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Abstract 

Recently, experimental and theoretical research has focused on the brain’s abilities to extract 

information from a noisy sensory environment and how cross-modal inputs are processed to solve 

the causal inference problem to provide the best estimate of external events. Despite the empirical 

evidence suggesting that the nervous system uses a statistically optimal and probabilistic approach 

in addressing these problems, little is known about the brain’s architecture needed to implement 

these computations.   

The aim of this work is to realize a mathematical model, based on physiologically plausible 

hypotheses, to analyze the neural mechanisms underlying multisensory perception and causal 

inference. The model consists of three layers topologically organized: two encode auditory and 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

visual stimuli, separately, and are reciprocally connected via excitatory synapses and send 

excitatory connections to the third downstream layer. This synaptic organization realizes two 

mechanisms of cross-modal interactions: the first is responsible for the sensory representation of the 

external stimuli while the second solves the causal inference problem. 

We tested the network by comparing its results to behavioral data reported in the literature. 

Among others, the network can account for the ventriloquism illusion, the pattern of sensory bias 

and the percept of unity as a function of the spatial auditory-visual distance, and the dependence of 

the auditory error on the causal inference. Finally, simulations results are consistent with probability 

matching as the perceptual strategy used in auditory-visual spatial localization tasks, agreeing with 

the behavioral data. The model makes untested predictions that can be investigated in future 

behavioral experiments.  

 

  

 

Introduction 

Perception of objects in the external world requires the integration of information from different 

modalities, for example auditory and visual. Several recent behavioral (Ernst & Banks, 2002; 

Battaglia et al., 2003; Alais & Burr, 2004; Wallace et al., 2004; Shams et al., 2005; Hillis  et al., 

2006; Wozny et al., 2008) and theoretical studies (Pouget et al., 2003; Ma et al., 2006; Shams & 

Beierholm, 2010; Ma & Rahamati, 2013; Pouget et al., 2013) suggest that the brain performs this 

integration in a Bayesian way, i.e., it tries to exploit the different multisensory signals to minimize 

the error in perceptual estimates (the error on the spatial location of the stimuli, for instance). Two 

factors are involved in achieving this estimate. First, the observer must infer whether the two 

stimuli (e.g., a sound and a light) originate from the same event (i.e., they have a common cause) or 

stem from different sources (i.e., they are produced by independent causes). This problem is 

referred to as “the causal inference problem”: its solution is crucially dependent on the similarity of 

the different sensory features (in cases of simple stimuli, the spatial and temporal proximity) and 

previous knowledge/bias or expectations. Causal inference only recently received sufficient 

attention in multisensory neuroscience literature (Shams et al., 2005; Körding et al., 2007; Wozny 

et al., 2008; Shams & Beierholm, 2010; Wozny et al., 2010; Cuppini et al., 2012; Ma & Rahamati, 

2013). 

Second, in cases when a single cause is inferred, the two stimuli must be integrated to realize a 

coherent percept; conversely, in case of two independent causes, they should be treated separately. 

A large body of results demonstrates that, in cases of a single cause, the observer integrates the 
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signals based on their sensory reliability (Alais & Burr, 2004; Morgan et al., 2008; Fetsch et al., 

2012), giving more weight to the more reliable cue. An epiphenomenon of this integration is the 

occurrence of illusory phenomena in certain conditions in which a discrepancy exists between the 

two sensory signals, and yet the more reliable input attracts the other, as in the spatial ventriloquism 

(Bertelson & Radeau, 1981; Hairston et al., 2003; Wallace et al., 2004; Rohe & Noppeney, 2015b) 

or in the temporal fission phenomenon (Shams et al., 2000; 2002; Andersen et al., 2004; Shams et 

al., 2005). 

Various models, based on Bayesian inference, have appeared recently, offering a theoretical 

foundation for multisensory integration. Some of these models provide results in good agreement 

with behavioral data, in a variety of multisensory tasks (Shams et al., 2005; Körding et al., 2007; 

Wozny et al., 2008; 2010; Samad et al., 2015). However, these models make direct use of 

probabilities to compute the estimates, without implementing a biologically-inspired neural 

representation.  

A related issue, yet insufficiently understood, is how neural circuits can implement the 

computation of these probabilities, which are necessary to infer the correct estimate. This question 

can be approached by searching for a biologically inspired neural network, which can produce the 

same estimate as the Bayesian model (or, alternatively, can produce estimates in good agreement 

with behavioral data).  

A possible solution to this problem is provided by the so-called “neural population coding” 

(Pouget et al., 2003; Ma et al., 2006; Pouget et al., 2013). In this scenario the activity of a 

population of neurons encodes the probabilities of the individual realization of a given variable (for 

instance, the position of the auditory or visual signal) in a trial-by-trial basis. The positions are then 

estimated, from the overall population activity, using some kind of metrics (such as the maximum 

activity or the barycenter).  

Following these ideas, a few models have been proposed in recent years, which exploit some 

biologically inspired representations (Ma & Rahamati, 2013; Yamashita et al., 2013; Parise & 

Ernst, 2013; Zhang et al., 2016) and in some cases explicitly consider the causal inference problem 

(Ma & Rahamati, 2013; Yamashita et al., 2013). 

In a series of recent studies (Magosso et al., 2012; Magosso et al., 2013; Cuppini et al., 2014), 

we constructed a biologically plausible neural network, which incorporates two chains of 

unisensory neurons (one auditory and one visual) linked via cross-modal synapses. With this model, 

we were able to demonstrate that illusory phenomena crucially depend on the cross-modal synapse 

weights, which implement a prior on the co-occurrence of the stimuli. Various recent experimental 

data support this model structure, showing that primary areas in the cortex (such as the V1 and A1), 
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traditionally deemed as purely unisensory, can exchange reciprocal information and reciprocally 

influence the other’s activities (Ghazanfar & Schroeder, 2006; Musacchia & Schroeder, 2009; 

Recanzone, 2009; Ursino et al., 2014).  

In our previous model, however, the causal inference problem was not explicitly considered and 

the circuit provided no estimate on the number of sources. The aim of this work is to improve 

significantly our previous studies, by proposing a network circuit that not only estimates the 

individual positions, but can also infer the number of external sources. This is obtained by adding a 

third layer of multisensory neurons (which can mimic activities in higher hierarchical regions of the 

cortex) that receive inputs from the two unisensory layers. The aim of the multimodal layer is to 

integrate audio-visual inputs, according to the classic laws of multisensory integration (basically the 

spatial proximity, the temporal proximity, the enhancement, and the inverse effectiveness), and to 

compare the resulting excitation with a given threshold, to infer whether the stimuli originate from a 

common cause or derive from independent causes. It is worth noting that this multi-layer structure 

is in part supported by the hierarchical nature of multisensory integration as recently proposed by 

Rohe and Noppeney on the basis of neuroimaging data (Rohe & Noppeney, 2015a). These authors 

suggest that at the early stages of the hierarchy, in auditory and visual areas, locations are 

represented without taking into account the underlying causal structure. The estimation that the two 

signals derive from a common cause is performed only at a successive stage, in the anterior 

intraparietal sulcus. 

Here, we first present the structure of the model, with a focus on the main mechanisms and their 

putative role (the mathematical description is provided in the Supplementary Material). Next, the 

results of simulations (with a basal set of parameters) are presented and compared with behavioral 

data, concerning the causal inference and the auditory localization bias. Finally, a sensitivity 

analysis on model mechanisms is performed, in order to shed light on their role in multisensory 

causal inference and integration.  

 

 

 

Method 

The model’s architecture (Figure 1) is based on previous networks realized to study audio-visual 

multisensory processes, such as perceptual illusions and speech integration (see (Magosso et al., 

2012; Cuppini et al., 2014; Ursino et al., 2017). In the following, we will describe the mechanisms 

implemented in the network and its most important emerging behaviors. We will then present the 
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structure of the model and the simulations realized to test its abilities. All mathematical equations 

and parameter assignment criteria are given in the Supplementary Material. 

 

Main model mechanisms  

The network consists of two unisensory regions that process noisy external auditory and visual 

stimuli, respectively, and are reciprocally linked by means of cross-modal excitatory connections. 

Neurons in these regions are topologically organized, i.e., proximal neurons code for proximal 

spatial positions. These areas simulate the level of sensory processing performed in the unisensory 

cortical regions of the brain, and are responsible for inferring the spatial location of the sensory 

stimuli. In the model, the perceived position of the external stimuli is obtained by computing the 

barycenter of the activities elicited in the visual and auditory areas, respectively. Due to the 

presence of cross-modal projections between these two regions, the inferred spatial localization of 

the auditory or visual inputs is affected by the concurrent presentation of the stimulus in the other 

sensory modality, even if the two events are processed separately in the two unisensory regions.   

While the presence of a topographic organization is well documented in the primary visual areas, 

this has not been observed in the acoustic areas. Therefore, the acoustic area must be considered as 

functionally equivalent to several stages of processing in the auditory cortex.  

Information regarding the stimuli spatial configuration, extracted by these regions, is sent to a 

multisensory area (simulating an association cortex, for example, the anterior intraparietal sulcus, as 

shown by Rohe and Noppeney (Rohe & Noppeney, 2015a)). The role of this region is to solve the 

causal inference problem: are the stimuli produced by the same event or do they belong to different 

input sources? 

To answer this question, the activity elicited in the multisensory region is compared with a 

threshold (the “Detection Threshold”). The number of distinct peaks of activity, in the multisensory 

region, above this threshold identifies the number of distinct input sources inferred by the model. 

Stimuli placed in proximal positions (i.e., likely caused by the same event) excite proximal neurons 

in the multisensory region, producing a single peak of activity above the threshold. Conversely, 

stimuli from different spatial positions (i.e., likely generated by different events) stimulate distant 

multisensory neurons, eliciting multiple peaks above the threshold in the multisensory area.   

In this work, we used the barycenter method to identify the location of a stimulus. We found 

three main methods in the literature to extract the output from a population of neurons:  the 

barycenter, the maximum activity, and the vector population decoder. We tried all of them within 

our model. The barycenter method and the vector population decoder produce practically the same 
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results. The maximum activity method has the disadvantage of providing a discrete representation 

of space, and is more affected by noise. For this reason, we preferred the barycenter method. 

From a biological point of view, both the barycenter and threshold effects can be easily 

implemented with a downstream layer of neurons. 

Accordingly, this network presents two different levels of multisensory processing: the first, at 

the level of unisensory regions, makes a judgement about the spatial position of the external stimuli 

(some authors refer to this process as an “implicit causal inference”, (Rohe & Noppeney, 2015a)); 

the second, performed in the multisensory region, is responsible for the solution of the causal 

inference problem (the “explicit causal inference” in (Rohe & Noppeney, 2015a)).  

A further important mechanism in the model consists of competition/cooperation between 

elements in the same area. This is achieved via intra-area (lateral) synapses linking elements 

belonging to the same region, realized through a Mexican Hat disposition, so that elements sensitive 

to proximal portions of the external world excite one-another, and elements sensitive to different 

portions of the space are reciprocally inhibited. This synaptic arrangement concurs to identify the 

minimal distance between two activities in the same area that the network can separate, and thus are 

identified as produced by different events.  

To summarize the role of the main mechanisms delineated above:  

i) The two external inputs (auditory and visual) separately excite the two unisensory areas. 

ii) The cross-modal synapses between unisensory regions modify the spatial perception of the 

sensory inputs. In cases of proximal stimuli, which are usually perceived as originating from a 

common cause, the two positions are reciprocally attracted, thus generating typical perceptual 

illusions (such as the ventriloquism).   In cases of distant stimuli, which are usually perceived as 

coming from distinct input sources, these cross-modal synapses have a less important role, and 

intra-area inhibition becomes the dominant mechanism.  

iii ) The feedforward synapses from the unisensory input regions realize a classic multisensory 

integration, i.e., the enhancement of the activities in spatial register. This is used to encode 

information on the mutual spatial coincidence of the cross-modal stimuli, and the likelihood that 

two stimuli were generated by a common source. Indeed, when two multisensory stimuli fall inside 

the receptive fields (RFs) of the same multisensory neurons, the multisensory area integrates the 

information and presents a unique peak of activity, identifying a single input source.  

iv) The inhibitory lateral synapses implement a competitive mechanism, which allows the 

survival of the stronger stimuli only, while spurious or negligible stimuli are suppressed. This has 

two fundamental functions: it favors a spatial shift in the unisensory areas (where less reliable 

stimuli are shifted in the direction of the more reliable ones), and it engenders the effective 
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elimination of unimportant sources in the multisensory area, where the readout of causal inference 

is effectively realized.  

 

 

Model structure 

Each area consists of an array of 180 elements, topographically organized, so that each element 

is responsive to a specific portion of the external space. We assume a distance of 1° between 

adjacent elements. Each neural unit in every region is described by a sigmoidal I/O relationship and 

a first order dynamics (chosen to mimic a quicker sensory processing for stimuli in the auditory 

region compared to visual stimuli), and it is linked with units belonging to the same region through 

lateral synapses arranged with a Mexican Hat disposition. Moreover, elements in the unisensory 

regions are reciprocally connected with elements of the other unisensory area via excitatory inter-

area synapses (cross-modal synapses). The presence of a sigmoidal relationship, with an “activation 

threshold” is important. In fact, many neurons (especially in the auditory region) are silent but close 

to this threshold and can be easily excited as a consequence of noise or cross-modal influences. 

Accordingly, the net input reaching a neuron in the unisensory regions is the sum of three 

components: an external input, a multisensory input from neurons in the other modality (via cross-

modal synapses Wav, Wva), and a lateral input coming from other neurons in the same unisensory 

area (via lateral synapses La and Lv

It is worth noting that we mimicked auditory localization in the same way as in the visual area. 

This is a strong simplification, since such topological organization is not present in the auditory 

regions in the brain. This aspect is further commented in the Discussion, where lines for future 

improvements are delineated.  

). Moreover, to mimic the variability of sensory stimuli in a real 

environment, we added a noisy component targeting every element in the unisensory regions.   

Finally, units in the multisensory region receive inputs from elements of the unisensory layers 

that are sensitive to the same portion of the space, through excitatory feedforward synapses (Wmv, 

Wma), and a lateral input, generated by the lateral synapses linking elements in the multisensory 

region (Lm

External inputs 

). 

The visual and auditory inputs are described with a Gaussian function to mimic spatially 

localized external stimuli, filtered by neurons' receptive fields (RFs). The central point of the 

Gaussian function corresponds to the application point of the stimulus in the external world (pa and 

pv, for the auditory and visual stimuli, respectively); the standard deviation of the Gaussian function 
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(σa, σv

It is worth noting that these inputs summarize two effects together: the SD of the present inputs 

and the receptive field (RF) of the unisensory neuron. As shown in Ursino et al. (

) reflects the width of neurons’ RFs and the reliability of the external input.  These 

parameters mimic the different spatial acuity of the auditory and visual sensory modalities.  

Ursino et al., 

2017) both terms influence the perceived neural input (that should be considered as the convolution 

of the input and the RF). The two terms have been condensed for simplicity, but can be analyzed 

separately in future model implementations (as in (Ursino et al., 2017)).  

As for the temporal properties of the external stimuli, for simplicity in this work we chose 

synchronized auditory and visual stimuli, kept constant throughout the simulations (except for the 

analysis of the temporal window for the multisensory integration, see below in the Method section).  

Cross-modal terms 

The multisensory input is computed assuming that neurons of the unisensory areas covering 

proximal portions of the external space are reciprocally connected via excitatory synapses. The 

connectivity is symmetrical, and it is realized by using a Gaussian function. 

Feedforward terms 

Elements in the multisensory region receive feedforward excitatory connections from unisensory 

neurons coding for proximal portions of the external world. Again, we used a Gaussian function, 

equal for the two modalities.  

The lateral connections 

The lateral input originates from connections within the same layer. These connections include 

both excitatory and inhibitory lateral synapses, which are arranged with a classic Mexican Hat 

disposition (a central excitatory zone surrounded by an inhibitory annulus). Therefore, each neuron 

excites (and is excited by) its proximal neurons, and inhibits (and is inhibited by) more distal 

neurons. Hence, activities of neurons belonging to the same region and stimulated by distal stimuli 

tend to suppress reciprocally (i.e., they interact via a competitive mechanism). For simplicity, in the 

network we implemented the same lateral connectivity among elements in the unisensory regions, 

but we used a different connectivity in the multisensory layer to improve solution of the causal 

inference problem. 

 

Finally, we wish to stress that, in the present model, the two sensory modalities differ only for 

the respective receptive fields (RF) and time constants, specifically the visual region presents 

smaller RF but greater time constant than the auditory one, i.e.: σv < σa, τv > τa; to mimic the 

different spatial and temporal acuity. All other parameters are set at the same value in the two 
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unisensory layers (see Table S1 for parameter values and the Supplementary Material for parameter 

assignment criteria). 

 

Simulations and Behavioral Indexes 

As stated above, we designed this model to help identify some neural mechanisms involved in 

multisensory perception such as the spatial detection of the external stimuli and the discrimination 

of the number of external sources. To this aim, we simulated different behavioral experiments of 

sensory detection tasks and compared the results of the model with data present in the literature 

(Bertelson & Radeau, 1981; Wallace et al., 2004; Wozny et al., 2010; Odegaard et al., 2015; Rohe 

& Noppeney, 2015b).  

In the following, we sum up briefly how data were obtained in these different behavioral 

experiments, to allow the reader to appreciate the similarities and differences with the model.  

 

(Odegaard et al., 2015) and (Wozny et al., 2010) adopted the same experimental set-up. 

Participants provided the perceived locations of visual and auditory stimuli, presented alone or 

combined in different (congruent or incongruent) positions along the horizontal axis. The evaluation 

of a common cause was based on the spatial disparity between the visual and the auditory percepts: 

distances less than 1° were considered as an indication of a common cause, distances greater than 5° 

suggested independent sources. 

(Rohe & Noppeney, 2015b) investigated the effect of the stimulus reliability on the sensory 

perception and causal inference problem. Visual stimuli were clouds of 20 dots with a vertical SD 

of 5.4° and the horizontal SD set to four levels: 0.1°, 5.4°, 10.8°, or 16.2°. Participants were 

presented with synchronous, spatially congruent or discrepant visual and auditory signals, and 

performed two tasks: spatial localization of the auditory signal and common source judgment. 

(Wallace et al., 2004) analyzed spatial localization, causal inference problem, and temporal 

window of integration. A sound was presented either alone or combined with a visual input at 

different spatial and temporal disparities. The participants indicated the perceived auditory location 

and if the stimuli were produced by a common source (report of unity).  

(Bertelson & Radeau, 1981) analyzed perceptual bias and causal inference problem. A 

ventriloquist paradigm was used where both the visual and auditory stimuli were presented alone or 

combined in different spatial configurations. The participants evaluated the spatial location either of 

the visual or the auditory stimulus and if they had the same or different origin.  

 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

In the following, we describe the different set of simulations performed to test the model. Results 

for every input configuration were evaluated as the mean response over 1000 repetitions of the 

same task. 

In a first set of simulations, we compared the spatial accuracy of the model in unisensory 

(auditory alone and visual alone conditions) versus multisensory conditions (see below).  

Subsequently, we performed simulations in multisensory conditions, with auditory-visual stimuli 

presented to the network, with different spatial displacements. To obtain these configurations, we 

always kept the visual stimulus fixed in a specific position of the space and shifted the position of 

the auditory stimulus, starting from a configuration where the two stimuli are presented in the same 

position (i.e. stimuli coincident in space) to the case of the auditory input 20° far apart (i.e. stimuli 

spatially segregated). 

For each stimulus configuration, the behavior of the network has been analyzed in terms of:  

i) The “Report of Unity” , referring to how often the network identifies a common cause (C = 1, 

i.e. one peak above threshold in the multisensory area), or two different causes (C = 2, i.e. two 

peaks above threshold in the multisensory area) for the two stimuli, as described by Wallace and 

colleagues (Wallace et al., 2004).  This index has been plotted versus the spatial disparity of the 

multisensory inputs, to identify the likelihood that the model integrates or segregates two 

multisensory stimuli at different distances.  

 ii) The “Auditory Perception Bias”, referring to the bias in the perceived position of an auditory 

stimulus when presented along with a visual stimulus in a different portion of the space. This index 

has been computed as the spatial disparity between the real position of the external auditory 

stimulus, and the position evaluated by the model (i.e. the barycenter of the evoked activity in the 

auditory area), divided by the distance between the real auditory and the real visual stimulus. First, 

it has been computed in general conditions, i.e. without taking into account the number of sources 

identified by the network. Then, the computation has been evaluated separately in the two cases of a 

common cause (C=1), and different causes (C=2), in order to investigate the relationship between 

the perceived auditory localization and the number of inferred causes. Because the visual position is 

only barely affected by sounds, due to the higher visual acuity, the visual perception bias has not 

been reported. Results are then compared with those reported in (Bertelson & Radeau, 1981; 

Wallace et al., 2004; Rohe & Noppeney, 2015b).  

iii ) The “spatial distribution of the auditory position”, i.e., how the auditory position estimate 

varies around its mean value. In particular, we compared the spatial distribution of the auditory 

position in the unisensory versus the multisensory case, with coinciding auditory and visual stimuli. 

Then, we analyzed the distribution of the perceived position of the auditory stimulus at each cross-
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modal configuration to assess how the distance between the stimuli affects the spatial evaluation of 

the auditory input. We compared these results with those reported by (Wallace et al., 2004) and by 

(Odegaard et al., 2015). 

 

Subsequently, in order to unmask the role of the main mechanisms in the model, we performed a 

sensitivity analysis. To this end, we repeated the same set of simulations described above, but, in a 

first set of simulations, we varied the effectiveness of the synaptic mechanisms in the model (cross-

modal synapses, lateral synapses within the unisensory and multisensory area, and feedforward 

synapses). The aim of this set of simulations is to stress the influence of these mechanisms on the 

causal inference process and to identify how a change in their parameters may affect the results. 

Second, we modified the standard deviations of the auditory and the visual stimuli and the added 

noise presented to the network, in order to understand how manipulating the spatial reliability and 

the uncertainty of sensory stimuli could affect the perceptual abilities of the network and the 

solution of the causal inference problem. For these simulations, we only present results about the 

report of spatial unity and the auditory bias.  

Finally, we realized some additional set of simulations to better characterize the abilities of the 

model. First, we compared the model behavior in case of modality specific and cross-modal stimuli. 

Second, we evaluated the ability to solve the causal inference problem and the integrative 

capabilities of the network in the temporal domain.  

The interested reader can replicate the simulations described above by using the Matlab 

files linked to this paper and uploaded in the EJN repository. Specifically, results presented in 

Figures 4 , 11, 12,  13 were obtained by using the CI_model.m file; Figures 2, 3,-5,-6,-7,8, 9, 10 

were obtained from the CI_model_macro.m file. 

 

Results 

Simulations with no-spatial disparity  

Figure 2 displays a comparison between the spatial distribution of the auditory estimate in the 

unisensory case versus the auditory-visual case (when the auditory and visual stimuli are 

coincident). The results are compared with behavioral data. In both cases (unisensory and 

multisensory) the auditory estimate exhibits a negligible bias (a mean value close to zero). The 

distribution of the estimate becomes much more precise in the multisensory condition compared 

with the unisensory condition. The patterns and the SDs are in good agreement with the behavioral 

findings. 
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A summary of the SD in the unisensory auditory, unisensory visual, and cross-modal conditions 

(without AV disparity) is presented in Table I. In unisensory conditions, the SD of the auditory 

estimate is significantly greater than the SD of the visual estimate, reflecting poor spatial accuracy. 

In cross-modal (i.e. multisensory) conditions, we can observe a significant improvement in the SD 

of the auditory localization error (which falls from approximately 6.4° to 2.5°) and a further small 

improvement in the visual localization accuracy (from 1.03° to 0.94°). For what concerns 

localization in the second layer, this is always a little worse than localization in the visual 

unisensory layer and remains practically the same in unisensory visual and multisensory conditions. 

Indeed, the role of the causal inference layer in the model consists especially in the evaluation of the 

number of estimated sources, rather than in evaluating the position of these sources. The true 

benefits in the spatial localization occurs in the unisensory layers, where the position estimates 

follows the rules of a Bayesian estimate (but see also (Ursino et al., 2017)) and not in the second 

layer. This is a model shortcoming, since many studies demonstrate that the integrated percept is 

more reliable than the unimodal percepts, according to the principles of Bayesian estimate. 

 

Figure 3 displays the spatial distribution of the auditory perception, in cases of AV stimuli, 

computed separately for cases C=1 (a single perceived cause) and C=2 (two perceived sources). The 

results are then compared with the behavioral findings of (Odegaard et al., 2015) and (Wallace et 

al., 2004).   

It is worth noting that the spatial distribution of the auditory percept in the model is comparable 

to the behavioral data from Wallace et al. (2004): wider when C=2, and much more restricted in 

case of a common source inference (C=1). The model shows some differences with Odegaard et al. 

(2015) for the common cause case. This could be ascribed to the criteria utilized to evaluate the 

number of perceived input sources in the latter work, where a perceived distance less than 1° 

between the auditory and visual stimuli signaled a common cause evaluation, while stimuli 

perceived at a distance greater than 5° signaled independent sources.    

Simulation with A-V spatial disparity 

To explain more accurately how the model processes a multisensory configuration and deals 

with the causal inference problem, Figure 4 displays the results from two exemplary simulations. In 

both cases, the network receives a visual input in position 0° and an auditory stimulus 10° to the 

right of the visual input. However, due to the noisy nature of the sensory perception, the results are 

very different in the two cases.  
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In the first simulation (panel A), the activities in the two unisensory regions are largely 

superimposed (i.e., they cover proximal space positions). Consequently, the multisensory region 

receives an excitation targeting the same neurons and, as shown in the upper panels, presents only 

one peak of activity above threshold. Therefore, the model 1) infers from the multisensory activity 

that both stimuli are produced by the same external event (C=1); and 2) infers from the activities in 

the unisensory areas that the auditory and visual inputs are coming from close portions of the 

external world. This also produces the strong positive bias (see figures 5 and 6 below) in the case of 

an AV configuration with a relative distance of 10°, wherein the model infers a common cause for 

the two stimuli. 

In the second simulation (Panel B), even if the real distance between the stimuli is the same, the 

model identifies it to come from two different sources (C=2 in the multisensory area). In fact, in this 

case, the auditory and visual activities emerge mainly in different portions of the unisensory areas 

due to noise, and the evoked activity in the multisensory region presents two distinct peaks above 

threshold. Moreover, it is worth noting that the auditory percept (i.e. the barycenter of the activity in 

the auditory region) is more distant from the visual percept than the real input distance. Thus, in this 

case, we can say that the cross-modal effect of the visual stimulus produced a negative bias on the 

perception of the auditory position (Figure 6 when C=2).  

An additional result emerges from these simulations. In cases of two stimuli eliciting 

superimposed activities in the unisensory regions (panel A), the network infers a common cause 

very quickly: after just 10 ms, the multisensory region presents a single peak above threshold. 

Conversely, in cases of stimuli evaluated as produced by separate sources (panel B), the time 

interval necessary for having two distinct peaks above threshold in the multisensory area is longer 

(about 20 ms). This prediction could be tested in future behavioral experiments. Of course, the 

values reported above (10 ms and 20 ms, respectively) crucially depend on the time constant used 

for the neural units in this model. Hence, they are only representative of a trend and can be modified 

(for instance, increased) using a different time constant value.  

Figure 5 shows the report of unity and the total auditory perception bias versus the auditory-

visual distance, in cases of spatially separate multisensory inputs.   

The Report of Unity (Panel A, Figure 5) shows that, for an audiovisual disparity smaller than 8°, 

the model identifies the two stimuli as produced by the same cause in more than the 80% of 

simulations. In the interval tested, this frequency decreases linearly with the distance: the greater the 

distance between the auditory and visual stimuli, the more likely the model identifies two separate 

sources. These model results are in line with human performances.  
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The model auditory bias is quite constant (about 70% of the AV discrepancy) in cases of audio-

visual disparity smaller than 10°. The bias decreases linearly as the discrepancy increases. A similar 

pattern has been shown by Bertelson and Radeau (Bertelson & Radeau, 1981), Wallace and 

colleagues (Wallace et al., 2004) and Rohe and Noppeney (Rohe & Noppeney, 2015b). The last set 

of authors, however, used different experimental conditions for the auditory localization tasks: 

Wallace and colleagues presented multisensory stimuli with different spatial configurations and 

different temporal disparities. Rohe and Noppeney modified the spatial configurations of the stimuli 

and the visual reliability. In Figure 5, we compare the model’s results with the experimental 

conditions that are more similar to our configurations.  

Figure 6 shows the Auditory Perception Bias evaluated separately for the cases of common cause 

inference (C=1, solid line), and cases where the model identified separate sources for the stimuli 

(C=2, dashed line). It’s worth noting that when the model infers a common cause for both stimuli, 

the perceived position of the auditory stimulus is greatly affected by the presence of the visual 

input, resulting in a bias towards the visual position that is greater than 75% of their real distance, 

even for stimuli presented at distances greater than 16°. Conversely, when C = 2, the perceived 

position of the auditory stimulus presents a negative bias at small AV distances, i.e., the model 

perceives the auditory position more distant than in the reality. Comparing these results with 

experimental data (Bertelson & Radeau, 1981; Wallace et al., 2004; Rohe & Noppeney, 2015b), it 

is worth noting that, in cases of common cause inference (C=1), the model presents 1) an auditory 

bias almost constant with the AV distance (a behavior in line with human data), and 2) a smaller 

bias than reported in Wallace et al. (Wallace et al., 2004) (highest value = 80% in simulations 

versus 93%), but larger than Rohe and Noppeney (Rohe & Noppeney, 2015b) and Bertelson and 

Radeau (Bertelson & Radeau, 1981). Conversely, when the model identifies different sources 

(C=2), the amount of the bias obtained from the simulations is comparable with human 

performances reported by Wallace and colleagues for small spatial disparity, and by Bertelson and 

Radeau at distances greater than 8°, but it shows an opposite behavior with respect to Rohe and 

Noppeney. These differences will be analyzed and discussed in the following (see the sensitivity 

analysis).  

Figure 7 displays the distribution of the perceived auditory position as a function of AV spatial 

disparity. The auditory percept distribution is compared with the positions of the external auditory 

(vertical dashed lines) and visual (vertical solid lines) inputs.  

It is worth noting that for stimuli at a close distance (AV distance ≤ 10°), the model generates an 

auditory distribution mainly centered at the position of the visual stimulus: the auditory spatial 

perception is greatly affected by the more accurate visual input. Conversely, when the AV distance 
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is in the range 10°-20°, the model presents a spatial distribution of the perceived auditory position 

characterized by two peaks: the first is close to the real position of the visual stimulus, while the 

second is centered on the real position of the auditory input.  

Figure 7 is important since, as shown in (Wozny et al., 2010), the distribution pattern of the 

estimated auditory position provides a characterization of the decision-making strategy for each 

individual, i.e., allows discrimination between different Bayesian models of causal inference. In 

particular, the bimodal distribution of Fig. 7 has been observed by Wozny et al. (Wozny et al., 

2010) in about 82% of subjects and is in accordance with behavioral data obtained by Odegaard and 

colleagues (Odegaard et al., 2015). In order to better understand the spatial distribution of the 

auditory perception, we computed the SD of this distribution separately in the cases C = 1 and C = 

2, and plotted these values versus the AV spatial disparity (Figure 8). The results were then 

compared with those by Wallace et al. (Wallace et al., 2004). The figure shows that the auditory 

standard deviation is always greater in cases of two perceived sources when compared with the 

single source estimation. Moreover, when C = 2, the SD is maximal when the two cross modal 

stimuli are coincident (depicted in Figure 3) and decreases with larger AV discrepancies. 

Conversely, the SD is quite small when a single source is perceived because, in this case, the more 

precise visual stimulus drives the perception. It increases only with large AV discrepancies. These 

patterns agree with those by Wallace et al. (Wallace et al., 2004) fairly well, although the SDs of 

these authors are somewhat greater.  

Sensitivity analysis 

Finally, we performed a sensitivity analysis on the main mechanisms incorporated in the model 

to reveal how they affect the report of unity and, when applicable, the auditory localization bias. 

The analysis is subdivided into three parts. First, we consider the synaptic mechanisms operating in 

the unisensory areas (Fig. 9 and Fig S1 in the Supplementary Material). Then, we analyze the role 

of the accuracy and noisy component of the input stimuli (Fig. 10 and Fig. S2). Finally, we analyze 

the synaptic mechanisms working in the multisensory layer (see fig, S3 and S4 in the 

Supplementary Material’.  

Results show that the most influential parameters are those in the unisensory layers, while 

parameters in the multisensory net are less influential. Hence, the latter results are reported only in 

the Supplementary Material. 

Fig. 9a describes the effect of a variation in the strength of the cross-modal synapses, on the 

Report of Unity and on the auditory localization bias. The results suggest that the direct 

connectivity between the two unisensory regions plays a pivotal role in producing a single cause 

inference. If this connectivity is too weak (0.7 instead of the basal value as high as 1.4), the 
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probability that the model infers a single cause (C = 1) is drastically reduced. Conversely, 

increasing the efficacy of these synapses causes a strong increase in the single source inference, 

with an almost 100% report of unity at small AV distances and about a 70% report of unit even at 

20° AV disparity. Similarly, the auditory bias is dramatically reduced, if these synapses are 

weakened.  

Fig. 9b analyzes the role of the strength in the lateral competitive mechanisms in the unisensory 

areas. The results show that stronger competition in the unisensory areas reduces the Report of 

Unity and the auditory localization bias. Conversely, weaker lateral synapses are associated with a 

greater Report of Unity and with a greater localization bias, i.e., the subject exhibits a greater 

tendency to unify the auditory and visual signals into a single percept (see also Fig. S1 for 

additional results).  

In general, the mechanisms working on the unisensory areas are much more influential on the 

causal inference than those entering the multisensory layer. Their essential role can be explained as 

follows: 1) The cross-modal connections are the only mechanism in the network implementing a 

reciprocal influence between the two stimuli localizations. Therefore, this mechanism mostly 

controls the causal inference. Strong cross-modal connections increase the probability that the two 

localizations get close to each other, increasing the report of unity and auditory bias. 2) The lateral 

competition within the unisensory areas modulates the attraction effect mediated by the cross-modal 

synapses. Stronger lateral competition (implemented by increasing the strength of the lateral 

connections), reduces the activation bubble in each layer, decreasing the influence of cross modal 

synapses and so the report of unity and the auditory bias. 

 

Finally, Fig. 10 shows results of a sensitivity analysis on the noisy component and the accuracy 

of the sensory stimuli. It is interesting to note that by modifying the level of the noise added to the 

network, the model reproduces the different behavioral data from Wallace and colleagues (Wallace 

et al., 2004) and Rohe and Noppeney (Rohe & Noppeney, 2015b) regarding the auditory perceptual 

bias in case of independent sources. The former found a strong negative bias in this condition (C=2) 

for stimuli presented at distances less than20°. Conversely, the latter found a positive bias in case 

C=2, under the same spatial configurations of the stimuli. As illustrated in Figures 10a and 10b, our 

model is able to reproduce Wallace’s data with a low level of noise, while a high noisy condition is 

necessary to obtain the positive bias showed by Rohe and Noppeney in case of multisensory stimuli 

at small distances.  

 

Unisensory vs. multisensory casual inference 
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It is worth-noting that the present model can perform causal inference not only in multisensory 

conditions, but also in case of unisensory inputs. In order to clarify this important aspect, we 

performed some simulations comparing casual inference in unisensory vs. cross-modal conditions 

(Fig. 11). 

Fig. 11 shows that two unisensory visual inputs at a 20° distance are perceived as produced by 

two independent causes. Due to the lateral competition in the unisensory and multisensory regions, 

this inputs configuration produces weak responses in the multisensory layer, just above the 

detection threshold. Conversely, two auditory inputs at the same distance are perceived as 

originating from a single cause, located in between the original positions of the two stimuli. This is 

a consequence of the poor auditory spatial resolution. Finally, two multisensory stimuli at 20° 

distance elicited strong activities in the areas of the model, showing a strong multisensory 

enhancement, and the stimuli are perceived as coming from a single cause, but located close to the 

visual position.  

To stress the significant role played by multisensory integration in the model, we tested the 

network with unisensory and multisensory stimuli with different levels of intensity. Results, 

reported in Figure 12, highlight the benefits that multisensory integration can exert in case of weak 

but congruent stimuli, whereas this benefit is quite irrelevant in case of strong inputs. The figure 

shows the different effect exerted, on the second layer, by: a) a weak auditory stimulus alone, b) a 

strong auditory input alone, and c) two weak congruent multisensory stimuli. In the first case, the 

network fails to infer any cause, since the activity evoked in the causal-inference layer by a weak 

auditory input is sub-threshold. However, if the weak auditory stimulus is paired with a weak visual 

input, activities in the unisensory layers are reinforced, and the second layer presents a peak of 

activity above threshold, inferring a single cause.  

Results in Figs. 11 and 12 emphasize the perceptual advantages of multisensory cues and clarify 

that the model can perform causal inference also in case of two unisensory inputs. 

.  

 

Temporal aspects 

Finally, the last simulations investigate the temporal aspects of multisensory integration and 

causal inference problem. To this end, we performed two simulations with multisensory stimuli, 

placed 20° apart, varying the stimulus onset asynchrony (SOA, i.e., the temporal lag between the 

stimuli). The stimuli lasted 100 ms in each condition. Results are reported in Figure 13. In the first 

case, with a SOA = 75ms (Fig. 13a), the causal inference layer presents only a single peak of 

activity in response to the multisensory stimuli, lasting above the detection threshold for the entire 
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duration of the stimulation. This signals that the network infers a common cause for the perceived 

stimuli. Moreover, it is interesting to note that, even after the removal of the visual input (105ms), 

we can observe a strong positive bias of the auditory percept, attracted by the visual stimulus, and a 

significant integration (i.e., multisensory response exhibits a clear enhancement) in the multisensory 

layer. Conversely, if the SOA is increased at 100 ms, the network identifies two distinct peaks 

above the threshold in different instants (in the temporal domain). Moreover, we do not observe an 

auditory bias in the unisensory area, which means that the auditory percept is not affected by the 

previous visual input, and the multisensory layer does not present enhancement. 

It is worth noting here, that the temporal window for integration and the solution of the causal 

inference problem is strongly related with the duration of the stimuli and the time constant of the 

differential equations, and can be modified by changing these parameters.  

 

 

Discussion   

Comparison with previous models - Several studies in recent years have focused on the “causal 

inference problem”, i.e., the problem of deciding whether two stimuli are produced by the same 

source or by distinct sources. For what concerns multisensory integration, the theoretical aspects 

have been assessed in several pivotal papers (Pouget et al., 2003; Ma et al., 2006; Körding et al., 

2007; Shams & Beierholm, 2010; Wozny et al., 2010; Ma & Rahamati, 2013; Pouget et al., 2013), 

under the assumption that the brain realizes a near optimal Bayesian estimate. Behavioral data 

confirm these predictions, showing that the brain behaves quite optimally in a variety of 

multisensory tasks (Shams et al., 2005; Körding et al., 2007; Wozny et al., 2008; Wozny & Shams, 

2011; Samad et al., 2015). 

However, despite these important recent contributions, the knowledge of the neural mechanisms 

able to produce a Bayesian estimate is still poor. It has been proposed that the brain exploits a 

“neural population code”, i.e., that the estimate is extracted from the activity of a population of 

neurons, which code for the property under examination (in the present exempla, the position of the 

stimulus) and implement the probability functions required. However, the biological neural network 

that can realize this kind of inference and the synaptic organization that is more appropriate are still 

unresolved determinations. In particular, we are aware of only a few biologically inspired neural 

networks that model the audio-visual causal inference process (Ma & Rahamati, 2013; Yamashita et 

al., 2013). 
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Ma and Rahmati (Ma & Rahamati, 2013) analyzed a possible neural implementation for causal 

inference, using probabilistic coding, by translating the Bayesian decision rule directly into a neural 

network. However, they reached the conclusion that the resulting architecture is quite unrealistic. 

Yamashita et al. (Yamashita et al., 2013) built a recurrent network for multisensory integration, 

and found that the network can infer the causal structure and reproduce the localization bias of the 

perceived position. Their model has some elements in common with the present one. For instance, 

the role of cross modal synapses in our model, reflecting prior knowledge, is played by recurrent 

synapses in the model by Yamashita. Also similar to our model, the number of causes is 

distinguished in Yamashita’s model on the basis of the number of peaks in the multisensory layer, 

reflecting a lateral competition. However, important differences exist. In the model by Yamashita et 

al., all computations are performed within a single multisensory layer. As a consequence, in case of 

a common cause inference (C = 1), the auditory and visual perceived positions are always identical. 

In contrast, in our model (as in the brain (Rohe & Noppeney, 2015a)) the positions are computed 

within the upstream unisensory layers. Therefore, even in cases of a single source estimation, the 

auditory localization is not always superimposed on the visual localization, although they are often 

close; this result appears to agree with behavioral data. In particular, in Bertelson and Radeau 

(Bertelson & Radeau, 1981), when a subject reports a single cause, the auditory shift is about 3.66° 

at a 7° separation distance, and 8.15° at a 15° separation distance. Given that the shift in the visual 

localization is typically small (e.g., 0.55° and 1.05°, for these disparities, respectively), the auditory 

and visual perceived positions do not appear to coincide. A similar conclusion can be reached 

looking at the results by Rohe and Noppeney (Rohe & Noppeney, 2015b). The authors report that, 

when a common cause is inferred, the auditory localization bias is about 60% or 80% of the audio-

visual distance, using a visual stimulus with physiological reliability. Once again, given that the 

visual localization bias is generally small (usually smaller than 20%), we can conclude that the 

auditory and visual perceptions do not coincide. These results can be simulated quite well with our 

model, taking also parameter variability into account (see Fig. 9), but cannot be simulated by 

Yamashita’s model, which postulates the superimposition of the auditory and visual localizations 

when C = 1. Furthermore, our hierarchical organization is closer to recent findings (Rohe & 

Noppeney, 2015a) and reflects the well-documented existence of cross-modal links between 

unisensory areas (Ghazanfar & Schroeder, 2006; Musacchia & Schroeder, 2009; Recanzone, 2009). 

Moreover, the model by Yamashita et al. includes a weak divisive normalization to obtain the 

results (an operation not necessary in the present model).  

Other recent models analyzed the way multisensory integration can be realized. Parise and Ernst 

(Parise & Ernst, 2016) proposed a model based on single computational units which work as a 
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multisensory correlation detector (MCD). Each unit filters the individual sensory signals and then 

combines them linearly to detect correlation and time lag, thus performing synchrony and temporal 

order judgments. Optimal cue integration in space is then achieved via a population of MCDs, each 

receiving inputs from a limited spatial region. Compared with our model, Parise and Ernst realize 

integration completely in a multisensory layer (since units are intrinsically multisensory) and 

includes a time lag detector explicitly. Conversely, in our model multisensory integration is 

performed at two steps, while the time lag is not explicitly detected (but simply affects network 

output via the superimposition of the inputs, see Fig. 13).  Moreover, our model incorporates lateral 

inhibitory mechanisms and non-linear saturation, which are important in multisensory integration 

(see (Ursino et al., 2014)).  

A different approach is used in Zhang et al. (Zhang et al., 2016). These authors developed a 

model in which multisensory integration is performed by many interconnected multisensory areas, 

while connectivity among these areas reflect prior knowledge about similarity. This approach is 

very promising; however, multiple multisensory areas are probably required to process multi-

feature object representation, not merely position [in this regard, the model by Zhang et al. 

resembles our recent model of semantic memory (Ursino et al., 2015), in which each area codes for 

a different feature]. For what concerns position, the two unisensory areas in our model (which 

become multisensory because of reciprocal cross-modal synapses) resemble the interconnected 

multisensory areas by Zhang et al. Indeed, in a recent theoretical study (Ursino et al., 2017) we 

demonstrated that the cross-modal synapses between these unisensory areas can be trained to reflect 

an a priori knowledge on the co-occurrence of auditory and visual stimuli, i.e. prior spatial 

similarity.  

 

Model simulations vs. real data - Despite its parsimonious structure, the present model can 

reproduce several characteristics of the AV causal inference, such as the dependence of the number 

of estimated sources on the AV distance, the ventriloquism effect, the standard deviation of the 

acoustic localization and its bimodal distribution. These results emerge from the interaction among 

three basic neural mechanisms. Each of them is biologically plausible. 

i) Two unisensory areas (auditory and visual) code for the position of the two stimuli and 

reciprocally exchange their information via spatially confined cross-modal synapses. This is the 

fundamental mechanism in the model, able to account for the ventriloquism effect. In a previous 

paper, we further demonstrated that the same mechanism can account for other multisensory 

illusions as well, such as illusions in the temporal domain, where auditory beeps affect the 

perception of the number and duration of visual flashes (Cuppini et al., 2014). Moreover, we 
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recently demonstrated that these cross-modal synapses can be learned from experience in a 

multisensory environment, reflecting the presence of multisensory stimuli in temporal and spatial 

proximity (Ursino et al., 2017).  

Recent studies have shown that cortical areas, usually associated with modality-specific sensory 

processing, are stimulated from other senses (see Ursino et al., 2014, for a Review). Bizley, King et 

al., in a series of works (Bizley et al., 2007; Bizley & King, 2008; Bizley & King, 2009) have 

shown that neurons in the ferret auditory cortex receive influence from visual stimuli, and that 

multisensory integration is common to all auditory cortical areas, with a prevalence in higher ones 

(Bizley et al., 2007; Bizley & King, 2009). In some neurons, pairing visual and auditory inputs can 

increase the available spatial information (Bizley & King, 2008). Moreover, in agreement with the 

present model, the visual inputs to auditory neurons exert subthreshold influences, able to modulate 

the responses to sound (Bizley & King, 2009). Although this kind of influence might also derive 

from a feedback from multisensory areas back to unisensory regions, neural tracer injections 

revealed direct input from visual cortex into the auditory cortex (Bizley et al., 2007), as assumed in 

our model. 

Other works reveal influences from the auditory into the visual cortex. Data by Iurilli et al. 

(Iurilli  et al., 2012) suggest the existence of inhibition from auditory to primary visual neurons in 

the mouse, via cortico-cortical connections; the authors suggest that this auditory influence may 

reduce potentially distracting sensory processing in the visual cortex. This mechanism may be a 

consequence of cross-modal excitation between the two areas (as in our model) joined with lateral 

inhibition within unisensory areas. Ibrahim et al. (Ibrahim et al., 2016) analyzed cross-modal 

modulation from sounds to orientation selective visual neurons in the mouse primary visual cortex; 

the effect was a decrease in the average response, but an increased response at the cell preferred 

orientation. Although we did not account for orientation selectivity in our model, these data are 

consistent with the existence of an excitatory cross-modal auditory-visual link sharpened by lateral 

inhibition. 

ii) A second mechanism consists of the convergence of auditory and visual activity towards a 

downstream area where integration is performed. We assume that the main role of this layer is to 

discriminate between two sources or a single source for the observed activities. To this end, activity 

in this area is compared with a detection threshold, to decide whether, in a given portion of the 

space, there is enough activity to infer the presence of a reliable source of information or not. It is 

worth noting that the second layer, although multisensory, can also be used to infer the presence of 

one or two causes also in within modal conditions (see Fig. 11). However, in these conditions the 

causal inference problem may be solved directly in the unisensory layers.  
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iii) The two previous mechanisms could not work properly without the presence of a third 

mechanism, i.e., competition within the same layer, realized with a Mexican Hat disposition of 

synapses. In particular, we used a large inhibition in the unisensory areas, assuming that, here, 

attention is focused on a single stimulus, but a shorter inhibition in the multisensory area, to favor 

the emergence of one or two simultaneous activities, i.e., one or two sources of information. 

A further assumption in the model, not implemented via internal mechanisms, but with the 

external inputs, is that the visual stimulus is spatially much more precise than the auditory one, but 

with a lower temporal acuity. Apart from these differences, the network in Fig. 1 is completely 

symmetrical. We chose to use a perfectly symmetrical network to keep the number of ad hoc 

assumptions to a minimum. It is probable that non-symmetrical synapses exist in real biological 

networks, but, here, we demonstrated that this is not essential, and differences in audio-visual 

processing derive merely from differences in spatial reliability of the stimuli.  

Considering the main mechanisms delineated above, source estimation in the model is performed 

via the following computational steps: 1) the presence of lateral inhibition within the unisensory 

areas leads to the formation of two activation bubbles (one in each area) close to the true position of 

the stimuli. The presence of noise, however, may modify the position, especially for what concerns 

the auditory one, characterized by poor spatial resolution. 2) When the two bubbles are close 

enough (due to the small distance between the stimuli and/or the effect of noise), they are attracted 

reciprocally by the action of cross-modal synapses. Moreover, due to the poor spatial localization of 

the auditory stimulus, the visual input exerts a stronger attraction on a large portion of the auditory 

network (where many neurons, although silent, have an excitation close to the activation threshold). 

Conversely, since only a small portion of the visual area is close to the activation threshold, the 

effect of the auditory input on the visual area is generally modest. Here we did not report the visual 

shift in the interest of space, but it is typically quite negligible (less than 1°, see also (Magosso et 

al., 2012; Rohe & Noppeney, 2015b)). 3) Finally, when the two activities in the unisensory areas 

are quite superimposed (because of the initial AV distance, the effect of noise and the cross-modal 

attraction), a single activation peak is formed in the downstream region. In this case, the activities 

of neurons that receive congruent inputs are strongly enhanced. Conversely, if the two activities 

exhibit only a modest overlap, the effect of lateral inhibition in the downstream area prevails, 

leading to the formation of two distinct peaks, surrounded by an inhibited zone. This may even 

result in a repulsive effect, with the two peaks farther than the original distance. 

We showed that these simple mechanisms could explain most behavioral results fairly well. 

First, in case of coincident multisensory stimuli (Figure 2 and Table I), the auditory and visual 

localization errors decrease compared with that of the unisensory case, even if the reliability of the 
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integrated percept in the second layer (Table I, third column) is a little poorer than the reliability of 

the visual unisensory percept. This is an important model limitation. This prediction disagrees with 

some studies (for instance Alais and Burr, 2004), which showed that the integrated percept is more 

reliable than the unimodal estimates, in agreement with the Bayes rules. 

Second, the auditory localization bias, i.e., the ventriloquism effect, Figure 6, is strong when C = 

1, but is quite negligible (or even negative at small AV distances) in cases of C = 2.  

Third, the standard deviation of the auditory localization is always greater when C = 2 than in the 

case of a single source estimation, at all AV distances (Figure 8). The reason is that, when C =1 the 

auditory stimulus is attracted by the more precise visual stimulus, which constraints its position. 

Conversely, when C = 2, the auditory position is just moderately affected by the visual one, 

showing the overall spontaneous auditory localization variability.  

Fourth, results of the sensitivity analysis  underline that inter-subject variability, reported in the 

literature, may be ascribed to differences in the strength of synapses or in the noise, which, in turn, 

may be a consequence of prior multisensory experience (see also (Ursino et al., 2017)) or of the 

variations in experimental set-up. 

The sensitivity analysis also suggests that the mechanisms working on the multisensory layer 

(the feedforward synapses and the lateral competition) have a lesser impact on the Report of Unity 

than the mechanisms acting on the unisensory layers. Accordingly, an important conclusion of our 

model is that the localization bias, computed in unisensory areas, is a pre-condition for the causal 

inference, and not viceversa. First, the unisensory layers compute the attraction between the two 

signals based on their accuracy, i.e., the standard deviation of the inputs, the lateral competition and 

the presence of cross-modal synapses (reflecting previous knowledge). Only subsequently, based on 

this shift, the second layer infers the presence of one or two causes.  

Although we are not certain that this is the best strategy (compared with a strategy that first tries 

to solve the causal inference problem, and only later produces a bias) we claim that it finds some 

support in the general idea of auto-association, exploited in many neural-network models. In our 

model, cross-modal synapses implement an auto-association network which tries to recover lacking 

information on the basis of past experience (in this case, past experience is the spatial proximity of 

audio and visual stimuli when C = 1). The same mechanism (i.e., auto-association via recurrent 

synapses) can be exploited in more general situations, whenever the brain needs to merge different 

pieces of information into a single percept. For instance, in a recent model of semantic memory 

(Ursino et al., Neural Networks, 2015) we linked features representing a single object via auto-

associative synapses, thus allowing object recognition even in presence of a partial cue. In 

conclusion, we think that auto-association via recurrent synapses is a powerful way to favor 
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solution of the causal inference problem, restoring the information which is expected to occur in the 

C = 1 case. If this information cannot be restored, the C = 2 case can be assumed as more reliable. 

 

Model predictions

Similarly, as illustrated in Figure 4, the model predicts that the causal inference response is faster 

when C = 1 than in cases of inferring two independent sources. In fact, in the first case, the 

superimposition of two congruent activities in the multisensory area allows a quicker attainment of 

the detection threshold. This may represent a testable prediction, validated in future experiments. 

Indeed, this result substantially agrees with the present knowledge of multisensory integration. Data 

by Arnal et al. (

. Various testable predictions derive from our simulations. First, based on the 

above statement, the response time for a spatial localization test (when an observer decides the 

position of the auditory stimulus) should be faster than the response time of a causal inference test, 

i.e., when the observer decides on one or two causes. In other terms, the first decision anticipates 

the second, and not viceversa.  

Arnal et al., 2009) suggest the presence of temporal audio-visual facilitation in 

temporal processing. 

Furthermore, the model predicts that the distribution of the auditory localization exhibits a 

bimodal pattern, which reflects the C = 1 and C = 2 inferences. Moreover, the two modes are not 

completely distinct, but exhibit a certain superimposition even at large AV distances (Figure 7). 

This distribution agrees with behavioral data observed by (Wozny et al., 2010) in more than 75% of 

cases. 

 

Model limitations and future lines - Of course, the present model is still preliminary; we 

followed a parsimony principle to lessen its complexity and reduce the number of mechanisms 

involved in order to focus on general ideas rather than on a complete accurate description of all 

phenomena. Several limitations can become the target of future improvements.  

First, we assumed that the sensory reliability of the stimuli is independent of the position. 

Conversely, it is well known that the perception of space for auditory and visual neurons strongly 

depends on the azimuthal coordinate. This phenomenon has been extensively investigated recently 

by Odegaard et al. (Odegaard et al., 2015). We believe that inclusion of this dependence in the 

model (so that peripheral neurons are less accurate than the central ones) can affect the results, 

especially at large AV distances.  

Second, noise in real biological networks can originate at different levels, not only in the input 

stimuli.  
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Third, these results demonstrated that the mechanisms implemented in the unisensory layers 

exert a major role to generate sensory perception and solve the causal inference problem; but we are 

aware that in real biological networks feedback projections are also present from higher order 

multisensory brain regions to primary cortical regions. Future experiments and simulations will be 

conducted to analyze a possible role of these projections in the brain sensory processing. 

Fourth, we used the same parameters for all simulations, considering noise as the only cause of 

trial-by-trial variability. Conversely, behavioral data are obtained on different subjects, which 

significantly differ as to their responses. As stated by Hairston et al. (Hairston et al., 2003), 

“performances proved to be highly variable among subjects. The source of this inter-subject 

variability is not immediately clear”. This inter-subject variability may involve a difference in 

ability to locate visual targets versus auditory targets, variability in strength of the synapses (see the 

sensitivity analysis in  Figure 9 and Figures in the Supplementary Materials) which, in turn, may 

reflect variability in previous multisensory experience, according to Hebbian learning paradigms 

(Ursino et al., 2017), or variability in detection threshold. A future experiment may use the network 

separately on different subjects to fit individual observers’ data with individual parameter estimates. 

This will provide a more accurate model validation and a deeper understanding of the neural origin 

of individual variability.  

Finally, for the sake of simplicity we mimicked localization in the auditory area in the same way 

as visual localization. However, such topological organization is not present in the auditory cortex 

(although the superior colliculus has spatial auditory map; however, it is not likely to be the locus of 

localization). Hence, more reliable models for the auditory spatial representation should be 

developed in future work. In particular, some authors hypothesized that space is represented in the 

auditory cortex in a distributed way (Stecker & Middlebrooks, 2003) and that sound space 

localization is based on ensemble of cortical neurons (Middlebrooks et al., 1998). These ideas are 

not in opposition with the present model, but their implementation will require a more sophisticated 

description of the auditory cortex, possibly using temporal coding with synchronized neural 

oscillators. In particular, an ensemble of synchronized oscillators can send their activity toward 

other areas in a way similar to what is performed by a single unit in our model (see (Ursino et al., 

2009) for an example). 
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Figure Captions 

Figure 1 – Structure of the network. The visual and auditory regions process external sensory stimuli. These 

regions are reciprocally connected through direct excitatory synapses (W
av

 and W
va

), and send long-range 

feedforward projections (W
ma

 and W
mv

Figure 2 – Distribution of the auditory localization error simulated with the model (dark bars) and measured 

in the behavioral experiments (light bars, i.e., data 1, Odegaard et al., 2015) in unisensory conditions 

(auditory input alone: left panel) and in multisensory conditions (auditory and visual stimuli at the same 

position, right panel). The insert tables report the corresponding standard deviations. SDs from other two 

additional studies (data 2 from Rohe and Noppeney, (

) targeting the causal inference area. All these inter-area synapses 

are realized via Gaussian functions. The three regions in the network include also intra-area synapses, 

linking elements belonging to the same area. These connections are implemented by using a Mexican-hat 

function.  

Rohe & Noppeney, 2015b), data 3 from Hairston et 

al., (Hairston et al., 2003)) are also reported for comparison. In all cases, the presence of a congruent 

multisensory stimulus reduces the SD of the localization error, although a large variability can be observed 

among behavioral data. 
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Figure 3 – Distribution of the auditory localization error (i.e., the difference between the perceived auditory 

position and the true position) computed in multisensory conditions with spatially-congruent auditory and 

visual stimuli. The cases of single source estimation (C = 1) and distinct source estimation (C = 2) are plotted 

separately. Model results (left panel) are compared with Odegaard et al. (Odegaard et al., 2015) behavioral 

data (middle panel) and with data by Wallace et al (Wallace et al., 2004) (right panel). 

Figure 4 – Examples of neural activity temporal patterns. The upper panel (panel A) shows the simulation of 

a case where two multisensory stimuli, presenting an A-V distance as large as 10°, are considered as 

originating from a single cause. The bottom panel (panel B) shows an example in which the two stimuli, 

with the same spatial configuration, are considered as originating from separate causes (due to noise). 

Within each panel, the upper rows describe the activity in the multisensory layer, while the lower row the 

activities in the unisensory layers (dash-dotted visual, dashed auditory). In each panel, the different 

columns represent three snapshots of network activity at three different instant during the simulation. The 

left column is network behavior at the beginning of the simulation (10 ms), when the multisensory area is 

still scarcely active (below threshold); the middle column is an intermediate instant (20 ms), when the 

threshold has already been reached in the multisensory area; the right column represents the final 

configuration (45 ms). It is worth noting that a multisensory stimulation with similar spatial configuration 

can be processed in different ways by the model, as a consequence of the noisy sensory perception. 

Figure 5 – Perception of unity (panel A) and auditory perception bias (panel B) as a function of AV 

discrepancy. Panel A reports the percentage of times the network infers a common cause during 

crossmodal stimulation, plotted vs. the distance between the auditory and the visual components (red 

line). For stimuli with a distance smaller than 8°, the network identifies a common cause in more than 80% 

of the simulations. For stimuli with greater distances, the percentage of identification of a common source 

decreases linearly with the distance. The simulations’ results (red solid line) are compared with behavioral 

data from Rohe and Noppeney, (Rohe & Noppeney, 2015b) (green line), Wallace et al., (Wallace et al., 

2004) (blue line) (obtained with a similar experimental paradigm, but with an auditory-visual temporal 

disparity of 200ms) and by Bertelson and Radeau (Bertelson & Radeau, 1981) (magenta line). Panel B shows 

the Auditory Perception Bias, i.e., the difference between the perceived spatial position and the true 

position of the auditory input, expressed as a percentage of the audio-visual distance. The bias of the 

auditory perceived position is represented by the mean and the SEM, computed over 1000 simulations for 

each spatial input configuration. 

Figure 6 – Auditory perception bias in multisensory conditions, evaluated separately when the network 

identifies a common cause (C=1, red solid line) or different causes (C=2, red dashed line). The results of 

model simulations (red lines) are compared with behavioral data present in literature (blue lines - Wallace 

et al., (Wallace et al., 2004); green lines - Rohe and Noppeney, (Rohe & Noppeney, 2015b); magenta lines - 
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Bertelson and Radeau (Bertelson & Radeau, 1981)). The network predicts that in the first case (C=1), the 

auditory perception is affected by a bias greater than 75% and is fairly constant across AV spatial 

disparities; for C=2, the auditory bias is negative for a distance smaller than 10°, i.e. the perceived auditory 

position is more distant from the visual input than in the reality. 

Figure 7 – Distribution of the auditory localization in cross modal conditions, at different AV distances. The 

visual stimulus was always located at position 0 deg (continuous vertical line); the auditory position is 

indicated in each panel (dashed vertical line). Panels in the first row are behavioral data from Odegaard et 

al (Odegaard et al., 2015); panels in the bottom row are from model simulations. A bimodal distribution 

becomes evident at large AV distances. 

Figure 8 – Standard deviation of the auditory localization at different AV distances, computed by the model 

separately in the cases of a single source estimation (C = 1) and distinct source estimations (C = 2). For 

comparison data by (Wallace et al., 2004) are reported, too. 

Figure 9 – Sensitivity Analysis on the mechanisms operating in the unisensory areas. The figure shows the 

effect of changing some parameters in the unisensory areas, on the Report of Unity and the auditory 

localization bias, at different A-V distances. Figure 9a has been obtained with different values of the 

weights of the cross-modal mechanism (i.e., a change in the weight of direct synapses among unisensory 

areas W
av

 = W
va

). Stronger cross-modal connections enhance the influence of the visual stimulus. This 

increases 1) the likelihood of the perception of a common source (Report of Unity) for the visual and 

auditory stimuli and 2) the bias of the perceived position of the auditory stimulus. Conversely, weak 

connectivity among the unisensory regions increases the ability of the network to identify separate stimuli 

also at small distances: for W0 = 0.7 the network identifies independent sources in more than 50% of the 

cases for stimuli placed at a distance of 10° or less. The same result is obtained only for distances greater 

than 16° in the basal configuration (W0 = 1.4). Figure 9b describes the effect of a change in the strength of 

the lateral competition mechanism, in both the auditory and visual areas [the strength of lateral synapses 

(L
a

ex0 , L
v

ex0, L
a

in0 and L
v

in0

Figure 10 - Sensitivity Analysis on the effect of noise, added to the sensory inputs, on the auditory 

perception bias in case of common cause (C=1, red solid line) and two independent causes evaluation (C=2, 

red dashed line), at different A-V distances. A) A highly noisy sensory stimulation is suitable to reproduce 

 ) has been varied, by maintaining a constant ratio between excitation and 

inhibition (i.e. Lin0/Lex0 constant)]. In this case, the effect is opposite with respect to the previous case: the 

stronger the competitive connections the lower the likelihood of the perception of a common cause for the 

AV stimuli and the perception bias of the auditory input. A strong inhibition among elements within the 

same unisensory area reduces the effect of the crossmodal input. This helps to keep segregated two stimuli 

placed in different spatial positions, resulting in the perception of independent input sources. In all panels, 

the basal condition is displayed with a continuous line. 
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the results of Rohe and Noppeney (Rohe & Noppeney, 2015b), i.e., a positive bias in case of independent 

sources (C=2). Conversely, B) a low added noise in the unisensory regions is able to explain the strong 

negative bias identified by Wallace and colleagues (Wallace et al., 2004) in case of separate cause 

evaluation. 

Figure 11 – Unisensory vs Multisensory Integration and Causal Inference. The network is able to solve the 

causal inference problem for unisensory and multisensory conditions. In the figure, we presented 3 

different conditions: the network was stimulated with two inputs at a distance of 20°; in case A) we used 

two visual inputs of the same intensity; in case B) we presented two auditory stimuli; in case C) we used a 

visual and an auditory input. The vertical black-dotted lines identify the original positions of the stimuli 

presented to the network. Blue lines are referred to the evoked activities in the visual area, green lines 

depict the activity in the auditory area, and red lines are used for the activity in the multisensory region. 

The black-dashed lines represent the detection threshold in the multisensory region. In case of visual inputs 

A), the network perceived the two stimuli, with no spatial perception bias (the barycenter of the evoked 

activities in the visual area coincides with the original position of the stimuli), as produced by independent 

causes (two peaks above the detection threshold in the multisensory region). In case of auditory 

stimulation B), the network identifies a single auditory stimulus, whose position is in between the original 

positions of the two stimuli (the evoked activity in the auditory region has a barycenter placed between the 

two original inputs, and the multisensory area shows a single peak above the threshold). In the 

multisensory case C), the network identifies a common cause for the two stimuli, and the perceived 

positions of the two inputs are very close to the original position of the visual stimulus (great auditory 

perception bias). 

Figure 12 – The role of stimulus intensity in the multisensory integration. The figure shows the different 

effect, produced on the network, by: A) a weak auditory stimulus alone; B) a strong auditory stimulus 

alone; C) two weak congruent multisensory stimuli. In the first case, the network fails to infer any cause, 

since the activity in the multisensory area is sub-threshold, whereas in the second and third cases, the 

second layer infers a common cause. These results demonstrate that multisensory integration generates a 

strong benefit particularly in case of weak stimuli. This effect is present both at the level of the unisensory 

areas, where the evoked activities are reciprocally reinforced thanks to the cross-modal connections, and in 

the multisensory region, where the evoked activity presents a strong multisensory enhancement 

(compared with case A), which helps identifying a common cause for the two stimuli. 

Figure 13 – Multisensory Integration Temporal Window. The upper panel (panel A) shows the results of 

multisensory stimulation with an A-V distance as large as 20°, and a stimulus onset asynchrony (SOA) as low 

as 75ms. The bottom panel (panel B) shows an example in which the two stimuli, with the same spatial 

configuration, have a larger temporal offset (SOA = 100ms). In both conditions, the duration of the stimuli 
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was set at 100ms. Within each panel, the upper rows describe the activity in the multisensory layer, 

compared with the detection threshold (the horizontal black dashed line), while the lower row show the 

activities in the unisensory layers (green visual, blue auditory). In each panel, the different columns 

represent different snapshots of network activity at four different instants during the simulation. One 

snapshot is at the beginning (60 ms), when the network detected only the visual input. Two snapshots are 

at intermediate instants (105 ms and 120 ms) when the visual input was removed and the network received 

the auditory stimulus. One snapshot is close to the end of the simulations (140 ms), when only the auditory 

input could affect the network.  
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Table I – Variance of Sensory Perception 

 Auditory Area Visual Area Multisensory Area 

Auditory Input 6.3768 / 6.6330 

Visual Input / 1.0347 1.2506 

Visual-Auditory Input 2.5251 0.9416 1.3500 
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