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Abstract

The rise of machine-to-machine communications has rekindled the interest in random access protocols as a
support for a massive number of uncoordinatedly transmitting devices. The legacy ALOHA approach is developed
under a collision model, where slots containing collided packets are considered as waste. However, if the common
receiver (e.g., base station) is capable to store the collision slots and use them in a transmission recovery process
based on successive interference cancellation, the designspace for access protocols is radically expanded. We
present the paradigm ofcoded random access, in which the structure of the access protocol can be mapped to
a structure of an erasure-correcting code defined on graph. This opens the possibility to use coding theory and
tools for designing efficient random access protocols, offering markedly better performance than ALOHA. Several
instances of coded random access protocols are described, as well as a case study on how to upgrade a legacy
ALOHA system using the ideas of coded random access.

I. INTRODUCTION

We start with a deceptively simple question: When and why should we use random access? A concise
answer would be: Whenever there is an uncertainty about the set of users that aim to transmit at a given
instant. A canonical scenario falling in the above description is the one in which a set of uncoordinated
devices aims to transmit over the shared wireless medium to the same receiver at approximately the same
time, and the random access mechanisms are needed to break this “symmetry” and enable successful
access. As such, random access is an essential component of any distributed wireless communication
system, typically used for initial link establishment or distributed spectrum sharing among interfering
networks, such as two collocated WiFi hotspots. Presently,we are witnessing a revival of research
interest in random access mechanisms, driven by the increasing presence ofmachine-to-machine (M2M)
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communications in cellular and satellite networks. Efficient random access is instrumental in M2M
scenarios, due to the fact that there is a massive and uncoordinated set of transmitting devices.

ALOHA [1] is a rather generic form of random access, typically operating under the assumption
that collided packets are irrecoverably lost. Standard variants of the ALOHA protocol aim to maximize
the number of collision-free transmissions within a given time interval, i.e., to maximize the expected
throughput. In slotted ALOHA (SA) [1], link time is divided into equal-duration slots, and the devices
are slot-synchronized, contending for access on a slot basis with a predefined slot-access probability. A
related solution is framed slotted ALOHA (FSA) [2], where slots are organized into frames, and the users
transmit in a single, randomly chosen slot of the frame. In both variants, only the slots containing a single
transmission (singleton slots) are useful and the corresponding transmission is successfully received, while
the slots containing no transmission (idle slots) or multiple user transmissions (collision slots) are wasted.
The throughputT , defined as the probability of successfully receiving a usertransmission per slot, is
equal to the probability that a singleton slot occurs. The maximal asymptotic throughput in both variants
is a rather lowTmax = 1/e ≈ 0.37.

Recently there has been a conceptual shift in the theory and practice of slotted ALOHA protocol family,
based on the use of successive interference cancellation (SIC) that enables “unlocking” of the collisions
slots. Some of these advances apply SIC at slot level, in order to separate the collided signals and allow
multiple packets being received within a single slot, c.f. [3], which may be regarded as an instance of
multi-user detection (MUD). These access protocols, applied also to combat the hidden terminal problem
in carrier sensing multiple access (CSMA) systems [4], still rely on an instantaneous feedback from the
receiver, notifying the transmitters about unresolved collisions and initiating retransmissions. Other recent
advances consist of combining SA with physical layer network coding [5].

This work is dedicated to a conceptually different improvement, based on SIC across multiple slots [6].
The essence of these modifications is rather simple: active devices transmit replicas of the same packet in
multiple slots, while SIC is used on the receiving side to remove replicas of already recovered transmissions
from collision slots. Recovery and removal of replicas is performed in an iterative, i.e., successive manner,
where new iterations are propelled by the transmissions recovered in the previous round, as illustrated in
Fig. 1. The exploitation of the collision slots boosts the throughput – in a basic scenario where active
devices transmit two replicas in randomly selected slots ofa frame [6], the asymptotic throughput increases
to Tmax ≈ 0.55.1 The true potential of the SIC-enabled slotted ALOHA was revealed in [7], identifying
analogies with modern channel coding based on sparse graphsand establishing the paradigm ofcoded
random access. The objective of this paper is to introduce these new developments, identify the ways in
which they can be beneficial for M2M applications and highlight the important implementation issues.
The outlined concepts are applicable in all systems which exploit slotted ALOHA, e.g., in random access
channels of the cellular access and of the next generation interactive satellite services.

II. BASICS OFCODED RANDOM ACCESS

A. Access Scheme Description

We start by considering coded slotted aloha (CSA) in which the access is organized incontention
periods. Each contention period is a frame containingM slots of equal duration, whereM is fixed.
A set of N users uses contention periods to communicate with a Base Station (BS), which acts as a
common receiver. We are interested in the regime where the user population is large with respect to the
size of the contention periodN ≫ M , but only a subsetNa of the users is active in a given contention
period. A simple model to create the uncertainty in the set ofactive users can be described as follows. At
the beginning of a contention period each user independently generates a packet to be transmitted with

1One may argue that the comparison with standard FSA is unfair, as in FSA a user sends only one packet replica before receiving feedback
on the contention outcome. However, it should be noted that in standard FSA a user may also transmit multiple replicas in order to get the
data through, the difference is that the retransmission is initiated by the feedback.
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activation probabilitypa, wherepa ≪ 1. The number of active users in a contention periodNa is then a
binomially distributed random variable, with mean valueN̄a = paN .

The CSA scheme works as follows. Each active user generatesd packet replicas, where the repetition
rate d is drawn randomly according to a pre-determined probability distribution, which is the same for
all users. The repetition rate is picked by an active user independently of all other active users and
independently of all his previous choices. Thed replicas are then transmitted by the user overd slots
picked uniformly at random among theM slots of the contention period. Following the example of Fig. 1,
the users2 and3 picked a repetition rated = 2, while user1 did not replicate its packet, i.e., its repetition
rate isd = 1. A packet in a singleton slot is decoded correctly. Each packet is assumed to contain pointers
to describe the positions of the other replicas in the contention period sent by the same user2. The packet
is then re-encoded and re-modulated and the receiver removes its interference contribution from thed−1

slots containing the replicas. The process proceeds iteratively, i.e., recovered replicas may lead to solving
other collisions, as illustrated in Fig. 1.

The rate of the the CSA scheme is defined as

R =
1

d̄
(1)

where d̄ is the average number of replicas sent per user. Obviously, alower rate implies higher number
of repetitions and the use of more energy per useful bit. Thelogical load of the channel is defined as the
expected number of active users per slot,

G =
N̄a

M
= pa

N

M
, (2)

i.e., the logical load corresponds to the expected number ofnew packets generated during the contention
period. Thephysicalload of the channel, i.e., the expected number of all transmitted replicas, is given by
Gphy = G · d̄. In standard FSA there is only a single replicad = 1, thus the logical and physical loads
coincide.

B. Bipartite Graph Representation and Asymptotic AnalysisOver a Collision Channel

Fig. 2 shows the graph representation of the CSA scheme for the example on Fig. 1. Specifically, it
is represented by a bipartite graph, consisting of a setNa user nodes(one for each active user), a set
of M slot nodes(one for each slot), and a set of edges. An edge connects theith user node (UN) the
jth slot node (SN) if and only if the useri sends a packet in thejth slot. Thedegreed of a given UN
is equal to the number of edges connected to it, each edge corresponding to one of the replicas sent by
the user. This graphical representation allows to establish a connection between the SIC procedure and
iterative decoding of channel codes based on sparse graphs.This connection is here illustrated under the
following assumptions:

1) For each slot, the receiver always discriminates betweena “silence”, singleton or a collision.
2) When a packet is received in a singleton slot, data are always correctly decoded.
3) Channel estimation and the interference cancellation are ideal.

The first two assumptions are typical forcollision channelmodels. The channel estimation has to be
performed to enable SIC and the third assumption simplifies the analysis without substantially affecting
the obtained results, as shown in [6]. Further, error eventsdue to fading and thermal noise may affect
the performance; in this regard, the reader may refer to [6],[7]. We also outline the main difference to
codes on graphs: the degree of a slot node cannot be controlled and it can even be equal to zero (idle
slot). Clearly, if the BS could control the degree of each slot, we would not need random access at all,
as a single user would be scheduled in each slot.

2An efficient way to transport pointers is discussed in Section IV.
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Under the above assumptions, the SIC procedure may be described as an instance of the iterativepeeling
decoderfor codes constructed on sparse graphs and transmitted overa binary erasure channel (BEC) [8].
The decoder consists of initializing the status of all UNs to“unknown” and of repeating the following
procedure until the status of all UNs has been updated to “known”, in which case decoding terminates
successfully, or until at some iteration the status of no UN is updated, when a failure is declared. The
procedure is described as follows:

• For all SNs, if the SN has degree1 then update to “known” the status of the unique UN connected
to it.

• Remove all edges connected to the UN and update the degrees ofthe SNs accordingly.
The way the SIC mimics the peeling decoder is illustrated in Fig. 2b)-d).

The analogy between SIC for CSA and iterative decoding of codes on sparse graphs allows to use
techniques developed in the field of coding theory and apply them to random access. Accordingly,
collisions are favored by CSA, in a statistically controlled manner. For example, the theory of codes on
graphs allows to properly design the probability distribution with which the users select their degrees to
generate bipartite graphs on which SIC is successful with high probability. Judiciously designed probability
distributions yield irregular graphs favoring the SIC procedure. Moreover, through the application of
analytical tools from the theory of codes on graphs, such as density evolution or extrinsic information
transfer (EXIT) charts, we can show the existence of a thresholding behavior of CSA under SIC. This
happens when both the frame sizeM and the user population sizeN tend to infinity, but the ratioN

M
remains constant. It turns out that there exists a thresholdvalueG∗, such that when the logical load is
G ≤ G∗, the SIC procedure almost certainly terminates successfully, i.e., each active user manages to
send the packet to the BS within the contention period. Conversely, if G > G∗ then the opposite is true,
i.e., there is a fraction of users’ packets which will certainly not be decoded. It is possible to show that
the thresholdG∗ depends both on the selected user rates and on the probabilities with which these rates
are selected. With a suitable selection of the repetition rates and their associated probability distribution,
a threshold as large asG∗

= 1 packet/slot can be achieved. In other words, the throughputperformance
becomes equivalent to the perfectly scheduled access! The way the rate distribution is optimized follows
the footsteps of the degree distribution optimization algorithms used in the design of low-density parity-
check (LDPC) codes [9].

As both the thresholdG∗ and the rateR are functions of the repetition rates distribution, one maylook
for the maximum achievable thresholdG∗ for a given rateR. Note that when repetition coding is used,
the rate is necessarily0 < R ≤ 1/2, as there are at least two repetitions. OnceR, as defined in (1), is
fixed, it can be shown that the thresholdG∗ of a CSA scheme is upper bounded by the unique positive
real solution of the equation

G = 1− e−G/R , (3)

as shown in [9]. If the user invests more power by increasing the number of repetitions, thenR decreases
and the right-hand side of (3) increases, also implying thatthe upper bound increases.

III. VARIANTS OF CSA

A. High-Rate CSA from Generic Component Codes

The upper bound resulting from (3) is valid for every rateR between0 and 1. In order to achieve
ratesR > 1/2, [9] introduces a generalization of the CSA protocol that uses generic linear block codes
instead of repetition codes. In this setting, a user that is active in a given contention period, splits his
packet intok segmentsof the same length. Thek segments are then encoded using a linear block code
andd segments are obtained as output. The linear block code is drawn randomly by the user from a set
of component codes, according to pre-determined probability distribution. The information about the code
used to encode thek segments may be conveyed in a header appended to each segment. The component
codes may have different lengthsd, but they all have the same dimensionk. The rate of this generalized
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scheme is given byR = k/d̄, where d̄ is the expected length of the employed component code. This
definition of the rate coincides with that given in (1) when repetition codes are used. With a judicious
selection ofk, of the lengthsd of the component codes and of their probability distribution, any rate
0 < R < 1 can be obtained. Note that the choicek = 1 reduces this generalized framework to the
repetition-based case.

The d encoded segments, equipped with appropriate pointers in their headers, are transmitted overd
slots picked uniformly at random within the contention period. The contention period is now organized into
kM slots, each of the same time duration as that of a segment; thetime duration of the contention period
is thus the same as in the repetition-based case. The bipartite graph representing the access scheme is
now composed ofkM SNs andNa UNs, where now each UN corresponds tok segments. On the receiver
side SIC is performed similarly to the repetition-based case, the only difference being the execution
of some form of erasure decoding at the generalized UNs at each iteration. In case simple codes are
used, maximum a-posteriori (MAP) erasure decoding may performed. Similar to the case with repetition,
thresholding phenomenon is also observed for the high-rateCSA.

B. Spatially Coupled CSA

A variant of the CSA scheme, is based onspatial coupling, a technique widely used in the field of
modern error correcting codes. We present it in a simplified scenario in which all users exploit the same
packet repetition rated.

In the spatially coupled CSA, a user becoming active at the beginning of a contention period with
M slots is allowed to transmit only one replica in that period,as opposed to the scheme described in
Section II-A in which alld replicas are transmitted in that contention period. Each ofthe otherd − 1

replicas is transmitted by the user in one of the subsequentd− 1 periods. Assuming the average number
of active users per contention period is̄Na = paN , on average there arepaN packet replicas in the first
contention period (one per active user),2paN packet replicas in the second contention period (one per
user becoming active at the beginning of the first period and one per user becoming active at the beginning
of the second period), etc. up to thed-th contention period in which we expectdpaN packet replicas on
average. The expected number of replicas in a contention period that comes after thed−th one “stabilizes”
to dpaN . Thus the expected physical load isGphy,1 = G in the first contention period, see (2), then it
is Gphy,2 = 2G in the second contention period, etc., and staysGphy,d = dG from the d−th period and
onwards.

As shown [10], the probability of a collision in a slot that belongs to a given contention period increases
with the physical load imposed on that period. Due to the lighter physical load, the first contention period
contains a lower number of collisions. The packets receivedin singleton slots of the first contention period
may be used to remove the contribution of interference of their replicas in alld−1 subsequent contention
periods. Therefore, although a slightly higher number of collisions are expected in the second contention
period, some of them are resolved by interference cancellation. The resolved collisions are exploited,
together with the packets received in the singleton slots from the first and second periods, to resolve
further collisions in the third period. This process, when iterated through the sequence of contention
periods, determines a “chain reaction” which allows to resolve more collisions than those resolved by the
scheme in Section II-A for the same repetition rates and probability distribution. Moreover, a thresholding
phenomenon is again observed. Specifically, the iterative decoding threshold of the spatially coupled
scheme reaches the theoretical, upper-bound threshold of the block scheme under optimal, MAP decoding
on a priori known graph3!

C. Frameless CSA

Finally, we introduceframelessALOHA [11], a variant of the CSA scheme inspired by the rateless
codes [12]. Two essential differences to the previously described CSA protocols are:

3We again stress the fact that in CSA the graph is not known a priori due to the randomness of the contention process.
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• When the contention period starts, the active users decide whether or not to transmit on a slot basis,
as the slots “appear” on the wireless medium.

• The contention period duration is not a-priori determined,but it is adaptive and tuned to the evolution
of the contention/packet-recovery process.

In general case, both the user access strategy (i.e., the choice of slot-access probabilities) and the contention
termination criterion are subject to optimization. In [13]a simple version of the scheme was investigated,
where the access strategy is “memoryless” and the slot-access probabilities are uniform both over users
and slots. The scheme uses a heuristic termination criterion: the receiver monitors both the instantaneous
throughput and the fraction of resolved user packets and, when either of them surpasses a predefined
threshold, the contention is terminated through a suitablefeedback signal. It was shown that, although
asymptotically suboptimal, this approach grants throughputs that are the highest in the reported literature
for low to moderate number of active users, i.e., whenNa in the range50− 1000.

Fig. 3 illustrates the asymptotic performance of framelessALOHA, showing the probability of packet
recovery, expected throughput and expected recovery delayof recovered packets, as functions of the
number of elapsed slots vs the number of active usersM/Na. The slot-access probability in the example
is set to3.1/Na, a value that maximises the expected throughput [11]. It is seen that the probability of
packet recovery at first increases slowly and then rises steeply for some critical value ofM/Na. The same
behavior is also observed in iterative BP erasure-decodingof rateless codes. The criticalM/Na actually
defines the (expected) asymptotically optimal length of thecontention period with respect to the throughput
maximization, also observed in Fig. 3. Finally, the expected recovery delay for recovered packets increases
linearly until the criticalM/Na. Although this behavior seems favorable, one should take into account
that most of the packets are actually not recovered and thus do not contribute to the calculation of the
delay. After criticalM/Na, most of the packets become recovered and the delay saturates.

The principle of adaptive termination favors the “fortunate” instances of packet-recovery process, ending
the contention as soon as the terminating conditions are met[13]. The adaptive termination also implies
that the packet-recovery process can tune to the actual wireless link conditions and potential imperfect
SIC instances, simply disregarding the affected slots and proceeding with the contention process. In
other words, frameless CSA is inherently adaptable to the scenarios when the assumptions outlined in
Section II-B may not hold. The main drawback is that the moment when the users receive feedback that
terminates the contention is not known a-priori. In scenarios where the uplink and downlink transmissions
share the same spectrum, in frameless CSA the BS has to contend with the active users when transmitting
the feedback, as analyzed in [13]. We conclude by noting thatsimilar arguments apply when comparing
the advantages/drawbacks of the block and rateless coding frameworks.

IV. PRACTICAL ISSUES

One of the underpinning assumptions of CSA is that each replica is equipped with pointers to the slots
containing other replicas transmitted by the same user. However, in practice, it is neither trivial to make
the pointers nor the cost of sending many pointers is negligible. A more elegant approach to address this
issue is to embed in each replica a user-specific seed of a pseudorandom generator known both to the user
and the BS. Once a replica is resolved, the BS can use the knowledge of the generator and the obtained
seed to determine all the slots containing the other replicas.

Another important practical issue is the estimation of the number of active users in a contention period
Na, which is usually a priori not known and may vary over time, and which is required both in the framed
and frameless variants of CSA in order to attain the optimal performance. Specifically, in framed CSA
the knowledge ofNa should be used to dynamically adapt the duration of the contention period sizeM ,
in order to guarantee a constant logical load and thus a constant throughput. In frameless CSA, both the
optimal slot-access probabilities and the termination criterion depend onNa [13]. An efficient estimation
algorithm specifically tailored for frameless version of the scheme was proposed in [14].
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V. CASE STUDY: UPGRADING THE EXISTING SLOTTED ALOHA I MPLEMENTATIONS

Coded random access protocols can be very useful in the context of M2M communications, both in cel-
lular and satellite access. Specifically, the access reservation procedure in all cellular standards, from GSM,
over 3G, to LTE, is commonly based on the framed slotted ALOHA, providing acceptable performance
for human-oriented traffic. However, the M2M traffic has fundamentally different requirements, primarily
seen in the massive number of accessing terminals with shortreporting deadlines, and the traditional
ALOHA may create bottlenecks already in the access reservation.

We present a short study, describing how the contention phase of an existing cellular access reservation
protocol can be upgraded to reap the advantages of coded random access while preserving the physical-
layer behavior of the devices unchanged. The required modifications on the device side could be reduced
to the implementation of the pseudorandom generators that will drive the selection of slots in which the
access will be performed. This includes a downlink signaling between the BS and the devices, in order
to tune the pseudo-random generators, timers, back-off exponents and other parameters of the actual FSA
implementation, c.f. [15]. On the other hand, the BS stores the received uplink signals and uses SIC to
process them, thereby absorbing the complexity of the upgrade, which is another highly desirable feature
in practice.

Fig. 4a) presents an example of a generic framed slotted ALOHA. Active users transmit just once
per frame and only the transmissions occurring in singletonslots are successfully received and the
corresponding devices are notified via the next beacon. The unsuccessful ones continue transmitting in
the subsequent frames, choosing the slots where the repeated transmission take place independently with
respect to the choice made in the previous frames. In the example, packets of user 1 and user 4 get
through in the second frame, and of user 2 and user 3 in the third frame.

In a simple upgrade, Fig. 4b), the active users also transmitonce per frame, as in typical FSA.
Nevertheless, the slot choice is dictated using the CSA approach, modified such that there can be only
a single transmission within the subset of slots that belongto a frame. This effectively translates to a
constraint imposed on the possible edge configurations in the bipartite graph. The slot choice is made
locally at each user using a predefined function derived through the CSA graph-based design, whose
inputs are the user ID and the information received from the beacons sent by the BS. Once a transmission
is recovered, the BS retrieves the corresponding user ID, which enables the backtrack and cancellation
of the replicas from the previous frames and potential resolution of other transmissions. In the example
from Fig. 4b), the recovery of packet of user 1 and user 4 in thesecond frame allows to recover packets
of user 2 and user 3 from the first frame; for the sake of simplicity, we assumed that choice of the slots
is the same as in Fig. 4a).

Finally, the full upgrade that matches the standard CSA is presented in Fig. 4c). The users are allowed
to repeat the same transmissions in multiple slots of the frame; the access strategies are again determined
locally according to a predefined function, derived throughthe CSA approach and depending on the user
ID and the information received from the BS. In this case, theBS removes the recovered packets both in
“forward” and “reverse” directions.

We conclude by noting that the application of the concepts described above could be made both in
protocols that contend with data and protocols based on access reservation.

VI. CONCLUSION

The legacy slotted ALOHA, although essentially inefficient, underpins the majority of the existing
wireless random access protocols. The change of the perspective on the collision model through the
application of successive interference cancellation has led tocoded random access, an innovative approach
superior to legacy SA. We have shown that the coded random access is tightly related to codes on
graphs and we have presented several protocol variants. Considering that the ALOHA approach dominated
during the last four decades, we believe that the coded random access opens new grounds for designing
communication systems that should embrace a massive numberof M2M devices. Finally, we note that
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principles of the coded random access can be combined with any MUD technique, i.e., they are not
restricted to the simple chain of single-user detections’ scenario assumed in the paper.
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Fig. 1. Successive interference cancellation in slotted ALOHA. Packet of user 2 is recovered in slot 4, enabling the recovery of packet of
user 3 in slot 1, performed by subtracting the replica of user2 packet in slot 1. In the same way, recovery of packet of user 3enables the
removal of its replica from slot 3, thus recovering packet ofuser 1. In this example, the use of SIC grants throughput of 0.75 packet/slot;
without SIC, the throughput drops to 0.25 packet/slot.
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Fig. 2. Bipartite graph representation of the access schemeof Fig. 1.
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Fig. 3. Asymptotic performance of frameless CSA.
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Fig. 4. Example upgrade of framed slotted ALOHA.


