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Identifying the convective/absolute instability nature of a local base flow requires an
analysis of its linear impulse response. One must find the appropriate branch point
singularity in the dispersion relation with complex frequency/wavenumbers and prove
causality. One way to do so is to show that the appropriate integration contour of this
response, a steepest decent path through the relevant singularity, exists. Due to the
inherent difficulties of such a proof, one often verifies instead if this singularity satisfies
the collision criterion. In other words, one must show that the branches involved in
the formation of this singularity come from distinct halves of the complex wavenumber
plane. However, this graphical search is computationally intensive in a single plane and
essentially prohibitive in two planes. A significant computational cost reduction can be
achieved when root finding procedures are applied instead of graphical ones to search for
singularities. They focus on locating these points, with causality being verified graphically
a posteriori for a small parametric sample size. The use of root finding procedures require
auxiliary equations, often derived by applying the zero group velocity conditions to the
dispersion relation. This relation, in turn, is derived by applying matrix forming to the
differential eigenvalue problem and taking the determinant of the resulting system of
algebraic equations. Taking the derivative of the dispersion relation with respect to the
wavenumbers generates the auxiliary equations. If the algebraic system is decoupled,
this derivation is straightforward. However, its symbolic computational cost is often
prohibitive when the algebraic system is coupled. This paper describes an alternative
methodology based on sensitivity analysis and adjoints that allow the zero group velocity
conditions to be applied directly to the differential eigenvalue problem. In doing so, the
direct and auxiliary differential eigenvalue problems can be solved simultaneously using
standard shooting methods to directly locate branch point singularities, dramatically
reducing the costs associated with their graphical search while also eliminating the need
to derive the auxiliary dispersion relations using symbolic computation. The search for
arbitrary branch point singularities is then not only accelerated in single wavenumber
planes but it also becomes viable in two wavenumber planes. Finally, the new method
also allows group velocity calculations, greatly facilitating the verification of causality.
Several test cases are presented to illustrate its capabilities.

† Email address for correspondence: leonardo.alves@mec.uff.br
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1. Introduction

When open dynamical systems are unstable, small amplitude disturbances superposed
to a local base state are allowed to grow in space and/or time. In order to distinguish
between these cases, one must identify the linear nature of the instability mechanism.
This is achieved by analysing the asymptotic behaviour of wave packets generated by
an impulse excitation of the linear and modal disturbance governing equation. Three
possible scenarios emerge. If the disturbance envelope amplitude decays as it is advected
downstream by the local base state, the system is convectively stable. Otherwise, it is
unstable. In the latter case, two possible scenarios remain. If the disturbance envelope
amplitude eventually decays in time when measured at a fixed location, the system is
convectively unstable. Otherwise, the disturbance envelope amplitude will grow in time
at any fixed location, which means the system is absolutely unstable. This understanding
has an important impact on the development of control strategies for open dynamical
systems. When these systems are convectively unstable, all disturbances eventually leave
the domain of interest. In the absence of an external forcing that acts as a disturbance
source, they eventually return to their original local base states. Hence, these systems
are highly susceptible to control through low amplitude forcing. On the other hand,
absolutely unstable systems allow any initially present disturbance to eventually grow in
time, leading them away from their original local base state. In such cases, these systems
become self-excited and more complex control strategies are required (Pier 2009).

Within the context of hydrodynamic instabilities, Betchov & Criminale (1966) were
among the first to find singularities in an eigenvalue problem when studying the linear
stability of inviscid jets and wakes. Soon afterwards, Gaster (1968) recognised that these
singularities appeared as saddle points in a complex wavenumber plane when analyzing
the impulse response of the eigenvalue problem. Furthermore, he noticed that the wave
packet generated by this pulse was physically meaningful when its group velocity was zero,
which could indicate when spatially growing disturbances would start growing in time.
These ideas were first applied to distinguish between convective and absolute instabilities
in fluid dynamics by Thacker (1976) for the analysis of Gulf streams as well as Merkine
(1977) for the study of baroclinic eddies. However, they did not develop these ideas and
concepts, but instead drew from the theoretical foundations underlying these notions that
were already extensively developed in the field of plasma instabilities. Popular among
them were the collision criteria devised by Briggs (1964) and the convective/absolute
instability description by Bers (1975). A detailed account of this development in plasma
instabilities was reviewed by Bers (1983) whereas a survey on the use of these tools in
the field of hydrodynamic instabilities was written by Huerre & Monkewitz (1990).

The original demonstration of a transition to absolute instability required proof of
causality, i.e. proof that the contours of the integration that defines the linear impulse
response of a system can be deformed into a steepest descent integration path containing
the branch point singularity. Due to the inherent difficulties in this proof, early attempts
to find the parametric conditions where a local base state transitions from convectively
to absolutely unstable relied on the collision criterion instead. This graphical proof
was used to locate saddle points on the complex wavenumber plane that were in fact
pinching points, i.e. that were formed by the collision between downstream and upstream
propagating branches that satisfy the eigenvalue problem. The most common paths
towards this graphical proof of causality are illustrated in Fig. 1, where white and light
blue boxes represent theoretical and numerical steps, respectively. Paths D1 and D2

in this figure respectively indicate the use of matrix forming and shooting methods
to solve differential eigenvalue problems in order to evaluate the collision criterion.
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Figure 1. Local and Linear Absolute Stability Theory and Numerics Flowchart.

The latter has been used in linear stability analyses of planar mixing layers (Huerre
& Monkewitz 1985), flows around bluff bodies (Monkewitz & Nguyen 1987), hot jets
(Monkewitz & Sohn 1988), boundary layers on rotating disks (Lingwood 1995, 1997a),
and several other problems. A common feature among these studies is their focus on two-
dimensional instabilities. This terminology is used here to emphasize that wave packets
are allowed to propagate in a single homogenous direction. Since only one direction
is inhomogeneous in a local analysis, any variation in the remaining homogeneous
direction is defined by its respective wavenumber. The former three references prescribe
it to zero whereas the latter two references prescribe it to a positive number. For this
reason, the latter two are named pseudo two-dimensional absolute instability analyses
from this point on. Nevertheless, any search for branch points always considers only a
single wavenumber plane when dealing with two or pseudo-two dimensional instabilities.
The extension of this transition framework towards three-dimensional instabilities was
derived by Brevdo (1991). In this case, wave packets are allowed to propagate in both
homogeneous directions and the graphical search for branch points must consider both
wavenumber planes simultaneously. However, he noted the greater difficulty in proving
the existence of a steepest descent surface, as compared to its line counterpart in two-
dimensions, recommending the application of the collision criterion instead. Nevertheless,
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even this criterion is numerically expensive in two-dimensions and prohibitive in three-
dimensions. It is much cheaper to only search for branch point singularities using the
zero group velocity conditions, which can be done using a asymptotic expansions that
are known since the work of Benjamin (1961) and Criminale & Kovasznay (1962),
without performing a collision check to verify causality. This led to the development
of techniques that track the movement of singularities as one parameter is varied, where
the most popular ones are known as continuation methods. Well known examples of
such methods were developed by Deissler (1987), Brevdo (1995) and Brevdo et al.
(1999) for two-dimensional instabilities and extended by Oertel Jr. & Delfs (1995) and
Koch (2002) to three-dimensional instabilities. They numerically calculate the group
velocities, often based on the frequency dependence on the wavenumbers obtained from
a temporal stability analysis, and locate the branch points with root-finding methods.
It is important to note that continuation methods perform their temporal stability
calculations using either algebraic (with eigenvalue solvers) or differential (with shooting
methods) eigenvalue problems, illustrated by paths C1 and C2 in Fig. 1, respectively.
Causality is verified a posteriori for a small sample of branch points in order to reduce
computational cost. Nevertheless, this sample is usually chosen large enough to generate
sufficient confidence that the entire set satisfies causality. A review of continuation
methods was presented by Suslov (2006), who also proposed a more efficient variation,
but only two-dimensional calculations were presented. Despite their widespread use, a
word of caution about collision criterion/steepest descent methods and continuation
methods is required. Lingwood (1997b) has shown that it might not be an easy task
to prove that the inversion contour can be deformed into the steepest descent path for
any given branch point. Furthermore, Brevdo et al. (1999) have shown that continuation
methods must be used with care because they cannot capture branch points that are not
connected by continuity. These difficulties in the search for three-dimensional singularities
often force researchers to search instead for two-dimensional (zero either streamwise or
spanwise waven umber) ones, as done by Hirata et al. (2015), or pseudo two-dimensional
(nonzero but real spanwise wavenumber) ones, as done by Lingwood (1997c). However,
this compromise can lead to misleading results. Brevdo & Ruderman (2009) found in their
study of mixed convection in a porous medium that two-dimensional longitudinal (zero
streamwise wavenumber) modes became absolutely unstable under the same conditions
that Brevdo (2009) found three-dimensional longitudinal modes to always be convectively
unstable. Furthermore, Alves & Barletta (2015) found in a similar problem, but for
dilatant fluids modeled by a power-law, that the onset of absolute instability switched in a
discontinuous manner between transversal (zero spanwise wavenumber) and longitudinal
modes as the Péclet number was increased in a three-dimensional instability analysis. On
the other hand, they found that this switch was smooth, going through all possible oblique
modes in between, in a pseudo two-dimensional instability analysis. All these cautionary
examples show the importance of distinguishing three, pseudo two and two-dimensional
branch point singularities.

As mentioned by Koch (2002), the numerical difficulties associated with continuation
methods are an issue because they are the best known methods available for the search of
three-dimensional singularities when dealing with differential eigenvalue problems. This
difficulty in locating three-dimensional absolutely unstable branch points even affects the
WKBJ reconstruction of global modes, according to Martinand et al. (2004). Whenever
a dispersion relation can be found, auxiliary dispersion relations can be derived using
zero group velocity conditions and the search for branch points reduces to solving the
resulting system of algebraic equations with root finding methods. Many examples can
be found in the literature, such as the studies by Chomaz et al. (1999), Delache et al.
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(2007), Hirata & Ouarzazi (2010) and Alves & Barletta (2015). These examples share
a common feature, their dispersion relations are simple analytical expressions due to
the analytical form of their eigenfunction dependence on their single inhomogeneous
coordinate. This is the path A illustrated in Fig. 1. The use of such auxiliary dispersion
relations is so effective that some researchers try and avoid the use of steepest descent,
collision or continuation methods to search for branch points from differential eigenvalue
problems. They use instead a matrix forming approach to transform the differential
eigenvalue problem into an algebraic eigenvalue problem. Requiring its determinant to
be zero for a nontrivial solution to exist also leads to a dispersion relation, although they
are significantly more complex analytical expressions. In doing so, the zero group velocity
conditions can once again be used to generate auxiliary dispersion relations and the search
for branch points can be performed with root finding methods. Such a matrix forming
approach was employed by Carrière & Monkewitz (1999) using Galerkin/collocation
methods and recently in a still ongoing study by Brandao et al. (2014) and Brandao
et al. (2015) using a generalized Fourier transform. This is the path B illustrated in
Fig. 1. However, as noted by Brevdo (2009), solving this system of equations can be a
rather involved computational task. In fact, Hirata et al. (2015) attempted to solve their
problem through path B using a Galerkin method based matrix forming, but the very high
symbolic computational cost associated with deriving the auxiliary dispersion relations
using the zero group velocity conditions did not allow numerically converged results to
be reached. These examples reveal that a reliable method to extract three-dimensional
branch points from differential eigenvalue problems is yet to be found.

In the present paper, a novel procedure is put forward that enables the search for two
and three-dimensional branch points in differential eigenvalue problems without having
to resort to determinants (path B), continuation methods (paths C) or collision checks
(paths D). It applies the ideas associated with adjoint sensitivity analysis (Luchini &
Bottaro 2014) to boundary value problems so the zero group velocity conditions can be
used to generate auxiliary differential eigenvalue problems, analogous to the auxiliary
dispersion relations from path A. This coupled system of equations now contains two
and three differential eigenvalue problems for two and three-dimensional branch point
searches, respectively, which can be solved using the same shooting methods used to
solve the direct differential eigenvalue problem (in paths C2 and D2). When coupled
with adjoint analysis (Luchini & Bottaro 2014), this procedure can also calculate the
group velocity of the modes within both spatial branches involved in the collision that
forms the branch point. In doing so, it can determine the propagating directions of these
two and three-dimensional branches involved in the collision. Well known two, pseudo
two and three-dimensional instabilities are solved to demonstrate the capabilities of this
novel procedure. Fluid properties are considered constant in these test cases, but allowing
them to vary does not modify the proposed methodology in any significant way.

2. Mathematical Formulation

2.1. Differential Eigenvalue Problems

Consider an open dynamical system in the form of

∂q

∂t
= f(q) , (2.1)
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where f(qb) = 0 yields its nonlinear steady-state and its state variable vector q(x, t) can
be decomposed into the usual local, one-dimensional and modal form

q(x, t) = qb(z) + εqn(z) ei (αx+β y−ω t) , (2.2)

where ε is a disturbance amplitude parameter, i is the imaginary unit, x and y are
the streamwise and spanwise coordinates, respectively, z is the only inhomogeneous
coordinate and t is time. Furthermore, the local base state vector is qb(z) and the
disturbance normal mode is defined by its eigenfunction vector qn(z) and its eigenvalues,
given by the frequency ω as well as streamwise and spanwise wavenumbers α and β,
respectively. When substituting decomposition (2.2) into the dynamical system governing
equation (2.1) and collecting the linear terms of O(ε), an ordinary differential system of
equations with respect to z is obtained for qn(z). It is written here as

Lqn = 0 , (2.3)

where L = L(α , β , ω ; R ) is a linear and homogeneous differential operator that
depends on all eigenvalues and R, which can represent either one or more control
parameters. Examples include the Reynolds, Prandtl, Péclet and Rayleigh numbers.
Equation (2.3) could also be a partial differential equation, if one assumes q(x, t) =
qb(y, z) + εqn(y, z) ei (αx−ω t) instead of Eq. (2.2). Under such constraints, a local but
two-dimensional modal analysis would be performed, although it can also be known
as a spatial Bi-Global analysis in the literature (Theofilis 2003, 2011). An example
of such a local two-dimensional analysis is the case of an eccentric Taylor-Couette-
Poiseuille flow recently studied by Leclercq et al. (2014). In any case, Eq. (2.3) is still
a differential eigenvalue problem. The different information about two, pseudo two and
three-dimensional branch point singularities, as well as group velocities, one can extract
from this equation using shooting methods is the focus of the present paper.

2.2. Dispersion Relations

Matrix forming Eq. (2.3) can be used instead to generate dispersion relations. However,
this approach is often unfeasible and, hence, should be avoided when searching for linear
absolute instabilities. In order to better illustrate why, path B from Fig 1 is discussed
now. Applying an arbitrary spatial discretization to Eq. (2.3) yields

Lqn = 0 , (2.4)

where L ∈ C(N×N) and qn ∈ C(N) are the discrete and complex matrix and eigenvector
versions of differential operator L and eigenfunction qn, respectively, with N defining
the arbitrary size of this system. The first dispersion relation comes from the necessary
condition for the existence of non-trivial solutions for qn in Eq. (2.4), i.e.

det(L) = 0 , (2.5)

where det(L) is the determinant of L. The auxiliary dispersion relations needed to search
for branch point singularities then come from

∂ det(L)

∂α
= 0 with

∂ω

∂α
= 0 and (2.6)

∂ det(L)

∂β
= 0 with

∂ω

∂β
= 0 , (2.7)

for two, pseudo two and three-dimensional instabilities. Whenever Eq. (2.3) is normal,
i.e. qn(z) has a modal dependence on z, L is a diagonal matrix. In this case, det(L) is the
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product of its diagonal elements, i.e. the algebraic eigenvalue problem defined in Eq. (2.4)
is a decoupled system of algebraic equations. Hence, the symbolic computational cost of
generating Eqs. (2.5) to (2.7) is essentially negligible. On the other hand, if Eq. (2.3) is
non-normal, L is no longer diagonal and the algebraic eigenvalue problem now represents
a coupled system of equations. Hence, the symbolic computational cost of generating
det(L) and its derivatives with respect to the wavenumbers is much higher. In fact,
this cost can be prohibitively high even for moderate degrees of coupling and model
complexity, as mentioned in section 1. Numerically evaluating this determinant and its
derivatives instead usually speeds up computations, but in general this is not enough to
allow path B to be competitive with paths C and D in Fig. 1.

2.3. Sensitivity Analysis

In order to avoid the potentially prohibitive symbolic/numeric computational cost
associated with deriving the dispersion relations required for the search of branch points
using Eq. (2.5), one must search for them using differential eigenvalue problems in the
form of Eq. (2.3) instead. In the present paper, a shooting method is employed to solve
this equation. Doing so yields two complex solutions: the eigenfunction vector qn(z) and
one eigenvalue, for prescribed values of the remaining eigenvalues. All control parameters
are prescribed as well. When performing a temporal stability analysis, ω is the complex
eigenvalue being solved for prescribed real values of the remaining eigenvalues α and
β. On the other hand, when performing a spatial stability analysis, α is the complex
eigenvalue being solved for prescribed real values of the remaining eigenvalues ω and β.

Since ω, α and β are coupled at these branch points, auxiliary differential eigenvalue
problems must be solved simultaneously with Eq. (2.3) for these eigenvalues. Taking the
derivative of this equation with respect to α and β, respectively, leads to

Lqα = Sα with Sα = −Lα qn and (2.8)

Lqβ = Sβ with Sβ = −Lβ qn , (2.9)

where qα = ∂qn/∂α, qβ = ∂qn/∂β, Lα = ∂L/∂α and Lβ = ∂L/∂β. Furthermore, Lα =
Lα(α , β , ω , ∂ω/∂α ; R , ∂R/∂α ) and Lβ = Lβ(α , β , ω , ∂ω/∂β ; R , ∂R/∂β ) are also
linear and homogeneous operators, where qn(z), ω and R were allowed to depend on α
and β. The latter dependence is included here to generalize this procedure to calculate
critical points for the onset of convective instabilities (Alves et al. 2016), even though
this paper is focussed on absolute instabilities. Equations (2.8) and (2.9) are solved
within the same shooting methodology used to solve for Eq. (2.3). Since they also yield
two complex solutions each, one eigenfunction and one eigenvalue, these three equations
can be used to find three eigenfunctions and three eigenvalues for three-dimensional
instabilities. Two eigenvalues and two eigenfunctions can similarly be found for two and
pseudo two-dimensional instabilities, where either Eq. (2.8) or (2.9) is dropped.

At this point, it is important to justify our focus on differential equations and shooting
methods instead of matrix forming and generalized eigenvalue solvers. Both approaches
are widely used in the literature. The former solves Eq. (2.3) whereas the latter solves
Eq. (2.4), usually in the form of Aqn = ωB qn for a temporal stability analysis. A
nonlinear eigenvalue problem appears, however, if a spatial stability analysis is desired
instead. For instance, a typical example of the form Eq. (2.4) takes in such an analysis
is Aqn = αB1 qn + α2B2 qn. This requires linearization, which is achieved with the
companion matrix method (Bridges & Morris 1984). Matrixes A and B come from L.
In order to directly solve for branch points using this approach, however, one needs to
apply matrix forming to Eqs. (2.8) and (2.9). Doing so to the former leads to Eq. (2.23),
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discussed later on in a different context. This yields a system of three coupled generalized
eigenvalue problems with three different but coupled eigenvalues. At the present time, it
is not clear how such a problem can be solved in an efficient manner.

Although Eqs. (2.8) and (2.9) were obtained from Eq. (2.3) in the same way Eqs. (2.6)
and (2.7) were obtained from Eq. (2.5), their derivation is closely related to sensitivity
analysis (Luchini & Bottaro 2014). In such an analysis, one introduces small variations
in a generalized eigenvalue problem, usually in the form of Eq. (2.4), and uses the adjoint
eigenvector q+

n of the direct eigenvector qn to identify gradients between different problem
variables and/or parameters. Equations (2.8) and (2.9) can then be understood as the
differential version of this analysis, based on Eq. (2.3) instead, where gradients with
respect to the wavenumbers are sought. Although sensitivity studies of global modes are
based on algebraic equations, their differential counterparts have been used for similar
studies of local (Bottaro et al. 2003) and global modes (Juniper & Pier 2015). The present
method, however, is distinct in two ways. The first one is that the adjoint eigenfunction
q+
n (z) of the direct eigenfunction qn(z) does not have to be obtained in order to solve for

Eqs. (2.8) and (2.9), but wavenumber sensitivity eigenfunctions qα(z) and qβ(z) have to
be obtained instead. The second way is that a normalisation, introduced in a traditional
sensitivity analysis based on q+

n (z), is also required in Eqs. (2.8) and (2.9). Since they
are also eigenvalue problems, qα(z) and qβ(z) are undetermined with respect to one
integration constant each, which means normalisations are required to remove them.

Adjoints may not be required to solve Eqs. (2.8) and (2.9), but they are necessary to
guarantee that a solution to these equations exists. Using 〈u, v〉 as the notation for an
yet to be defined inner product between two arbitrary complex functions u(z) and v(z),
an adjoint differential eigenvalue problem operator L∗ can be defined using either

〈 Lqα , q+
n 〉 = 〈qα , L∗ q+

n 〉 or (2.10)

〈 Lqβ , q+
n 〉 = 〈qβ , L∗ q+

n 〉 , (2.11)

where ∗ means conjugate transpose, to produce q+
n (z), an adjoint of qn(z), from

L∗ q+
n = 0 , (2.12)

which is the adjoint version of Eq. (2.3). Using the linear and inhomogeneous Eqs. (2.8)
and (2.9), as well as Eq. (2.12), it is possible to simplify Eqs. (2.10) and (2.11) to

〈 Sα , q+
n 〉 = 0 and (2.13)

〈 Sβ , q+
n 〉 = 0 , (2.14)

known as solvability conditions. They derive from the Fredholm alternative theorem,
which states that the inhomogeneous term of a linear equation, e.g. Sα or Sβ , must be
orthogonal to the adjoint solution of the corresponding homogeneous equation, e.g. q+

n ,
for the existence of nontrivial solutions to the inhomogeneous equation, e.g. qα or qβ .

Equations (2.13) and (2.14) can now be used to calculate the group velocities ∂ω/∂α
and ∂ω/∂β, which naturally appear within Lα and Lβ , respectively. Since these operators
can always be re-written as Lα = L(0)

α − L(1)
α ∂ω/∂α and Lβ = L(0)

β − L
(1)

β ∂ω/∂β,
Eqs. (2.13) and (2.14) can be correspondingly re-written to yield

∂ω

∂α
=
〈 L(0)

α qn , q
+
n 〉

〈 L(1)
α qn , q

+
n 〉

and (2.15)

∂ω

∂β
=
〈 L(0)

β qn , q
+
n 〉

〈 L(1)

β qn , q
+
n 〉

, (2.16)
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which is the differential eigenvalue problem equivalent of the formula derived by Lesshafft
& Marquet (2010) from Eq. (2.4) in their hot jet base flow optimisation study.

In certain cases, however, it is possible to avoid the adjoint problem altogether, greatly
simplifying group velocity calculations. Inner products satisfy conjugate symmetry, i.e.
〈u, v〉 = 〈v, u〉, where overbar means complex conjugate. This allows one to also define

〈 Lqn , q+
n 〉 = 〈 L∗ q+

n , qn 〉 , (2.17)

which is equal to zero as well. Using the fact that any two complex functions satisfy the
multiplication property u v = u v, it is possible to show that q+

n = qn satisfies Eq. (2.17)
when L is a symmetric operator, i.e. L = LT = L∗. The superscript T means transpose.
Such a restriction might be alleviated if it is possible to define a linear operator P in
such a way that PL = (PL)T = (PL)∗. Applying it to Eq. (2.3), and all subsequent
derivations, necessarily modifies the solvability conditions in Eqs. (2.13) and (2.14) to

〈 PSα , qn 〉 = 0 and (2.18)

〈 PSβ , qn 〉 = 0 , (2.19)

removing the adjoint eigenfunction from them. In other words, the inhomogeneous
term of a symmetric linear equation, e.g. PSα or PSβ , must be orthogonal to the
conjugate solution of the corresponding homogeneous equation, e.g. qn, for the existence
of nontrivial solutions to the inhomogeneous equation, e.g. qα or qβ . This is always the
case for second (s = 0) and fourth (s 6= 0) order operators that can be written as

PL = q −D (pD) +D2 (sD2) , (2.20)

with suitable boundary conditions, where D = d/dz and q(z), p(z) and s(z) are problem
dependent arbitrary complex functions. Such an orthogonality condition has been used
by Alves et al. (2008) and Kelly & Alves (2008) in their study of convectively unstable
jets in cross flow. In this particular case, Eqs. (2.15) and (2.16) can be re-written as

∂ω

∂α
=
〈 PL(0)

α qn , qn 〉
〈 PL(1)

α qn , qn 〉
and (2.21)

∂ω

∂β
=
〈 PL(0)

β qn , qn 〉
〈 PL(1)

β qn , qn 〉
, (2.22)

which will be used in the first two test cases analyzed in section 3 to provide practical
examples where symmetries can be explored to simplify group velocity calculations.

2.4. Methodology Equivalency

It is possible to show that solving auxiliary differential eigenvalue problems (2.8) and
(2.9) is equivalent to solving auxiliary dispersion relations (2.6) and (2.7). Considering
first the two-dimensional instability case, applying to Eq. (2.8) the same arbitrary
discretization scheme used on Eq. (2.3) to matrix form Eq. (2.4) yields

Lqα +Aqn = 0 , (2.23)

where A ∈ C(N×N) and qα ∈ C(N) are the discrete and complex matrix and eigenvector
versions of operator Lα and eigenfunction qα, respectively. Multiplying Eq. (2.23) by
adj(L) and using the identity adj(L)L = det(L) I allows one to re-write it as

det(L) I qα + adj(L)Aqn = 0 , (2.24)
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where I is the identity matrix and adj(L) is the adjugate matrix of L, which is defined
as the transpose of the cofactor matrix of L (Strang 1988). Equation (2.5) necessarily
indicates that Eq. (2.24) can provide nontrivial solutions for qn, due to the fact that
det(adj(L)A) = det(adj(L)) det(A) = det(L)N−1 det(A) = 0. This result also shows
that such a determinant cannot be used to generate the required auxiliary dispersion
relations. One can, however, take the trace instead, obtaining

tr(adj(L)A) = 0 , (2.25)

as a necessary condition for the existence of non-trivial solutions for qn in Eq. (2.24),
subject to Eq. (2.5). Finally, Eq. (2.25) is equivalent to

∂ det(L)

∂α
= 0 , (2.26)

according to another identity known as Jacobi’s formula. Hence, solving Eqs. (2.3) and
(2.8) is equivalent to solving Eqs. (2.5) and (2.6). Extending this demonstration to the
three-dimensional instability case is straightforward, since it leads to

tr(adj(L)B) =
∂ det(L)

∂β
= 0 , (2.27)

where B ∈ CN,N is the discrete and complex matrix version of operator Lβ . This
proof also indirectly shows that auxiliary differential eigenvalue problems (2.8) and (2.9)
naturally reduce to the simple auxiliary dispersion relations obtained though path A in
Fig 1 when the eigenfunction dependence on the inhomogeneous coordinate has a simple
analytical form, since L becomes a very sparsely coupled matrix and, hence, det(L) = 0
yields a simple algebraic equation as a dispersion relation.

3. Results and Discussion

This method just is now applied to problems with two, pseudo two and three-
dimensional instabilities found in test cases from the literature in the following
subsections. Each problem will be written using a nomenclature similar to that of
section 2. This is done in order to create some coherence between different verification
tests. The shooting method employed here to generate the results used in the following
figures was coded within the software Mathematica (Wolfram 2003). This code uses the
built-in function NDSolve to numerically simulate the ordinary differential equations
in the differential eigenvalue problems as initial value problems instead of boundary
value ones. In its default method option Automatic, it uses variable marching steps
and switches between different schemes, with different numerical stability and accuracy
orders, in order to guarantee either absolute or relative errors requested through
the control parameter WorkingPrecision. The eigenvalues and additional initial
condition constants, created when transforming the boundary value problem into an
initial value one, are obtained in order to satisfy the boundary conditions ignored in
this transformation. This search is performed with the built-in function FindRoot,
using Newton’s method with a numerical Jacobian obtained by finite differences. The
iteration stopping criterion is controlled by another WorkingPrecision parameter.
Grid convergence is performed by increasing the value assigned to WorkingPrecision
until the desired number of converged digits is achieved. More specific details about the
general shooting method used here can be found in the papers by Alves et al. (2008),
Kelly & Alves (2008) and Hirata et al. (2015).
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3.1. Two-Dimensional Branch Point Singularities

The first test case reproduces the two-dimensional (β = 0) branch point calculations
reported by Huerre & Monkewitz (1985) for the planar mixing layer. This is the shear
flow created when two parallel isothermal streams with different velocities meet after the
end of the thin splitter plate separating them. Such a process generates an inflectional
base state that is subject to an inviscid instability. It is convectively unstable when both
streams flow in the same direction, but it becomes absolutely unstable when a sufficient
amount of reverse flow is imposed. The local base state is defined on an infinite domain
and described by the family of profiles given by

Ub(z) = 1 +R tanh
[
z
2

]
, (3.1)

where R is defined as the ratio between the difference and the sum of the velocities
of both streams and Ub(z) is the base flow streamwise velocity component. The direct
differential eigenvalue problem, written in the form of Eq. (2.3) for the linear and modal
pressure disturbance eigenfunction Pn(z), is given by

LPn = 0 with L = D2 +
2α (DUb)

ω − αUb
D − α2 , (3.2)

which is subject to the asymptotic boundary conditions

Pn(z → −∞) = c1 e
α z and Pn(z → +∞) = c2 e

−α z , (3.3)

where Eq. (3.2) is marched from the left (right) side of the domain to the centre of the
mixing layer using initial conditions obtained from the left (right) boundary condition
in Eq. (3.3), where infinity is a high enough value of z to yield a negligible base state
first derivative. This yields normalised solutions P̃l(z) = Pn(z)/c1 and P̃r(z) = Pn(z)/c2,
respectively. The Newton-type root finding method can then solve the Wronskian

fn(α , ω) = P̃l(0) (DP̃r(0))− P̃r(0) (DP̃l(0)) = 0 , (3.4)

avoiding the need to find constants c1 and c2.
Taking the derivative of Eq. (3.2) with respect to α while noting that ∂Ub/∂α = 0

since ∂R/∂α = 0, leads to re-writing the auxiliary problem in Eq. (2.8) as

LPα = Sα = −LαPn with Lα =

(
ω − α ∂ω

∂α

)
2 (DUb)

(ω − αUb)2
D − 2α , (3.5)

where Pα(z) = ∂Pn/∂α is defined as an additional eigenfunction. This equation is subject
to asymptotic boundary conditions

Pα(z → −∞) =

(
c3 + c1

(
z − 1

2α

))
e+α z and

Pα(z → +∞) =

(
c4 − c2

(
z +

1

2α

))
e−α z , (3.6)

which can be further simplified by choosing c3 = c1/(2α) and c4 = c2/(2α), yielding the
same boundary conditions one would obtain by taking the derivative of Eq. (3.3) with
respect to α while neglecting the dependence of c1 and c2 on α. This is possible because
Eq. (3.5) is solved with the same procedure used to solve Eq. (3.2), where the constants
disappear from the procedure by solving for the normalised solutions P̄l(z) = Pα(z)/c1
and P̄r(z) = Pα(z)/c2 instead. The new Wronskian

fα(α , ω) = P̄l(0) (DP̄r(0))− P̄r(0) (DP̄l(0)) = 0 , (3.7)
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Figure 2. Complex frequency (left) and wavenumber (right) at the branch point as functions
of the velocity ratio. Solid lines show current procedure and symbols show a few branch points
extracted from Huerre & Monkewitz (1985).
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Figure 3. Complex streamwise wavenumber plane (left) and real group velocity (right) as
functions of the velocity ratio for the planar mixing layer. Symbols in both plots represent the
same modes at their respective velocity ratio.

can now be solved with Eq. (3.4) by a Newton-type root finding method to produce the
two complex eigenfunctions Pn(z) and Pα(z) as well as two complex eigenvalues.

The latter two can in fact be any two complex scalars, or four real scalars. For instance,
one can search for the branch point Re[α0], Im[α0], Re[ω0] and Im[ω0] for a prescribed
value of R. Figure 2 presents a comparison between these branch points calculated with
the present methodology and the ones obtained by Huerre & Monkewitz (1985) using
path D2 in Fig. 1, which were extracted from Figs. 5 and 6 of their paper. An excellent
agreement can be observed. One can also search for the parametric condition R0 at the
linear onset of absolute instability instead by prescribing Im[ω0] = 0 and calculating
Re[α0], Im[α0], Re[ω0] and R0. It yields R0 = 1.3156935913 and Re[ω0] = 0.1921122457.
These results have an absolute error of O(10−10) and agree well with the values R0 =
1.315 and Re[ω0] = 0.192 reported by Huerre & Monkewitz (1985).

Although this validation confirms that the branch point singularities calculated here
satisfy causality, a collision check is also performed and shown on the left plot of Fig. 3.
The symbols on each spatial branch involved in the collision indicate the location of
the modes with a real group velocity, which is shown on the right plot of Fig. 3 as
functions of R. Re[α], Im[α], Re[ω] and Re[∂ω/∂α] are the four scalars searched for using
this methodology, while imposing Im[ω] = 0 and Im[∂ω/∂α] = 0 as well as prescribing
R. There are no more modes with these characteristics beyond the branch point, since
Im[ω] = 0 is no longer true but Im[ω] > 0 instead. This plot clearly demonstrates that
the colliding spatial modes in these branches do propagate in opposite directions before
the branch point is reached, which is actually true for all modes in these branches.
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Finally, it is possible to re-write Eq. (3.2) in the form of Eq. (2.20) with s = 0 using
operator P = −1/(ω − αUb)

2, which satisfies the symmetry condition PL = (PL)T .
Hence, the solvability condition defined in Eq. (2.18) for this problem becomes∫ +∞

−∞

{
2αP 2

n

(ω − αUb)2
−
(
ω − α ∂ω

∂α

)
2 (DUb)Pn (DPn)

(ω − αUb)4

}
dz = 0 . (3.8)

Re-writing Eq. (3.8) to calculate the group velocity at R = 1, according to Eq, (2.21),
yields a value of O(10−10), which is the same order of magnitude of the eigenvalue
absolute error, confirming that the branch point calculated at R = 1 is indeed correct.

3.2. Pseudo Two-Dimensional Branch Point Singularities

The second test case reproduces the pseudo two-dimensional (Re[β] 6= 0 but Im[β] = 0)
absolute instability for a rotating disk from Lingwood (1995). This is the boundary layer
flow formed on top of an infinitely wide disk as it rotates. The base state feeding the
linear instability has two approximately parallel velocity components. It is an inflectional
three-dimensional boundary layer, which is susceptible to an inviscid crossflow instability,
similar to a swept wing. Convective instability occurs near the centerline whereas absolute
instability occurs sufficiently far from it. This local base state is defined on a semi-infinite
domain and obtained from the boundary layer equations

DPb +WbDWb −D2Wb = 0 and 2Ub Vb +WbDVb −DVb = 0 ,

U2
b +DUbWb − V 2

b −D2Ub = 0 , 2Ub +DWb = 0 , (3.9)

for the streamwise, spanwise and transverse velocity components Ub(z), Vb(z) and Wb(z),
respectively, as well as pressure Pb(z), discussed in Schlichting (1986) and subject to
boundary conditions

Ub(0) = Wb(0) = Pb(0) = 0 , Vb(0) = 1 and Ub(∞) = Vb(∞) = 0 , (3.10)

where the Reynolds number Re is a control parameter built into the dimensionless
variables. The direct differential eigenvalue problem, written in the form of Eq. (2.3)
for the linear, modal and inviscid vertical velocity eigenfunction wn(z), is given by

Lwn = 0 with L =
(
αUb + β̄ Vb − ω

)(
D2 − k2

)
−
(
αD2Ub + β̄ D2Vb

)
, (3.11)

where k2 = α2 + β̄2 and β̄ = β/Re is the normalised pseudo spanwise wavenumber, which
acts as the sole control parameter. It is subject to boundary conditions

wn(z = 0) = 0 and wn(z →∞) = c2 e
−
√
α2+β̄2 z , (3.12)

where Eq. (3.11) is marched from infinity to the disk wall using initial conditions obtained
from the right boundary condition in Eq. (3.12). In numerical terms, infinity is a high
enough value of z where the base state second derivatives are negligible. The Newton-type
root finding method can then be used to find a solution that satisfies

fn(α , ω) = w̃n(z = 0) = 0 , (3.13)

which is the normalised version of the left boundary condition in Eq. (3.12) for the
normalised disturbance w̃n(z) = wn(z)/c2, avoiding the need to find constant c2.

Taking the derivative of Eq. (3.11) with respect to α, while noting that ∂Ub/∂α = 0,
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Figure 4. Complex frequency (left) and wavenumber (right) at the branch point as functions
of the modified spanwise wavenumber. Solid lines show current procedure and symbols show a
few branch points extracted from Lingwood (1995).

∂Vb/∂α = 0 and ∂β̄/∂α = 0, leads to the auxiliary differential eigenvalue problem

Lwα = Sα = −Lαwn with

Lα = k2 ∂ω

∂α
+ 2αω −

(
3α2 + β̄2

)
Ub −D2Ub − 2α β̄ Vb −

(
∂ω

∂α
− Ub

)
D2 , (3.14)

where wα(z) = ∂wn/∂α is defined as an additional eigenfunction. This equation is subject
to boundary conditions

wα(z = 0) = 0 and

wα(z →∞) =

(
c4 − α c2

(
1

2
(
α2 + β̄2

) +
z√

α2 + β̄2

))
e−
√
α2+β̄2 z , (3.15)

which can be further simplified by choosing c4 = α c2/(2(α2 + β̄2)), yielding the same
boundary conditions one would obtain by taking the derivative of Eq. (3.11) with respect
to α while neglecting the dependence of c2 on α. Once again, this is possible because
Eqs. (3.14) and (3.15) are also an eigenvalue problem, which is undetermined up to a
constant. The Newton-type method now finds a solution that satisfies Eq. (3.13) and

fα(α , ω) = w̄α(z = 0) = 0 , (3.16)

which is the normalised left boundary condition in (3.15) for the normalised disturbance
w̄α(z) = wα(z)/c2. This shooting method produces the two complex eigenfunctions w̄n(z)
and w̄α(z) as well as two complex eigenvalues, or four arbitrary real scalars.

Selecting Re[α0], Im[α0], Re[ω0] and Im[ω0] as the four scalars enables this methodology
to search for branch points at prescribed values of β̄. Figure 4 compares them with the
ones obtained by Lingwood (1995) using path D2 in Fig. 1, which were extracted from
Fig. 4 of their paper. The agreement is good in most cases but less so for Im[ω0], which
is most likely due to the poor quality of the scanned paper available online. This can be
confirmed by a quantitative comparison of the branch point at β̄0 = 0.126, which yields
ω0 = −0.0261664452 + 0.0133000530 i and α0 = 0.2655922101 − 0.0669389400 i with an
absolute error of O(10−11). These numbers agree well with the results ω0 = −0.0262 +
0.0133 i and α0 = 0.266 − 0.0670 i reported by Lingwood (1995). Imposing Im[ω0] = 0
and searching for β̄ instead reveals that the onset of absolute instability occurs at β̄0 =
0.26514812331, Re[ω0] = −0.06982182860 and α0 = 0.33786742527 − 0.05817350830 i
with the same absolute error. These numbers agree well with the values β̄0 = 0.265,
Re[ω0] = −0.0698 and α0 = 0.338− 0.0582 i, also reported by Lingwood (1995).

Once again, it is important to verify the collision criterion in order to demonstrate
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Figure 5. Complex streamwise wavenumber plane (left) and real group velocity (right) as
functions of the normalised spanwise wavenumber for the rotating disk. Symbols in both plots
represent the same modes at their respective normalised spanwise wavenumber.

causality and show its relation to the group velocity. Figure 5 shows the collision check
within the convectively unstable region up to the onset of absolute instability on the left
plot, where the symbols indicate the location of the mode with a real group velocity on
each spatial branch involved in the collision. These same symbols are also shown on the
right plot of the same figure, which presents their real group velocity as a function of the
normalised spanwise wavenumber. They were calculated by selecting Re[α], Im[α], Re[ω]
and Re[∂ω/∂α] as the four scalars searched for using this methodology, while imposing
Im[ω] = 0 and Im[∂ω/∂α] = 0 as well as prescribing β̄. This is the reason why no more
modes with these characteristics can be included beyond the branch point singularity,
since Im[ω] = 0 is no longer true but Im[ω] > 0 instead. Once again, these modes in
their respective colliding spatial branches do propagate in opposite directions before the
branch point is reached.

Finally, it is possible to re-write Eq. (3.11) in the form of Eq. (2.20) with s = 0 using
operator P = 1/(ω− αUb − β̄ Vb), which satisfies the symmetry condition PL = (PL)T .
Hence, the solvability condition in Eq. (2.18) for this problem becomes∫ ∞

0

{(
∂ω

∂α
− Ub

)
wnD

2wn
ω − αUb − β̄ Vb

−
(
k2 ∂ω

∂α
+ 2αω

−
(
3α2 + β̄2

)
Ub −D2Ub − 2α β̄ Vb

)
w2
n

ω − αUb − β̄ Vb

}
dz = 0 . (3.17)

Following Eq. (2.21), the group velocity at β̄ = 0.126 is extracted from Eq. (3.17) to
yield a value of O(10−6), which is five orders of magnitude higher than the eigenvalue
absolute error. This integrand decays slowly and, hence, its non-negligible contributions
extend far into the z domain. Error cumulates because it becomes increasingly difficult
to generate accurate base flow solutions for such large z values.

3.3. Three-Dimensional Branch Point Singularities

The third test case is the three-dimensional (α 6= 0 and β 6= 0) absolute instability of
the heated flow in a saturated homogeneous porous medium reported by Brevdo (2009).
This is the flow generated by an inclined temperature gradient and a vertical through-
flow. The base state has a non-parallel but still local two-component velocity field and
a non-local two-dimensional temperature profile. This forced base flow convection can
be superposed with natural convection due to buoyancy driven instabilities, which can
be either convective or absolute, depending on a non-trivial combination of the three
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governing parameter values. Its local base state is given by

Ub(z) = Rh z , Vb(z) = 0 , Wb(z) = Qv and (3.18)

Tb(z) =
R2
h

2Qv

(
z2 +

2 z

Qv
− 1

4

)
− Q2

v Rv +R2
h

2Q2
v sinh[Qv/2]

(
eQvz − cosh[Qv/2]

)
−Rh x ,

for the streamwise, spanwise and transverse velocity components Ub(z), Vb(z) and Wb(z),
respectively, as well as temperature Tb(z), defined on the finite domain −1/2 6 z 6 +1/2.
Rv, Rh and Qv are the vertical and horizontal Rayleigh numbers and Péclet number,
respectively. The direct differential eigenvalue problem, written in the form of Eq. (2.3)
for the linear and modal transverse velocity eigenfunction wn(z), is given by

Lwn = 0 with L = D4 −QvD3 −
(
2 k2 − i (ω − αUb)

)
D2 +

(
Qv k

2 − i αRh
)
D

+ k2
(
k2 − i (ω − αUb) +DTb

)
, (3.19)

where k2 = α2 + β2 and the x dependence of the base flow temperature is omitted, i.e.
Tb(z) is used instead of Tb(x, z), since only a derivative of Tb with respect to z appears
in Eq. (3.19). This equation is subject to boundary conditions

wn(z = ±1/2) = D2wn(z = ±1/2) = 0 , (3.20)

and marched from z = −1/2 to +1/2 using as initial conditions the boundary conditions
at z = −1/2 in Eq. (3.20), in addition to

Dwn(z = −1/2) = c1 and D3wn(z = −1/2) = c2 , (3.21)

where c1 and c2 are unknown complex constants. The Newton-type root finding method
can then be used to find a solution that satisfies

fn(α , β , ω) =
{
w̃n(z = +/2) , D2w̃n(z = +1/2)

}
= 0 , (3.22)

which is the normalised version of the boundary conditions at z = +1/2 in Eq. (3.20)
for the normalised disturbance w̃n(z) = wn(z)/c2, avoiding the need to find constant
c2. Contrary to the previous two test cases, fn(α, β, ω) = 0 represents two complex
equations for a single complex eigenvector, namely wn(z), but two complex eigenvalues.
In this particular case, c1 is also an eigenvalue and it must be obtained. Hence, this allows
the search for only one physically meaningful complex eigenvalue, or two real scalars.

Taking the derivative of Eq. (3.19) with respect to α, while noting that ∂Ub/∂α =
∂Tb/∂α = 0 and ∂Rh/∂α = ∂Rv/∂α = ∂Qv/∂α = 0, leads to the auxiliary problem

Lwα = Sα = −Lαwn with

Lα = 2α
(
2 k2 − i (ω − αUb) +DTb

)
− i k2

(
dω

dα
− Ub

)
+ (2Qv α− i Rh)D −

(
4α− i

(
dω

dα
− Ub

))
D2 , (3.23)

where wα(z) = ∂wn/∂α is defined as an additional eigenfunction. This equation is subject
to boundary conditions

wα(z = ±1/2) = D2wα(z = ±1/2) = 0 , (3.24)

obtained by taking the derivative of Eq. (3.20) with respect to α. In order to transform
Eqs. (3.23) to (3.24) into an initial value problem, the additional initial conditions

Dwα(z = −1/2) = c3 and D3wα(z = −1/2) = c4 , (3.25)



Linear Absolute Instabilities from Differential Eigenvalue Problems 17

are employed, as done with Eq. (3.21), where c3 and c4 are unknown complex constants.
The root finding method employed previously now must solve Eq. (3.22) and

fα(α , β , ω) =
{
w̃α(z = +/2) , D2w̃α(z = +1/2)

}
= 0 , (3.26)

which is the normalised version of the boundary conditions at z = +1/2 in Eq. (3.24)
for the normalised disturbance w̃α(z) = wα(z)/c4, avoiding the need to find constant c4.
Equations (3.22) and (3.26) yield four complex equations for two complex eigenvectors,
namely wn(z) and wα(z), as well as four complex eigenvalues. Now, c1 and c3 are
also eigenvalues and must be obtained. Hence, this allows the search for two physically
meaningful complex eigenvalues, or four real scalars.

Up to this point, one can use the above equations to solve either a two-dimensional
or a pseudo two-dimensional linear and local stability problem by prescribing β = 0
or Re[β] 6= 0 and Im[β] = 0, respectively. In order to solve a three-dimensional stability
problem instead, the value of β must not be prescribed a priori but obtained as a solution
as well. Hence, an additional auxiliary equation is required. Taking the derivative of
Eq. (3.19) with respect to β, while noting that ∂Ub/∂β = ∂Tb/∂β = 0 and ∂Rh/∂β =
∂Rv/∂β = ∂Qv/∂β = 0, leads to additional auxiliary differential eigenvalue problem

Lwβ = Sβ = −Lβ wn with (3.27)

Lβ = 2β
(
2 k2 − i (ω − αUb) +DTb

)
− i k2 dω

dβ
+ 2Qv β D −

(
4β − i dω

dβ

)
D2 ,

where wβ(z) = ∂wn/∂β is defined as an additional eigenfunction. This equation is subject
to boundary conditions

wβ(z = ±1/2) = D2wβ(z = ±1/2) = 0 , (3.28)

obtained by taking the derivative of Eq. (3.20) with respect to β. In order to transform
Eqs. (3.27) to (3.28) into an initial value problem, the additional initial conditions

Dwβ(z = −1/2) = c5 and D3wβ(z = −1/2) = c6 , (3.29)

are employed, as done with Eqs. (3.21) and (3.25), where c5 and c6 are unknown complex
constants. The root finding method is now adapted to solve Eqs. (3.22), (3.26) and

fβ(α , β , ω) =
{
w̃α(z = +/2) , D2w̃β(z = +1/2)

}
= 0 , (3.30)

which is the normalised version of the boundary conditions at z = +1/2 in Eq. (3.28)
for the normalised disturbance w̃β(z) = wβ(z)/c6, avoiding the need to find constant c6.
Equations (3.22), (3.26) and (3.30) represent six complex equations for three complex
eigenvectors, namely wn(z), wα(z) and wβ(z), as well as six complex eigenvalues. In this
case, c1, c3 and c5 are also eigenvalues that must be obtained. Hence, this allows the
search for three physically meaningful complex eigenvalues, or six real scalars.

Figure 6 presents results at the onset of convective instability obtained by the current
procedure for different values of the Péclet and horizontal Rayleigh numbers, comparing
them with the results in Tabs. 1 and 3 from Brevdo (2009). Solid lines represent real
group velocities (left) and critical vertical Rayleigh numbers (right). The former was
obtained by selecting Re[α], Re[β], Re[ω], Rv, Re[∂ω/∂α] and Re[∂ω/∂β] as the six
real scalars provided by the method while imposing Im[α] = Im[β] = Im[ω] = 0 and
Im[∂ω/∂α] = Im[∂ω/∂β] = 0 for prescribed values of Rh and Qv. On the other hand,
the latter was obtained by selecting Re[α0], Im[α0], Re[β0], Re[β0], Re[ω] and Rv as
the six real scalars provided by the method while imposing Im[ω0] = 0 and ∂ω/∂α =
∂ω/∂β = 0 for prescribed values of Rh and Qv. Brevdo (2009) calculates the onset of
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Figure 6. Real group velocity (left) and vertical Rayleigh number (right) at the branch point
as functions of the Péclet number (left and right) or horizontal Rayleigh number (right). Cases
whereQvRh = 0 satisfy causality. Re[∂ω/∂β] = 0 for all cases. Solid lines show current procedure
and symbols show a few data points taken from Brevdo (2009).

convective instability using path D1 in Fig. 1 and then evaluates the group velocity at
these conditions in order to check if they might represent an onset of absolute instability
as well. The former figure confirms his finding that the onset of convective and absolute
instability only coincide when QvRh = 0, since the group velocity only goes to zero
when either Qv = 0 or Rh = 0. Critical vertical Rayleigh numbers for the onset of
absolute instability at these two limiting cases are shown in the right figure, agreeing
with his calculations where the onset of convective and absolute instability coincide.
These numbers at Qv = 8 and Rh = 0 as well as Qv = 0 and Rh = 60 are Rh =
114.832605711515 and 124.4728454361939, respectively obtained with as absolute error
of O(10−12). They are in quantitative agreement with the values Rh = 114.84 and 124.48
reported by Brevdo (2009) at the same parametric conditions. It is worth pointing out
that the current procedure was also used to calculate the two-dimensional (β = 0) onset
of absolute instability for this problem. Although these results are not shown here, they
agree with Brevdo & Ruderman (2009), showing that both convective and absolute onsets
of instability coincide even when QvRh 6= 0.

In order to provide evidence that the branch points calculated satisfy causality, a
collision check was performed for a few arbitrarily chosen parametric conditions. One of
them, where Qv = 0 and Rh = 40, is shown in Fig. 7 (left) as a function of Rv for both
streamwise (top) and transversal (bottom) complex wavenumber planes. The former is
plotted at β = β0 = 3.215215718763 whereas the latter is plotted at α = α0 = 0, which
is the branch point for Rv = 78.96639607652. Once again, these results were obtained
with an absolute error of O(10−12). Symbols indicate the modes within each branch
that have a real group velocity, which is shown in Fig. 7 (right). Top and bottom real
group velocities shown are obtained by pseudo two-dimensional calculations imposing
β = β0 and α = α0, respectively. Brevdo (2009) reported zero group velocities at α0 = 0,
β0 = 3.22 and Rv = 78.967, in agreement with the present results. This figure indicates
a collision between branches with opposite group velocities coming from opposite sides
of the complex plane for both streamwise and transversal wavenumbers, confirming that
the branch point singularity satisfies causality according to Brevdo (1991).

Finally, solvability conditions are evaluated for this test case. Unfortunately, it is not
possible to define an operator P that allows the linear and homogeneous operator in
Eq. (3.19) to satisfy Eq. (2.20), i.e. PL 6= (PL)T . Hence, the classical adjoint based
solvability conditions defined in Eqs. (2.13) and (2.14) must be used instead of Eqs. (2.18)
and (2.19), which are modified solvability conditions defined for symmetric operators. An
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Figure 7. Complex (top) streamwise and (bottom) transverse (left) wavenumber planes as well
as (top) streamwise and (bottom) transversal (right) real group velocities as functions of the
vertical Rayleigh number for the porous medium problem with Qv = 0 and Rh = 40. Symbols
in all plots represent the same modes at their respective vertical Rayleigh number.

adjoint problem of Eq. (3.19), based on Eq. (2.12), can be written as

L∗ w+
n = 0 with L∗ = D4 +QvD

3 −
(
2 k̄2 + i (ω̄ − ᾱ Ub)

)
D2 −

(
Qv k̄

2 − i ᾱ Rh
)
D

+ k̄2
(
k̄2 + i (ω̄ − ᾱ Ub) +DTb

)
, (3.31)

when subject to boundary conditions

w+
n (z = ±1/2) =

(
D2 +QvD

)
w+
n (z = ±1/2) = 0 , (3.32)

allowing w+
n to be an adjoint of wn. The classical solvability conditions then become∫ +1/2

−1/2

{(
4α− i

(
dω

dα
− Ub

))
D2wn − (2Qv α− i Rh)Dwn (3.33)

−
(

2α
(
2 k2 − i (ω − αUb) +DTb

)
− i k2

(
dω

dα
− Ub

))
wn

}
w̄+
n dz = 0 and

∫ +1/2

−1/2

{(
4β − i dω

dβ

)
D2wn − 2Qv β Dwn (3.34)

−
(

2β
(
2 k2 − i (ω − αUb) +DTb

)
− i k2 dω

dβ

)
wn

}
w̄+
n dz = 0 ,

respectively. Based on Eqs. (2.15) and (2.16), the above equations can be re-written to
provide formulas for their respective group velocities. They yield values of O(10−12) at
Qv = 0 and Rh = 40, which is the same order of magnitude of the eigenvalue absolute
error. This confirms that the branch point calculated at Qv = 0 and Rh = 40 is correct
and it does allow group velocity calculations for all modes in the colliding branches.
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3.4. Comparative Efficiency Evaluation

It is important to evaluate the efficiency of the present methodology relative to the
other traditional methods from the literature illustrated in Fig. 1. Such a comparison
is very often strongly problem dependent and usually has a high degree of subjectivity,
which arises from the fact that one can choose from a wide array of error tolerances,
numerical schemes, software libraries, computer hardwares and so on. Hence, definitive
answers are beyond the scope of this paper. It is possible, however, to provide some
reasonable efficiency estimates based on different metrics. They are provided in this
subsection for both two and three-dimensional absolute instabilities found in the third
test case of this paper, originally studied by Brevdo (2009).

Comparisons with path A from Fig. 1 are excluded from this study. Such comparisons
are not pertinent because the present methodology was developed for eigenvalue problems
whose eigenfunction dependence on the single inhomogeneous coordinate cannot be
written in a simple analytical form. In other words, the present methodology was
developed for differential eigenvalue problems. When this analytical dependence exists,
the auxiliary differential eigenvalue problems generated by this methodology naturally
reduce to the same auxiliary dispersion relations one would obtain through path A. This
is implied by the proof in section 2.4, but for the particular case where L is diagonal.

Matrix forming the direct differential eigenvalue problem, forcing its determinant to
be zero to generate the direct dispersion relation and taking its derivative with respect to
the wavenumbers to generate the auxiliary dispersion relations in order to locate branch
points, as illustrated by path B in Fig. 1, can be done in one of two ways: analytically
or numerically. Both were evaluated and the former is significantly less efficient than
the latter. Hence, only the latter will be shown here. Matrix forming of Eq. (3.19) was
achieved using series expansion wn(z) =

∑∞
m=1 w̄m ψm(z), which employs the normalized

basis function ψm(z) = −
√

2 sin[λm (z + 1/2)] and λm = mπ to satisfy all boundary
conditions in Eq. (3.20). Since these basis functions are orthogonal to each other, i.e.∫

+1/2

−1/2 ψm(z)ψn(z) dz = δm,n, where δm,n is the Kronecker delta, the unknown coefficients

in this orthogonal series expansion must satisfy w̄m =
∫

+1/2

−1/2 ψm(z)wn(z) dz. Hence, this
expansion can be substituted into Eq. (3.19), which is then multiplied by ψn(z) and
integrated over the domain size to yield the system of equations

∑∞
m=1Am,n w̄n = 0

for all positive n. Although all Am,n integral coefficients of matrix A can be obtained
analytically, only their numerical values are used when evaluating det[A]. Its derivatives
with respect to the wavenumbers are approximated with a first order finite difference
discretization, i.e. ∂ det[A]/∂α = (det[A(α + δα)] − det[A(α)])/δα + O(δα), where δα
can be made as small as necessary to satisfy the user prescribed error tolerances. The
same is true for ∂ det[A]/∂β and δβ when performing three-dimensional calculations. In
addition, the same Mathematica built-in root-finding solver FindRoot employed for the
new methodology was used here to solve the direct dispersion relation and these auxiliary
ones when searching for branch points.

A wide range of continuation techniques to search for branch points can be found in
the literature, all based on the numerical evaluation of the group velocity using frequency
and wavenumber data obtained from the eigenvalue problem. This data can be generated
by solving either algebraic eigenvalue problems with eigenvalue solvers or differential
eigenvalue problems with shooting methods, illustrated by paths C1 and C2 in Fig. 1,
respectively, which can be done in the context of an either temporal or spatial stability
analysis. This technique is usually expensive, since it relies on plotting group velocity
planes over a complex frequency (or wavenumber) space to find where it changes sign.
A much less expensive variation was developed by Suslov (2006), in which a numerical
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Figure 8. Branch point temporal growth rate absolute error versus mean computational time
required by the three different methods tested for (left) two and (right) three-dimensional
simulations of the problem studied by Brevdo (2009). Parametric conditions are (left) Rh = 30,
Qv = 4 and Rv = 122 as well as (right) Rh = 50, Qv = 5 and Rv = 134.

zero group velocity equation is used as an auxiliary differential eigenvalue problem to
be solved with the direct differential eigenvalue problem in the search for branch points.
The auxiliary problem employed here was based on the finite difference approximation
∂ω/∂α = (ω(α + δα) − ω(α))/δα + O(δα) = 0, where δα can be made as small as
necessary to satisfy the user prescribed error tolerances. An equivalent formula was used
for ∂ω/∂β when performing three-dimensional calculations. In order to further improve
the efficiency of this numerical group velocity calculation, the shooting method developed
to solve the direct differential eigenvalue problem for the new methodology was adapted
to provide the complex frequency for a prescribed real (or complex) wavenumber. This
efficiency comes from the fact that the eigenvalue spectra is not dense and good initial
guesses are available. The use of matrix forming and eigenvalue solvers instead does not
requires initial guesses but would provide a large number of eigenvalues, where only one
would be necessary for the calculation of these numerical group velocities. Furthermore,
the same root-finding solver FindRoot used for the new methodology was adapted to
search for branch points using the direct problem and these auxiliary ones.

Branch point temporal growth rates were obtained using the new method and these
two representative methods from paths B and C2. Two-dimensional oscillatory transverse
modes (β0 = 0) were obtained for Rh = 30, Qv = 4 and Rv = 122 using as initial guesses
for their respective branch point searches Re[α0] = 5.5, Im[α0] = −3.3, Re[ω0] = 3.39 and
Im[ω0] = 0.0. On the other hand, three-dimensional stationary longitudinal modes were
obtained for Rh = 50, Qv = 5 and Rv = 134 using as initial guesses Re[α0] = 0.0,
Im[α0] = −0.6, Re[β0] = 4.0, Im[β0] = 0.0, Re[ω0] = 0.0 and Im[ω0] = 0.0. All
methods generated the same branch point in each case, which cross-verified their own
results. Their respective absolute errors were estimated using the most accurate solution
obtained from each method. All error control parameters for each method, e.g. both
WorkingPrecision in the new method as well as δα and δβ in the two representative
methods from paths B and C2, were carefully adjusted so each target error tolerance was
achieved within the smallest possible computational time. Mean computational times
were generated by averaging data from 20 simulations at each parametric condition.
Percentage standard deviations for the new method and the presentative methods from
paths B and C2 respectively remained between [0.19 , 2.07], [0.19 , 10.2] and [0.59 , 4.10]
for the two-dimensional case and [1.65 , 8.15], [0.27 , 9.40] and [1.31 , 3.56] for the three-
dimensional one, with the smallest (largest) values at the largest (smallest) times. These
results are shown in Fig. (8) for both (left) two and (right) three-dimensional branch
points. Branch point frequency, wavenumber and spatial growth rate absolute errors
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have the same trends and, hence, are not shown. As expected, the path B method
is the least efficient one when accurate solutions are sought. However, it is the most
efficient one to provide very low/low accuracy estimations. It was in fact also used for
this very purpose by Brevdo (1995), Carrière & Monkewitz (1999) and Hirata et al.
(2015). The representative path C2 method and the new method can provide equivalent
low/medium to high accuracy solutions, but the former is approximately one order
of magnitude slower than the latter for any given target error tolerance in both two
and three-dimensional problems. Furthermore, the efficiency loss when searching for
singularities in three-dimensional problems instead of two-dimensional ones is much
higher for the representative path C2 method than for the new method. For instance,
the mean computational time required to reach a solution with 10−5 (10−10) absolute
error is 133% (110%) higher for the former but only 41.6% (58.6%) higher for the latter.
Hence, enforcing the zero group velocity conditions implicitly through auxiliary equations
derived from the eigenvalue problem, as the new method does for differential eigenvalue
problems and path A methods traditionally do for dispersion relations, leads to a more
efficient methodology than explicitly using the zero velocity conditions themselves as
auxiliary equations, as the representative path C2 method does. This result also provides
indirect evidence that solving Eq. (2.3) with Eqs. (2.8) and (2.9) should be a lot more
efficient than doing so explicitly using group velocities obtained from Eqs. (2.15) and
(2.16) or even with Eqs. (2.21) and (2.22).

Branch point detection through direct collision checks, as illustrated in paths D from
Fig. 1, is arguably the most inefficient procedure and, hence, was not included in the
above efficiency comparison analysis. It should only be used to prove causality, not to
search for branch point singularities. This inefficiency, however, can be demonstrated
using operation counts in two and three-dimensional branch point calculations for a
single control parameter set based on the new methodology as well as a direct collision
check. The latter can be performed by solving for α using Eq. (2.3) at N values of
Re[ω] and another N values of Im[ω]. Assuming the number of iterations required by
the shooting method for each solve is O(n), the total number of iterations in a collision
check would be O(n × N2). On the other hand, the former solves the coupled system
given by Eqs. (2.3) and (2.8) for α and ω with the same shooting method, which requires
approximately O(2×n) iterations. Extending this reasoning to three-dimensional branch
point calculations, the total number of iterations would become O(2 × n2 × N2) and
O(3 × n), respectively. If one assumes n = N = 10 for the sake of simplicity, the new
method would require two and three orders of magnitude less iterations than the collision
check for two and three-dimensional branch points calculations, respectively. Since N �
n, usually, this cost difference can be much higher.

4. Conclusions

The theoretical concepts related to convective and absolute instabilities of local or
nearly local base flows have been known for several decades. However, the numerical
costs associated with the different methods used to identify branch point singularities in
differential eigenvalue problems makes this analysis still quite cumbersome when these
problems take the form of ordinary differential equations. What is known about these
costs (see, for instance, Suslov 2006) can be summarized as follows:

(i) A direct causality proof requires deforming the integrations contours that define
the linear impulse response into a steepest descent path that contains the branch point
singularity. However, deforming these integration lines for wave packets that propagate
in one direction (named here a two-dimensional problem) is quite expensive. Doing so
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for integration surfaces when the wave packet propagates in two directions (named here
three-dimensional problem) is essentially prohibitive.

(ii) The first popular alternative that was proposed early on, to search for branch point
singularities and demonstrate causality, is known as the collision criterion. The most
common version graphically verifies that saddle points in a complex wavenumber plane
are formed by the collision between downstream and upstream propagating branches
that came from opposite sides of this complex plane. This graphical verification can be
performed on a complex frequency plane as well, but one observes the formation of cusp
points instead. Either approach is feasible, although still expensive, for two-dimensional
problems. However, extensions to three-dimensional problems are still prohibitive.

(iii) When the eigenfunction dependence on the single inhomogeneous coordinate has
an analytical form, the differential eigenvalue problem reduces to a dispersion relation,
which represents an algebraic relationship between the eigenvalues. Under this scenario,
it is straightforward to take derivatives of the dispersion relation with respect to the
wavenumbers, apply the zero group velocity conditions and generate auxiliary dispersion
relations. Solving these coupled direct and auxiliary dispersion relations with root-finding
methods enables one to efficiently search for branch point singularities under a wide range
of parametric conditions. Once these branch points are known, the collision criterion can
be applied more efficiently to verify causality. In order to further minimize computational
times, this is done only for a small parametric sample size, made large enough to generate
sufficient confidence that the entire set satisfies causality. Both two and three-dimensional
problems can be efficiently solved using this methotolody.

(iv) However, the eigenfunction dependence on the single inhomogeneous coordinate
does not have an analytical form in general. In these cases, the resulting eigenvalue
problem remains an ordinary differential equation and the eigenfunction must be obtained
numerically. Two alternative methods are then commonly used:

(a) Matrix forming is applied to the differential eigenvalue problem, usually based
on a spectral method, transforming it into an algebraic eigenvalue problem. Its
determinant must be zero for nontrivial solutions to exist, leading to a dispersion
relation. This algebraic equation, however, is much more complex than before since
the matrix formed is significantly less sparse. Hence, taking its derivatives with
respect to the wavenumbers and applying the zero group velocity conditions to
generate auxiliary dispersion relations is a much more computationally intensive
task. As a consequence, grid convergence often becomes an issue that prevents two
and three-dimensional absolute instabilities from being investigated, although low
accuracy low dimensional approximations are commonly used.
(b) One two-dimensional branch point singularity is found and causality is proved,
usually using the collision criterion. Then continuation techniques are employed to
both search for additional singularities over the parametric space and extend this
search towards three-dimensional singularities. This technique calculates temporal
growth rates in a reference frame moving with the wave packet group velocities. If
these velocities at the marginal stability conditions have the same sign, the flow
is convectively unstable. Otherwise it is absolutely unstable. Such a procedure
requires lab reference frame temporal growth rates and their respective group
velocities within a large complex wavenumber set, making them expensive. Further-
more, it can only capture singularities connected by continuity. A significantly more
efficient version of this procedure equates the numerically obtained group velocities
to zero and uses these equations as auxiliary differential eigenvalue problems.
Since these auxiliary problems are only satisfied at branch point singularities,
root-finding procedures can be employed to automatically search for these points.
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In the vast majority of cases, however, this procedure has been applied only to
two-dimensional problems.

For the reasons discussed above, a determination of the convective/absolute nature
of a linear stability problem defined by one or more ordinary differential equations, i.e.
differential eigenvalue problems, has been restricted to two or pseudo-two dimensional
disturbances in most cases. On the other hand, a few recent studies have shown that
three dimensional disturbances can behave quite differently than their two and pseudo-
two dimensional counterparts and, hence, must be investigated as well. A solution to this
problem was presented here with the theoretical development of a new method using
sensitivity analysis through the following steps:

(i) The derivative of the differential eigenvalue problem with respect to each wave-
number generates auxiliary differential eigenvalue problems that model its sensitivity
with respect to these wavenumbers.

(ii) Allowing the frequency derivatives with respect to the wavenumbers that appear
in these auxiliary differential eigenvalue problems to be zero couples these differential
eigenvalue problems at branch points.

(iii) Recognizing that each differential eigenvalue problem yields one complex eigen-
function allows one to define the eigenfunction derivatives with respect to the wave-
numbers as unknown eigenfunctions themselves. Hence, the direct differential eigenvalue
problem and (one) two auxiliary differential eigenvalue problems can be used to solve for
(two) three eigenfunctions associated with (two) three-dimensional branch points.

(iv) Recognizing the fact that each differential eigenvalue problem also yields one
complex eigenvalue allows the original differential eigenvalue problem and (one) two
auxiliary differential eigenvalue problems to yield the coupled frequency and (one) two
wavenumbers associated with (two) three-dimensional branch points.

(v) The auxiliary differential eigenvalue problems were proven to be the differential
counterparts of the algebraic auxiliary dispersion relations.

(vi) Since the auxiliary differential eigenvalue problems are inhomogeneous boundary
value problems, solvability conditions can be invoked to guarantee solution existence.
They can be re-written as explicit integral formulas for the group velocities.
(vii) When the linear and homogeneous operator of the differential eigenvalue problem

can be written in symmetrical form, the adjoint eigenfunction in the solvability condition
can be replaced by the complex conjugate of the direct eigenfunction, eliminating the
need to solve the adjoint problem when calculating the group velocities.

Numerical simulations of three different differential eigenvalue problems to search for
two, pseudo two and three-dimensional branch points led to the following discoveries:

(i) When coupled with the auxiliary differential eigenvalue problems, the differential
eigenvalue problem solution provides two, pseudo two and three-dimensional branch point
singularities with user prescribed accuracy.

(ii) It is not yet clear how these coupled differential eigenvalue problems can be solved
using matrix forming and eigenvalue solvers. Hence, shooting methods are required.

(iii) Excluding the original proof of causality, which requires deforming integration
contours to pass through branch point singularities, collision checks are arguably the
most inefficient way of searching for two and three-dimensional singularities.

(iv) Matrix forming the differential eigenvalue problem, forcing the resulting matrix
determinant to be zero to generate a dispersion relation and taking its derivative with
respect to the wavenumbers to generate the auxiliary dispersion relations is arguably the
second most inefficient way of searching for branch point singularities when low/medium
to high accuracy is desired. It is only efficient when very low/low accuracy is sufficient.

(v) The new method proposed here appears to be one order of magnitude faster than
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continuation methods based on numerical group velocity calculations, approximately,
independent of the user prescribed error tolerance.

(vi) The new method proposed here appears to lose less efficiency than continuation
methods based on numerical group velocity calculations when the search for branch point
singularities is extended from two to three-dimensional problems.
(vii) The last two conclusions imply that enforcing the zero group velocity conditions

through auxiliary differential eigenvalue problems, akin to what is done when using
auxiliary dispersion relations, is more efficient than using these conditions themselves
as the auxiliary differential eigenvalue problems.
(viii) The new method proposed here appears to be the most efficient procedure to

search for two and three-dimensional branch point singularities whenever low/medium
to high accuracy is desired.

Future work aims at further exploring the use of sensitivity analysis on differential
eigenvalue problems in order to pursue both base flow and flow geometry optimization
as well as the identification of wave makers. Furthermore, the authors are still trying to
find a way to solve the coupled differential eigenvalue problems using matrix forming and
eigenvalue solvers, as opposed to shooting methods. Doing so will greatly facilitate the
identification of absolute instabilities in steady and local two-dimensional base flows.
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