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ABSTRACT KEYWORDS 67
Chitosan is a natural polymer that has quite recently been approved as an aid for microbial con- Wine; fining; chitosan; 68
trol, metal chelation, clarification, and reduction of contaminants in enology. In foods other than antimicrobial; chelation; 69
wine, chitosan has also been evidenced to have some other activities such as antioxidant and antj- ~ 2ntioxidant 70
radical properties. Nevertheless, the actual extent of its activities in must and wines has not been
fully established. This review aimed to gather and discuss the available scientific information on 71
the efficacy of chitosan as a multifaceted aid in winemaking, including antimicrobial, chelating, 72
clarifying and antioxidant activities, while summarizing the chemical mechanisms underlying its 73
action. Attention has been specifically paid to those data obtained by using unmodified chitosan 74
in wine or in conditions pertinent to its production, intentionally excluding functionalized poly- 75
mers, not admitted in enology. Unconventional utilizations together with future perspectives and
research needs targeting, for example, the use of chitosan from distinct sources, production strat- 76
egies to increase its efficacy or the potential sensory impact of this polysaccharide, have also 77
been outlined. 78
79
80
81

Introduction

Chitin is the second most abundant polysaccharide on earth,
after cellulose. This biopolymer, composed of 2-acetamido-
2-deoxy-f-D-glucose (N-acetylglucosamine) units linked by
p(1—> 4) linkages (Figure 1), is synthesized in great
amounts by a large number of living organisms, and forms
the exoskeleton of arthropods and insects, the crustacean
shells, and the cell walls of fungi and plants (Rinaudo 2006).

A main derivative of chitin is chitosan (KT), which can
be industrially obtained by N-deacetylating chitin to varying
extents (>50%) through a process involving deproteiniza-
tion, demineralization, decolorization, and deacetylation
(Aranaz et al. 2009). Deacetylation produces free amine
groups (-NH,) along the polysaccharide backbone. This
confers to KT a polycationic character and, depending on
the deacetylation degree (DD) and molecular weight (MW),
changed solubility in acidic media (Friedman and Juneja
2010), and renders it a polymer that differs from other neu-
tral or negatively charged natural polysaccharides. Chitosan
can be prepared in different forms, such as films, gels,
beads, nano/micro particles, and this possibility, together
with its biodegradability, biocompatibility, and low toxicity
makes it a versatile compound with a vast applicability in
many fields, including food, medicine, cosmetics, and
pharmaceutical sciences (Friedman and Juneja 2010; Kurita
1998; No et al. 2007).

In addition, the chemical structure of KT is highly eli-
gible to be functionalized with a vast diversity of ligands by

sulfonation, carboxymethylation, and quaternization, which Sg
enlarge enormously the potential applicability of the modi-
fied KT (Brasselet et al. 2019; Higueras et al. 2015; Rocha, p
Coimbra, and Nunes 2017). 26
Native KT is particularly of interest over synthetic poly-

mers for application in food sector. Because of its versatility,

KT has gathered the attention of both researchers and food 89
technologists pursuing multiple objectives, such as protec- 90
tion against microbial spoilage, storage of fruits and vegeta- ¢
bles, deacidification and clarification of juices, removal of ¢,
solid material from water, and control of oxidation g3
(Rinaudo 2006; Kong et al. 2010; Shahidi, Arachchi, and g4
Jeon 1999). In addition, it has been the subject of a GRAS g5
(Generally Recognized as Safe) notice to the United States g
Food and Drug Administration (US FDA) for its intended 97
use in wine, without objections from that administration 9g
(Food and Drug Administration 2011). In the last decade, 99
KT has been accepted by the European Commission as a 100
fining agent for the treatment of wines, for different pur- 101
poses: prevention of iron and copper casses, reduction of 102
heavy metals or possible contaminants, especially ochratoxin 103
A, and inhibition of unwanted microbial growth, particularly 104
Brettanomyces spp. (European Commission 2011). Despite 105
its insolubility in must and wine, to avoid any potential con- 106
cerns of allergenicity because of the crustacean raw material, 107
only fungal KT (from Aspergillus niger) is admitted in wine- 108
making, as the functionality and structure of the two chito- 109
sans are claimed to be identical (OIV 2009d). Thus, the 110

5

means of reactions such as carbonylation, alkylation, distinct reactivity and versatility of KT is raising interest for 111
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Figure 1. Chemical structures of chitin and KT. Ovals highlight the moieties
that may contribute to reactivity and physico-chemical behavior of KT.

its utilization in enology. However, because of its recent
introduction in winemaking, the actual range of applications
and potential limitations of its use have not been fully eluci-
dated yet and there is a lack of information about possible
future developments.

The present review aimed to collect the advancements in
the research on native (e.g. not chemically functionalized)
KT and its use as an adjuvant, with specific focus on wine-
making. Emphasis has been paid on those applications laid
down by International Organization of Vine and Wine
(OIV), that have already been practiced in enology, includ-
ing, microbiological control, protein stabilization, metal che-
lation and ochratoxin removal. These have been individually
discussed at first, following a priority given by their diffu-
sion as a practice in winemaking or the abundance of stud-
ies. From paragraph 6 onwards, the antioxidant behavior
and sensory influence together with other less common or
potential utilizations of KT were outlined, also providing
additional hints on future research subjects. Table 1 summa-
rizes all the topics discussed in this paper and the main
results pertinent to them.

Antimicrobial activity

One of the main applications of KT in food and wine is
linked to its versatile antimicrobial activity against a broad
range of microorganisms such as gram-positive and negative
bacteria, yeasts, and molds (Brasselet et al. 2019; Kong et al.
2010; Lisanti et al. 2019; Petrova, Cartwright, and Edwards
2016; Rinaudo 2006; Rocha, Coimbra, and Nunes 2017). In
an alcoholic and acidic matrix as wine, microbial concerns
not involve pathogens, and mainly relate to technological
issues such as the correct management of Saccharomyces
spp. and non-Saccharomyces spp. populations or the control
of the development of unwanted bacteria, namely lactic or
acetic acid bacteria. For these latter purposes, fungal KT has
been approved by OIV at a maximum suggested dose of
10 g/hL (OIV 2009a).

Activity on non-Saccharomyces spp. yeasts

Reportedly, among fermenting yeasts, KT generally mani-
fests a higher inhibitory effect for wine related non-
Saccharomyces species than for S. cerevisiae (Allan and
Hadwiger 1979; Bagder Elmaci et al. 2015; Gdémez-Rivas
et al. 2004; Roller and Covill 1999) and this could help enol-
ogists in the correct management of alcoholic fermentation.
Comparative trials demonstrated complete inactivation of
Hanseniaspora uvarum and Zygosaccharomyces bailii at
0.4g/L KT after 3days of incubation, or Candida spp. and
Rodotorula spp. at 0.3g/L KT after 4days of incubation
(Rhoades and Roller 2000) even if, in red grape musts, its
efficacy on non-Saccharomyces yeasts was found to be lower
than that of 50 mg/L SO, (Picariello et al. 2020).

Much attention has been paid to the control of
Brettanomyces/Dekkera spp., a problematic contaminating
yeast responsible of “horse sweat” or “mousy taint” sensory
notes (the so-called “brett” character), that sometimes
develop during wood ageing and storage of red wines. In
one investigation, B. bruxellensis was completely inhibited
by 0.2g/L KT (Bagder Elmaci et al. 2015). This minimal
inhibitory concentration was also confirmed in a second
study (Portugal et al. 2014), where 0.062g/L stopped B.
bruxellensis growth, but 0.25g/L was necessary to kill 90%
of the population (MBCy). In this latter study, the authors,
for the first time, compared the susceptibility to KT of 16
different B. bruxellensis strains, finding MICs, values span-
ning from 0.031g/L to 0.062g/L, and MBCy, varying from
0.062 to >0.25g/L. Similarly, in synthetic wine Taillandier
et al. (2015) reported that 0.1 g/L KT had a lethal effect on
50% of B. bruxellensis cells after 24 h of contact, which was
reduced to 3h in the case of 0.4 g/L addition.

In a Cabernet Sauvignon red wine, 0.08 g/L of fungal KT
allowed a 3-log reduction in population within 6-8days,
regardless of the tested strain (Petrova, Cartwright, and
Edwards 2016). However, complete eradication was not
achieved as longer monitoring in barrel ageing wines
revealed eventual growth of up to 10° CFU/mL at day 68
even in the presence of 0.1g/L KT. In this regard, Nardi
et al. (2014) stated that “batonnage”, when done after KT
addition, could be detrimental to wine protection, as instead
of increasing the contact with the polysaccharide, it may
promote the recovery of “brett” cells by resuspension and
oxygen incorporation. At these dose levels, the authors
claimed KT to be fungistatic rather than fungicidal.

Unexpected high amounts of KT were necessary to
inhibit the growth of B. bruxellensis and B. intermedius in
one of the first papers dealing with this subject (Gomez-
Rivas et al. 2004). It was found that 6g/L only lengthened
the lag phase to 80h without impeding a total recovery of
cell vitality within 180h. B. intermedius was more sensitive
and was completely inhibited by 2 g/L KT.

According to some studies, ethanol seems not to affect B.
bruxellensis sensitivity to KT (Bagder Elmaci et al. 2015;
Petrova, Cartwright, and Edwards 2016; Portugal et al.
2014). However, growth inhibition has been shown to
depend on the MW of the polysaccharide; a low MW KT
(107 KDa) gave lower MIC (<0.15g/L) when compared to
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FIELD OF USE (OIV code

sheets 336-7-8 A/2009) TARGET MATRIX TESTED DOSE (mg/L) EFFECT Reference
Reduction of undesirable Yeasts: Red wine 150-1500 MIC and MLC varying from 150 to 500mg/L Ferreira et al. 2013
microorganisms Brettanomyces spp. depending on Brettanomyces/Dekkera
strain and KT molecular weight.
OIV maximum recommended Red wine in barrique 40-100 At the tested doses, KT demonstrated a Petrova, Cartwright, and
dose: 100 mg/L fungistatic activity. Edwards 2016
40 Fungistatic activity (prevention of the yeast Nardi et al. 2014
development during elevage). Batonnage
promoted yeast cell recovery.
Glucose, salts, and 100-6000 Lag-phase lengths >80 h. No biocidal Gomez-rivas et al., 2004
yeast extracts activity against B. bruxellensis. Complete
inhibition of B. intermedius at 2 g/L
YPG culture medium 0.12-250 MICgp = 62 mg/L and MBCgo > 250 mg/L Portugal et al. 2014
for 16 strains
Inoculum in vitro 40-400 Fungistatic activity (physical and biological ~ Taillandier et al. 2015
effects on Brettanomyces cells).
H. uvarum and Z. baili YPG culture medium 100-400 Growth inhibition at 0.3 or 0.4 g/L. Bagder Elmaci et al., 2015
S. cerevisiae Inoculum in vitro 1000-6000 Increase of the lag phase from 0 to 4h Escudero-Abarca et al.,
depending on the concentration of KT. 2004; Gomez-Rivas
et al. 2004.
8-1000 Minimum biocidal concentration >250mg/L Allan and Hadwiger., 1979
Apple juice 100 and 400 Lag-phase extended by 2-3 days depending Roller and Covill 1999
on the strains. Then, growth was
recovered at levels similar to
untreated samples
YPG culture medium 0.12-250 MICso > 250 mg/L for 15 different strains. ~ Portugal et al. 2014
Ethanol enhance yeast sensitivity
600-2000 Lag phase increase from 2 to 4 days Bagder Elmaci et al., 2015
depending on the concentration.
Apple- elderflower juice 300 Better growth inhibition in juice (pH 3.3) Rhoades and Roller 2000
than saline solution (pH 6.4)
Lactic acid Bacteria
Unspecified LAB Apple-elderflower juice 300 Initial quick reduction in viable cells Rhoades and Roller 2000
followed by restored growth after 8 days
0. oeni; L. hilgardi YPG culture medium 200-2000 Complete inactivation at 200 mg/L for at Bagder Elmaci et al., 2015
least 6 days.
Pediococcus sp. Peptone water/Hopped 10-1000 In peptone water, growth was completely  Gil et al. 2004

L. plantarum

Acetic acid Bacteria:
A. malorum and A.
pasteurianus
Settling, clarification and Protein removal
prevention of protein haze

OIV maximum recommended
dose: 1000 mg/L

Clarification

Reduction of heavy Cu, Fe
metal content
OIV maximum recommended Cu, Fe, Pb, Cd

dose: 1000 mg/L

Reduction of contaminants Ochratoxin A

malt extract
YPG culture medium
MRS agar

Peptone water/Hopped
malt extract

Wine matrix

White wine

Fruit Juices

Wine and must

Beer

Apple juice

Model Wine

Wine

Wine

200-2000 30-1000

10-1000

200

1000

1000

2000
300

100-1000

100-1000

1000

100-2000

500-4000

2000-5000

inhibited at 100 mg/L. In malt extract,
the activity was only bacteriostatic.

Complete inactivation at 1200 mg/L for at
least 6 days. L. plantarum was the most
resistant LAB. MIC = 500-800 mg/L
depending on KT deacetylation degree

Only 1000 g/L prevented the development
of bacteria. The effect of the pH and the
matrix were also evaluated.

Growth inhibition (reduction of Acetobacter
spp. activity; effects comparable to
60 mg/L of SO,).

At this concentration, KT cannot guarantee
protein stability (comparative study with
other oenological clarifying agents).

Haze-stable wines after heat tests at 50°C
and 56 °C. Reduction in total protein
content by up to 14%. Specific reactivity
toward chitinases.

Reduction of protein content by up to 30%.

Effective clarification only in de-pectinized
musts. Diminution in amounts of
phenols and caftaric acid. Significant
reduction in contaminating viable cells.

Surprising higher flocculating activity of KT
(up to 97% clearer) with respect to
stabifix + bentonite combined treatment.

Highest flocculating activity and clearer
juices at doses of 700 mg/L at 40°C.

Completely clear juices obtained with
700 mg/L of KT. Significant increase in
the lightness of samples

Reduction of Fe and Cu contents by up to
80% and 56%, respectively.

Reduction of metal content by up to 90%,
depending on the type of KT, wine,
and pH.

Removal of Fe and Cu up to 96% and 60%
respectively, depending on the KT dose.
Slightly lower efficacy in red wines with
respect to white ones.

Reduction of Ochratoxin A levels from
26-86% depending on wine and pH.

Bagder Elmaci et al., 2015
Jung et al. 2010

Gil et al. 2004

Valera et al. 2017

Chagas, Monteiro, and
Ferreira 2012

Colangelo et al. 2018

Chatterjee et al. 2004
Eder, 2012

Gassara et al. 2015

Rungsardthong et al. 2006

Soto-Peralta, Muller, and
Knoor 1989

Chinnici, Natali, and

Riponi 2014
Bornet and Teissedre 2008

Magomedov and
Dagestan 2014

Bornet and Teissedre 2008
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Table 1. Continued

OIV maximum recommended
dose: 5000 mg/L

Antioxidant activity Reduction of browning ~ White wine

Use not provided for by OIV

Model Wine

Apple and pear juices

Antiradical Model Wine
Grape juice
Other uncommon uses Reduction of Red Wine
volatile phenols
SO, Free wines White wine

White and red wines

100-5000 Removal of 67% of OTA at maximum levels Quintela et al. 2012
of KT. Significant modification of pH
and color
1000-4000 100% OTA reduction at 1000 mg/L. Kurtbay et al. 2008
Significant removal of anthocyanins and
polyphenols
4000 Inhibition of browning and reduction of Spagna et al. 1996
polyphenol content by up to 40%.
Efficacy comparable with PVPP
or caseinate
400 Reduction of browning. Interactions Spagna, Barbagallo, and
between amine groups and polyphenols. Pifferi 2000
Chitosan can be regenerated and reused
after treatment.
film 100 cm? Inhibition of oxidative browning. Removal ~ Nunes et al. 2016
of metallic ions and phenols
1000 Effective inhibition of browning. At 1g/L Chinnici, Natali, and
same anti-browning power of 80 mg/L Riponi 2014
of SO,
100-1000 Significant reduction of browning after Sapers, 1992
filtration with kieselguhr. No direct
adsorption of PPO.
200-2000 Dose-dependent direct scavenging effect of ~Castro-Marin et al.
-OH radical by up to 98% at 2 g/L. et al, 2019
Inhibition of generation of 1-
hydroxyethyl radical.
100-1000 Scavenging of DPPH, ABTS, and H,0, 0,” Chien et al. 2013
1000 Reduction in the abundance of volatile Milheiro et al. 2017

phenols in the head space.

1000 Efficacy increased with DD and
concentration up to 1g /L. Crustacean
KT was more effective than fungal.

Filipe-Ribeiro, Cosme, and
Nunes 2018b

1000 Effective in controlling the browning. Castro-Marin et al. 2018
Treated wines were richer in fatty acids
and esters.
film 100 cm? Microbial and chemical stability after 12 Nunes et al. 2016

months of storage. Generation of
positive aromas

100 KT avoided microbial spoilage and, in red
wines, reduced the vegetal character.

Ferrer-Gallego et al. 2017

medium (310 KDa) and high (624 KDa) MW KT (MIC equal
to 0.2g/L and 0.5 g/L, respectively) (Ferreira et al. 2013).

Activity on saccharomyces yeasts

The eventuality of the addition of KT in musts during the
alcoholic fermentation to control, for instance, undesirable
microbial development, may pose some concerns about
potential interferences toward fermenting yeast belonging to
the genus Saccharomyces. Actually, there is a common con-
sensus on the relatively low effects of KT on the metabolism
of Saccharomyces spp., at least at doses suggested by OIV
for antimicrobial purposes even though some differences
have been highlighted depending on the strain and dos-
ages considered.

Bagder Elmaci et al. (2015) found concentrations of
0.6-2g/L of KT to be biocidal to S. cerevisiae, whereas add-
ition of 0.4g/L caused a 1-log cycle of decrease in growth.
However, concentrations of 0.20-0.25g/L did not affect S.
cerevisiae population (Allan and Hadwiger 1979). Similar
results were obtained by Roller and Covill (1999) who
reported an extension of the lag phase for up to 3days at
0.1 and 0.4 g/L of KT for 2 out of 3 S. cerevisiae strains. The
third strain was completely inactivated at the highest KT
concentrations. All these studies seem to confirm that when
chitosan is used at low or intermediate doses (<0.4 g/L), the
extension of the lag phase is followed by a population re-
growth at a comparable rate to that of untreated samples,

proving that very high KT concentrations are required to
obtain an irreversible inhibitory effect.

In another report, controversial results were obtained as
concentrations of 1-4g/L of KT elicited an increase in cell
growth of S. cerevisiae population within 8h (Gémez-Rivas
et al. 2004). In that case, only massive additions (up to 6g/
L) were biocidal. The authors explained this behavior based
on the augmentation of the nutrient matter by the hydroly-
sis of KT at lower dosages. Further, the same authors found
that when grown in mixed cultures with Brettanomyces
bruxellensis, S. cerevisiae increased the glucose consumption
rate proportionally to the KT concentration (up to 6g/L),
but the reason for this fact remained unclear.

Alcohol was found to affect the in vitro sensitivity of S.
cerevisiae to KT as the minimum inhibitory concentrations
(MIC) for 15 strains (both commercial and isolated from
wines) was at least 4-fold reduced by the presence of ethanol
(at 12.5% v/v), which decreased MICs, from >0.25g/L to
0.062 g/L (Portugal et al. 2014). This fact does not necessar-
ily reflect an augmented inhibitory activity of KT in wine
since in yeast extract-peptone-glycerol broth this activity
was comparatively higher than in real wines (Bagder Elmaci
et al. 2015).

As illustrated before, differences in sensitivity to KT
among S. cerevisiae strains may sometimes emerge. This has
been correlated to the amount of constitutive polyunsatur-
ated fatty acids in the yeast cell membrane, which lend aug-
mented permeability and fluidity to the membrane itself;
strains with higher amounts of those compounds resulted in
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more susceptibility, allowing KT to enter the cytoplasm
more easily (Lopez-Moya and Lopez-Llorca 2016;
Zakrzewska et al. 2007).

Activity on lactic acid and acetic acid bacteria

Lactic acid bacteria are quite a large number of
gram + microorganisms belonging to distinct genera, sharing
the ability to produce lactic acid by fermenting sugars and/
or malic acid. In wine, malo-lactic fermentation (MLF) is
mainly carried out by Oenococcus spp., Lactobacillus spp., or
Pediococcus spp. whose sensitivity to KT is expected to vary
considerably, depending on the species.

One of the first reports on the application of KT to con-
trol lactic acid bacteria in beverages was from Rhoades and
Roller (2000). They found a quick reduction in viable cells
after the addition of 0.3g/L of KT to an apple/elderflower
juice (pH 3.8). However, after 8 days at 7°C, the total count
reached the same level as the untreated juice.

In culture media, the growth of 12 strains of
Lactobacillus brevis, L. casei, Pediococcus damnosus, and P.
clausenii, was reduced by 66-95% by 0.5g/L KT after 9 days
of incubation (Garg et al. 2010). L. brevis was found to be
somewhat less sensitive than L. casei or Pediococcus species.
Another study confirmed the relatively high resistance to
KT of Lactobacillus sp. with respect to Pediococcus sp. (Gil
et al. 2004). KT at 0.1g/L completely inhibited the growth
of Pediococcus bacteria in peptone water whereas for L. plan-
tarum, doses as high as 1g/L were necessary. As in other
cases, the application in real matrixes revealed some distinct
behavior given that, in hopped malt for beer production, KT
showed only bacteriostatic effects.

Bagder Elmaci et al. (2015) found that KT concentrations
of 0.8-2.0g/L effectively inhibited the development and via-
bility of L. plantarum inoculated at 10° CFU, whereas L. hil-
gardii and Oenoccocus oeni were completely inactivated by
0.2g/L KT. In another study (Jung et al. 2010), KT concen-
trations of 0.5-0.8g/L turned out to be enough to inhibit
the development of L. plantarum. The lowest MIC value was
observed for the highest DD and the lowest MW, demon-
strating that these are two determining factors for the anti-
microbial activity of KT.

To our knowledge, the only paper deepening the efficacy
of KT against acetic bacteria has recently been authored by
Valera et al. (2017). Those authors reported a reduction in
the Acetobacter spp. population of 10> CFU after addition of
0.2g/L of KT to a synthetic vinegar solution, at 3 and
6 months of treatment. It is worth noting that, in the same
study, control samples added with 60mg/L SO, showed
similar cell counts and comparable volatile acidity to KT
samples, indicating that KT was as effective as sulfites
against acetic acid bacteria.

Overall, the data on the antimicrobial activity demon-
strate that KT may be a versatile tool to control a heteroge-
neous series of microorganisms. However, the maximum
dose suggested by OIV (0.1g/L) appears to be somehow
inadequate as, in some circumstances, it only ensures a tem-
porary growth inhibition, not impeding a successive
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543

recovery of microbial viability. At doses up to 0.4g/L, KT

can reduce the risk of unwanted growth of wild non- 544

Saccharomyces yeasts during alcoholic fermentation, without

great interferences to the S. cerevisiae population (apart 247

548

from a lag-phase delay). Lactic acid bacteria were found to
be variably sensitive to KT depending on the species, with
L. plantarum being more resistant than L. hilgardi
Oenococcus oeni, and Pediococcus sp.

As far as the antimicrobial mechanisms are concerned,
the differences in structure and metabolism among yeasts,

550

bacteria, species, and strains should be considered. A list of 554
reported modes of action is discussed below and is schema- 555

tized in Figure 2: 556
557
1. As largely supported by literature, the polycationic 55¢

behavior of KT in acidic media is of great importance 559
for its antimicrobial efficacy. Comparative trials between 56(
KT and chitin, confirmed the decisive role played by 561
amine group and DD for this activity (Allan and 562
Hadwiger 1979). A high positive charge density leads to 563
intense electrostatic interaction with negatively charged 564
components of the cell surface, and thus weakening the 565
membrane by increasing its permeability which leads to 566
an osmotic and energetic imbalance, loss of growth cap- 567
acity, and eventually cell death (Rabea et al. 2003; 568
Taillandier et al. 2015; Verlee, Mincke, and Stevens 509
2017; Zakrzewska et al. 2007). In this respect, diversity 570
in the cell structure of fungi and bacteria may justify S71
varied sensitivity to KT. For instance, species that con-
tain chitin in their cell wall (such as yeasts) have been 7
found to be less susceptible (Allan and Hadwiger 1979).
Further, the presence of negatively charged teichoic acid
in the wall of gram + bacteria facilitate electrostatic
interactions and sensitivity, which is not the case with
gram- bacteria, where the binding of KT to lipopolysac- 579
charides or proteins located in the outer membrane
does not necessarily impairs the functionality of the cell 5o,
wall underneath (Raafat and Sahl 2009). As mentioned 582
before for yeasts, abundance of unsaturated fatty acids 5g3
in the cell membrane play an additional role (Palma- 584
Guerrero et al. 2010; Zakrzewska et al. 2007). This char- 585
acteristic not only depends on yeast strains, but also on 584
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the nutritional levels and oxygen availability during
alcoholic fermentation.

2. Sudarshan, Hoover, and Knorr (1992) reported that
once the cell membrane is weakened by KT it could
penetrate the cytosol and bind with DNA, inhibiting the
synthesis of mRNA and proteins. In yeasts, its entrance
is thought to be both diffusive and ATP dependent, also
as a function of MW of KT (Brasselet et al. 2019).

3. Chitosan, especially at high concentrations, could form
a layer that envelopes the cell and prevents the uptake
of nutrients from the medium (Ralston, Tracey, and
Wrench 1964) or acts as an oxygen barrier inhibiting
the development of aerobic microorganisms.

4. Chelation capacity plays an important role in antimicro-
bial action, as metal ions (Mg++, Ca++, Fe++ etc.)
are important micronutrients that are crucial for the
functionality of enzymes and stability of the cell wall
(Kong et al. 2010; Raafat and Sahl 2009).

Fining, clarification, and protein haze prevention

The practices of fining and clarification of musts and wines
are common in enology. When dealing with fresh juices,
clarification aims to reduce the amount of not only the sus-
pended solids, including skins, stems or flesh particles,
unwanted yeasts, and bacteria, but also proteinaceous and
pectic substances that generate viscosity and cloudiness.
However, the goal in winemaking is to favor the stability of
the overall product over the entire producing and marketing
processes. A stable wine is characterized by the absence of
precipitates or haze at the time of bottling, through trans-
port and storage, and till the time of consumption (Van
Sluyter et al. 2015). Apart from microbial issues or precipita-
tion of tartrate crystals, wine limpidity largely depends on
colloidal phenomena, which involve some meta-stable mole-
cules such as polyphenols, polysaccharides, metal ions, and
proteins that under specific conditions may grow in size and
flocculate (Ribereau-Gayon et al. 2001). In particular, white
wine protein haze is thought to be caused by a two-step
process where heat-unstable proteins such as chitinases or
thaumatin-like (TL) proteins unfold and successively aggre-
gate into light-dispersing particles (Waters, Wallace, and
Williams 1992). During unfolding, the presence of constitu-
tive phenols, metals or sulfate can increase the extent of
flocculation and haze appearance (Van Sluyter et al. 2015).

Since 2003, KT has been included in Codex Alimentarius
as a coagulating agent for fruit juices. The addition of fungal
KT in musts and wines for fining purposes has been succes-
sively authorized by the OIV (OIV, 2009a; OIV, 2009b) to
reduce turbidity by precipitating particles in suspension or
excess of proteinaceous matter. The maximum recom-
mended dose for this application is 100 g/hL. However, stud-
ies developed on the fining capacity of KT in winemaking,
particularly in case of grape juice clarification are surpris-
ingly scarce.

One single report, for instance, has been published in the
last two decades targeting the clearing of fresh and cloudy
grape juices with insoluble KT. In this work (Eder 2012),

the efficacies of some common fining agents, including poly-
vinylpolypyrrolidone (PVPP), casein, gelatin-kieselsol, and
KT, were compared for the clarification of white musts. It
was found that, while giving the same amount of lees as
casein and PVPP, KT (at doses of 0.3g/L) had the highest
efficacy in reducing the cloudiness of pectinase-treated grape
juices, reaching a value as low as 7 nephelometric turbidim-
eter units (NTU). Enzyme activity seemed to be pivotal for
KT activity, as in the must not treated with pectinases, the
addition of KT resulted in increased cloudiness (even higher
than the control). However, independent of enzyme add-
ition, KT gave the highest reduction in contaminating viable
cells (3-fold reduction as compared to that of the control
sample), and thus contributing to lower the risks of
unwanted microbial spoilage during alcoholic fermentation

Several studies have been conducted on other beverages
or fruit juices. Gassara et al. (2015) studied the efficacy of
chitin and KT as fining and protein stabilizing agents of
beer. Results demonstrated higher flocculation activities for
treatments with chitin and KT (96% and 97% reduction of
turbidity, respectively) than the other conventional fining
agents (Stabifix 4 bentonite), with 160 times lesser dosage
(5mg/L of KT). Moreover, analysis of total suspended solids
showed a decrease of about 65% in samples treated with the
two adjuvants. These results are in line with the work of
Chatterjee et al. (2004) who also observed a significant
reduction (30%) in protein content in different cloudy fruit
juices after treatment with 2 g/L of KT.

In apple juices, addition of KT at 0.7g/L afforded zero
turbidity after 12h at 20°C, showing results comparable to
the combined addition of gelatin (80mg/L), silica sol
(188 mg/L), and bentonite (1g/L) (Soto-Peralta, Muller, and
Knoor 1989). Other studies carried out with apple
(Rungsardthong et al. 2006) and passion fruit juices
(Domingues et al. 2012) demonstrated a dose-dependent
behavior, leading to higher decreases in turbidity of juices
when KT concentration was increased.

The influence of DD of KT on protein flocculation was
evaluated (Gamage and Shahidi 2007). KT with the highest
DD showed the best protein flocculating ability probably
due to the increased charge density resulting from the add-
itional free amino groups (Ariffin et al. 2005).

Similarly, acidic pH promotes extended protonation of
the amino group, allowing KT to destabilize the colloids and
promote flocculation. Pectin, for example, is a negatively
charged polymer that contributes to stabilizing the protein
colloidal suspensions by constituting a hydrophilic carbohy-
drate outer layer (Wang, Sun, and He 2017). KT was found
to effectively act as a cross-linker of pectin network, result-
ing in increased flocculation and greater clarification speed
because of electrostatic interaction with that “protecting”
colloid (Tastan and Baysal 2017). This postulated mechan-
ism is exemplified in Figure 3A.

For what concern wines, Chagas and coworkers (Chagas,
Monteiro, and Ferreira 2012) investigated on the ability of 6
adjuvants, namely casein, egg albumin, isinglass, KT, chitin,
and PVPP in stabilizing cv Muscat of Alexandria white
wines against protein haze as compared to sodium
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Figure 3. Postulated fining mechanisms of KT in juices and wines. A: Electrostatic interaction with pectins; B: Active site-binding with chitinase.

bentonite. The results demonstrated that among all the
selected fining agents, only egg albumin and KT were able
to decrease the wine haze-forming potential, although to an
extent (about 10% reduction in turbidity after heat-stability
test) that was not sufficient to permanently stabilize the
wine. Addition of KT at 1g/L did not remove significant
amounts of dissolved proteins, but did induce a reduction of
phenols, which the authors considered may have partially
slowed down the flocculation.

A more detailed study on the interaction between KT
and white wine haze-forming proteins was recently carried
out by Colangelo et al. (2018). In contrast with the results
cited above, in this work KT (1g/L) reduced the total pro-
tein content of a white wine from cv. Moscato grapes by
about 14%. Those wines were haze-stable after heat stability
tests conducted at 50°C and 56 °C, whereas a little instabil-
ity was observed at 60°C and 62°C. This latter evidence
suggested that observed haze were only because of the heat-
resistant TL protein isoforms. As a confirmation, the authors
found that KT almost totally removed wine chitinases,
whereas the content of TL proteins was only slightly reduced
by the treatment. Similar results were previously obtained
with chitin that permitted wine haze reductions of up to
80% after heat test of fined samples, and a contextual
removal of 29% of wine proteins (Gazzola et al. 2015).
Authors claimed that chitin had a higher fining efficiency
(ratio between percent reduction of haze and percent
removal of proteins) when compared to that of bentonite.
Further, it was elucidated that chitin could selectively inter-
act with class IV chitinases, which are mainly responsible
for the instability of white wine. In both studies, the inher-
ent mechanism of interaction was postulated to be based on

787
788

789
(i) the presence of a cysteine-rich chitin-binding domain in 790

class IV chitinases, able to bind chitin and KT and supposed 791
to be removed together with those insoluble polysaccharides 792
(Figure 3B) and (ii) to a lesser extent, the decrease in phen- 793
olic compounds, available to participate in the haze-forming 794
phenomena, because of their adsorption onto KT. It is 795
worth mentioning that based upon the former mechanism, 796
KT has been proposed as specific ligand for affinity precipi- 797
tation and recovery of plant chitinases (Teotia, Lata, and 798

Gupta 2004). 799
800
801
Sorption of heavy metals 802

During the winemaking process and storage, the presence of 803
high concentrations of transition metals may lead to the for- 804
mation of insoluble precipitates, which is one of the causes
of hazing in wine (Bornet and Teissedre 2008). Among
others, iron and copper ions are the main contributors to
this issue, which is particularly negative for the consumers.
Moreover, it has been demonstrated that both metals are
crucial catalysts of non-enzymatic oxidation of wine, even at 1
trace levels, leading to oxidation of most compounds, such 2
as ethanol, organic acids, and phenolic and volatile com- ¢,
pounds, triggering wine browning and unwanted sensory g4
changes (Danilewicz 2016). 81
Chitosan and its derivatives have demonstrated to chelate g ¢
heavy metals in wine-like environment, and for this specific g1~
use, OIV has set a maximum dosage of 100g/hlgig
(OIV, 2009b). 819
In model wine solution, Chinnici, Natali, and Riponi gy
(2014) observed a reduction of 70% for iron and 30% for go
copper after 21days of treatment with 1g/L of KT. In a g3»
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study performed by Bornet and Teissedre (2008), treatments
with different doses of KT (0.2-2g/L) achieved significant
reductions in iron, lead, and cadmium (up to 90%, 74%,
and 57% for red wines; 91%, 65%, and 23% for white wines
and 90%, 84%, and 25% for sweet wines, respectively).
Reported data confirmed a dose-dependent chelating effect,
with larger metal removal at higher doses (2g/L). In case of
sweet wines, the presence of sugar seemed to decrease chela-
tion. Furthermore, a slight reduction of sorption capacity in
red wines compared to that in white wines was observed,
and the reason probably is the higher presence of phenolic
compounds that compete with metals for KT active sites
(Magomedov and Dagestan 2014).

The adsorption behavior of KT against heavy metals in
distinct environments and pH conditions, together with
underlying mechanisms have already been reviewed (Guibal
2004; Wu, Tseng, and Juang 2010; Zhang, Zeng, and Cheng
2016). It is largely accepted that the presence of the free
electron doublets of nitrogen atoms in amine moieties deter-
mine, in certain conditions, the complexation properties of
KT (Guibal 2004). In nearly neutral (or mildly acidic) envi-
ronments, transition metals with void d orbitals are select-
ively chelated by the polysaccharide via coordination
complexes, whereas harmless alkaline or alkaline-heart cati-
ons (Ca, Na, K etc.) remain substantially unaffected by its
presence. However, at pH <6.1, amines protonation results
in increased electrostatic attraction with dissolved anions on
the one hand, and in a corresponding decline of heavy met-
als complexation on the other (Gyliene et al. 2014). In add-
ition, apart from the amine, at least in case of copper
chelation, the hydroxyl groups at C3 position of the poly-
meric chain can further participate as ligand in the Cu-chi-
tosan complex (Domard 1987). Hence, the metal sorption
behavior of KT involves concurring mechanisms (chelation
and/or electrostatic interaction) depending on a series of
factors including pH and composition of dissolving solution,
deacetylation degree of KT, and type and speciation of met-
als involved.

At pH values and composition relevant to wine, the pro-
posed mechanisms can be summarized as below:

1. Only a partial, very limited removal of heavy metal ions
may be because of the chelation of cations to the access-
ible surface of KT polymeric chain, with formation of a
complex involving KT amine and hydroxyl groups
(Figure 4A). At pH < 3.8, the amine groups of KT are
almost completely protonated (Navarro et al. 2003), and
electrostatic repulsions of cations largely dominate. For
this residual chelating activity, the degree of deacetyla-
tion and the stereochemical distribution of the free
amino groups determine the binding capacity of the lig-
and (Wu, Tseng, and Juang 2010).

2. Rather than direct chelation to amine groups, an alter-
native mechanism could be the deposition of metal
hydroxide into the pores of crystallin KT particles
(Park, Park, and Park 1984).

3. The presence of constitutive organic ligands in wine
play a role in metal speciation and sorption efficacy of

A B
CH;OH CH,OH +
o a AH + Me* ——* [AMe|",+ H*
OH Q /K‘)_PJVV\ .‘( ".
< M
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\ #
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Figure 4. Chelation mechanisms of KT involving: A) chelation by amine (-NH,)
and hydroxyl (-OH) groups. Me: Metal. *: Mechanism by which Fe (ll) is first oxi-
dized to Fe (lll) on KT surface and then chelated; B) electrostatic interaction
between organic anion ligands and ammonium cations.

KT (Rocha et al. 2020). Depending on the pH, tartaric,
malic, and citric acids may form ionic complexes with
heavy metals. For example, in case of aqueous mixtures
of copper/citric acid, at pH 3, about 35% of the metal is
present in anionic complexes (in the form of Cu-citrate
and Cu(OH)-citrate®’), whereas other species (Cu-H-cit-
rate; Cu-H,-citrate™ and Cu®") represent the remaining
65% (Navarro et al. 2003). At higher pH values, the
metal anion species rapidly approximate to 100% and
could then be fully attracted by KT protonated amines
via electrostatic interaction (Figure 4B). It is worth not-
ing that for this mechanism, the presence of other
anions such as unbound dissociated citrate or tartrate in
solution may compete with metals for electrostatic
attraction, decreasing the overall sorption efficiency
of KT.

4. Gyliene and coworkers (Gyliene et al. (2014) investi-
gated the specificity of iron sorption by KT at acidic
pH. The authors reported that by treating the aqueous
solutions of Fe(IT) with 0.1-1g/L of KT flakes, a signifi-
cant metal ion uptake, together with a stoichiometric
oxygen consumption was observed; however, this was
not observed for the samples with Fe(III). They sug-
gested that oxygen consumption depended on the oxi-
dation of Fe(Il) to Fe(Ill) that was catalyzed by KT,
which can trap molecular oxygen onto its surface.
According to these authors, in acidic solutions Fe(II)
sorption is possible only after its oxidation to Fe(III)
which, as discussed by Bornet and Teissedre (2007), can
participate to the subsequent formation of a complex in
the form of [CHI-NH,-Fe]>" (Figure 4A) where the
OH groups of the polymer chain seemed to be
strongly involved.

Removal of ochratoxin A

Ochratoxin A (OTA) (Figure 5), is a mycotoxin produced
by Aspergillus sp., and is known for its nephrotoxicity and
carcinogenicity in humans (Kurtbay et al. 2008). A wide var-
iety of foods are susceptible to contamination by OTA as a
result of fungal infection in the field during harvest and
storage. Wine and grape juices are estimated to be the
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Figure 5. Chemical structure of Ochratoxin A.

second source of OTA in the diet after cereals, representing
up to 10% of the total intake of this toxin (Quintela et al.
2012). Therefore, the maximum allowed concentration of
OTA in European wine, must, and grape juice is fixed at
2 ug/L (European Commission 2005).

Chitosan has been proposed as an efficient tool for OTA
removal from wines, based on the physico-chemical features
of the mycotoxin. OTA is a weak acid because of the pres-
ence of carboxyl group on the phenylalanine moiety, with a
pKa of 4.4 (Valenta 1998). Thus, it partially dissociates at
wine pH, carrying a negative charge that can interact with a
positively charged surface, like the one present in KT. Apart
from this, Bornet and Teissedre (2007) evoked an additional
mechanism suggesting that OTA may deposit into pores of
the polysaccharide crystalline structure. For toxin removal,
in 2009 OIV established a maximum admitted amount in
wine of 500 g/L (OIV, 2009c).

In red wines fortified with 2.5ug/L of OTA, Quintela
et al. (2012) studied the efficacy of different doses (10, 50,
200, and 500g/hl) of fungal chitin and KT for toxin
removal. They observed a reduction of 29% and 67% for
chitin and KT respectively at maximum dosage of 5g/L,
after 2h of treatment. KT was the most efficient among the
other tested fining agents including, bentonite, gelatin, albu-
min, and PVPP-plant protein complex but wine color and
pH were drastically affected. Of all the adjuvants, and des-
pite the lower removal ability, authors claimed chitin and
plant-protein complexes to be the aidings of choice because
of their limited impact on wine quality.

In another study, 2g/L and 4g/L of KT removed 78%
and 100% OTA respectively, from a red wine containing
2.57 ug/L of mycotoxin (Kurtbay et al. 2008). In this case,
contrary to bentonite and montmorillonite clays, KT quickly
reached the adsorption equilibrium (estimated to be
90 min), whereas the specific adsorption increased with the
doses, reaching the highest values (25nug OTA/g KT) only
after the addition of 100mg of adjuvant. Once again, at
those concentrations, KT remarkably affected wine compos-
ition especially with respect to anthocyanins and phenolics.

By using 5g/L of 4 chitin derivatives (including chitin,
KT, and chitin-glucan) with different DD, Bornet and
Teissedre (2007) achieved the highest percentages of toxin
reduction (84%) after treating red wines with KT for 48h.
For white and sweet wines, efficacy was significantly lower,
but the reasons were not investigated. Removal of OTA by
chitin and chitin-glucan were also considerable (up to 73%
and 64%, respectively). Unfortunately, no information has
been provided on the impact of those treatments on wine
quality parameters.
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Overall, the results suggested that in case of lightly conta- 1000
minated wines the addition of 1g/L or 2 g/L of KT could be 1001
an efficient treatment for OTA removal, without affecting 1002
the quality of wine. However, because of the requirement of 1003
elevated doses of KT, wines with higher concentration of 1004
OTA should be treated with less impacting adsorbents such 1005
as chitin or chitin-glucan, which likely avoid significant 1006

changes in wine composition. 1007
1008

.. .. 1009
Antioxidant activity 1010
1011

The antioxidant capability of KT has been often claimed as
one of the most promising features to be exploited in food 1012
technology and packaging (Chien et al. 2013; No et al. 2007; 1013
Schreiber et al. 2013; Shahidi, Arachchi, and Jeon 1999). 1014
Depending on the matrix and pH, KT is supposed to oper- 1015
ate by means of a direct radical scavenging mechanism 1016
(Park, Je, and Kim 2004; Sun et al. 2007; Xing et al. 2005) 1917
or indirectly, via metal chelation, which would block the 1018
generation of radical species and initiation of lipid oxidation 1019
(Guibal 2004; Schreiber et al. 2013). However, it should be 1020
pointed out that the majority of scientific reports barely }8;;
reproduce conditions applicable to winemaking, KT formu- 1023
lations (most of those papers deal with animal-derived or 1024
soluble modified KT), or with regard to the physico- chem- 1025
ical environment (pH, hydrophilicity, food matrix, or 1026
medium composition). 1027
In wines, in presence of oxygen, ferric or cupric species
catalyze the oxidation of o-diphenols to o-quinones, generat-
ing hydrogen peroxide, which, in turn, at acidic pH is
decomposed to hydroxyl radical via oxidation of ferrous
ions (the so-called Fenton reaction). This radical species can 1032
oxidize organic compounds (including ethanol, carboxylic 033
acids, sugars, or thiols) at a rate proportional to their 1034
amount in the medium, generating aldehydes, ketones, or 1035
disulfides (Danilewicz 2016). Further reactions may involve 1036
o-quinones (electrophiles) and nucleophilic or reducing 1037
compounds present in wine such as sulfites, ascorbic acid, 1038
thiols, or polyphenols (Waterhouse et al. 2016). 1039
If controlled, oxidation can be beneficial for red wines (4
because of increased color stability and modulation of |4,
astringency; however, white wines are usually damaged by |4,
oxygen exposure due to the generation of adverse sensory |43
attributes (browning or color changes, aromatic defects, and 44
increase of astringency) and reduced nutritional properties. |45
Hence, the exploitation of the antioxidant properties of KT |gyg
during winemaking would present an interesting tool for 1047
producers, though its utilization as an oxidative scavenger {4g
has not been proposed and regulated by OIV yet. 1049
The first suggestions for the use of chitin-derived prod- |50
ucts for controlling wine browning dates to late ‘90’s 151
(Spagna et al. 1996; Spagna, Barbagallo, and Pifferi 2000). |52
The starting hypothesis was based upon the capacity of KT 153
to remove phenols, which would reduce the oxidizing poten- 154
tial of wines. At doses of 0.4-4g/L, KT demonstrated an 155
effective adsorption capacity, particularly toward hydroxy- 1056
cinnamic acids and procyanidins, achieving reductions up to 1057
40% and 30%, respectively, in several Italian white wines. 1058
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This was reflected by a significant inhibition of browning
tendency, not dissimilar from the one obtained with PVPP
and casein (Spagna et al. 1996). Also when unconventionally
used as a film in bottled wine, KT (100 cm?/L) demonstrated
its anti-browning behavior by reducing phenols quantity
(about 15% of the initial amount) and chelation via com-
plexation of tartrate-metals anions (Nunes et al. 2016).
Apart from native phenolics, KT can also adsorb already
oxidized phenolic species such as the yellowish xanthylium
cations or the carboxymethine-linked (+)-catechin dimer
intermediates, further restraining the oxidative cascade and
the browning expression (Chinnici, Natali, and Riponi
2014). The mechanisms involved in adsorption depend on
the type of phenol implicated. For instance, catechin is lin-
early adsorbed as a monolayer up to the saturation point (at
about 0.14g/g KT) via hydrogen bonding. For hydroxycin-
namic acids, the study of adsorption isotherm suggested a
cooperative phenomenon involving KT protonated amines,
n-n stacking of planar hydroxycinnamic rings and competi-
tive bonds with tartrate anions (Spagna, Barbagallo, and
Pifferi 2000). For larger molecules such as procyanidins,
steric hindrances and Van der Waals self-association forces

may reduce the adsorption rates at high phenolic
concentrations.
In cloudy apple and pear fresh juices, Sapers (1992)

obtained notable prevention of enzymatic browning after
addition of KT at 0.5-1g/L and successive filtration with
celite as aiding. He concluded that KT can inhibit enzymatic
browning in unfermented juices by coagulating suspended
solids to which polyphenol oxidases are bound, but excluded
a direct adsorption of the enzyme itself onto KT.

In acidic media, the antiradical efficacy of native (e.g. not
modified) KT raised some doubt in principle, because of the
lack of easily donatable hydrogens and protonation of
amines, which would hamper the transfer of the free elec-
trons from N atoms (Schreiber et al. 2013). However, some
attempts to estimate these features in wine relevant condi-
tions have been made. It was reported, for instance, that the
addition of 0.1-1g/L KT increased the antiradical power of
grape and apple juices by up to 4-fold against some natural
oxidizing species, such as O,  and H,0, or synthetic
reagents, such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS), demonstrating a hydrogen-donating capacity of KT
(Chien et al. 2007; 2013). Castro et al. (2019) found that two
distinct formulations of fungal KT (at 0.2-2g/L) consider-
ably reduced the accumulation 1-hydroxyethyl radical gener-
ated from ethanol oxidation in wine. Authors demonstrated
that this result depended on a cascade that included i) the
deactivation of the metal catalytic pool, mainly Fe(III)/
Fe(II), by chelation, ii) the direct quenching of hydroxyl rad-
ical (-OH) by up to 90% at 2 g/L KT, and iii) the subsequent
diminished oxidation rate of ethanol. Hydroxyl radical, in
turn, is assumed to be scavenged after H abstraction from
the amine residue on C2 position of KT and the successive
molecular rearrangement of the polymer which breaks down
into smaller oligomers and depolymerizes (Chang, Tai, and
Cheng 2001). These antioxidant activities were found to

increase with DD and decrease with MW (Chien et al. 2007;
2013; Dong, Xue, and Liu 2009; Sun et al. 2007).

The distinct anti browning mechanisms of KT are sum-
marized in Figure 6. Overall, based on these data, KT may
represent a green and environmentally friendly potential
alternative to the use of traditional additives to prevent the
development of oxidative spoilage in beverages, and may
well deserve further studies to deepen the understanding
regarding its behavior as an antioxidant in enology.

Impact of chitosan on wine quality parameters

One concern regarding the use of KT in wine is certainly
the evaluation of its impact on the overall quality of wines,
including color, aroma, or other sensory features.

As already discussed, at dosages pertinent to the removal
of OTA (up to 4-5g/L), KT can negatively affect the red
wine color (30-50% decrease in color density) because of
the interaction with anthocyanins and procyanidins
(Kurtbay et al. 2008; Quintela et al. 2012). However, such
high doses should be regarded as an exception over the
usual range of concentrations, which fall between 0.1g/L
and 1g/L.

When added at <1g/L, KT did not significantly reduce
the color, anthocyanin content, or total phenolic index of
red wines (Filipe-Ribeiro, Cosme, and Nunes 2018a, 2018b;
Milheiro et al. 2017) even if at the highest amount some
loss of caftaric and coutaric acids (up to 20% each) or flava-
nols (about 5%) have been recorded (Filipe-Ribeiro, Cosme,
and Nunes 2018a). In white wines, because of the initial
lower phenolic content, removal rates are higher and may
reach values as high as 30% and 20% for hydroxycinnamic
acids and flavanols, respectively, accounting for about
200mg/L loss (Chinnici, Natali, and Riponi 2014; Spagna,
Barbagallo, and Pifferi 2000).

Regarding volatile compounds, post-fermentative addition
of 1g/L KT slightly reduced the headspace aromatic abun-
dance of red and white wines, particularly with regard to
medium-chain fatty acid ethyl esters and terpenes (including
rose-oxide, linalool, citronellol, and geraniol) (Colangelo
et al. 2018; Filipe-Ribeiro, Cosme, and Nunes 2018a;
Milheiro et al. 2017). The headspace of white wines bottled
for 8 months in the presence of KT films was richer in
fruity-scented compounds such as benzaldehyde, furfural,
and ethyl pentanoate, some of them coming from Maillard
reactions promoted by KT. Ketones, which originated from
oxidation of alcohols or acids were lower; altogether, the
wines were judged well balanced and bodied as the respect-
ive sulfite added counterparts (Nunes et al. 2016). However,
those studies specifically evaluated the headspace compos-
ition (namely a way to estimate the relative concentration of
volatiles in the gas phase likely reaching the nose during
sniffing) and not the true concentration of those molecules
in wines. Instead, in another investigation, wines added of
KT during fermentation were compared with sulfited sam-
ples and analyzed for their actual volatile composition. The
formers resulted to be richer in medium chain fatty acids
and derived ethyl esters, reportedly because of the
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Figure 6. Established antioxidant mechanisms of KT in wine (modified from Castro-Marin et al. 2019). i;gg
modification of the yeast metabolism caused by the altera- may dissolve into the final product, potentially interacting 11225598
tions in the cell membrane (Castro-Marin et al. 2018). with other compounds in the mouth (Filipe-Ribeiro, Cosme, 1260
As a polycation, KT could potentially interfere with the and Nunes 2018b) 1261

acidic pattern of wines by binding anions from organic acids

. ) . 1262

(Bornet and Teissedre 2007). Despite some authors claiming . . . )
. . 3 Other uncommon utilizations in winemaking 1263
no changes in pH or titratable acidity after the treatment 1264
(Nardi et al. 2014; Nunes et al. 2016), others did find some  Based on the already cited assumption that KT can interact 1265
effects. Castro-Marin et al. (2018) using 1g/L KT in white with volatile compounds and reduce their partition coeffi- 6

musts, reported a decrease in titratable acidity of 1.25g/L
and a 0.08 unit increase in pH because of the removal of
tartaric and malic acids. Concordantly, the pH of a red wine
added with 0.5g/L and 2g/L KT increased by 0.05 and 0.10
units, respectively (Quintela et al. 2012). In another study,
model wine solutions were deprived to various extents of
organic acids, mainly tartaric, malic, and acetic acid, after
the addition of 1g/L of KT (Colangelo et al. 2018). This
behavior should be taken into consideration, so as not to
affect the microbial stability and sensory features of wines.
Astringency is a further sensory aspect of KT that has
been little investigated. Notwithstanding the lack of evidence
about the change in tactile sensations of wines treated with
KT, a direct correlation between astringency and DD of dis-
solved KT was demonstrated (Luck et al. 2015). This correl-
ation was argued to be because of the charge density of the
polymer, which in turn, affects its binding capacity toward
salivary proteins at acidic pH (Luck et al, 2015). An 85%
deacetylated KT from shrimps dissolved in aqueous acetic
acid elicited a perceived astringent stimulus when added at
concentrations >50mg/L (Rodriguez et al. 2003). On the
contrary, in milk, astringency was only affected after the
addition of 450 mg/L of a nano powdered KT preparation
(Seo et al. 2011). Further information on this specific sen-
sory aspect in wine is needed. Even though KT should not
remain in wine because of its insolubility, which would
make its tactile impact improbable, there is some evidence
that, depending on the dose, up to 5% of the polysaccharide

cients to the gas phase, it has been recently proposed for the 1267
remediation of wines containing high concentrations of
volatile phenols (VP) coming from unwanted proliferation |5¢9
of Brettanomyces/Dekkera yeast. When added at doses of |57
0.1-1g/L to red wines spiked with VP (300pug/L and |57,
1500 pg/L for ethyl guaiacol, and ethyl phenol, respectively), |57,
KT induced a decrease of headspace VP by up to 36%, but {573
did not change the total VP concentrations in wine (Filipe- {574
Ribeiro, Cosme, and Nunes 2018a; Milheiro et al. 2017). ;575
This corresponded to a significant decrease in the perception 1574
of the negative phenolic attribute of those wines when com- 1577
pared to the spiked ones, even if this descriptor remained at |57g
levels higher than the unspiked wine (Filipe-Ribeiro, Cosme, 1579
and Nunes 2018b). The efficacy increased with the increas- 17g(
ing degree of deacetylation and KT concentration of up to 17g1
1g/L, whereas higher amounts (5g/L KT) did not improve j7¢>
this result further (Filipe-Ribeiro, Cosme, and Nunes 2018a). 1783
In addition, the reported data suggested that crustacean KT [5g4
could be more effective than fungal KT, probably because of 7g5
the lower MW or higher presence of neutral sugars of the 17g¢
tested fungoid polymer (Filipe-Ribeiro, Cosme, and 1787
Nunes 2018b). 1288
Another not common utilization of KT is to produce sul- 1289
fite-free wines. The utilization of sulfites as food additives 179
has raised some concerns among scientists and consumers 129]
because of the health concerns involved (risks of urticaria, 1292
asthma, and chronic diseases (Vally and Misso 2012), pres- 1293
suring regulatory institutions to establish mandatory labeling 1294
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rules for food containing sulfites. Accordingly, in the wine
industry, where sulfur dioxide is largely employed as an
antioxidant and antiseptic, there is an increasing interest in
finding the way to reduce (or eliminate) its use.

While some authors have suggested its usefulness to this
aim in principle (Lisanti et al. 2019; Rocha, Coimbra, and
Nunes 2017; Santos et al. 2012), others provided more
detailed information on the effects of KT added in sulfite-
free wines at distinct production steps.

Chitosan has been used during the alcoholic fermentation of
sulfite-free white musts to manage fermentative course and
browning (Castro-Marin et al. 2018). Results, some of which
have already been discussed in the previous chapter, demon-
strated that although KT (1g/L) did not change most of the
general parameters, yet it did affect the fixed acid content and
volatile composition of wines. A higher production of fatty
acids and related esters (bearing positive fruit-reminiscent
notes) was observed. This fact was linked to the interaction of
KT with the cell wall and cell membrane of S. cerevisiae and is
expected to only occur when the former is present during fer-
mentation. A 12-month period of storage showed that compos-
itive peculiarities were maintained, and that oxidative processes
were not significantly different between samples.

For white and red wines obtained in 2 consecutive vintages,
SO,-free samples with added KT (at 100 mg/L) after alcoholic
(white wines) or malolactic fermentation (red wines) were
found not to be significantly different in sensory features, from
wines with added sulfites. In case of red wines, trained sensory
panelists found that the KT samples reduced the green vegetal
character and increased the balsamic notes (Ferrer-Gallego
et al. 2017). Due to the absence of SO,, sulfite-free red wines
may contain higher portions of polymeric pigments which con-
tribute to stabilize the color of products submitted to controlled
oxygenation practices (Picariello et al. 2020).

In one study, KT was successfully used as preservative in
the form of film (100 cm?), to be inserted in bottled sulfite-free
white wines (Nunes et al. 2016). According to the authors, KT
film contributed to both chemical and microbial stability of
wines during the 12 months of storage, as evidenced by lack of
browning or volatiles decline. Furthermore, some positive aro-
mas (benzaldehyde, furfural, or ethylpentanoate) were claimed
to be generated because of Maillard or Strecker reactions pro-
moted by the amine group of KT, which made those wines
better appreciated with respect to sulfite added wines. Evidence
of metal chelating and Fenton blocking activities exerted by KT
were also provided.

These results, even if not, suggest that KT may be a promis-
ing tool for the reduction of sulfites in wine. It is one of the
very few adjuvants that could combine both the antioxidant
and antimicrobial properties together with the versatility to be
used in different steps of the vinification process.

Further research needs and technological
perspectives

Because of the several properties and utilizations of KT,
quite a large amount of information is still needed to fully
characterize its usability in winemaking. Increased KT

solubility should in principle positively affect its antimicro-
bial and clarifying efficacy, simultaneously permitting to
reduce both the doses needed to reach the technical target
and the cost of intervention. In sectors different from food,
this has often been obtained by chemically modifying the
molecule or by reducing its MW. For food purposes, such
modification should not require harmful reactants that could
impair the natural character of the molecule or raise health
concerns. In addition, increasing levels of soluble KT may
pose some technical concerns about wine stability and filter-
ability or the need to define validated analytical methods for
eventual KT remaining in the product.

The use of KT from sources other than fungi (e.g. crust-
acean or from insects) may contribute to further contain the
overall cost of its addition. However, issues about allergen-
icity (in the case of seafoods) are still to be concretely dis-
pelled, though some reports suggest a lack of actual risks
(Amaral et al. 2016).

The employment of KT as an active packaging material
seems to be promising as well. Its film-forming properties and
the possibility for other naturally derived components (includ-
ing grape phenolics or antioxidant wine byproducts) to be
chemically bound to the backbone chain, greatly increase the
range of possibilities, especially if alternative wine packaging
such as bag in box or metal cans are considered.

Above all, additional studies aiming to deepen the impact
of treatment on the sensory, compositive, and qualitative
characteristics of wines are necessary, which can thoroughly
evaluate all the outlined modes, timing, and duration of KT
presence in the final product.
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