ECoG studies have
intractable epilepsy and there was not a control group, it is
possible their atypical brain activity contributed to identification
of features applicable only in children with epilepsy (Sanchez
et al., 2008; Breshears et al., 2011; Pistohl et al., 2012, 2013).
Another limitation of the ECoG modality is its invasive nature
and requirement of a craniotomy to implant an electrode grid
(Nicolas-Alonso and Gomez-Gil, 2012). This poses significant
health hazards (Nicolas-Alonso and Gomez-Gil, 2012) and
creates a lack of feasibility for widespread use. Long-term stability
of the signals acquired by ECoG and the longevity of the
implanted grid are currently uncertain (Nicolas-Alonso and
Gomez-Gil, 2012). The grids utilized in the ECoG studies were
not placed for long-term use. As children grow and develop,
it is unclear whether the implanted electrode grid would shift
or cause damage. These considerations should be addressed in
future studies on ECoG-BCI.

Personalized Methods
Each article presented in this review applied the same channels
and features among participants included in each research study.
Even when efforts are made to create a homogenous group
of participants, individual differences in brain activity when
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performing the same task should be considered. Personalized
channel and feature selection would maximize individual BCI
performance. For example, a multitude of features could be
extracted offline and a feature selection algorithm would then
implement the top features for online use.

Outcome Measures
Among the reviewed studies there is inconsistency in the metrics
used for presenting results as summarized in Table 7. Included
studies rarely reported classification results in terms of sensitivity
and specificity. Studies reported: accuracy (Sanchez et al., 2008;
Breshears et al., 2011; Ehlers et al., 2012; Beveridge et al., 2017,
2019; Jochumsen et al., 2018; Norton et al., 2018; Vařeka, 2020);
bit rates (Norton et al., 2018); correlation coefficients (Pistohl
et al., 2012); performance score (Taherian et al., 2017); ITR
(Beveridge et al., 2017, 2019); latency (Norton et al., 2018;
Beveridge et al., 2019); true positive and false positive ratios
(Pistohl et al., 2013); Cohen’s Kappa score (Zhang et al., 2019);
precision, recall and AUC (Vařeka, 2020). How much the
decoding accuracy deviates from chance level should be always
reported. Chance level refers to the rate achieved by random
classification. For a 2-class problem, the theoretical chance level
is 50%, for a 5-class problem it is 20%, etc. Unfortunately,
the theoretical chance level is valid only for a large number
of samples (or trials). We noted that the chance level used
by most of the studies was based on the theoretical level of
chance (Breshears et al., 2011; Pistohl et al., 2012; Beveridge
et al., 2017, 2019). Zhang et al. (2019) considered a 70% chance
level based on previous studies with adult participants (Scherer
et al., 2013; Jeunet et al., 2016). The chance level of a BCI
system created from a relatively small data set depends on the
number of classes, sample size, and threshold for statistical
significance of the classification (Combrisson and Jerbi, 2015). A
simple binomial distribution involving these variables generates
the threshold that must be surpassed for statistically significant
classification accuracies (Combrisson and Jerbi, 2015). Another
method for determining statistical significance of results is
through the permutation test (Nichols and Holmes, 2002; Good,
2013).

Sanchez et al. (2008), Ehlers et al. (2012), Pistohl et al. (2013),
Taherian et al. (2017), Norton et al. (2018), and Vařeka (2020)
did not report the chance level. Jochumsen et al. (2018) is the
only included study that estimated the chance level based on the
number of trials (Müller-Putz et al., 2008).

Furthermore, for applications involving mobility,
timing, and precision of the BCI output are of utmost
importance. If the output were controls for a wheelchair,
imprecise movements or timing delays could result in
dangerous consequences for the user. Future research
studies should consider reporting the same metrics at least
in terms of accuracy, sensitivity, specificity, latency, and
bit rates.

Future Research and Requirements for
Clinical Translation
Although much of what we understand about BCI for
communication and mobility has been gained by exploring

the responses of able-bodied adults to various brain activity
protocols, research into BCI for individuals with disabilities
has been increasing in recent years. Despite this, few research
studies address the application of BCIs for communication and
mobility in children. BCIs hold the potential to enable people
with severe physical disabilities, who are unable to speak and
who do not have voluntary muscle control, to communicate
and operate other technologies without any physical movements
(Wolpaw et al., 2002). A small number of studies provide
encouraging evidence for continued research in children with
studies demonstrating children as young as 7 years of age
(Ehlers et al., 2012; Zhang et al., 2019) can learn to control
their brain activity and perform activities on the computer.
Recently, there has been an emergence of two new mental
tasks being investigated with children (mVEP and P300) and a
study that recruited unprecedented numbers of children (Vařeka,
2020). However, the clinical translation of pediatric BCIs still
requires additional research to address several challenges. To
summarize our recommendations, we report a list of potential
requirements to be considered for BCI clinical translation. Future
studies should:

• Continue to recruit large numbers of participants akin to
Vařeka (2020).

• Collect smaller sub-groups of child age ranges, instead of large
age ranges (e.g., 7–17), to investigate as neurodevelopment
varies across childhood-adolescence.

• Include comparisons between children and adults.
• Include a TD group as a control, for studies focused on

children with disabilities.
• Report the age and sex information, as their correlation with

BCI performance would result in a better understanding
of how to customize BCIs for children across stages
of neurodevelopment.

• Collect more accompanying qualitative data, considering
physiological factors, BCI experience, fatigue, and workload
through standardized questionnaires to avoid bias.

• Develop study protocols specific for children and include
additional training phases for those who do not have
experience with BCIs.

• Increase preparation time and reduce the participant
discomfort during data collection. An additional requirement
is the comfort of wearable headsets and caps. Children are
more sensitive to fatigue and discomfort, therefore wearing
portable headsets for a long period of time can be challenging.
Novel headsets specifically designed for children’s heads
should be developed.

• Include game activities. Considering the difficulty of children
to maintain attention during mental tasks, BCI paradigms
should be engaging and include customized activities and
games. Also, games similar to those successfully implemented
in the ADHD BCI studies could be utilized in future
studies as pediatric appropriate activities. These reward-based
attention games could be employed as training for BCI
sessions to maintain focus as BCI sessions also require intense
engagement of children through the presentation of cues and
stimuli (Gavin and Davies, 2007).
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• Develop customizable BCI algorithms and investigate the
best algorithms suitable for pediatric BCIs. As highlighted in
this systematic review, there is still no feature extraction or
machine learning technique clearly established as state-of-the-
art for pediatric BCIs.

• Improve performance accuracy in predicting the user’s intent
(Wolpaw and Wolpaw, 2012) especially in children, as they
historically achieve inadequate performance for practical use
(Mikołajewska and Mikołajewski, 2014).

• Be consistent in reporting algorithm performance results. In
the case of binary classification, results should be reported
in terms of accuracy and sensitivity (e.g., classifier sensitivity,
specificity, standard deviation, etc.). In multi-class paradigms,
other performance metrics should be considered like recall,
precision, and F1-score. In this case, accuracy may be
difficult to interpret, especially if unbalanced classification (i.e.,
different number of samples per class).

• Share datasets and frameworks. In fact, we noticed that
none of the publications mentioned the possibility of sharing
children’s brain signals or sharing their code or framework,
except the study by Vařeka (2020) that used a public dataset
(Mouček et al., 2019) and shared the software code used for
reproducibility of the obtained results. Future studies should
consider publishing their datasets and sharing data analysis
frameworks to better understand the feasibility of introducing
BCI technology in clinical practice.

• Investigate new technologies combining multiple brain signals
in pediatric populations. For example, hybrid BCI systems
(e.g., fNIRS-EEG BCIs) could achieve better performance
accuracy rates than single modality systems (Wolpaw and
Wolpaw, 2012; Sereshkeh et al., 2019).

• The error-related potential (ErrP) can be detected in the
EEG if a person perceives the mistake. Two components
of the ErrP can be identified: the error-related negativity
(ERN or Ne) which is a negative potential peaking 50–100ms
after an erroneous response, and the error-related positive
potential, called error positivity (Pe), follows the ERN. Several
studies examined ErrP in adults but only a few studies have
investigated ErrP in children. Also, results are not consistent
among these studies. ERN may be reliably detected before
age 12 (Davies et al., 2004), or it may be present at 10 years
of age (Santesso et al., 2006), or even at 7–8 years of age
(Kim et al., 2007; Wiersema et al., 2007). The amplitude was
found to be smaller for children compared to adults (Wiersema
et al., 2007) but no significant differences were found (Kim
et al., 2007). Furthermore, ERN can even be reliably elicited
in children as young as 5–7 years old (Torpey et al., 2009). As
such, research on ErrP should investigate if ErrPs are clearly
present in pediatric brain signals.

• Prioritize BCI research with pediatric participants to better
understand if a BCI system can be used as assistive
technologies with children.

Limitations
Substantial heterogeneity in the included studies concerning
the participant’s diagnosis, age, tasks, methods, and outcome
measure prevented any pooling or meta-analysis of results for

this systematic review. Our conclusions may be influenced by the
small sample sizes of the identified studies that included only case
studies or small groups of pediatric participants. We excluded
studies aimed at providing diagnoses or therapeutic interventions
in this systematic review because we targeted communication
and mobility BCIs. Also, the focus on English-written articles
forms a limitation of this study as other languages were not
captured. Our decision to appraise the quality of included
studies usingQualSyst may create limitations. The checklist items
represent the authors’ perception of research quality and given
the absence of gold standard BCI protocols, it is difficult to
accurately assess the validity of the tool itself, but it was the only
one applicable to the study design of the 12 articles. Finally, the
use of summary scores to categorize studies may introduce bias
into a review (Kmet et al., 2004). It is important to note the two
research papers, Lim et al. (2012) and Rohani et al. (2014), fall
outside our inclusion criteria because they focused on improving
attention in children with attention-deficit and hyperactivity
disorders (ADHD). They found successful results using EEG
BCI-based games. Furthermore, to highlight the importance of
this topic, we highlight that 10 papers screened were excluded
only because they did not report BCI performance (e.g., Antle
et al., 2018; Park et al., 2019).

CONCLUSION

This systematic review presented the state-of-the-art of BCIs
for children. It highlighted previously successful methods and
paradigms and outlined actions that should be taken to develop
new access technologies based on brain activity for children with
severe disabilities. Despite very few research studies addressing
the application of BCIs for communication and mobility in
children, results are encouraging, and future research should
investigate how BCIs can be better customized for pediatric ages.
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Myrden, A. J., Kushki, A., Sejdi,ć, E., Guerguerian, A. M., and Chau, T. (2011). A
brain-computer interface based on bilateral transcranial Doppler Ultrasound.
PLoS ONE 6:e0024170. doi: 10.1371/journal.pone.0024170

Nichols, T. E., and Holmes, A. P. (2002). Nonparametric permutation tests for
functional neuroimaging: a primer with examples.Hum. Brain Mapp. 15, 1–25.
doi: 10.1002/hbm.1058

Nicolas-Alonso, L. F., and Gomez-Gil, J. (2012). Brain computer interfaces, a
review. Sensors 12, 1211–1279. doi: 10.3390/s120201211

Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea,
A., et al. (2008). A P300-based brain-computer interface for people
with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119, 1909–1916.
doi: 10.1016/j.clinph.2008.03.034

Norton, J. J., Mullins, J., Alitz, B. E., and Bretl, T. (2018). The performance of 9–11-
year-old children using an SSVEP-based BCI for target selection. J. Neur. Eng.
15:056012. doi: 10.1088/1741-2552/aacfdd

Obermaier, B., Müller, G. R., and Pfurtscheller, G. (2003). “Virtual Keyboard”
controlled by spontaneous EEG activity. IEEE Trans. Neural Syst. Rehabilitation
Eng., 11, 422–426. doi: 10.1109/TNSRE.2003.816866

Oken, B., Memmott, T., Eddy, B., Wiedrick, J., and Fried-Oken, M. (2018).
Vigilance state fluctuations and performance using brain–computer
interface for communication. Brain Comput. Interfaces 5, 146–156.
doi: 10.1080/2326263X.2019.1571356

Oken, B. S., Orhan, U., Roark, B., Erdogmus, D., Fowler, A., Mooney,
A., et al. (2014). Brain-computer interface with language model-
electroencephalography fusion for Locked-in Syndrome. Neurorehabil.

Neural. Repair. 28, 387–394. doi: 10.1177/1545968313516867
Pangelinan, M. M., Kagerer, F. A., Momen, B., Hatfield, B. D., and Clark,

J. E. (2011). Electrocortical dynamics reflect age-related differences in
movement kinematics among children and adults. Cereb. Cortex. 21, 737–747.
doi: 10.1093/cercor/bhq162

Pannek, K., Boyd, R. N., Fiori, S., Guzzetta, A., and Rose, S. E. (2014). Assessment
of the structural brain network reveals altered connectivity in children
with unilateral cerebral palsy due to periventricular white matter lesions.
NeuroImage Clin. 5, 84–92. doi: 10.1016/j.nicl.2014.05.018

Papadelis, C., Butler, E. E., Rubenstein, M., Sun, L., Zollei, L., Nimec, D., et al.
(2018). Reorganization of the somatosensory cortex in hemiplegic cerebral
palsy associated with impaired sensory tracts. NeuroImage Clin. 17, 198–212.
doi: 10.1016/j.nicl.2017.10.021

Papatheodorou, N., Pino, A., Kouroupetroglou, G. T., Constantinides, V.,
Andreadou, E., and Papageorgiou, C. C. (2019). Upper limb motor skills
performance evaluation based on point-and-click cursor trajectory analysis:
application in early multiple sclerosis detection. IEEE Access. 7, 28999–29013.
doi: 10.1109/ACCESS.2019.2901926

Park, K., Kihl, T., Park, S., Kim, M. J., and Chang, J. (2019). Fairy
tale directed game-based training system for children with ADHD using
BCI and motion sensing technologies. Behav. Inf. Technol. 38, 564–577.
doi: 10.1080/0144929X.2018.1544276

Perego, P., Turconi, A. C., Andreoni, G., Maggi, L., Beretta, E., Parini, S., et al.
(2011). Cognitive ability assessment by brain-computer interface: validation
of a new assessment method for cognitive abilities. J. Neurosci. Methods 201,
239–250. doi: 10.1016/j.jneumeth.2011.06.025

Pfurtscheller, G., Allison, B. Z., Brunner, C., Bauernfeind, G., Solis-Escalante,
T., Scherer, R., et al. (2010). The hybrid BCI. Front. Neurosci. 4:3.
doi: 10.3389/fnpro.2010.00003

Pichiorri, F., and Mattia, D. (2020). “Brain-computer interfaces in neurologic
rehabilitation practice,” in Handbook of Clinical Neurology, eds N. F. Ramsey
and J. del R. Millán (Elsevier B.V.), 168, 101–116.

Pires, G., Nunes, U., and Castelo-Branco, M. (2011). Statistical spatial filtering
for a P300-based BCI: tests in able-bodied, and patients with cerebral
palsy and amyotrophic lateral sclerosis. J. Neurosci. Methods 195, 270–281.
doi: 10.1016/j.jneumeth.2010.11.016

Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., and Mehring, C. (2008).
Prediction of arm movement trajectories from ECoG-recordings in humans.
J. Neurosci. Methods 167, 105–114. doi: 10.1016/j.jneumeth.2007.10.001

Pistohl, T., Schmidt, T. S. B., Ball, T., Schulze-Bonhage, A., Aertsen, A., and
Mehring, C. (2013). Grasp detection from human ECoG during natural
reach-to-grasp movements. PLoS ONE 8:e54658. doi: 10.1371/journal.pone.00
54658

Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C., and Ball, T. (2012).
Decoding natural grasp types from human ECoG. NeuroImage 59, 248–260.
doi: 10.1016/j.neuroimage.2011.06.084

Proulx, N., Samadani, A.-A., and Chau, T. (2018). Online classification of the near-
infrared spectroscopy fast optical signal for brain-computer interfaces. Biomed.

Phys. Eng. Expres 4:065010. doi: 10.1088/2057-1976/aada1a
Punsawad, Y., and Wongsawat, Y. (2013). “Hybrid SSVEP-motion visual stimulus

based BCI system for intelligent wheelchair,” in 2013 35th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
7416–7419. doi: 10.1109/EMBC.2013.6611272

Rejer, I. (2012). EEG feature selection for BCI based on motor imaginary task.
Found. Comput. Decis. Sci. 37, 283–292. doi: 10.2478/v10209-011-0016-7

Rohani, D. A., Sorensen, H. B. D., and Puthusserypady, S. (2014). “Brain-computer
interface using P300 and virtual reality: a gaming approach for treating ADHD,”
in 2014 36th Annual International Conference of the (IEEE) Engineering in

Medicine and Biology Society. doi: 10.1109/EMBC.2014.6944403
Roland, J., Miller, K., Freudenburg, Z., Sharma, M., Smyth, M., Gaona, C., et al.

(2011). The effect of age on human motor electrocorticographic signals and
implications for brain-computer interface applications. J. Neur. Eng. 8:46013.
doi: 10.1088/1741-2560/8/4/046013

Rupp, R., Kleih, S. C., Leeb, R., Millan, J. D. R., Kübler, A., and Müller-Putz,
G. R. (2014). “Brain-computer interfaces and assistive technology,” in Brain-

Computer-Interfaces in Their Ethical, Social and Cultural Contexts (Dordrecht:
Springer), 7–38. doi: 10.1007/978-94-017-8996-7_2

Sanchez, J. C., Gunduz, A., Carney, P. R., and Principe, J. C. (2008).
Extraction and localization of mesoscopic motor control signals for
human ECoG neuroprosthetics. J. Neurosci. Methods 167, 63–81.
doi: 10.1016/j.jneumeth.2007.04.019

Sanders, L. D., and Zobel, B. H. (2012). Nonverbal spatially selective
attention in 4- and 5-year-old children. Dev. Cogn. Neurosci. 2, 317–328.
doi: 10.1016/j.dcn.2012.03.004

Santesso, D. L., Segalowitz, S. J., and Schmidt, L. A. (2006). Error-related
electrocortical responses in 10-year-old children and young adults. Dev. Sci. 9,
473–481. doi: 10.1111/j.1467-7687.2006.00514.x

Sawyer, S. M., Azzopardi, P. S., Wickremarathne, D., and Patton, G. C.
(2018). The age of adolescence. Lancet Child Adolesc. Health. 2, 223–228.
doi: 10.1016/S2352-4642(18)30022-1

Schalk, G., Miller, K. J., Anderson, N. R., Wilson, J. A., Smyth, M.
D., and Ojemann, J. G., et al. (2008). Two-dimensional movement
control using electrocorticographic signals in humans. J. Neur. Eng. 5:75.
doi: 10.1088/1741-2560/5/1/008

Scherer, R., Faller, J., Balderas, D., Friedrich, E. V., Pröll, M., Allison, B., et al.
(2013). Brain–computer interfacing: more than the sum of its parts. Soft
comput. 17, 317–331. doi: 10.1007/s00500-012-0895-4

Schudlo, L. C., and Chau, T. (2018). Development and testing an online near-
infrared spectroscopy brain-computer interface tailored to an individual with
severe congenital motor impairments. Disabil. Rehabil. Assist. Technol. 13,
581–591. doi: 10.1080/17483107.2017.1357212

Sellers, E. W., Ryan, D. B., and Hauser, C. K. (2014). Noninvasive brain-computer
interface enables communication after brainstem stroke. Sci. Transl. Med.

6:257re7. doi: 10.1126/scitranslmed.3007801
Sellers, E. W., Turner, P., Sarnacki, W. A., McManus, T., Vaughan, T. M.,

and Matthews, R. (2009). “A novel dry electrode for brain-computer
interface,” in International Conference onHuman-Computer Interaction (Berlin:
Springer), 623–631.

Sereshkeh, A. R., Yousefi, R., Wong, A. T., and Chau, T. (2018). Online
classification of imagined speech using functional near-infrared
spectroscopy signals. J. Neur. Eng. 16:016005. doi: 10.1088/1741-2552/
aae4b9

Sereshkeh, A. R., Yousefi, R., Wong, A. T., Rudzicz, F., and Chau, T.
(2019). Development of a ternary hybrid fNIRS-EEG brain-computer

Frontiers in Human Neuroscience | www.frontiersin.org 27 July 2021 | Volume 15 | Article 643294

https://doi.org/10.1016/j.neulet.2012.09.030
https://doi.org/10.1177/0883073814534320
https://doi.org/10.1371/journal.pone.0024170
https://doi.org/10.1002/hbm.1058
https://doi.org/10.3390/s120201211
https://doi.org/10.1016/j.clinph.2008.03.034
https://doi.org/10.1088/1741-2552/aacfdd
https://doi.org/10.1109/TNSRE.2003.816866
https://doi.org/10.1080/2326263X.2019.1571356
https://doi.org/10.1177/1545968313516867
https://doi.org/10.1093/cercor/bhq162
https://doi.org/10.1016/j.nicl.2014.05.018
https://doi.org/10.1016/j.nicl.2017.10.021
https://doi.org/10.1109/ACCESS.2019.2901926
https://doi.org/10.1080/0144929X.2018.1544276
https://doi.org/10.1016/j.jneumeth.2011.06.025
https://doi.org/10.3389/fnpro.2010.00003
https://doi.org/10.1016/j.jneumeth.2010.11.016
https://doi.org/10.1016/j.jneumeth.2007.10.001
https://doi.org/10.1371/journal.pone.0054658
https://doi.org/10.1016/j.neuroimage.2011.06.084
https://doi.org/10.1088/2057-1976/aada1a
https://doi.org/10.1109/EMBC.2013.6611272
https://doi.org/10.2478/v10209-011-0016-7
https://doi.org/10.1109/EMBC.2014.6944403
https://doi.org/10.1088/1741-2560/8/4/046013
https://doi.org/10.1007/978-94-017-8996-7_2
https://doi.org/10.1016/j.jneumeth.2007.04.019
https://doi.org/10.1016/j.dcn.2012.03.004
https://doi.org/10.1111/j.1467-7687.2006.00514.x
https://doi.org/10.1016/S2352-4642(18)30022-1
https://doi.org/10.1088/1741-2560/5/1/008
https://doi.org/10.1007/s00500-012-0895-4
https://doi.org/10.1080/17483107.2017.1357212
https://doi.org/10.1126/scitranslmed.3007801
https://doi.org/10.1088/1741-2552/aae4b9
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Orlandi et al. Brain-Computer Interfaces for Children

interface based on imagined speech. Brain Computer Interfaces 6, 128–140.
doi: 10.1080/2326263X.2019.1698928

Sigurdardottir, S., Indredavik, M. S., Eiriksdottir, A., Einarsdottir, K.,
Gudmundsson, H. S., and Vik, T. (2010). Behavioural and emotional
symptoms of preschool children with cerebral palsy: a population-based study.
Dev. Med. Child Neurol. 52, 1056–1061. doi: 10.1111/j.1469-8749.2010.03698.x

Simeral, J. D., Kim, S.-P., Black, M. J., Donoghue, J. P., and Hochberg, L. R.
(2011). Neural control of cursor trajectory and click by a humanwith tetraplegia
1000 days after implant of an intracortical microelectrode array. J. Neur. Eng.
8:025027. doi: 10.1088/1741-2560/8/2/025027

Slater, J. D., Kalamangalam, G. P., and Hope, O. (2012). Quality assessment of
electroencephalography obtained from a “dry electrode” system. J. Neurosci.
Methods 208, 134–137. doi: 10.1016/j.jneumeth.2012.05.011

Taherian, S., Selitskiy, D., Pau, J., and Claire Davies, T. (2017). Are we there yet?
Evaluating commercial grade brain–computer interface for control of computer
applications by individuals with cerebral palsy.Disabil. Rehabil. Assist. Technol.
12, 165–174. doi: 10.3109/17483107.2015.1111943

Taherian, S., Selitskiy, D., Pau, J., Davies, T. C., and Owens, R. G.
(2016). Training to use a commercial brain-computer interface as access
technology: a case study. Disabil. Rehabil. Assist. Technol. 11, 345–350.
doi: 10.3109/17483107.2014.967313

Thompson, D. E., Blain-Moraes, S., and Huggins, J. E. (2013). Performance
assessment in brain-computer interface-based augmentative and alternative
communication. Bio. Med. Eng. 12:43. doi: 10.1186/1475-925X-12-43

Thompson, D. E., Gruis, K. L., and Huggins, J. E. (2014b). A plug-and-play brain-
computer interface to operate commercial assistive technology.Disabil. Rehabil.
Assist. Technol. 9, 144–150. doi: 10.3109/17483107.2013.785036

Thompson, D. E., Quitadamo, L. R., Mainardi, L., Laghari, K., Gao, S.,
Kindermans, P. J., et al. (2014a). Performance measurement for brain-
computer or brain–machine interfaces: a tutorial. J. Neural. Eng. 11:35001.
doi: 10.1088/1741-2560/11/3/035001

Torpey, D. C., Hajcak, G., and Klein, D. N. (2009). An examination of error-
related brain activity and its modulation by error value in young children. Dev.
Neuropsychol. 34, 749–761. doi: 10.1080/87565640903265103

Treder, M. S., Schmidt, N. M., and Blankertz, B. (2011). Gaze-independent brain-
computer interfaces based on covert attention and feature attention. J. Neural.
Eng. 8:066003. doi: 10.1088/1741-2560/8/6/066003

Van de Laar, B., Gürkök, H., Plass-Oude Bos, D., Poel, M., and Nijholt, A. (2013).
Experiencing BCI control in a popular computer game. IEEE Trans. Comput.

Intell. AI Games 5, 176–184. doi: 10.1109/TCIAIG.2013.2253778
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