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Abstract

Recently, experimental and theoretical research has focus#tk dirairs abilities to extract
information frema.noisy sensory environmeand howcrossmodalinputs areprocessedo solve
the causal inferengeroblem to providehe best estimate @xternalevents. Despite thempirical
evidencesuggestinghat the nervous system uses a statistically optimal and probabilistic approach
in addressinguthese problenidtle is known about the brain’s architectureeded tamplement
these computations.

The aim of this work is to realize a mathematical model, based on physitiogieausible
hypotheses, to analyze the neural mechanisms undentgiriisensory perception and causal

inference. The model consists of three layeysologically organizedtwo encode auditory and

This article is protected by copyright. All rights reserved



visual stimuli, separately and are reciprocallyconnected viaexcitatory synapsesnd send
excitatory connections to the third downstream layléris synaptic organization realizeswo

mechanismef crossmodal interactions: the firss responsible for the sensamypresentatioof the

external stimulwhile the second solveake causal inference problem.

We tested lte=network by comparings resultsto behavioral dataeported in the literature
Among others, thenetwork can account for the ventriloquism illusiorpatiern ofsensory bias
and the percept of unitys a function of thepatialauditory-visualdistanceandthe dependence of
the auditory error on the causal inference. Finally, simulations resaltonstent withprobability
matchingasthe. perceptual strategy used in audieisual spatial localization taskagreeingwith
the behavioral dataThe model makesuntestedpredictions that can bevestigatedin future

behavioral experiments.

I ntroduction

Perception of objects in the external world requires the integration of information from different
modalities, for example auditory and visual. Several recent behayemast & Banks, 2002
Battagliaet al.,"2003 Alais & Burr, 2004 Wallaceet al., 2004 Shamset al., 2005 Hillis et al.,
2006 Woznyet al., 2009 and theoreticastudies(Pougetet al., 2003 Ma et al., 2006 Shams &
Beierholm, 2010Ma & Rahamati, 201,3Pougetet al., 2013 suggest that the brain performs this
integration in"@Bayesian way, i.e., it tries to exploit the differemiltisensorysignals to minimize
the errorin perceptual estimatdthe error on the spatial location of the stimédr instancg Two
factors are invelved irachiewng this estimate. First, the obser must infer whether the two
stimuli (e.g.,a sound and a light) originate from the same event (i.e., they have a common cause) or
stem from "different sources (i.e., they are produced by independent causes). This pioblem
referred to as “the causal @ence problem”: its solution is crucially dependent on the similarity of
the different sensory features (in casé simple stimuli, the spatial and temporal proximity) and
previous knowledge/bias or expectatiorBausal inference only recently receivedffisient
attention in-multisensory neuroscience literat{8bamset al., 2005 Kording et al., 2007 Wozny
et al., 2008 Shams & Beierholm, 201@Woznyet al., 2019 Cuppiniet al., 2012 Ma & Rahamaiti,
2013).

Second, in cases when a single cause is inferred, the two stimuli must be integrated to realize a
coherent percept; conversely, in case of two independent causes, they should becprasdéezlys

A large body of redts demonstratethat, in casgof a single cause, the observer integrates the
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signals based on their sensory reliabi(iylais & Burr, 2004 Morganet al., 2008 Fetschet al.,
2012),giving more weight to the more reliable cuen &piphenomenonf this integration is the
occurrence ofllusory phenomenan certain conditions in which a discrepancy exists between the
two sensorysignals,and yetthe morereliable inputattracts the other, as in the spatial ventriloquism
(Bertelson & Radeau, 198Hairstonet al., 2003 Wallaceet al., 2004 Rohe & Noppeney, 201%b

or in the temporal fission phenomen@hamset al., 200Q 2002 Andersenret al., 2004 Shamset

al., 2005).

Various models, based on Baimgsinference, have appeared recently, offering a theoretical
foundation for_multisensory integration. Some of thesmlelsprovide results in good agreement
with behavioral data, in a variety of multisensory taksamset al., 2005 Kording et al., 2007
Wozny et al.g#2008 2010 Samadet al., 2015. However,these models make direct use of
probabilities t6° compute the estimates, without implementing a biologicaiyred neural
representation.

A related issueyet insufficiently understoodjs how neural circuits can implemerthe
computation of these probabilitieshich arenecessary to infer the correct estimdteis question
can beapproached:/bgearcing for a biologically inspired neural network, which garoducethe
same estimate as.the Bayesian model (or, alternativ@hyproduce estimates in good agreement
with behavioral‘data).

A possible solution to th problem is provided by the ®alled “neural population coding”
(Pougetet al., 2003 Ma et al., 2006 Pougetet al., 2013. In this scenario the activity of a
population of neurons encodes the probabilitiethefndividual realization of a given variablgor
instance, the'position of the auditayvisual signal) in a tridby-trial basis. The positions are then
estimated, from the overall population activity, using some kind of metrics (sutie anaximum
activity or the barycenter).

Following these ideas, a few models have been proposed in recent years, which exploit some
biologically inspired representations (Ma & Rahamati, 2013; Yamashita etOaB, Parise &
Ernst, 2013; Zhang et al., 2016) and in some cases explicitly consider the ckuesace problem
(Ma & Rahamaiti2013; Yamashita et al., 2013).

In a series.of recent studi@glagossoet al., 2012 Magossoet al., 2013 Cuppiniet al., 2019,
we constructed ,a biologically plausibleeural network which incorporates two chains of
unisensory neurons (one auditory and one vidumkigd via crossmodal synapses. With this model,
we were able talemonstrate that illusory phenomena crucially depenith@arossmodal synapse
weights which implement a prior othe co-occurrenceof the stimuli Various recent experimental

datasupportthis model structure, showing that primary areas in the cosigésh(as the V1 and Al),
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traditionally deemed as purely unisengocan exchange reciprocal information and reciprocally
influence the other’sactivities (Ghazanfar & Schroeder, 2008usacchia & Schroeder, 2009
Recanzone, 200Wrsinoet al., 2014).

In our previous model, however, the causal inference problem was not explicitly cedsiddr
the circuit provided no estimate on the number of souffles aimof this work is toimprove
significantly @ur previous studies, by proposing a network circuit that not only estimates the
individual positions;“but can also infer the number of external sources. This issdbtgiadding a
third layer of imultisensory neoins (which can mimic activities in higher hierarchical regions of the
cortex)that receivanputs from the two unisensory layefithe aimof the multimodal layer is to
integrate audiyisual inputs, according to the classic laws of multisensory integr@tasncally the
spatial proximity; the temporal proximity, the enhancement, and the inversavefiess) and to
compare the resulting excitation with a given threshold, to wifether the stimuli originate from a
common cause or derive from independent causésworth noting that this multayer structure
is in part supported by the hierarchical nature of multisensory integagioecentlyproposed by
Rohe and Noppeney on the basisiefiroimaging datéRohe & Noppeney, 201%aThese authors
suggest that_at.the early stages of the hierarchy, in auditory and visual areas, |la&ions
represented without taking into account the underlying causal structure. Theiestiimatt the two
signals derive“from a common cause is performed only sicaessivestage, in the anterior
intraparietal sulcus.

Here, we'irst presenthe structure of thenodel,with a focuson the main mechanisms and their
putative role(the mathematical description is provided in the Supplementary Maté&tett, the
results ofsimulations with a basal set of parametgese presentednd compareavith behavioral
datg concerning the causal inference and the auditory localization bias. Finally, iivigens
analysis ormodel mechanisms performed, in ordeto shed light ontheir role in multisensory

causal inference andtegration.

M ethod

The model’s arehitecture (Figure 1) is based on previous networks realized tastimyisual
multisensory processesuch as perceptual illusions and speech integration(kéagossoet al.,
2012 Cuppiniet al., 2014 Ursinoet al., 2017. In the following, we will describe the mechsms
implemented in the network and its most important emerging behaWersvill then presentthe
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structue of the model andthe simulations realized to test its abilitiedl Wwathematical equations

and parameter assignment critexragivenin the Supplementary Material.

Main model mechanisms

The netwarkeonsists oftwo unisensory regionthat processoisy external auditory and visual
stimuli, respectivelyand arereciprocallylinked by means otrossmodal excitatory connections
Neurons in these regions are topologicalhganized i.e., proximal neurons code for proximal
spatial positiensThese areas simulate tlevel of sensory processimerformedin the unisensory
cortical regions ofthe brain andare responsiblgor inferring the spatial locatiorof the sensory
stimuli. In the.modelthe perceived position of the external stimaliobtainedby computing the
barycenter of*the%activities eliciteth the visual and auditory areas, respectivéye to the
presence otrossmodalprojections between these two regiotig inferred spatial localization of
the auditory owisual inputsis affected by the concurreptesentation of the stimulus the other
sensory modalityeven if the two events are processed separatéie two unisensory regions.

While the presence of a topographic organization is well documented in the priswalareas,
this has not been.abserved in the acoustic areas. Therefore, the acoustic area must be considered &
functionally equivalentd several stages of processing in the auditory cortex.

Information“regarding the stimudipatial configurationextracted by these regigns sent to a
multisensory aregsimulating an association corteérr examplethe anterior intraparietal sulcus, as
shown by Rohe and Noppenégohe & Noppeney, 201%pa Therole of this regionis to solve the
causal inference problem: atee stimuli produced by the sansvent or do they belong to different
input sources?

To answer this questigrthe activity elicited in the multisensory region is compared with a
threshold (the DetectionThreshold”). The number of distinct peaks$ activity, in the multisensory
region,above this threshold identifiegke number oflistinct input sources inferred by the model
Stimuli placed.in_proximapositions(i.e., likely caused by the same event) exgiteximal neurons
in the multisensory region, producing a single peak of activity above the thre€hoidersely,
stimuli from differentspatialpositions(i.e., likely generated by different events) stimuldistant
multisensory.neurons, eliciting multiple peaks above the threshold in the multisarsa.

In this workjwe used the barycenter method to identify the location of a stiriusound
three main methods in the literature to extract the output from a populatiorumnse the
barycenterthe maximum activityand the vector population decoder. We tried all of them within

our model. The barycenter method and the vector population dguadiercepractically the same
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results. The maximum activity method has the disadvantage of providirsgratdirepresentation
of space, and is more affected by noise. For this reason, we preferred the barycenter method.

From a biological point of view, both the barycenter and threshold effects can be easily
implemented with a downstream layer of neurons.

Accordinglyythis'network presents two different levelsmiiltisensory processing: the firsit
the level of unisensory regionmmakes a judgememboutthe spatiapositionof the external stimuli
(some authors referto this process as an “implicit causal infergiiRaie & Noppeney, 201pa
the second, performed in the multisensory region, is responsible for the solution czutsd
inference problenthe “explicit causal inferentan (Rohe & Noppeney, 2015a)).

A further important mechanism in the model consitscompetition/cooperation between
elements in thefsame area. This is achievedinti@area (lateral) synapses linking elements
belonging to the same regiaealized through a Mexicatat dispositionso that elements sensitive
to proximal portions of the external world excite erether, and elements sensitive to different
portions of the space are reciprocally inhibitétis synaptic arrangement concurs to identify the
minimal distance between tvativities in the same ardhatthe networkcanseparate, anthus are
identified as produced by different events.

To summarize the role of the main mechanisms delineated above:

1) Thetwo external inputs (auditory and visual) separately excite the two unisesasy

i) The crossmodal synapses between unisensory regions modify the spatial perception of the
sensory inputsin casesof proximal stimuli,which areusually perceived as originating from a
common cause, the two positions aeeiprocally attracted thus generating typicgberceptual
illusions (such as the ventriloquism). In casédistantstimuli, which areusually perceived as
coming from/distinct input sources, thesmssmodal synapses have a less important raled
intra-area inhibitiorbecomeshe dominant mechanism.

iii) The feedforward synapses from the unisensory input regieakze a classic multisensory
integration,_ite., the enhancement of thetivities in spatial register. This is used &ncode
information onsthermutual spatial coincidence of the crosslal stimuli, and the likelihood that
two stimuli weresgenerated by a common soultgeed,when twomultisensorystimuli fall inside
the receptive_ fields RF9 of the samamultisensoryneurons the multisensory area integratéhe
information andpresents a unique peak of activity, identifying a single input source.

iv) The inhibitory lateral synapses implement a competitive mechanism, which allows the
survival of the stronger stimuli only, while spurious or negligible stimuli are sspgde This has
two fundamental functiongt favors a spatial shift in thaunisensoryareas (where less reliable
stimuli are shifted in the direction of the more reliable onesd it engendershe effective

This article is protected by copyright. All rights reserved



elimination of unimportant sources in the multisensory area, whereddeut ofcausal inference

is effectively realized

Model structure

Each areazonsists of an array of 180 elements, topographically organized, so that each element
is responsive to“a“specific portion of the external sp@éée.assume a distance of 1° between
adjacent element&ach neural unit ievery regions describedy a sigmoidal I/O relatioship and
a first order dynamicg¢chosen to mimic a quicker sensory processing for stimuli in the auditory
region compared to visual stimylgnd it is linked with units belonging to the same region through
lateral synapses/arranged with a Mexican Hat dispositareover, element the unisensory
regions & reciprocally connected with elemewfsthe other unisensory area \@acitatory inter
area synapsdsrossmodal synapsesYhe presence of a sigmoida&lationship, with an “activation
threshold” is important. In fact, many neurons (especially in the auditory regesilent but close
to this threshald and can be easily excited as a consequence ofrrisesmodal influences.

Accordingly,.thesnetinput reachinga neuron in the unisensory regions is the sunthafe
componentsan external input, enultisensoryinput from neurons in the other modal{@ja cross
modal synapses™W, W'9), anda lateral input coming from other neurons in the same unisensory
area(via lateral synapses’land L). Moreover, to mimiche variability of sensory stimuii a real
ernvironment, we added a noisy component targeting every element in the unisensory regions.

It is worth _noting that we mimicked auditory localization in the same way as in the visual area.
This is a strong simplification, since such topological organization is esept in the auditory
regiors in the brain. This aspect is further commented in the Discussion, wherdolinfesure
improvements are delineated.

Finally, units in the multisensory region receive inputs from elements of the unisdagens
that are sesitive_toithe same portion of the spaiteough excitatory feedforward synapses™W
W™, and a lateral inputgeneratedy the lateral synapses linkingelements in the multisensory
region(L™).

External inputs

The visual“and_auditory inputs are describveith a Gaussian function to mimic spatially
localized external stimuli, filtered by neurons' receptive fields (RFs). The central point of the
Gaussian function correspaih theapplication poinbf the stimulus in the external world {and

p’, for the auditory and visual stimulespectively); the standard deviation of the Gaussian function
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(6% ") reflects thewidth of neurons RFs and the reliability of the external input. These
parametes mimic the different spatial acuity of the auditory and visual sensory modalities.

It is worth noting that these inputs summarize two effects together: the SD of the present inputs
and the receptive field (RF) of the unisensory neuron. As shown in Ursino (etrsiho et al.,
2017)both termssinfluence the perceived neural input (that should be considered as theticonvol
of the input and the RF). The two terms have been condensed for simplicity, but can be analyzed
separatelyn future model implementations (as(ldrsinoet al., 2017)).

As for thestemporapropertiesof the external gthuli, for simplicity in this work we chose
synchronizechuditory and visual stimuli, kept constant throughout the simulations (except for the
analysis of the temporal winddier the multisensory integratipgee below in the Method section).

Cross-modal'terms

The multisensoryinput is computed assuming that neurons of uhesensoryareascovering
proximal portions of the external spa@ee recipocally connected viaxcitatory synapsedhe
connectivity 8 symmetrical, and it realizedby using aGaussiarfunction.

Feedforward terms

Elements in.the.multisensory region recemedforwardexcitatoryconnectiongrom unisensory
neuronscoding, for proximalportionsof the external worldAgain, we used Gaussiarfunction,
equal for the'two'modalities.

The lateral connections

The lateral input originatefsom connections within the same layer. These connections include
both excitatory and inhitory lateral synapses, which are arranged with a classic MeXiean
disposition (a central excitatory zone surrounded by an inhibitory annulus). Therefore, each neur
excites (and is excited by) its proximal neurons, and intsb{and $ inhibited by) more distal
neurons. Henceactivities ofneurons belonging to the same region and stimulatetistgl stimuli
tendto suppress rgarocally (i.e., they interactia a competitive mechanisnfor simplicity, in the
network we_implemented the same lateral connectivity amongealtenm the unisensory regions,
but we usedrardifferent connectivity in the multisensory layer to improve solutitre afausal

inference problem:

Finally, we wish to stress that, the present modethe two sensory modalities differ only for
the respective receptive fieldRF) and time constantsspecifically the visual region presents
smaller RF but greater time constatitan the auditory ond,e.: ¢ < 6% 1’ > 1% to mimic the

different spatialand temporahcuity. All other paramters ae set at the same value in the two
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unisensonyjayers (see Tabl81for parameter values anke Supplementary Materidbr parameter

assignment criteria).

Simulations and Behavioral Indexes

As stated-above, we designéds modelto help identifysomeneural mechanismisivolved in
multisensory jperceptiosuch as the spatial detectiohthe external stimuland the discrimination
of the number oexternalsources. To this aim, wamulatel differentbehavioral experimentsf
sensory detection tasksd compared the results of the model with data preseheilterature
(Bertelson & Radeau, 198Wallaceet al., 2004 Woznyet al., 201Q Odegaardkt al., 2015 Rohe
& Noppeney, 2015b).

In the followingy we sum up briefly how data were obtained in these different behavioral

experimentsto‘allow the reader to appreciate the similarities and differences with the model.

(Odegaardet al., 2015 and (Woznyet al.,, 2010 adopted the same experimental-get
Participants provided thperceived locatiom of visual and auditorystimuli, presentedalone or
combinedn different (congruent or incongruenppsitions along the horizontal axighe evaluéon
of a common cause wasised orthe spatial disparity between the visual and the auditory percepts:
distancedesstharl® were considered as an indication of a common cause, disgeedsr thak°®
suggested independent sources.

(Rohe & Noppeney, 201%bnvesigated the effect of the stimulusgliability on the sensory
perception and causal inference problem. Visual stimuli were clofu?l@ dots with a vertical SD
of 5.4° and the horizontal SD set to four levels: 0.1°, 5.4°, 10.8°, or 1E&ticipants were
presented with synchronous, spatially congruent or discrepant visual and auditory, sigdals
performed two taskspatial localizatiorof the auditory signal and common source judgment.

(Wallace et al., 2009 analyzed spatial localization, causal inference problem, and temporal
window of integration.A sound was presented either alonecombinedwith a visual input at
different spatialand-temporatlisparities The participants indicated the perceived auditory location
and if the stimuli-were produced by a common source (report of unity).

(Bertelson«& Radeau, 19Blanalyzed perceptual bias and causaference problem.A
ventriloquist paradigm was used where both the visual and auditory stimuli weeateckalone or
combined in different spatial configurations. The participants evaluated tie p@Eationeither of

the visual or the auditory stimulus and if they tlael sameor differentorigin.
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In the following, we describe the different set of simulations performed ttheestodelResults
for every input configuration werevaluatedas the mean responseer 1000repetitionsof the
same task

In a first set of simulations, weomparedthe spatial accuracy dhe model inunisensory
(auditory alenesand visual alone conditiomsjsusmultisensoryconditions (see below).

Subsequently, we performed simulationgnultisensory conditionswvith auditory-visual stimuli
presentedo the"networkwith different spatial displacemenfso obtain these configurations, we
alwayskept the visual stimulus fixed in a specific positiortioed space anghifted theposition of
theauditory stimulusstarting from a configuration whetke two stimuliarepresented inthe same
position(i.e. stimuli coincident in space) tbe case of the auditory inpR0° far apart (i.e. stimuli
spatially segregated)

For eachstimulusconfiguration, the behavior of the netwdr&s been analyzed terms of

1) The “Report of Unity”, referring tohow oftenthe network identifies a commaause (C = 1
i.e. one peak above threshold in the multisensory),aceawo different causes (C 5 Re. two
peaks above threshold in the multisensory )afeathe two stimuli as described by Wallace and
colleagues\Wallaceet al., 20094. This index has been plottecrsusthe spatial disparity of the
multisensoryinputs, to identify the likelihood that the modeintegratesor segregates two
multisensory stimuli at different distances

i) The "Auditory'Perception Bias’, referring tothe bias in the perceived position of an auditory
stimuluswhen presented along withvisual stimulusn a different portiorof the spaceThis index
has been computed as the spatial disparity between the real position of the external auditory
stimulus, and the position evaluated by the model (i.e. the barycenter of the evokeyl iactneat
auditory area), divided by the distance between the real auditory and the wabbktiaulus. First,
it has been computad general conditions, i.e. without taking into accountrtheber of sources
identified by the networkThen, the computation has been evaluated separately in ttase® oa
common cause (C=1), amtifferent causes (C=2), in order to investigate the relationship between
the perceived-auditory localization and the number of inferred caBsesusahe visual position is
only barely affected by sounds, due to thghler visual acuitythe visual perception bias has not
been reportedResults are then compared with those reporte@Bartelson & Radeau, 1981
Wallaceet al., 2004 Rohe & Noppeney, 2015b)

iii) The “spatial distribution of the auditory position”, i.e., how theauditory position estimate
varies around its mean valuln particular, we compared the spatial distribution of the auditory
position in theunisensory versus thrultisensorycase with coincidingauditory and \sualstimuli.
Then, we analyzethe distribution of the perceived position of the auditory stimausach cross
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modal configuratiorio asseshow the distance between the stimuli affects the spatial evaluation of
the auditory inputWe compared these resultsth those reported bWallaceet al., 2009 andby
(Odegaardtt al., 2015).

Subsequentlyinsorder to unmask the role of the main mechanisms in the mnwelrformeda
sensitivity analysisTo this end, we repeated the same set of simulations described aboire abut
first setof simulationswe variedthe effectivenes®f the synaptic mechanisnia the modelcross
modal synapses, lateral synapses within the unisensory and multisensorgndréaedforward
synapses)The_aim of this set of simulations is to stress the influence of these mechanisms on the
causal inference process and to identify how a change in their parameters may affect the results.

Secondwesmadifiedthe standard deviatiord the auditory and the visual stimalnd the added
noisepresented to'the network, in order to understand tnawipulatingthe spatial reliabilityand
the uncertaintyof sensorystimuli could affect theperceptual abilitiesof the networkand the
solution of thecausal inference problerfor these simulationsve only present results about the
report of spatial unityand the auditory bias.

Finally, we_realized some additional set of glations to better characteritiee abilities of the
model.First, we compared the modélehaviorin case of modély specificand crossnodal stimuli
Second,weé “evaluated theability to solve the causal inference problem and ititegrative
capabilitiesof the.networkin the temporal domain

The interested reader can replicate the simulations described above by using the Matlab
fileslinked to this paper and uploaded in the EJN repository. Specifically, results presented in
Figures4, 11,12, 13 were obtained by using the CI_model.m file; Figures 2, 3,-5,-6,-7,8, 9, 10
wer e obtained from the Cl_model_macro.m file.

Results
Simulationswith no-spatial disparity

Figure 2 displays comparison between the spatial distribution of the auditory estimate in the
unisensory case versus theauditoryvisual case hen the auditory and visual stimuliare
coincidenj=Lhe reslts are compared with behavioral data. In both casess€nsory and
multisensory the auditoryestimateexhibits a negligible biaga mean value close to zerojhe
distribution of the estimate becomes much more precise imthigsensorycondition compared
with theunisensory conditioriThe patterns and the SDs are in good agreement with the behavioral

findings.
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A summary of the SD in the unisensory auditory, unisensory visual, andncoasd conditions
(without AV disparity) is presented in Table In unisensory conditions, the SD of the auditory
estimate is significantly greater than the SD of the visual estimate, reflecting poor spatial accuracy.
In crossmodal (i.e. multisensory) conditions, we can observe a significant improvement iB the S
of the auditery-localizatioerror (which falls from approximately 6240 2.5) and a further small
improvement{in the visual localization accuracy (from 1.8 0.94°). For what concerns
localization in“thesecondlayer, this is always a little worse than localization in the visual
unisensory layer and remains practically the same in unisensory visuau#rsgnsoryconditions.
Indeed, the role of theausal inferenckayer in the modetonsistsespecially in the evaluation of the
number ofestimated sourcesather than in evaluating the position of theserces The true
benefits in the gpatial localization occurs in the unisensory layers, where the position estimates
follows the rules of a Bayesian estimate (but see @ssinoet al., 201%) and not in the second
layer. This is a model shortcoming, since many studies demonstrate that the auqugetept is
more reliable than the unimodal percepts, according to the principles of Bayesian estimate.

Figure 3 displays the spatial distributioh the auditory perception, in casef AV stimuli,
computed separately for cases C=1 (a single perceived cause) and C=2 (two perceived sources). The
results are tn compared with the behaviofahdings of (Odegaardet al., 2015 and Vallaceet
al., 2004).

It is worth noting that thepatialdistributionof the auditory percept in the modelcgmparable
to the behavioral*datiom Wallace et al. (2004)wider when C=2, and much more restricted in
case of a common source inference (C¥he modekhows somelifferenceswith Odegaard et al.
(2015) for thecommon cause case&his could be ascribed tthe criteria utilized to evaluate the
number of perceived input sources in the latter work, where a perceived dissidhanl®
between they auditory and visual stimuli signaled a common cause evaluatide, stihuli
perceived at a.distanggeater than 5° signaled independent sources.

Simulation with"A=V gpatial disparity

To explain®more accurately how the model processes a multisensory configurationasnd de
with the causal inference problem, Figdrdisplays the results from twexemplary simulations. In
both casesthe network recees a visual input in position 0° and an auditory stimulusta@he
right of the visual inputHowever,due to the noisy nature of the sensory perception, the results are

very differentin the two cases
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In the first simulation(panel A) the activities in the two unisensory regions are largely
superimposed (i.e., they cover proximal space positions). Consequently, the nsaitiseegion
receives an excitation targeting the same neurons and, as shown in the upgeppesezits only
one peak of activity above threshold. Therefore, the model 1) inéensthe multisensory activity
that both stimuli-areppduced by the same external event (C=1); and 2) iff@ms the activities in
the unisensory areas that the auditory and visual inputs are coming from close portioas of t
external world."This also produces thesty positive bias (see figurésand 6 below) in thease of
an AV configuration with a relative distance of 1@0hereinthe model infers a common cause for
the two stimulL.

In the secand simulatiofiPanel B, even if the real distance between the stimuli is the same, the
model identifiestito,come fromtwo different sources (C=2 in the multisensory area). In fiathis
case the auditery 'and visual activitiesmergemainly in different portions of the unisensory areas
due to noise, and the evoked activity in the multisensory regesepts two distinct peaks above
threshold. Moreover, it is worth noting that the auditory percept (i.e. the barycenter of the activity in
the auditory region) is more distant from the visual percept than the real input diStaneein this
case, we can_say.that the crossdal effect of the visual stimulus produced a negative bias on the
perception of.the auditory position (Figure 6 when C=2).

An additional“result emerges from these simulatiols cases of two stimuli eliciting
superimposed agtivities in the unisensory regions (paneth&)network inérs a common cause
very quickly:afterjust 10 ms the multisensory region preserd single peak above threshold.
Conversely in cass of stimuli evaluatd as produced by separate sources (panel B), the time
interval necessarfor having twodistinct peaks above threshold in the multisensory area is longer
(about 20ms). This prediction could be tested in future behavioral experim@htsourse, the
values reported above (10 ms and 20 ms, respectively) crucially depend on the time comstant us
for the neural units in this model. Hence, tlaegonly representative of a trend and can be modified
(for instancgincreased) using a different time constanteal

Figure 5shoewssthe report of unity and thetal auditory perception biagersusthe auditory-
visual distancgin-case®f spatially separateultisensoryinputs.

The Reportzof Unity (Panel Aigure § shows that, for an audiovisual disparity smaller #84@n
the model identifies the two stimuli as produced by the same cause in more tH0%otlod
simulationsln the interval tested, this frequency decreases linearly with the distance: the greater the
distance between the auditory and visual stinthé more likely the model identifida/o separate

sources. Thesmodel resultarein line with human performances.
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The model auditory bias is quitenstant dbout 706 of the AV discrepancyin cass of audio
visual disparitysmallerthan 10°. e bias decreases linearly as discrepancyncreases. A similar
pattern has been shown Bertelson and Radea(Bertelson & Radeau, 1981Wallace and
colleagues\Wallaceet al., 2009 and Rohe and Noppen¢irohe & Noppeney, 201%bThe lastset
of authors,=hoeweverysed different experimental conditions for theditory localization tasks:
Wallace and/colleagues presented multisensory stimuli with different spatial configurations and
different temporal disparities. Rohe and Noppemeylifiedthe spatial configurations of the stimuli
and the visual reliability. In Figures, we compare the model’s results with the experimental
conditionsthat aremore similar to our configurations

Figure 6showsthe Auditory PerceptionBiasevaluated separately for the cases of common cause
inference(C=1; solid ling, and cases where the model identified separate sources for the stimuli
(C=2, dashedling"lt's worth noting that when the model infers a common cause for both stimuli,
the perceived posiin of the auditory stimulus igreatly affected Y the presence of the visual
input, resulting ina bias towarslthe visual positiorthat isgreater thary5% of their real distance
even for stimulipresentecat distances greater than 1&onverselywhen C = 2 the perceived
posiion of the auditorystimulus presents aegative biasat small AV distances.e., the model
perceives the, auditory position more distant than in the re&@itynparing theseesults with
experimental dateBertelson & Radeau, 198Wallaceet al., 2004 Rohe & Noppeney, 2015hit
is worth noting_thatin cass of common cause inference (C=1)e model presents) an auditory
bias almost constant witthe AV distance(a behavior in line with human data), abda smaller
bias than reported in Wallace et a(Wallaceet al., 2009 (highest value =80% in simulations
versus93%), butlargerthan Rohe and NoppenefRohe & Noppeney, 201%tand Bertelson and
Radeau(Bertelson /& Radeau, 1981Conversely,when the model identifies different sources
(C=2), the amount of the bias obtained from the simulations demparable with human
performancesreported by Wallace and colleaguies small spatial disparityand by Bertelson and
Radeau at distances greater thankft it shows an opposite behavior with respect to Rohe and
Noppeney. Thase«differences will be alygaed anddiscussedn the following (see the sensitivity
analysis)

Figure 7 displayshe distribution of the perceived auditory position as a functioh\bfpatial
disparity. The ‘auditory percept distribution is compared with the positions of the exéemitory
(vertical dashed lines) and visual (vertical solid lines) inputs.

It is worth noting that for stimuli at a close distance (AV distand@€°),the model generates an
auditory distribution mainly centerecat the position of the visual stimulus: the auditory spatial
perception is greatly affected by the more accurate vispat. Converselywhen theAV distance
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is in the range 1020°, the modelpresents a spatidistribution of theperceivedauditory position
characterized by two peakie firstis closeto the real position of the visual stimujughile the
seconds centered on the real position of the auditory input.

Figure 7 is importansince as shown inWozny et al., 2010, the distribution pattern of the
estimatedauditoery=positionprovidesa characterization of thdecisionmaking strategy for each
individual, i.e¢, allows discrimination between different Bayesian models of causal inference. In
particular, the“bimodal distribution of Fig. 7 has been observed by Wozny #Vany et al.,
2010)in about 82% of subjects and is in accordance with behavioral data obtained by Odegaard and
colleagues Qdegaardet al., 2015. In order to better understand the spatial distribution of the
auditory perception, we computed the SD of this distribution sepamtiig cases C =1 and C =
2, and plotted these value®rsusthe AV spatial disparity (Figure 8). The results were then
compared with"these by Wallace et @lallaceet al., 2009. The figure showshat the auditory
standard deviationjis always greater in sasfetwo perceived sourceshen compared with the
single source estimation. Moreover, when @,the SD is maximal when the two cross modal
stimuli are coincident (depicted in Figure 3) and decreasdls larger AV discrepancies
Conversely, the. SD is geitsmall when a single source is perceiledausein this casethe more
precise visual,stimulus drigehe perceptionlt increases onlyith large AV discrepanciesThese
patterrs agree'with*those by Wallace et ajWallaceet al., 2009 fairly well, although theSDs of

these authors aressomewhat greater.

Sensitivity analysis

Finally, weiperformed a sensitivity analysis on the main mechanisms indegbanethe model

to reveal how _they affect theeportof unity and, when applicable, the auditory localizattmas.

The analysis'is subdivided into three parts. First, we consider the symegainanisms operating in

the unisensopy=areas (Fig. 9 and Fig S1 in the Supplementary Material). Then, we teatpie

of the accuracy-and noisy component of the input stimuli (Fig. 10 and Fig. S2). Finally, weeanalyz
the synaptic "mechanisms working in the multisensory layer (see fig, S3 and S#% in t
Supplementary Material’

Results show that the most influential parameters are those in the unisensory layers, while
paranetersqn the multisensory net are less influential. Hence, the latter results are reporied only
the Supplemeary Material

Fig. 9a describes the effect of a variation in the strength of the-madal synapsen the
Report of Unity and on the auditory localization bidkhe results suggest that the direct
connectivity between the two unisensory regions ayivotal role in producing a single cause
inference. If this connectivity is too weak (0.7 instead of the basal value as shifjld)athe
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probability that the model infers a single cause (C = 1) is drastically redGaewersely,
increasing the efficacy dhese synapses causes a strimegeasein the single source inference,
with an almost 100% report of unity at small AV distanaed about &0% report of unit even at
20° AV disparity. Similarly, the auditorpias is dramatically reduced, if these synapses are
weakened

Fig. 9b analyzethe role of thestrength in thdateralcompetitivemechanisms in the unisensory
areas. The results“show that stronger competition in the unisensory areas reduces the Report of
Unity and the, auditory localizatidnias Conversely, weaker lateral synapses are associated with a
greater Report of Unity and with a greater localizatioas i.e., the subject exhibits a greater
tendency to ‘unify/the auditory and visual signals into a sipgleept(see also Fig. S1 for
additional resul{s

In general, the®mechanisms working on the unisensory areas are muchnfloerdial on the
causal inference than those entering the multisensory layer. Their essential role can be explained as
follows: 1) The crosanodal connections are the only mechanism in the network implementing a
reciprocal influence between the two stimuli localizations. Therefore, this mechanism mostly
controls the causalinference. Strong cnoeglal connections increase the probability that the two
localizations get close to each other, increasing the report of unity andraumigts.2) The lateral
competition within‘the unisensory areas modulates the attraction effect mediated by tneockalss
synapses. Stronger lateral competition (implemented by increasing the strentjid lateral
connections), reduces the activation bubble in each layer, decreasing the influeross enodal

synapses and so the report of unity and the auditory bias.

Finally, Fig. 10showsresults of a sensitivity analysis on the noisy component and the accuracy
of the sensory stimulit is interesting to note thdly modifying the level of the noise added to the
network,the model reprodusethedifferent behavioral dataom Wallace and colleagug8Vallace
et al., 2009 andRohe and Noppengyrohe & Noppeney, 201%begarding the auditory perceptual
bias in case ofiindependent sourddse former found a strong negative bias in this condition (C=2)
for stimuli presented at distances less B@@nConversely, the lattdound a positive bias in case
C=2, underthessame spatial configurations of the stimA# illustrated in Figures 10and 10b, ar
model is able to reprodud¥allacés datawith a low level of noise, while a high noisy conditien
necessary to obtain the positive bias showed by Rohe and Noppeney in case of multisengory s

at small distances

Unisensory vs. multisensory casual inference
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It is worth-noting that the present model can perform causal inference not only in multisensory
conditions, but alsan case ofunisensoryinputs. In order to clarify this important aspect, we
performed some simulations comijpar casual inference innisensorys. crosanodal conditions
(Fig. 110.

Fig. 11 showsthat two unisensory visual inputs at & 2fistance are perceived psoduced by
two independent causd3ue tothe lateral competition in the unisensory amdltisensory regions,
this inputs configurationproducesweak responses in the multisensory layer, just alibee
detection threshold. Conversely, two auditory inputs at the same distance are perceived as
originaing from a single cause, located in betweba original positions of the two stimuli. This is
a consequence dhe poor auditory spatial resolution. Finally, twaultisensorystimuli at 20
distance elicited /strong activities in the areas of the model, showingtrang multisensory
enhancement,"and the stimatie perceived asoming froma single cause, but located close to the
visual position.

To stressthe significant role played by multisensory integration in the model, we tested th
network with, unisensory and multisensory stimwiith different leve$ of intensity. Results,
reported in Figured, highlight the benefits that multisensory integration can exert in case of weak
but congruent, stimuli, whereas this benefit is quite irrelevant in case of stqmuntg. The figure
shows theldifferent effect ested, on the second layer, B):a weak auditory stimulus alone), a
strong auditory_input alone, am)l two weak congruent multisensory stimuli. In the first céise
network fails to infer any causensethe activity evoked in the causaference layer by a weak
auditory inputis subthreshold However, if the weak auditory stimulus is paired with a weak visual
input, activities in the unisensory layers are reinforced, and the secondpl@gents geak of
activity above threshold, inferrirgsingle cause.

Resulsin Figs. 11 and 2 emphasize the perceptual advantages of multisensoryandetarify

thatthe model can perform causal inference also in case aiigensory inputs.

Temporal aspects

Finally, theslast simulations investigate the temporal aspects of multisensory integwadion
causal inferenece,problento this end, we performesvo simulationswith multisensory stimuli,
placed 20 apart, varying the stimulus onset asynchra®@A, i.e., the temporal lag between the
stimuli). The stimuli lasted 100 ms in each condition. Results are reported in Fayuinetiie first
case, with a SOA = 75m@ig. 13a), the causal inference layer presents only a single peak of
activity in response to the multisensory stimlagstingabove the detection threshold for the entire
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duration of the stimulationilhis signals that the network infers a common cause for the pegdlcei
stimuli. Moreover it is interesting to note that, even after the removal of the visual input (105ms),
we can observastrong positivebias of the auditory percept, attracted by the visual stimulusa and
significant integration (i.e., multisensorysponse exhibits a clear enhancemanthe multisensory
layer. Converselyy=if the SOA is increasatl 100 ms, thenetwork identifies two distinct peaks
above the threshold in different instants (in the temporal domain). Moreowelp wot observe an
audiory biasin“the"unisensory area, which means that the auditory percept is ctedalfie the
previous visual input, and the multisensory layer does not preskahcement.

It is worth notinghere,that the temporal window for integrati@md the solution of the causal
inference problenis strongly related with thduration of the stimuli and théame constant of the

differential equations, and can be modified by chandiegdparametes.

Discussion

Comparisonwith previous models - Severalstudiesin recent years have focused on the “causal
inference problem?; i.e., the problem of deciding whether two stimuli are produced by the same
source or by“distinct sources. For what concennffisensoryintegration, the theoretical aspects
have been“assessed in several pivotal paffgmagetet al., 2003 Ma et al., 2006 Kording et al.,

2007 Shams &-Beierholm, 201Woznyet al., 201Q Ma & Rahamati, 201,3Pougetet al., 2013,
under the assumption that the brain realiaenear optimlaBayesian estimate. Behavioral data
confirm these predictionsshowing that the brainbehaves quite optimallyn a variety of
multisensory task€Shamset al., 2005 Kording et al., 2007 Woznyet al., 2008 Wozny & Shams,
2011 Samacet al., 2015).

However, despite thesmportantrecent contributions, the knowledge of the neural mechanisms
able to produce_a Bayesian estimate is pblbr. It has beerproposedthat the brain exploits a
“neural population<code”, i.e., that the estimate is extracted from the activaypopulation of
neurons, which code for the property under examination (in the present exempla, the position of the
stimulus) and impleng the probability functions required. However, the biological neural network
that can realize this kind of inference and the synaptic organization that is more appropriate are still
unresolved determinationk particular, we are aware ohly a few biologically inspired neural
networks thamodelthe audievisualcausal inference procefda & Rahamati, 201,3Yamashitaet
al., 2013).
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Ma and Rahmat{Ma & Rahamati, 20138analyzed a possible neural implementation for causal
inference, using probabilistic coding, by translating the Bayesian decisionned#ydinto a neural
network. However, they reached the conclusion that the resulthgesture is quite unrealistic.

Yamashita et al(Yamashitaet al., 2013 built a recurrent network for multisensory integration,
and found that-the'network can infer theisa structure and reproduce the localization bias of the
perceived positionTheir modelhassome elemestin common with the present anor instance,
the role of cross'modal synapses in our model, reflecting prior knowledge, is playezutrgne
synapses ingthe model by Yamashi#@so similar to our modelthe number of causes is
distinguishedn_Yamashita’s modebn the basis of the number of peaks in the multisensory layer,
reflecting a lateral competition. Howevenportantdifferences exist.nl the model by Yamashita et
al., all computations are performed within a single multisensory layer. As a consequence, in case of
acommon causiference (C = 1)the auditory and visual perceived positions are always identical.
In contrast, in our modek§ in thebrain (Rohe & Noppeney, 201pathe positions are computed
within the upstream usensoy layers.Therefore even in caseof a single sourcestimation the
auditory localization is not always superimposed on the visgalization althoughthey areoften
close this resultappears toagree with behavioral dataln particular, in Bertelson and Radeau
(Bertelson & 'Radeau, 198when a subject reports a single cause, the auditory shift is abott 3.66
at a 7 separation‘distance, and 8 i a 138 separation distanc&iven thatthe shift in the visual
localizationis typieally small(e.g., 0.55%nd 1.05, for these disparitiesespectively)the auditory
and visual perceived positions do raggpear tocoincide. A similar conclusion can be reached
looking at the results by Rohe and Noppe(Rghe & Noppeney, 201%bThe authors report that,
when a common cause is inferred, the auditory localization bias is about 60% or 80%afithe
visual distanceusing a visual stimulus with physiological reliability. Once aggiwen that the
visual localization biass geneally small (usually smaller than 20%)\e can conclude that the
auditory and visual perceptions do not coincide. These results can be simulaageduitith our
model, taking also’ parameter variability into account (see Figbu)cannot be simulately
Yamashités model;which postulates the superimposition of the auditory and visual localizations
when C = L.kurthermore, our hierarchical organization is closer to recent findiRghe &
Noppeney, 2019aand reflect the well-documentedexistence of crossiodal links between
unisensory area&hazanfar & Schroeder, 200dusacchia & Schroeder, 200Recanzone, 2009
Moreover, the model by Yamashita et al. includes a weak divisive normalizatiohtdin the
results(an operation not necessary in the present model).

Other recent models analyzed the way multisensory integration can be reéided.and Ernst
(Parise & Ernst, 20)6proposed a model based on single computational units which work as a
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multisensory correlation detector (MCD). Each unit filters the individual sensory signals and then
combineghem linearly to detect correlation and time lag, thus performing synchrony apdrégém
order judgmentOptimal cue integration in spatethen achieved via population of MCDs, each
receiving inputs from a limited spatial regiddompared with our model, Parise and Ernst realize
integration recompletely in a multisensory layer (since units are intrinsically multisensody)
includes a time lag detector explicitly. Conversely, in our model multisensorgratitsh is
performed at“two steps, while the time lag is not explicitly detedat simply affects network
output via the, superimposition of the inputs, see Y. Moreover, our model incorporates lateral
inhibitory mechanisms and némear saturationwhich areimportant in multisensory integration
(see(Ursinoetal., 2014)).

A different approach is used in Zharg al. (Zhanget al., 201§. These authors developed a
model in which.multisensory integration is performed by many interconnected mutisemsas,
while connectivity .among these areas reflect prior knowledge about similBhity.approach is
very promising;~however, multiple rtisensory areas are probably required to procesti-
feature objectrepresentation, not merely positipn this regard, the model by Zhang et al.
resembles our recent model of semantic menfidrginoet al., 2015, in which each area codes for
a different feature]. For what concerns position, the tw@sensoryareas in our model (which
become multisensorpecauseof reciprocal crossnodal synapsesiesemblethe interconnected
multisensory-areas by Zhang et al. Indaada recent theoretical studyrsino et al., 2017 we
demonstrated that the cras®dal synapses between these unisensory areas can be trained to reflect
an a priori knowledge on the emccurrence of auditory and visual stimuli, i.e. prior spatial

similarity.

Model simulations vs. real data - Despite its parsimonious structure, the present model
reproduce several characteristics of the AV causal infersncbasthe dependencef the number
of estimated sources on the AV distance, the ventrilogeett, the standard deviation of the
acoustic localizatiomnd its bimodal distributiariThese results emerge fraime interaction among
three basic neural'mechanisms. Eactheim is biologically plausible.

i) Two unisensory areas (auditory and visual) code for the position of the two stnulli
reciprocally exchange their information via spatially confined enosdal synapses. This is the
fundamental mechanism in the model, able to account for the ventriloquism effecprévious
paper,we further demonstrated that the same mechanism can account for other multisensory
illusions as well such as illusions in the temporal domain, where auditory beeps affect the

perception of the number and durationwdual flashes(Cuppini et al., 2014. Moreover, we
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recently demonstrated that thesessmodal synapses can be learned from experience in a
multisensory environment, reflecting the presencenoltisensorystimuli in temporal and spatial
proximity (Ursinoet al., 2017).

Recent studies have shown that cortical areas, usually associated with epkdific sensory
processingaresstimulatém other senseee Ursino et al., 2014, for a RevieB)zley, King et
al., in a series of work@Bizley et al., 2007 Bizley & King, 2008 Bizley & King, 2009 have
shown that neuronsin the ferret auditory cortex receive influence from visualistimadlthat
multisensorygintegration is common to all auditory cortical areas, with a pregatehegher ones
(Bizley et al., 2007 Bizley & King, 2009. In some neurons, pairing visual and auditory inputs can
increase thavailable spatial informatio(Bizley & King, 200§. Moreover, in agreement with the
present model; theisual inputs to auditory neurons exert subthreshold influences, abledidate
the responses™to 'soufizley & King, 2009. Although this kind of influence might also derive
from a feedback from multisensory areas back to unisensory regions, neuealimjactions
revealed direct input from visuabtex into the auditory cortefBizley et al., 2007, as assumed in
our model.

Other works.reveal influences from the auditory into the visual cortex. Data by lurilli et al.
(lurilli et al., 2012)suggest the existence of inhibition from auditory to primary visual neurons in
the mouse; via“corticoortical connections; the authors suggest that this auditory influence may
reduce potentially distracting sensory processing in the visual cdiex mechanism may be a
consequence of crossodal excitation between the two areas (as in our model) joined with lateral
inhibition within unsensory areas. Ibrahim et glbrahim et al., 201§ analyzed crossmodal
modulation from sounds to orientation selective visual neurons in the mouseyprisual cortex;
the effect was a decrease in the average response, but an increased response at the cell preferre
orientation. Although we did not account for orientation selectivity in our model, themseadat
consistent with the existence of an excitatory crasglal auditoryvisual link sharpened by lateral
inhibition.

i) A second=mechanism consigsif the convergence of auditory and visual activity towaad
downstream areahere integration is performed. We assume that the main role of this layer is to
discriminate between two sources or a single source for the observed activities. To this end, activity
in this area is"ecompared with a detection threshold, to decide whathargiven portion othe
space, there is enough activity to infer the presence of a reliable source of iigfioronatot.It is
worth noting that the secdrayer, although multisensory, can also be used to infer the presence of
one or two causes also within modal conditions (see Figl)l However, in these conditions the

causal inference problem may be solved directly in the unisensory layers.
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iii) The two previous mechanisms could not work properly without the presence afda th
mechanism, i.e., copetition within the same layerealized with a MexicarHat disposition of
synapseslin particular, we used a large inhibition in the unisensory areas, assuminbetteat
attention is focusd on a single stimulus, but a shorter inhibition in the multisensory area, to favor
the emergenceof:one or two simultaneacisvities i.e., one or two sources of information.

A further assumption in the model, not implemented via internal mechanigmsvith the
external inputs, is that the visual stimulus is spatially mucremuoecise than the auditory one, but
with a lowergemporal acuityApart fromthese differencg the network in Fig. 1 is completely
symmetrical We chose to use a perfectlynayetrical network tckeepthe number of ad hoc
assumptions'to aminimum. It is probablatthonssymmetrical synapses exist real biological
networks, but'here,we demonstrated that this is not essential, and differences in-\asdéab
processing der merelyfrom differences in spatial reliability of the stimuli.

Consideringhe main mechanisms delineated above, source estimation in the model is performed
via the following computational step$) the presence of lateral inhibition within thaisensory
areas leaslto the formation of two activation bubbles (one in each area) close to the truenpaisit
the stimuli. The presence of noise, however, may modify the position, especially fazonbatns
the auditory ‘ene, characterized by pooatsg resolution.2) When the two bubbles are close
enough(due to'the"small distance between the stimuli and/or the effect of ,ibsgpre attracted
reciprocallyby the-action of crossmodal synapses. Moreover, due to the poor spatial localization of
the auditory stimulus, the visual input exerts a stronger attraction on gtatgm of the auditory
network(where many neurons, althougitent,have arexcitation close to the activati threshold).
Conversely, since only a small portion of the visual area is close to the iaatitraeshold, the
effect of the auditory input on the visual area is generally modestwe did not report the visual
shift in the interest of spacéut itis typically quite negligible (less tharf 1see alsdMagossoet
al., 2012 Rohe & Noppeney, 201%p 3) Finally, when the two activities in thenisensory areas
are quite superimposetidcausef the initial AV distance, the effect of noise and the crosslal
attraction) a single=activation peak is formed in the downstream region. In this casetithies
of neurons that«receive congruenpums are strongly enhance@onversely, if the two activities
exhibit only_asmodesbverlap the effect of lateral inhibition in thdownstreamarea prevails,
leading to the*formation of two distinct peaks, surrounded by an inhibited zone. This may even
result in a repulsive effect, with the two peaksHar than the original distance.

We showed that these simple mechanismsld explainmost behavioral results fairly well.
First, in case of coindent multisensorystimuli (Figure 2and Table ), the auditory and visual
localization erros decrease compared withat of the unisensorgase even ifthe reliability of the
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integrated percept in the second layer (Table I, third column) is a little poorer than the rebébility
the visual unisensorgercept.This is an important model limitation. This prediction disagrees with
some studies (for instanédais and Burr, 2004 which showedhat the integrated percept is more
reliable than the unimodal estimates, in agreement with the Bayes rules.

Second, thesauditory localization hias., the ventriloquism effect, Figureié strongwhenC =
1, butis quite/negligible (or even negative at small AV distances) in cases of C = 2.

Third, the standard"deviation of the auditory localization is always greater whenl@r i the
case of a single source estimation, at all AV dista(i€ggire 8). The reason is that, when C =1 the
auditory stimulus_is attracted by the more precise visual stimulus, which constraints its position.
Conversely, wher€ = 2, the auditory position is just moderately affected by the visual one,
showing the averaBpontaneous auditotgcalization variability.

Fourth, resultsof the sensitivity analysis underline that-subject variability, reported in the
literature, may be ascribed to differences in the strength of synapseshenoise,which, in turn,
may be a consequence of prior multisensory experiésese alsqUrsino et al., 2017) or of the
variations inexperimental setip.

The sensitivity..analysislso suggests that the mechanisms working on the multisensory layer
(the feedforward synapses and the lateral competition) have a lesser impacRepdhteof Unity
than themeéchanisms acting on the unisensory lay&esordingly, an important conclusion of our
model is that the-ocalizatiobias computed in unisensory areas, is agedition for the causal
inference, 'and not viceversa. First, the unisensory layers confqutgtraction between the two
signalsbased ornheir accuracy, i.e., the standard deviation of the inputdatbeal competition and
the presence of crossodal synapses (reflecting previous knowledge). Only subsequently, based on
this shift, the/second layer infers the presence of one or two causes.

Although we are not certain that this is the best strategy (compared with a strategy that first tries
to solve the causal inference problem, and only later produces a bias) wehatihfihds some
supprt in the general idea of av&ssociation, exploiteth many neurahetwork models. In our
model, crossmoedalsynapsesnplementan auteassociation network which tries to recover lacking
information onsthe‘basis of past experience (in this case, past experiencspatitleproximityof
audio and visual stimuli when C = 1). The same mechanism (i.e-aasbgiation via recurrén
synapses) can‘be exploited in more general situationsewédhe brain needs to merge different
pieces ofinformation into a single percept. For instanicea recent model of semantic memory
(Ursino et al., Neural Networks, 2018)e linked features epresenting a singlebject via aute
associative synapsethus allowing object recognition even in presence of a partial .cue

conclusion, we think that autssociation via recurrent synapsssa powerful way tofavor
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solution ofthe causal inferengaroblem, restoring the information which is expected to occur in the

C =1 case. If this information cannot be restored, the C = 2 case can be assonoedraiable.

Model predictions. Various testable predictions derive from our simulations. Fested orthe
above statementhe response time for a spatial localization test (when an observer decides the
position of the auditory stimulus) should be faster than the response time of a causal inference test
i.e., when thé observer decides on onenwar tauses. In other terms, the first decision anticipates
the second, and not viceversa.

Similarly, as.illustrated in Figure #he model predicts that the causal inference response is faster
when C = 1'than/in casef inferring two independent sourseln fact, in the first casethe
superimposition ©fitwo congruent activities in the multisensory area allowskegaitainment of
the detection threshold. This may represent a testable prediction, validated irekterienents
Indeed, this result substantially agrees with the present knowledge of moltyseriegration Data
by Arnal et al.(Arnal et al., 2009 suggest the presence of temporal awdsoial facilitation in
temporal processing.

Furthermore,.the model predicts that the distribution of the auditory localization exhibits a
bimodal pattern; which reflects the C = 1 and C = 2 inferences. Moreover, the two modes are not
completely distinet; but exhibit a certain superimposition evelarge AV distances (Figure 7).

This distribution.agrees with behavioral data observe@Wxyznyet al., 2010 in more than 75% of

cases

Model limitattons and future lines - Of course, the present model is still preliminawe
followed a parsimany principle tessenits complexity andreduce the number ohechanisms
involved in orderto focus on general ideas rather than on a complatarate description of all
phenomena. ‘Several limitations can become the target of future improvements.

First, we_assumed that the sensory reliability of the stimuli is imdkgpe of the position.
Conversely, itvisswell known that the perception of space for auditory and visuahaesirongly
depends on thesazimuthal coordinate. This phenomenon hagxtieasivelyinvestigated recently
by Odegaard.et alOdegadd et al., 2015. We believethat inclusion of this dependenae the
model (so thatvperipheral neurons are less accurate than the central ones) can affect the results,
especially at large AV distances.

Second, noise in real biological networks can originate at different levelsnlyoin the input

stimuli.
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Third, these results demonstrated that the mechanimpiemented in the unisensory layers
exert a major roléo generatesensory perception arslve the causal inference problem; but we are
aware that in real biological networks feedback projections are also pfesmnhigher order
multisensory brain regions to primary cortical regions. Future experiments andtsinsulaill be
conducted to aalyze a possible role dieseprojections in the brain sensory processing.

Fourth wefused the same parameters for all simulations, considering noise as/tbausel of
trial-by-trial variability: Conversely, behavioral datae obtained on different subjects, which
significantly differ asto their responses. As stdt by Hairston et al(Hairston et al., 2003,
“performances. proved to be highly variable among subjédte. source of this intesubject
variability is ‘'not immediately clear'This intersubjectvariability may involve a differece in
ability to locate visual targetsersusauditory targetsyariability in strengthof the synapsesée the
sensitivity analysis in Figure &d Figurs in the Supplementary Materiglghich, in turn, may
reflect variability injprevious multisensory experience, according to Hebbian learning paradigms
(Ursinoet al., 20179, orvariability in detection threshold. A futurexperimenimay usethe network
separatelyn different subjects to findividual observerstlatawith individual parameter estimates.
This will providea.more accurate model validation andeeper understandind the neural origin
of individual variability.

Finally, for'the'sake of simplicity we mimicked localization in the auditory area in the same way
as visual localization. However, such topological organization is not present indit@rya cortex
(although the superior colliculus has spatial auditory map; however, it is not likelythe lmeus of
localization) Hence, more reliable models for the auditory spatial representation should be
developed in“future work. In particular,mse authors hypothesized that space is represented in the
auditory cortexin a distributed way(Stecker & Middlebrooks, 2003and that sound space
localization is based on ensemble of cortical neufdiddlebrookset al., 1998. Theseideasare
not in opposition with the present model, their implementationvill require a more sophisticate
description _of _thenauditory cortex, possibly using temporal coding with synchdonizeral
oscillators. In=particular, an ensemble of synchronized oscillators can send their activity toward
other areas insaswasimilar towhat is performed by a single unit in our model (8g®sinoet al.,

2009) for an_example).
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Figure Captions

Figure 1 — Structure of the network. The visual and auditory regions process external sensory stimuli. These
regions are reciprocally connected through direct excitatory synapses (W* and W"), and send long-range
feedforward projections (W™ and W™) targeting the causal inference area. All these inter-area synapses
are realized via Gaussian functions. The three regions in the network include also intra-area synapses,
linking elements belonging to the same area. These connections are implemented by using a Mexican-hat

function.

Figure 2 — Distribution,of the auditory localization error simulated with the model (dark bars) and measured
in the behavioral experiments (light bars, i.e., data 1, Odegaard et al., 2015) in unisensory conditions
(auditory inputTalone: left panel) and in multisensory conditions (auditory and visual stimuli at the same
position, right panel)aThe insert tables report the corresponding standard deviations. SDs from other two
additional studies (data 2 from Rohe and Noppeney, (Rohe & Noppeney, 2015b), data 3 from Hairston et
al., (Hairston et al., 2003)) are also reported for comparison. In all cases, the presence of a congruent
multisensory stimulus reduces the SD of the localization error, although a large variability can be observed

among behavioral data.
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Figure 3 — Distribution of the auditory localization error (i.e., the difference between the perceived auditory
position and the true position) computed in multisensory conditions with spatially-congruent auditory and
visual stimuli. The cases of single source estimation (C = 1) and distinct source estimation (C = 2) are plotted
separately. Model results (left panel) are compared with Odegaard et al. (Odegaard et al., 2015) behavioral
data (middle panel).and with data by Wallace et al (Wallace et al., 2004) (right panel).

Figure 4 — Examples of heural activity temporal patterns. The upper panel (panel A) shows the simulation of
a case where two multisensory stimuli, presenting an A-V distance as large as 10°, are considered as
originating from a single cause. The bottom panel (panel B) shows an example in which the two stimuli,
with the same spatial configuration, are considered as originating from separate causes (due to noise).
Within each panel,.the upper rows describe the activity in the multisensory layer, while the lower row the
activities in the unisensory layers (dash-dotted visual, dashed auditory). In each panel, the different
columns represent three snapshots of network activity at three different instant during the simulation. The
left column is network behavior at the beginning of the simulation (10 ms), when the multisensory area is
still scarcely active (below threshold); the middle column is an intermediate instant (20 ms), when the
threshold has already been reached in the multisensory area; the right column represents the final
configuration (45.ms).lt is worth noting that a multisensory stimulation with similar spatial configuration

can be processed. in different ways by the model, as a consequence of the noisy sensory perception.

Figure 5 — Perception of unity (panel A) and auditory perception bias (panel B) as a function of AV
discrepancy. Panel A reports the percentage of times the network infers a common cause during
crossmodal stimulation, plotted vs. the distance between the auditory and the visual components (red
line). For stimulilwith a distance smaller than 8°, the network identifies a common cause in more than 80%
of the simulations..For stimuli with greater distances, the percentage of identification of a common source
decreases linearly with the distance. The simulations’ results (red solid line) are compared with behavioral
data from RohesandsNoppeney, (Rohe & Noppeney, 2015b) (green line), Wallace et al., (Wallace et al.,
2004) (blue Jline).(obtained with a similar experimental paradigm, but with an auditory-visual temporal
disparity of 200ms)sand by Bertelson and Radeau (Bertelson & Radeau, 1981) (magenta line). Panel B shows
the Auditory Perception Bias, i.e., the difference between the perceived spatial position and the true
position of thefauditory input, expressed as a percentage of the audio-visual distance. The bias of the
auditory perceived position is represented by the mean and the SEM, computed over 1000 simulations for

each spatial input'configuration.

Figure 6 — Auditory perception bias in multisensory conditions, evaluated separately when the network
identifies a common cause (C=1, red solid line) or different causes (C=2, red dashed line). The results of
model simulations (red lines) are compared with behavioral data present in literature (blue lines - Wallace

et al., (Wallace et al., 2004); green lines - Rohe and Noppeney, (Rohe & Noppeney, 2015b); magenta lines -
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Bertelson and Radeau (Bertelson & Radeau, 1981)). The network predicts that in the first case (C=1), the
auditory perception is affected by a bias greater than 75% and is fairly constant across AV spatial
disparities; for C=2, the auditory bias is negative for a distance smaller than 10°, i.e. the perceived auditory

position is more distant from the visual input than in the reality.

Figure 7 — Distribution of the auditory localization in cross modal conditions, at different AV distances. The
visual stimulus{was always located at position 0 deg (continuous vertical line); the auditory position is
indicated in each panel (dashed vertical line). Panels in the first row are behavioral data from Odegaard et
al (Odegaard et al., 2015); panels in the bottom row are from model simulations. A bimodal distribution

becomes evidentsat large AV distances.

Figure 8 — Standard deviation of the auditory localization at different AV distances, computed by the model
separately in the cases of a single source estimation (C = 1) and distinct source estimations (C = 2). For

comparison datasby«(Wallace et al., 2004) are reported, too.

Figure 9 — Sensitivity Analysis on the mechanisms operating in the unisensory areas. The figure shows the
effect of changing some parameters in the unisensory areas, on the Report of Unity and the auditory
localization bias, at different A-V distances. Figure 9a has been obtained with different values of the
weights of the (cross-modal mechanism (i.e., a change in the weight of direct synapses among unisensory
areas W?' =_W"). Stronger cross-modal connections enhance the influence of the visual stimulus. This
increases 1) the likelihood of the perception of a common source (Report of Unity) for the visual and
auditory stimuli.and.2) the bias of the perceived position of the auditory stimulus. Conversely, weak
connectivity among the unisensory regions increases the ability of the network to identify separate stimuli
also at small distances: for WO = 0.7 the network identifies independent sources in more than 50% of the
cases for stimulisplaced at a distance of 10° or less. The same result is obtained only for distances greater
than 16° in the basals«€onfiguration (WO = 1.4). Figure 9b describes the effect of a change in the strength of
the lateral competition mechanism, in both the auditory and visual areas [the strength of lateral synapses
(L%ex0 5 L'exo/ %0 and" "o ) has been varied, by maintaining a constant ratio between excitation and
inhibition (i.e. LinO/Lex0 constant)]. In this case, the effect is opposite with respect to the previous case: the
stronger the competitive connections the lower the likelihood of the perception of a common cause for the
AV stimuli and the perception bias of the auditory input. A strong inhibition among elements within the
same unisensory area reduces the effect of the crossmodal input. This helps to keep segregated two stimuli
placed in different spatial positions, resulting in the perception of independent input sources. In all panels,

the basal condition is displayed with a continuous line.

Figure 10 - Sensitivity Analysis on the effect of noise, added to the sensory inputs, on the auditory
perception bias in case of common cause (C=1, red solid line) and two independent causes evaluation (C=2,

red dashed line), at different A-V distances. A) A highly noisy sensory stimulation is suitable to reproduce
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the results of Rohe and Noppeney (Rohe & Noppeney, 2015b), i.e., a positive bias in case of independent
sources (C=2). Conversely, B) a low added noise in the unisensory regions is able to explain the strong
negative bias identified by Wallace and colleagues (Wallace et al., 2004) in case of separate cause

evaluation.

Figure 11 — Unisensory vs Multisensory Integration and Causal Inference. The network is able to solve the
causal inference problem for unisensory and multisensory conditions. In the figure, we presented 3
different conditions: the network was stimulated with two inputs at a distance of 20°; in case A) we used
two visual inputs of the same intensity; in case B) we presented two auditory stimuli; in case C) we used a
visual and an auditory input. The vertical black-dotted lines identify the original positions of the stimuli
presented to the,network. Blue lines are referred to the evoked activities in the visual area, green lines
depict the activity in the auditory area, and red lines are used for the activity in the multisensory region.
The black-dashedlines represent the detection threshold in the multisensory region. In case of visual inputs
A), the network perceived the two stimuli, with no spatial perception bias (the barycenter of the evoked
activities in the visual area coincides with the original position of the stimuli), as produced by independent
causes (two peaks above the detection threshold in the multisensory region). In case of auditory
stimulation B), the network identifies a single auditory stimulus, whose position is in between the original
positions of the two stimuli (the evoked activity in the auditory region has a barycenter placed between the
two originalvinputs;mand the multisensory area shows a single peak above the threshold). In the
multisensory case C),’the network identifies a common cause for the two stimuli, and the perceived
positions of 'themtworinputs are very close to the original position of the visual stimulus (great auditory

perception bias).

Figure 12 — The role of stimulus intensity in the multisensory integration. The figure shows the different
effect, produced on the network, by: A) a weak auditory stimulus alone; B) a strong auditory stimulus
alone; C) two weak.congruent multisensory stimuli. In the first case, the network fails to infer any cause,
since the activity. in the multisensory area is sub-threshold, whereas in the second and third cases, the
second layer infers,a,common cause. These results demonstrate that multisensory integration generates a
strong benefit particularly in case of weak stimuli. This effect is present both at the level of the unisensory
areas, where therevoked activities are reciprocally reinforced thanks to the cross-modal connections, and in
the multisensory® region, where the evoked activity presents a strong multisensory enhancement

(compared with'case. A), which helps identifying a common cause for the two stimuli.

Figure 13 — Multisensory Integration Temporal Window. The upper panel (panel A) shows the results of
multisensory stimulation with an A-V distance as large as 20°, and a stimulus onset asynchrony (SOA) as low
as 75ms. The bottom panel (panel B) shows an example in which the two stimuli, with the same spatial

configuration, have a larger temporal offset (SOA = 100ms). In both conditions, the duration of the stimuli
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was set at 100ms. Within each panel, the upper rows describe the activity in the multisensory layer,
compared with the detection threshold (the horizontal black dashed line), while the lower row show the
activities in the unisensory layers (green visual, blue auditory). In each panel, the different columns
represent different snapshots of network activity at four different instants during the simulation. One
snapshot is at;the beginning (60 ms), when the network detected only the visual input. Two snapshots are
at intermediategdnstants (105 ms and 120 ms) when the visual input was removed and the network received
the auditory stimulus: ©ne snapshot is close to the end of the simulations (140 ms), when only the auditory

input could affect the network.
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Table | — Variance of Sensory Perception

Auditory Area Visual Area Multisensory Area
Auditory Input 6.3768 / 6.6330
Visual Input # / 1.0347 1.2506
Visual-Auditory, 2.5251 0.9416 1.3500
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Behavioral Data vs Model Simulations
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A) Noise = 60% (Rohe and Noppeney, 2015)
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A) Weak A Input
Causal Inference Area
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A) AV SOA =75ms
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