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Abstract: In the present paper, a new surrogate-assisted 

evolutionary algorithm for dynamic identification problems 
with unknown parameters is presented. It is based on the 
combination of the Response Surface approach (the 
surrogate model) with Differential Evolution algorithm for 
global search. Differential evolution (DE) is a evolutionary 
algorithm where N different vectors collecting the 
parameters of the system are chosen randomly or by adding 
weighted differences between vectors obtained from two 
populations. In the proposed algorithm (called DE-Q), the 
Response Surface is introduced in the mutation operation. 
The new parameter vector is defined as the one minimizing 
the second-order polynomial function (the Response 
Surface, RS), approximating the objective function. The 
performances in term of speed rate are improved by 
introducing the second-order approximation; nevertheless, 
robustness of DE algorithm for global minimum search of 
objective function is preserved, since multiple search points 
are used simultaneously. Numerical examples are 
presented, concerning: search of the global minimum of 
analytical benchmark functions; parameter identification of 
a damaged beam; parameter identification of mechanical 
properties (masses and member stiffnesses) of a truss-
girder steel bridge starting from frequencies and 
eigenvectors obtained from an experimental field test. 

 
 

1 INTRODUCTION 
 
Model updating methods are widely employed to develop 

accurate models representing the real structure in the 
framework of optimization design (Sgambi et al., 2012), 
damage identification (Moaveni et al., 2008; Teughels and 

De Roeck, 2004) (Vincenzi et al, 2013), structural control 
(Bitaraf et al., 2012; Jiang and Adeli, 2008), and structural 
health monitoring  (Doebling et al., 1996; Soyoz and Feng, 
2009). The basic procedure of model updating is to adjust 
some parameters of the structure so that the model 
predictions agree as closely as possible with the 
measurements. In dynamic problems, the validation and 
updating of numerical models is mainly based on 
comparing modal parameters obtained numerically (from 
the model) and experimentally (from tests). Several model 
updating methods have been proposed in the past to 
reconcile FE models with modal data obtained from 
experimental modal analysis. Comprehensive reviews of 
classical structural methods can be found in (Maia and 
Silva, 1997; Mottershead and Friswell, 1993). Usually, they 
define an objective (cost) function, by comparing the 
numerical and experimental results in term of vibrations 
parameters (natural frequencies and mode shapes). 

Due to the nonlinear relation between the vibration data 
and the physical parameters, an iterative optimization 
process must be defined. The success of the application of 
the updating method depends on the definition of the 
optimization problem and the mathematical capabilities of 
the optimization algorithm. Conventional gradient-based 
methods (as Newton and Quasi-Newton Algorithms) have 
an efficient convergence rate (at least in the case of few 
identification parameters), but they may reach local 
minima, depending on the starting vector adopted. 
Moreover, in gradient method, local curvatures of the 
objective function are used to define an approximate 
quadratic model function. Hence, gradient-based methods 
often fail (or low accuracy is achieved) due to ill 
conditioning of the optimisation problem when the 
objective function has low sensitivity to parameter variation 
close to the solution point (Friswell and Mottershead, 
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1995). For this reason, many authors focused the research 
on regularization techniques to reduce the ill-conditioning 
in model updating (D’Ambrogio and Fregolent, 1998; 
Natke, 1993; Tikhonov, 1995). Nevertheless, the 
conventional model updating procedures are usually 
computationally expensive for large-scale numerical 
models, especially for the calculations of the 
eigensensitivities.  

Response Surface (RS) methodology might constitute a 
good alternative for solving model updating problems. By 
using RS, the relationships between the objective function 
to be minimized and the model parameters are explored by 
selecting a set of numerical simulations with the aid of the 
design of experiment technique (Khuri and Cornell, 1996). 
The major benefit is the significant reduction of the number 
required of numerical evaluations of the objective function 
(and, consequently, the computational effort). Originally 
introduced by Box and Wilson (1951) for chemical 
processes, RS method has gone through several stages of 
development that were aimed at making it more applicable 
to wider situations, covering many useful applications in a 
variety of fields (Myers and Montgomery, 1995). Some 
researches have been conducted into the direct application 
of RS to model updating (Fang and Perera, 2011). Uniform 
designs were employed by (Ren et al., 2011) to construct 
RS models for updating a box-girder bridge using the static 
deflection at the midspan as the object function to be 
minimized. The main disadvantage of using RS 
approximations is that, adopting a second-order 
approximation of the objective function, a local minimum 
instead of the global minimum can be reached when the 
objective function is not strictly convex. The use of the so-
called general response surface method (GRSM) (Alotto et 
al., 1997) can partially solve this problem, but these 
approaches are applicable to low dimensional problems 
(few parameters to be identified) only.  

Non-gradient methods, as evolutionary and genetic 
algorithms and artificial intelligence techniques (neural 
networks) (Titurus et al., 2003) have been widely utilized 
recently in optimization problems. Genetic and 
evolutionary algorithms are in general very robust and the 
starting point selection has a low influence on optimization 
results (Savoia and Vincenzi, 2008). Unfortunately, these 
methods have the disadvantage of requiring a large number 
of objective function computations, since they are based on 
probabilistic search without any information on the shape of 
objective function. The computational effort can then be 
very high if, for instance, for each computation a new FE 
model must be built and a dynamic solution obtained. 

Several studies have been developed in the last decades 
to reduce the computational effort in Genetic and 
Evolutionary strategies (Khoo and Chen, 2001; Lin and 
Wang, 2012). Surrogate - assisted evolutionary strategies 
(Jin, 2011; Mueller et al., 2013) use efficient computational 
models, as response surface or high polynomial functions 

(Bach et al., 2012), to approximate the objective functions. 
They received considerably increasing interest in the recent 
years in reducing the computational effort in optimization 
problem, mainly when the computational simulation of the 
objective function evaluation is highly time consuming .  

Several studies adopt a surrogate model approach 
combined with the objective function minimization (Jin, 
2011); the strategy for properly managing the use of the 
surrogates (i.e. when and how to use the surrogate model) is 
a serious challenge and an efficient strategy still remains an 
interesting research topic.  

In the present paper, the Response Surface (RS) 
methodology is combined with Differential Evolution (DE) 
algorithm to perform dynamic parameter identification. DE 
is a parallel direct search method where NP different 
vectors, collecting the parameters of the system, are used in 
the minimization process (Storn and Price, 1997). In the 
original version of DE algorithm, the vector population is 
defined randomly or by adding weighted differences 
between vectors obtained from two populations. 

The DE algorithm has been used in (Savoia and 
Vincenzi, 2008) to perform dynamic structural 
identification and in (Savoia et al., 2009) for inverse 
analysis problems concerning derivation of parameters of 
material constitutive laws from experimental data. In 
(Hrstka et al., 2003), a comparison of DE with other types 
of evolutionary algorithms has been presented.  

Surrogates approximations can be applied in almost all 
operations of evolution algorithms, such as the definition of 
the initial population, the local search or in objective 
function evaluations (Jin, 2011). In the proposed DE-Q 
method, the surrogate model is used in the mutation 
operation; the new parameter vector is defined as the 
minimizer of a second-order polynomial RS, approximating 
the objective function. The use of surrogates models in the 
mutation operation is almost uninvestigated; some 
preliminary result on the application of surrogates in 
mutation can be found in (Abboud and Schoenauer, 2001) 
where the Support Vector Machines with Gaussian kernels 
is used to approximate the objective function.  

In several proposals, the surrogate function is used to 
approximate the objective function globally, adopting high 
order polynomials (Bach et al., 2012). Globally accurate 
approximations require several samples and generally have 
large computational complexity. Furthermore, high 
computational effort is needed to find the surrogate global 
minimum. Nevertheless, in dynamic parameter 
identification and model updating procedures, the interest 
about the shape of the objective function is only in the 
neighbourhood of the global minimum. Trying to obtain a 
good model over the whole search space can then be 
unnecessary (Lin and Wang, 2012). The use of a second 
order polynomial approximation function in the mutation 
operation can locally fit the objective function; close to the 
solution, the quadratic approximation gives high accuracy 
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and very high convergence speed. Moreover, when the 
objective function presents only one (global) minimum, the 
second-order approximation provides for the solution with a 
very low number of iterations. Nevertheless, introducing 
the RS second-order approximation in mutation of DE, 
robustness of DE algorithm for global minimum search is 
preserved, since multiple search points are used 
simultaneously. Adopting the proposed DE-Q algorithm, 
the performances in term of speed rate are improved and 
higher precision of results is obtained.  

The paper is structured as follows. Section 2 describes 
the identification problem and the objective function to be 
minimized. Section 3 recalls some basic information 
concerning the Response Surface methodology. Section 4 
presents the proposed optimization algorithm, and results 
concerning minimization of some analytical benchmark 
functions are illustrated in Section 5. Finally, in Sections 6 
and 7 the results of model updating of two structures are 
described.  

The first numerical example concerns a damaged beam, 
with two unknown parameters, the location and the stiffness 
(related with the crack depth) of the spring modelling the 
crack, to be identified. 100 minimization tests, starting from 
exact input data (in term of frequencies and eigenvectors), 
are performed and identification results are statistically 
presented, comparing the performances of classical DE and 
proposed DE-Q algorithms. Then, identification of 
mechanical parameters is performed starting from a set of 
pseudo-experimental data, simulating the statistical 
scattering of results due to measurement errors.  

In the second example, parametric identification of 
masses and stiffnesses of an existing steel truss-girder 
bridge is presented. Experimental frequencies and mode 
shapes obtained by Operational Modal Analysis technique 
are used to identify mechanical properties of the bridge. 
The proposed method allows to identify the unknown 
parameters of a FE model matching the first six frequencies 
obtained from field tests. 

 
2 PARAMETER IDENTIFICATION VIA 

OBJECTIVE FUNCTION MINIMIZATION  
 
In general, FE model updating methods may be divided 

into two groups. The first group directly updates the 
individual elements of stiffness and mass matrices (Baruch 
and Bar-Itzhack, 1978; Berman and Nagy, 1983; Franco et 
al., 2006). Resulting updated matrices can reproduce very 
closely the structural modal properties, but often the matrix 
terms are not related with physically meaningful structural 
parameters. Due to these reasons, these methods are rarely 
used in model updating of real structures.  

Methods included into the second group pre-select a set 
of unknown physical parameters and pose the model 
updating as an optimization problem. The updated 
parameters can be, for instance, structural or non-structural 

masses, elastic moduli and stiffnesses of external 
constraints. These models define an objective function to be 
minimized, based on the comparison between experimental 
results and predictions of the numerical model. Due to the 
nonlinear relationship between the structural response (for 
example, natural frequencies and mode shapes) and the 
physical parameters to be determined, an iterative 
optimization process is performed.  

In dynamical problems, the objective function is often 
formulated as a weighted least-squares problem in which 
modal metrics, measuring the residuals between measured 
and model predicted modal properties, are build up into a 
scalar function. The possible objective functions can be 
grouped into three main categories, the frequency and mode 
shape residual (Teughels et al., 2002) and the modal 
flexibility residual (Jaishi and Ren, 2007). The modal 
flexibility residual was formulated in FE model updating for 
the purpose of damage detection. Moreover, other authors 
use advanced functions to improve the correlation in modal 
parameters. For instance, (Gentile and Cabrera, 2001) 
adopts the normalized modal difference (NMD) to define 
the mode shape correlation, whereas (Doebling et al., 1997) 
introduces a modal strain energy index as a residual for FE 
model updating.  

In this paper, the aim is to find the optimal values of a set 
of physical parameters for dynamic identification purpose, 
and the numerical tests are performed by adopting, as input 
data, frequencies and/or mode shape vectors. First, the 
reference (or experimental) and the numerical modes are 
coupled by using the MAC (Modal Assurance Criterion) 
(Ewins, 2000). Then, the objective (cost) function H to be 
minimized during the identification procedure is defined as 
the relative error between modal frequencies and mode 
shapes obtained adopting a given set of identification 
parameters  ii φ,ω  in the numerical model and the 

reference solution  ii φ,ω  obtained experimentally, i.e.: 
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where x denotes the D-dimensional vector of unknown 
mechanical parameters and NMD is the so called 
“Normalized Modal Difference” defined as: 
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i MAC

MAC
NMD

φφ

φφ
  (2) 

In Eq. (1), N is the number of mode shapes considered and 
w1, w2 are weight constants.  

Other authors formulated the updating procedure in a 
multi-objective context (Paya et al., 2008) or defining a 
multicriteria optimization process (Rasma and Adeli, 2000).  

Since the NMD is very sensitive to mode shapes 
changing, in all the examples presented in the paper w1 is 
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always set equal to 1, while w2 is assumed equal to 0.01.  
 

3 THE USE OF RESPONSE SURFACE METHOD 
IN IDENTIFICATION PROBLEMS  

 
The basic concept of the Response Surface (RS) method 

is to approximate the original complex or even implicit 
objective function H using simpler and explicit 
interpolation functions. The response surface method was 
originally proposed by (Box and Winson, 1951) as a 
statistical tool, to find the operating conditions of a 
chemical process at which some response was optimized. 
Subsequently, the use of RS methods has been extended to 
other fields, especially to engineering problems involving 
the execution of complex computer analysis codes. In this 
case, in fact, RS method can be used to alleviate the 
computational effort. Moreover, Khuri and Cornell (1996) 
provided modern perspectives of RS method applied to 
structural reliability analyses.  

The basic idea of the RS method is that an objective 
function H can be approximated by an analytical estimation 

function Ĥ : 

Ĥ  = g(x) (3) 

where x denotes the D-dimensional vector collecting the 
unknown parameters to be identified and g(x) is the 
response function. Many methods are available to define 
g(x). In classical RS methodology, the RS is obtained by 
combining first or second order polynomials fitting the 
objective function calculated in a set of sampling points. 
Second-order approximations are commonly used in 
structural problems due to the computational efficiency 
with acceptable accuracy. Higher order polynomials are 
rarely used because the number of coefficients to be 
determined strongly increases with the order. A proposal 
for multi dimensional functions with higher order 
polynomials can be found in Bach et al. (2012). 
Furthermore, some authors used quadratic polynomials 
without the cross terms, originating incomplete polynomials 
(Bucher and Bourgund, 1990).  

Adopting a second-order approximation function, Eq. (4) 
can be written as follows: 

02

1ˆ  xLQxx TTH  (4) 

where Q is a DD coefficient matrix collecting the 
quadratic terms, L is a D-dimension vector and 0 a 
constant. 

Following the procedure proposed in (Khuri and Cornell, 
1996), a limited number of selected numerical simulations 
(called experiments) is used in order to obtain an analytical 
relation between the values of identification parameters and 

the approximate objective function Ĥ . Without loss of 
generality and for the sake of simplicity, in the following 

only 2 unknown parameters x={x1, x2} are considered. 
Therefore, Eq. (5) can be written as follows: 

215
2

24
2

1322110
ˆ xxxxxxH   (5) 

where coefficients i are unknown. If NS observations (i.e. 

NS evaluation of Ĥ  starting from NS different vectors x) 
are available, Eq. (4) gives: 

Ĥ  = Z (6) 

in matrix notation, where vector  510 ,..., Tβ  collects 

the unknown coefficients of the RS, Z is the matrix of 
components Zi(xi) which contains the family of 
polynomials with constant, linear, quadratic and cross terms 
(Khuri and Cornell, 1996), and: 
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
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H
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

22
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Typically, the number NS of observations is greater than the 
number of parameters collected in vector . Then, the latter 
is determined by applying the least square estimate method, 
so obtaining: 

 = (ZT Z)-1 ZT Ĥ . (8) 

Eq. (10) is obtained by setting equal weight for all 
observation. However, according to the weighted regression 
method (Kaymax and McMahon, 2005; Myers and 
Montgomery, 1995), a RS with greater accuracy can be 
generated by increasing the weight of the points close to the 
solution point, so obtaining:  

 = (ZT W Z)-1 ZT W Ĥ . (9) 

where W is an NSNS diagonal matrix of weight 
coefficients.  

When the parameters β  of the RS are determined, 

matrices Q, L in Eq. (4) are assembled and the optimal 

vector *x  minimizing Ĥ is easily computed:  

LQx 1*   (10) 

Many algorithms have been proposed to select 
appropriate sets of sampling points xk, in order to obtain a 
response function better representing the objective function 
to be minimized. A detailed description of implementation 
and sampling strategies for RS method is given in (Khuri 
and Cornell, 1996).  

A possible drawback of the use of a quadratic RS is that 
it predicts the presence of a single minimum also when the 
actual objective function presents more local minima. For 
this reason, in the proposed algorithm, described in the 
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following section, Response Surface methodology is used 
as surrogate model for Differential Evolution algorithm, in 
the mutation operation. 

 
4 THE PROPOSED DE-Q METHOD  

 
4.1 DE-Q Algorithm  

The RS methodology is combined with a Differential 
Evolution algorithm to improve the performances in term of 
computational speed, but avoiding the convergence to local 
minima of the objective function.  

Differential Evolution (DE) is a heuristic direct search 
approach where NP vectors (called population) are used 
simultaneously (Storn and Price, 1997).  

The basic algorithm for DE is as follows. Each vector xi,G 
contains a number D of optimization parameters, where 
subscript G indicates the G-th generation of parameter 
vectors. The number NP of vectors of the population is kept 
constant during the minimization process. 

In order to minimize the objective function, a direct 

search method generates variations of parameter vectors. 
After the random selection of the initial population, for each 
vector DE generates a new parameter vector by adding to it 
the weighted difference vector between two other vectors of 
the population, so generating a third vector (the mutant 
vector). This operation is called Mutation. Then, in the 
Crossover operation, a new trial vector is generated by 
selecting some components of the mutant vector and some 
of the original vector. Once a variation is generated, a 
decision must be made whether or not to accept the new 
parameters. Only if the trial vector reduces the value of the 
objective function, the new generated vector replaces the 
old one (Selection operation). An exhaustive description of 
the basic DE algorithm and the rules of parameters 
involving in the procedure can be found in (Storn and Price, 
1997). Applications to model updating and inverse analysis 
are described in (Savoia and Vincenzi, 2008; Savoia et al., 
2009) (Vincenzi et al., 2013) 

Starting from the architecture of the basic DE algorithm, 
a modified DE-Q algorithm is proposed here. The Mutation 
operation is changed: when the new vector must be 
generated, a subset of vectors of the population is used to 
generate a quadratic RS as a local approximation of the 
objective function. If the RS is a convex surface, the new 
vector is selected as the minimum.  

The algorithmic scheme to be followed for the generation 
of the new (G+1) population of search vectors is shown in 
Figure 1 and each phase is detailed in the following.  

 
A . Mutation 

For each vector of the G-th population: 

NPiGi ,...,2,1,, x
 (11) 

a trial vector vi,G must be generated. To do that, a subset of 
NS vectors (with NS<NP) is selected, containing the vector 
xi,G and other NS-1 vectors randomly selected among the 
remaining vectors of the G-th population. The NS search 

vectors are used to calibrate an approximate RS, Ĥ , fitting 
the cost function H, see Eq. (4). It is obtained by solving the 
linear system in Eq. (9) to obtain coefficients . For the 
weight coefficients, the following expression is used: 








 


best

bestGj
j H

Hg
w

)(
exp

,x
 (12) 

where xj,G is the j-th vector of the subset of NS vectors and:  

))(min( ,Gjbest gH x  (13) 

The shape of the RS function is then checked, and two 
possibilities arise. If the approximation function is convex 
(Figure 2a,b), the new parameter vector is defined as the 
minimizer of the second-order polynomial approximation, 
i.e. (see Eq. (12)): 

 
 

Figure 1 Flowchart of the proposed DE-Q algorithm.  
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NO 
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LQxv 1
, * Gi  (14) 

Otherwise (Figure 2c), classical Mutation operation 
based on linear combination of vectors of the same 
population is performed to obtain the trial vector vi,G , i.e.: 

)( ,,,, 321 GrGrGrGi F xxxv   (15) 

where  NPrrr ,...,2,1,, 321   are mutually different integer 

numbers. Moreover, F is a positive constant (scale 
parameter) controlling the amplitude of the mutation. The 
scale parameter F is taken smaller than 2. In all example 
presented in the following, F=0.6 is set.  

NS must be large enough to assure that the least squares 
problem is determined but smaller than NP, in order to 
preserve the diversity of the RSs and the new members of 
the next population. 

 
B . Crossover  

In order to increase the diversity of the vectors, the 
crossover operation defined in the original DE algorithm is 
maintained. Accordingly, the trial vector ui,G is obtained by 
randomly exchanging the values of optimization parameters 
between the original vectors of the population xi,G and those 
of mutant population vi,G, i.e.: 

),...,,( ,,2,1, GDiGiGiGi uuuu  (16) 

where: 












CRjrandifx

CRjrandifv
u

Gji

Gji
Gji )(

)(

,

,
,  (17) 

In Eq. (17), Dj ,...,2,1 , where D is the number of 

optimization parameters, and uji is the j-th component of 
vector ui. Moreover, rand(j) is the j-th value of a vector of 
uniformly distributed random numbers in [0, 1], and CR is 
the crossover constant, with 0 < CR < 1. Constant CR 
indicates the percentage of mutations considered in the trial 
vector. In all applications presented in the following, CR is 
set equal to 0.5. 
 
C. Bound constraints 

Usually, in engineering applications, the optimization 
parameters are constrained to belong in given intervals, i.e.: 

 maxmin
, , jjGji xxx   (18) 

where Dj ,...,2,1 . Introducing the bound constraints for 

the optimization parameters is useful in order to restrain the 
analysis to ranges of unknown parameters which are 
meaningful from the physical point of view. To this 
purpose, a projection algorithm is introduced. After the 
mutant operation, if a vector out of range is obtained, its 
projection on the prescribed interval of parameters is 
calculated and considered as the new vector (see (Savoia 

and Vincenzi, 2008) for details). 
 
D. Selection 

In order to decide if a vector ui may be element of the 
new population of generation G+1, each vector ui,G is 
compared with the previous vector xi,G. If vector ui,G gives a 
smaller value of objective function H than xi,G,  ui,G is 
selected as the new vector of population G+1; otherwise, 
the old vector xi,G is retained: 








 )()(if

)()(if

,,,

,,,
1,

GiGiGi

GiGiGi
Gi HH

HH

xux

xuu
x

 

(19) 

with NPi ,...,2,1 . 
 
E. Convergence rule 

In the convergence rule, the values of the objective 
function obtained from the population G+1 are compared. 
Vectors xi,G+1 are ordered depending on values of objective 
function as:  

1,1,21,1
~...~~

 GNPGG xxx   (20) 

such that:  

     1,1,21,1
~...~~

  GNPGG HHH xxx  (21) 

Convergence rule is then based on the difference of 
values H of the objective function of the first NC vectors 
and the distances between the same vectors, NC being the 
number of controlled vectors. The first convergence test can 
be expressed as: 

)~(

)~()~(

1,

1,11,



 


Gi

GiGiH
i

H

HH

x

xx
< VTR1 (22) 

where NCi ,...,1  and VTR1 is the prescribed precision. 
Control of values of objective function H only can be not 

sufficient when the objective function has low sensitivity 
close to the minimum solution. For this reason, 
convergence requires also that the relative distance between 
the individual components of the first NC vectors be small, 
i.e.: 

1,

1,11,

~

~~



 
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Gji

GjiGjix
ij

x

xx
< VTR2 (23) 

Convergence requirement also on each component of the 
vector is very important when more local minima with 
similar values of the objective function are present (see 
Section 5). 

 
4.2 Discussion  

It must be recalled that, in civil engineering updating 
problems, the shape of objective function is usually 
unknown and may have more than one minimum, 
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especially when model updating requires the modification 
also of the geometry of the model, as in the case of damage 
detection problems. Then, the use of local search technique 
(e.g., classic gradient-based algorithms) is often 
inappropriate. On the other hand, in real problems, usually 
the objective function has only few minima, especially if 
the identification problem is properly defined, together with 
the variation intervals of the pre-selected physical 
parameters to be identified.  

Another important issue concerns the number of 
unknown parameters to be identified. With more than 3-4 
unknowns, gradient-based algorithms have a very low 
sensitivity to parameter variations, and convergence often 
fails. On the other hand, techniques like genetic and 
evolution algorithms are based on a calculation involving 
several vectors simultaneously. Hence, if some vectors 
reach local minima, they can be excluded because they are 
associated with higher values of the cost function. 
Nevertheless, basic genetic and evolution algorithms 
require a large number of objective function computations, 
since they are based on probabilistic search without any 
information on the shape of objective function. Moreover, 
after having identified the global minimum, evolutionary 
algorithms require several computations to obtain the 
prescribed precision, because no information about the 
shape of the cost function is introduced. 

In this context, the proposed DE-Q algorithm combines 
the advantages and versatility of direct search algorithms 
and the shape approximation technique like RS. If the 
objective function presents only one (global) minimum, 
second-order approximation provides for the solution in a 
very low number of iterations. On the other hand, even if 
local minima are present, global minimum is expected to be 
reached, since multiple search points are used 
simultaneously. Moreover, if the quadratic approximation 
fails (i.e., it is not a convex function), classical Mutation 
operation is used (Figure 2c) whereas, if the minimum of 
second-order approximation gives a higher values of the 
objective function (Figure 2d), the new vector is rejected in 
the Selection operation (i.e., the old vector xi,G is retained). 
Close to the solution (Figure 2e), the second-order function 
is expected to approximate quite well the objective 
function, so that the convergence can be reached in a very 
limited number of iterations. 

For all these reasons, the performances in term of 
convergence speed rate are expected to be significantly 
improved by introducing the second-order approximation, 
but maintaining the capability of the original DE algorithm 
to reach the global minimum of the objective function. 

Numerical performances of DE-Q algorithm will be 
shown and discussed in the following, with reference to 
some analytical benchmark functions first, and then to two 
dynamical identification problems.  

 
5 ANALYTICAL BENCHMARK FUNCTION 

MINIMIZATION PROBLEMS  
 
In order to assess the numerical performances of DE-Q 

algorithm, the problem of finding the global minima of two 
benchmark functions is studied first. These functions are 
often used to test the performance of optimization 
algorithms and their mathematical formulas and properties 
are described in the following.  
 
5.1 Benchmark function no. 1: comparison between DE 
and DE-Q. 

The benchmark function No. 1 is a two dimension non-
convex function defined by the equation: 

   



2,1

24 20305.001.0233.5
i

iiii xxxxH  (24) 

with -6.0  xi   +6.0 (i =1, 2). The 3D plot of the objective 
function is shown in Figure 3. 

The function has three local minima and one global 
minimum, the latter placed at x* = (-4.454, -4.454) (Alotto 
et al., 1997). The convergence to the global minimum is a 
difficult task also for global search methods, due to the 
similar values of the objective function at the four local 
minima.  

The performances of the proposed DE-Q algorithm and 
the original DE algorithm are compared. For each 

(a) (b)

(c) (d)

(e)  
Figure 2 Approximation of cost function by quadratic 

response surface, with NS=3.  
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benchmark function, 100 optimization tests are performed, 
starting from different sets of 15 initial search vectors 
selected randomly in the intervals of definition of unknown 
variables. A number of sampling NS = 8 is chosen and 
constants F and CR are set equal to 0.6 and 0.5, 
respectively.  

The statistical analyses of results are reported  in Table 1. 
Being the convergence to the solution and the number of 
iterations required strictly correlated, the same convergence 
criteria are adopted for the two algorithms. The values 
adopted for the convergence constants are VTR1 = 10-3 and 
VTR2 = 10-2 (see Eqs. 24-25). 

In Table 1, for the unknown parameters obtained at the 
end of the process, the mean values and the coefficients of 
variation (C.V.) of all vectors obtained at convergence from 
100 tests performed are reported. For both algorithms, the 
mean values are very close to the reference values with 
small coefficients of variation. DE-Q algorithm exhibits 
better performances than original DE in term of speed rate 
and precision of results. The average number of iterations 
required for convergence is 40% smaller than adopting the 
original DE algorithm but, above all, the C.V. is one order 
of magnitude smaller: in fact, once the global minimum is 
detected, all the vectors rapidly converge close to the exact 
solution.  

The better convergence properties can be clearly verified 
by comparing the values of the objective function during 
the optimization process and the position of search points at 
each iteration. A typical example is shown in Figure 4, 5, 6 
For each iteration (from 1 to 20), the errors of the objective 
function of all search points are reported in Figure 4.  
During the first few iterations, both DE and DE-Q 
algorithms are involved to find the global minimum, and 
the objective function values are comparable. Then, after 4-
5 iterations, the RS applied to global search strongly 
improves the speed performances of DE-Q, and the global 
minimum is reached with a lower number of iterations and 
a much higher precision.  

The contour plot of the objective function with indication 
of the distribution of search vectors at iterations n. 1,5,10, 
15 are shown in Figure 5-6. Note that, at the beginning of 
the process, all points are randomly spread on the research 
space (Figure 5a and 6a).  

After five iterations, the search points are grouped close 
to the global minimum and, sometimes, to some local 
minima. Then, the remaining iterations are needed to select 
the global minimum and to attain the prescribed 
convergence precisions. Due to the second-order 
approximation of the objective function, in this phase DE-Q 
gives much better results, bringing together the search 
vectors close to the global minimum much faster than DE. 

Finally, a sensitivity analysis is performed to investigate 
the role of the parameter NS with respect to the total 
number of search vector NP in DE-Q.  

15 and 30 search vectors are considered. To calibrate a 

complete quadratic approximation, a minimum of 6 
parameters is needed; otherwise the least squares problem is 
underdetermined. However, the relation NS < NP must be 
satisfied to preserve the diversity of the calibrated surfaces. 
Thus, the number of sampling to construct the quadratic 
approximation is selected from 6 to 24, i.e., the 80% of NP.  

Results are shown in Figure 7. Adopting 15 search 
points, convergence is reached in 100-130 evaluation of the 
objective function; increasing the number of search points 
NP, the number of evaluations increases. Roughly, the 
number of evaluations increases approximately in 
proportion to the number of search vectors. However, no 
considerable differences arise by varying NS. Even if this is 

 
(b) 

Figure 3 Benchmark no. 1: 3D plot. 
 

Table 1 
Statistical results – Benchmark No. 1 

 Ref. DE DE-Q 
 value Mean CV% Mean CV% 
x1 -4.454 -4.452 0.77 -4.454 0.05 
x2 -4.454 -4.450 0.62 -4.453 0.06 
Iterations - 19.10 20.12 11.06 19.02 
Failed test - 4 - 3 - 

 

 

Figure 4 Benchmark No. 1: values of the objective 
function vs. Iteration number. 
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only an example, in many computational experiments 
performed with the proposed algorithm it is confirmed that 
results are almost insensitive to changes in NS, for a given 
NP.  

 
5.2 Benchmark function no. 2: comparison of DE with 
other global search techniques.  
 

The benchmark function No. 2 is known as Shifted 
Ackley’s Function. Ackley’s problem requires to find the 
parameter vector x = [x1,…, xi, …, xD] minimizing the 
following equation (Ackley, 1987): 

 
    

eeexH
ii x

D
x

D
i 





 












   12cos

11
1

2.0 2

2020  
 

(25) 

where D indicates the problem dimension.  
First, D = 2 is considered. The global minimum is given 

by x* = (1.0, 1.0). The solution is searched in the range [-
2.0, +2.0] for both variables x1 and x2. In the selected range, 
the function presents 24 local minima, 16 of them on the 
boundary (see Figure 8).  

Benchmarck function No. 2 is used to compare the 
performance of the proposed DE-Q algorithm with those of 
other global optimization techniques, i.e.:  

- the (original) DE algorithm; 
- the Genetic Algorithm (GA) implemented in the 

Matlab “Genetic Algorithm and Direct Search 
Toolbox” (The Mathworks, 2011);  

- an improved surrogate model algorithm developed 
by Mueller (2012), also implemented in the Matlab 
“Modularized Surrogate Model Toolbox” (SMT - 
(Mueller, 2012).  

The Matlab GA toolbox implements a standard but 
robust algorithm where the selection operation is applied at 
first, the crossover is then used to combine two vector 

DE - Iteration n. 1 

 

DE - Iteration n. 5 

DE - Iteration n. 10 

 

DE - Iteration n. 15 

Figure 5 Benchmark No. 1 – Search vectors at iterations 
n. 1, 5, 10, 15 – DE algorithm. 

 
DE-Q - Iteration n. 1 

 

DE-Q - Iteration n. 5 

DE-Q - Iteration n. 10 

 

 

Figure 6 Benchmark No. 1 – Search vectors at iterations 
n. 1, 5 and 10 – DE-Q algorithm. 
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Figure 7 Benchmark No. 1 – Sensitivity of results with 
respect to NP and NS. 
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Figure 8 Contour map for the Ackley’s Function 
(benchmark analytical function No. 2) for D = 2. 
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(parents) to form new ones (children) for the next 
generation and, finally, the mutation applies random 
changes to parents to form children.  

The SMT collects several surrogate models such as 
Kriging models with Gaussian, linear or spline correlation 
function, polynomial regression models or cubic radial 
basis interpolation functions. The toolbox allows the user to 
choose also between different mixed models.  

First, DE and DE-Q are compared considering the results 
obtained over 100 tests. The same parameters indicated for 
Benchmark No. 1 are used in DE-Q and DE algorithms. 
The values adopted for the convergence constants are VTR1 
= 10-4 and VTR2 = 10-3.  

Values of the objective functions vs. iteration number 
over 100 tests are shown in Figure 9. Each line collects the 
best objective function values for each iteration (i.e. the 
objective function value of the best member of each 

generation). Upper and lower envelopes (dashed lines 
inFigure 9) clearly show that DE-Q algorithm significantly 
improves the speed rate: for a given iteration, the objective 
function value is lower than the one obtained by DE, with 
exception only for the first iterations. 

In Figure 10, the comparison with GA and SMT is 
shown. For each algorithm, a typical run is reported. For all 
algorithms, 15 search vectors are used, and default options 
are chosen for both GA and SMT algorithms. Due to the 
different approaches characterizing the optimization 
algorithms, the total evaluation of the objective function is 
considered instead of the iteration number.  
The standard Genetic Algorithm provides for results with a 
very low convergence rate: for several evaluation, the 
objective function value associated to the best member of 
the generation remains almost unvaried. On the contrary, 
the improved SMT gives higher accuracy than other 
algorithms, with a speed rate (in terms of number of 
function evaluations) about 4 times greater than DE-Q. 
Nevertheless, the SMT adopts a very complex algorithm 
(based on higher polynomials) to manage the surrogate 
model, so requiring much more time at each iteration to 
decide the candidate to be used in the further generation. In 
this example, DE-Q requires an average time of 0.4 seconds 
to reach the global minimum, while SMT needs about 1 
minute to obtain the same precision in the minimum search.  

To validate the results for a large dimension problem, the 
Ackley’s Function in Eq. (25) with D = 15 is finally 
considered. To calibrate a complete quadratic 
approximation in DE-Q, 136 parameters must be estimated 
(15 parameters for the linear terms, 15 for the quadratic 
terms, 105 for the cross term and one constant), and so, a 
minimum of 136 search vector is needed. To obtain an 
over-determined least square problem,  a number of vectors 
NP = 170 is selected. The same number is also adopted for 
all other algorithms. Default options are chosen for both 
GA and SMT algorithms.  

The values adopted for the convergence constants are 

 
Figure 9 Benchmark No. 2: values of the objective 

function vs. iteration number over 100 tests. 

 
Figure 10 Benchmark No. 2: values of the objective 

function vs. number of function evaluations. 

Figure 11 Ackley’s Function for D = 15 and NP=170: 
values of the objective function vs. number of function 

evaluations. 

Figure 12 Ackley’s Function for D = 15 and NP=40: 
values of the objective function vs. number of function 

evaluations. 
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VTR1 = VTR2 = 10-2; moreover, a maximum of 8500 
evaluations is prescribed for all algorithms (i.e. 50 iterations 
for DE and DE-Q). Results reported in Figure 11 show 
comparable results for all algorithms for the first 1700 
evaluations (10 iterations); after that, the SMT algorithm 
strongly improves its performances matching the global 
minimum with very few evaluations. The worst 
performances of DE-Q in terms of speed rate are due to the 
very high number of vectors needed to guarantee the over-
determined least square problem and to built a complete 
quadratic function. To reduce the number of vectors, an 
incomplete quadratic function is then considered. 
Eliminating the cross terms in RS, the number of unknown 
parameters goes drastically down to 31. Consequently, the 
number of search vectors is set equal to 40. The same 
convergence constant values of the previews analysis are 
used. The results, shown in Figure 12, indicate a strongly 
improvements of DE-Q, with a number of evaluations 
comparable with SMT and, consequently, a much smaller 
computational cost due to the reduced time required for 
each function evaluation. 

The last comments concern the computational time 
required to find the global minimum with the accuracy 
prescribed. In the last example, only few seconds are 
required to DE-Q to reach the global minimum, and about 
two times for DE and GA. On the contrary, in spite of the 
reduced number of iterations, SMT requires more than 10 
hours to find the solution, mainly due to the complexity of 
the managing algorithm. Thus, SMT is adequate only for 
very expensive computational optimization problems, while 
DE-Q can be efficiently used also in common updating 
procedures. 

 
6 CASE STUDY No. 1 – CRACKED BEAM  

 
In order to test the numerical performances of DE-Q 

algorithm, the damage assessment of a simply-supported, 
cracked aluminum beam is performed by FE model 
updating. The identification problem has two unknown 
parameters, the location and the stiffness (related with the 
crack depth) of the spring modeling the crack. Dynamic 
modal data are used to identify the damage, i.e., frequency 
and mode shape (measured in a number of point along the 
beam) of transverse modes. For details about the cracked 
beam model, see (Chondros et al., 1998; Vincenzi et al., 
2013).  

The choice of this simple problem is justified by the 
presence in the objective function of local minima even if 
only two unknown parameters are considered in the 
identification problem (see Figure 13).  

The reference solution is analyzed at first. The beam has 
a rectangular cross-section 625.4 (bh) mm and length 
l=235 mm. The material properties are: Young’s modulus E 
= 7.2·104 MPa, density 2800 kg/m3 and Poisson’s ratio 
0.35. The beam has one crack, with depth 9.7 mm, placed at 

2/3 of the length l. The cost function reported in Eq. (1) is 
used, where the first 2 natural frequencies and mode shapes 
(measured in 12 sections along the beam) are used, and 
weight coefficients are set w1=1 and w2=0.01.  

The search space of the two updating variables, the 
stiffness X1 = K and the position X2 = y, is limited to the 
intervals ]7000, 35000[ Nm, and ]0,235[ mm, respectively. 
For numerical convenience, the normalized value xj (with 
j=1,2) of the identification parameter Xj is defined as: 
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Figure 13 Case study No. 1: The objective function vs. 
spring stiffness and position.  

 
Table 2 

Case study No.1: results adopting exact input data 
 Ref. DE DE-Q 
 value Mean CV% Mean CV% 
Position x1 +0.333 +0.334 0.45 +0.334 0.11 
Stiffness x2 -0.385 -0.386 3.29 -0.385 2.57 
Iterations - 18.84 19.5 9.82 20.4 
Failed test - 0 - 0 - 

 

Table 3 
Case study No.1: results adopting pseudo-experimental 

input data 
 Ref. DE DE-Q 
 value Mean CV% Mean CV% 
Position x1 +0.333 +0.333 6.58 +0.334 6.60 
Stiffness x2 -0.385 -0.341 64.0 -0.347 60.7 
Iterations - 18.86 21.3 7.80 14.8 
Failed test - 0 - 0 - 
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are the mean value and width of the interval of variation    
of Xj, so that the normalized parameters vary in the range    
] -1, +1[. In Eq. 29 Xj1 and Xj2 are the upper and lower 
bound of the search intervals, respectively. The reference 
solution is so given by x*= (+0.333, -0.385).  

Number of search vector is set to 15 and the number of 
sampling to calibrate the RS is NS = 10. Values adopted for 
constants governing the DE mutation and crossover 
operations are F = 0.6 and CR =0.5, while the convergence 
constants are VTR1 = 10-3 and VTR2 = 10-2. 

In a general identification problem, the estimate of the 
optimal model is sensitive to: a) uncertainties due to 
limitations of the adopted numerical models to represent the 
behavior of the real structure; b) the presence of uncertainty 
in modal parameters adopted as input in identification 
procedure, mainly due to noise in experimental 
measurement and the processing errors in estimating the 
modal data. The first type of errors is commonly called 
“model error”, while the last is denoted in the following as 
“input error”. 
 
6.1 Exact input data 

The numerical tests have been first performed by 
adopting, as input data, exact values of frequencies and 
mode shape vectors (no input error).  

In order to verify the robustness of the DE-Q algorithm 
to obtain the unknown parameters starting from the modal 
data, 100 optimization tests have been performed. The 
number of vectors for each population is NP = 15, and the 
values adopted for the convergence targets in Eqs. (22-25) 
are VTR1 = 10-3 and VTR2 = 10-2. The results are then 
compared with those obtained by the DE algorithm. 

Statistical analysis of identification results obtained from 
numerical tests is reported in Table 2. For both algorithms, 
the mean values and coefficients of variation (C.V.) of the 
updating parameters (all vectors obtained at the end of 100 
tests) are reported. Having adopted the same convergence 
rules, similar results in terms of accuracy of the solution are 
obtained from the proposed DE-Q and the original DE 
algorithm: mean values of spring position and stiffness are 
very close to the expected values in both cases. As for the 
C.V.s, results obtained via DE-Q are more accurate, 
especially as far as the crack position is concerned (0.11% 
for DE-Q versus 0.45% for DE). As for the computational 
performances, the number of iterations required for 
convergence of DE-Q algorithm is about half of that 
required by the original DE. 

The values of identification parameters (spring position 
and stiffness) and objective function H, for each search 
point during convergence to the solution, are reported in 
Figure 14-12. The better performances of DE-Q algorithm 
are evident: during the very first iterations, both DE-Q and 
DE populations explore the search domain (values of 
parameters in the range ]-1,+1[ ) and encounter very high 
values of objective function. Then, after 3-4 iterations, the 

second-order approximation of DE-Q algorithm becomes 
very effective, and the convergence rate is strongly 
improved up to final convergence.  
 

6.2 Pseudo-Experimental input data 
The same problem is now faced by adopting pseudo-

experimental data, in order to simulate noise in 
experimental measures (input error). Pseudo-experimental 
data have been obtained by multiplying exact values of 
frequencies and components of mode eigenvectors by 
uncorrelated coefficients, extracted from normal probability 
distributions with unit mean value and C.V. equal to 5 
percent for frequencies and 10 percent for eigenvector 
components.  

Statistical results from 100 identification tests are 

 (a) 

 (b) 

Figure 14 Case study No. 1: parameter values vs. 
Iteration number – (a) DE and (b) DE-Q algorithm.  

 

Figure 15 Case study No. 1: objective function of 
search points vs. Iteration number. 
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reported in Table 3. In this case, the high dispersion of 
identification results (C.V. about 6.5% for spring position 
and 60% for spring stiffness, for both algorithms) is due to 
the random error of input results. In fact, changing the input 
modal parameters, the position of the global minimum of 
objective function will change (see, for instance, Figure 16 
where 2 contour plots of the objective functions obtained 
starting from 2 different sets of input data are shown). The 
global minima of several identification tests are given in 
Figure 17, confirming the high sensitivity of the spring 
stiffness to uncertainties in the input data (frequencies and 
mode shapes). Note that the average value of the spring 
stiffness is off by 10% from the exact value even if the 
noise on frequencies and mode shapes is centered. This is 
due to the nonlinear correlation between modal parameters 
and stiffness. Finally, the number of iterations required for 
convergence and reported in Table 4 confirms the better 

performances of DE-Q algorithm, the iterations required 
being reduced by a factor of 2.5 with respect to DE 
algorithm. 

 
7 CASE STUDY No. 2 - STEEL-TRUSS GIRDER 

BRIDGE  
 
Case study No. 2 refers to a real case study, the 

parametric identification of masses and stiffnesses of a steel 
truss-girder bridge (see Figure 18), starting from 
experimental frequencies and mode shapes. In this case, the 
identification problem is affected by both “input error” and 
“model error”, the latter due to the modelization of the 
structure by FE method.  

The Pontelagoscuro viaduct is a steel viaduct on the 
Bologna –Venice railway line (Italy). It is composed by 2 
distinct parallel steel railway viaducts crossing the Po river 
(Figure 18). The first viaduct was built in 1948 and is 
composed by 9 single span truss-girder bridges.The 5 inner 
spans are 75 meters long each, while the 4 end spans are 

 

 

Figure 18 Case study No. 2: Old and new 
Pontelagoscuro truss-girder viaducts. 

 

Figure 16 Case study No. 1: two objective functions 
starting from 2 different sets of pseudo-experimental 

input data (frequencies and mode shapes).  

 

Figure 17 Case study No. 1: Identification results 
from different sets of input pseudo-experimental data, 
compared with contour lines of the reference objective 

function (exact input data). 
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about 60 meters long. Two main truss-girders support the 
vertical load, while X-shaped upper and lower lateral 
bracings assure the transverse stability. The upper and the 
lower chord, the diagonals and the stunts are composed of 4 
L-shaped steel elements, riveted together by means of 
plates. Stiffening plates are introduced in order to improve  
the transverse stiffness of the bridge box cross-section (in 
the transverse direction). For each bridge, 60 or 75 meter 
long, end supports are constituted by steel bearings directly 
in contact with lower main strings, so that a simply-
supported scheme is realized. Stringers and additional 
elements supporting the railway lines are also composed of 
riveted steel elements. 

In the following, results of the dynamic updating 
procedure of an end span of the old Pontelagoscuro riveted 
bridge, 60 meters long, will be described. First, operational 
modal analysis technique has been applied to find the 
modal frequencies and mode shapes of the truss girder 
bridge. For this purpose, the accelerations in the vertical 
and (transverse) horizontal directions were measured. A 
ambient vibrations have been used as excitation source. 
Starting from the recorded data, the global modes have been 
identified by Operative Modal Analysis technique 
(Guidorzi et al., 2013; Soyoz and Feng, 2009) Six global 
modes of vibration were clearly identified from the 
experimental tests, whose frequencies are reported in Table 
4. The first mode shape (2.14 Hz) is characterized by the 
horizontal deformation of the bridge. In fact, the old 
Pontelagoscuro bridge was designed mainly to support 
vertical loads: due to the presence of the two vertical truss 

girders, the bridge is very stiff in the vertical plane but quite 
deformable in the transverse direction. The second mode 
shape (2.86 Hz) is a flexural mode with deflection in the 
vertical plane. The third mode is a torsional mode with a 
significant distortion of the transverse bridge cross-sections 
and the fourth is the second lateral mode (4.3 and 4.7 Hz, 
respectively). 

The dynamic behavior of the structure has been modeled 
with FEM with linear elastic elements for the two main 
steel truss girders, stunts and floor-beams, and beam 
elements for the upper and lower bracings (Figure 19). As 
far as the external supports are concerned, a simply-
supported scheme has been adopted.  

A preliminary sensitivity analysis has been performed to 
select the parameters to match numerical modal parameters 
with experimental results. The selected identification 
parameters are: 
1. the equivalent density meq of steel members (due to the 

large amount of plates and rivets); 
2. the equivalent moment of inertia Jd of the diagonals (due 

to the presence of stiffening brackets); 
3. the stiffness of axial bracings at the top and bottom level, 

through the equivalent area of each brace (Ab) (being their 
sections roughly estimated – the element are almost 
inaccessible – and being some bracings not always 
efficiently connected with the main bridge structural 
elements);  

4. the equivalent density m of deck steel members (due to 
the presence of secondary masses at the deck level). 
The parameters governing the DE-Q algorithm are 
 

7.1 Results 
The intervals for each parameter to be identified are set 

as follows: 

meq = [7.85103 kg/m3, 13.85103 kg/m3],  
Jd = [0.1010-3 m4, 0.2010-3 m4],  
Ab = ]0.0 m2, 1110-3 m2],  
m = [15.3103 kg/m3, 21.3103 kg/m3].  

Also in this case, for numerical convenience, the 
normalized values of the identification parameter are 
defined according to Eqs. (26) and (27), so obtaining a 
search domain in the range ]-1,+1[ for all parameters. The 
number of vectors for each population is set equal to 25 and 
NS is set equal to 19. Values adopted for the convergence 
targets are set VTR1 = 10-2 and VTR2 = 10-1.  

After the optimization process, the values of identified 
parameters are found, i.e., meq = 9.59103 kg/m3, Jd = 
0.11410-3 m4, Ab = 3.510-3 m2, m =19.18103 kg/m3. As for 
the equivalent density of steel members (meq), it is worth 
noting that the value is 22% greater than the nominal steel 
density (7.85103 kg/m3) due to the presence of connection 
plates and rivets, comparable with the value typically taken 
into account in design of new steel structures. Moreover, 
the additional masses on the deck (sleepers, railway lines 

Table 4 
Case study no. 2: Identified frequencies and mode 

shapes  
Mode 

n. 
Experimental 

Frequency [Hz] 
Mode shape 

1 2.143 1st lateral 
2 3.857 1st vertical 
3 4.307 1st torsional  
4 4.700 2nd lateral 
5 7.907 2nd torsional  
6 8.139 3rd lateral 
 

 

Figure 19 Case study No. 2: Finite Element Model 
of an end span of the old Pontelagoscuro bridge.  
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and iron grate for protection) are about 1.5 times greater 
than the masses introduced in the finite element model for 
the structural elements (lower chords, floorbeams and 
stringers), so obtaining a total mass 2.5 times the mass of 
the only structural members. Finally, the value of 
equivalent area of transverse bracings is about the 50% 
smaller than the initially assumed value. It is worth noting 
that  

For each iteration during the optimization process, the 
values of the components of the search vectors and the 
objective function are depicted in Figure 22-19. Moreover, 
the convergence of the 4 first frequencies of the updated 
model to the optimal values are also given in Figure 20. It is 
shown that, after 8-9 iterations, results in term of 
frequencies and objective function (indicating the error 
between experimental and numerical results) are very 
stable. Iterations from n. 10 to n. 20 are required to reach 

the imposed convergence value and to reduce the 
uncertainties on the optimization parameters, especially as 
far as the global mass meq is concerned. The other 
parameters are stable after iteration n. 11.  

Finally, the value of the first 6 frequencies obtained after 
the optimization process are compared with the 
experimental values in Table 5. Frequencies of the 
numerical model are very close to the experimental values, 

 

Figure 20 Case study No. 2: first 4 frequencies vs. 
Iteration number. 

 
Table 5 

Case study no. 2: First 6 experimental and numerical 
frequencies and mode shapes  

Mode 
n. 

Experimental 
Frequency 
[Hz] 

Numerical 
frequency 
[Hz] 

Error 
[%] 

MAC 
[%] 

1 2.143  2.153 +0.47 98.3 
2 3.857  3.854 -0.08 96.4 
3 4.307  4.304 -0.07 86.3 
4 4.700  4.682 -0.38 98.1 
5 7.907  8.161 +3.21 94.9 
6 8.139  8.490 +4.31 79.2 
 

 

Figure 21 Case study No. 2: MAC values between 
numerical (F.E.M.) and experimental modes.  
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Figure 22 Case study No. 2: parameter values vs. 
Iteration number.  

 

Figure 23 Case study No. 2: objective functions vs. 
Iteration number. 
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with errors never greater than 0.5% for the first 4 modes, 
and smaller than 5% for all modes. Values of MAC are also 
reported in Table 5 and Figure 21. For all modes, the 
identification attained almost perfect correlations between 
experimental and numerical mode shapes, with MAC>0.95 
for almost all modes and smaller values (0.86 and 0.79) 
only for the third and sixth modes. 

 
8 CONCLUSIONS  

 
A new global search method for dynamic identification 

problems with unknown parameters is presented. It is based 
on the combination of the Response Surface approach with 
Differential Evolution algorithm for global search. 
Numerical examples are presented, concerning the 
optimization of analytical benchmark functions, the 
parameter identification of a damaged beam, the parameter 
identification of mechanical properties (masses and member 
stiffnesses) of a truss-girder steel bridge starting from 
frequencies and eigenvectors obtained from an 
experimental field test. Results show that the performances 
in term of speed rate are improved over classical global 
search methods by introducing the second-order 
approximation; nevertheless, numerical tests shows that 
robustness of DE algorithm for global minimum search of 
objective function is preserved, since multiple search points 
are used simultaneously. 
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