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Abstract 
During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity 
investigations, the first in November 2005 and the second in March 2013.  This paper presents an 
estimation of Rhea’s fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of 
the two Cassini flybys. 

Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 x 106 = 946.0 ± 13.9, C22 
x 106 = 242.1 ± 4.0  (uncertainties are 1-σ). Their resulting ratio is J2/C22 = 3.91 ± 0.10, statistically not 
compatible (at a 5-σ level) with the theoretical value of 10/3, predicted for a hydrostatic satellite in slow, 
synchronous rotation around a planet. Therefore, it is not possible to infer the moment of inertia factor 
directly using the Radau-Darwin approximation. 

The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and 
topography, under different plausible geophysical assumptions. The observed gravity is consistent with  
that generated by the observed shape for an undifferentiated (uniform density) body. However, because 
the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case, 
and assuming a mantle density of 920 kg/m3, some 1-3 km of excess core oblateness is consistent with the 
observed gravity. A wide range of moments of inertia is allowed, but models with low moments of inertia 
(i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the 
observations. 

Keywords: Interiors; Orbit determination; Satellites, composition; Saturn, satellites. 

1. Introduction 
Discovered on December 23, 1672 by Giovanni Domenico Cassini, Rhea is the second largest moon of 
Saturn, with a mean radius of about 764 km. 

Before Cassini’s arrival in the Saturn system, only the gravitational parameter GM was known from the 
analysis of Pioneer and Voyager data (Campbell & Anderson, 1989). Using this and the estimated volume 
(from camera images), a bulk density of about 1200 kg/m3 was derived, relatively small and compatible 
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with a mixture of about 75% by mass water ice (density 1000 kg/m3) and 25% rock-metal (density 3000 
kg/m3). 

During its mission in the Saturn system, Cassini performed four close encounters of Rhea, of which only two 
were devoted to gravity investigations. The first gravity flyby, referred to as R1, according to the numbering 
scheme used by the Cassini project,  was performed on November 26, 2005, during the main mission, and 
the second and last gravity flyby, referred to as R4, was performed on March 9, 2013, during the Solstice 
mission. The main orbital and geometrical characteristics of R1 and R4 are summarized in Table 1, while 
Figure 1 displays the ground track of the flybys, for a time interval of about ± 2 h around the closest 
approach (black circles). 

Radiometric data acquired during the first encounter (R1) were used to estimate the gravity field of Rhea. A 
first estimate (Anderson & Schubert, 2007) was obtained under the assumption of hydrostatic equilibrium, 
i.e. constraining the unnormalized gravity coefficients J2 and C22 to a ratio of 10/3. From this estimation, by 
applying the Radau-Darwin relation the authors obtained a normalized moment of inertia of about 0.3911 ± 
0.0045 (a value of 0.4 would imply a constant density interior). The authors concluded that the satellite’s 
interior is a homogeneous, undifferentiated mixture of ice and rock, with possibly some compression of the 
ice and transition from ice I to ice II at depth. 

In parallel, the radiometric data acquired during R1 were independently analyzed by the Cassini Navigation 
team (MacKenzie et al., 2007) and by the Cassini Radio Science team (Iess et al., 2007). Both analyses 
estimated the moon’s GM and quadrupole gravity coefficients J2 and C22, obtaining different solutions, but 
consistent at the 2σ level, as a result of different analysis approaches. The two approaches were then 
combined to obtain a joint “best” unconstrained estimation of the quadrupole field (MacKenzie et al., 
2008). The solution obtained is not statistically compatible with hydrostatic equilibrium, hence no useful 
constraint on Rhea’s interior structure could be imposed. Hydrostatic equilibrium was also ruled out by 
applying this constraint to the estimated quadrupole field coefficients, and this led to a significant 
degradation of the orbital fit at closest approach. To explain the non-hydrostatic ratio J2/C22, the authors 
theorized that a large collision occurred after the completion of the thermal evolution of the satellite, 
causing a redistribution of mass and a reorientation of the tidal bulge. 

More recently (Anderson & Schubert 2010) stated that the differences in the previously published gravity 
fields are probably caused by a mis-modeling of the non-gravitational acceleration acting on Cassini caused 
by anisotropic thermal emission. To avoid this issue, these authors restricted the analysis to a subset of 
data around the closest approach (± 2000 s), where “the information from Rhea’s quadrupole gravitational 
field is confined”. They obtained a new solution in agreement with (Anderson & Schubert, 2007), using the 
hypothesis of hydrostatic equilibrium. Moreover, these authors concluded that non-hydrostaticity is not 
supported by the data. 

The different estimations of J2 and C22 published to date are shown in Figure 2. To resolve these 
discrepancies, a second and final gravity flyby was planned in Cassini’s Solstice. No other flybys of Rhea are 
scheduled in the Cassini mission. R1 was characterized by a very low inclination, about 17° at the closest 
approach (C/A), in order to de-correlate the estimation of J2 and C22, while R4 was designed to be nearly 
polar, with a high inclination at C/A, about 106°. However, the C/A of R4 was about 999 km, twice as high as 
R1 (about 502 km), thus significantly reducing the information content about Rhea’s quadrupole gravity 
field in this second flyby. The Sun-Earth-Probe (SEP) angle was larger than 110° during both encounters, 
thus range-rate measurements were only slightly affected by the harmful effect of solar plasma. 

This paper is organized as follows: Section 2 describes the data analysis approach for the estimation of 
Rhea’s gravity field, along with the spacecraft dynamical model, and the data selection and calibration 
procedure. Section 3 provides a geophysical interpretation of the results, by means of a combined analysis 
of Rhea’s estimated gravity and topography. Finally Section 4 summarizes our findings and conclusions. 



2. Gravity Analysis 

2.1. Introduction 
The determination of the gravity field of a celestial body plays a crucial role in the investigation of its 
internal composition, structure and evolution, because it provides one of the very few direct 
measurements of its internal mass distribution, even if the inversion process is not unique. 

The gravity field of Rhea was precisely determined by reconstructing the trajectory of Cassini during the 
two close encounters of the satellite. The main observable quantity used in the gravity estimation was the 
spacecraft range-rate, obtained from the frequency shift due to the relativistic Doppler effect, averaged 
over a count time of 60 s, of a highly stable microwave carrier transmitted from an Earth ground station to 
the spacecraft, that coherently retransmits the signal to Earth by means of a precise transponder. Range 
observables were not used in the analysis because they are of very limited use in the estimation of gravity 
fields.  

During a close flyby, the spacecraft velocity variations caused by the main terms of the gravity field 
harmonic expansion are approximately (Iess et al., 2014a): 
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where M is the satellite mass, r is the radial distance at closest approach, R is the satellite radius, V is the 
flyby velocity and G is the gravitational constant. Using the geometrical values at C/A reported in Table 1 
and the gravity coefficients of (MacKenzie et al., 2008) the expected velocity variations were computed and 
are shown in Table 2. In this simplified analysis a conservative upper bound of J3 x 106 = 25 was used, 
following (MacKenzie et al., 2008). 

The Cassini radio science subsystem, along with the ground stations of NASA’s Deep Space Network (DSN), 
allows a tracking accuracy in the spacecraft’s velocity variations of about 0.02 to 0.09 mm/s on a time scale 
of 60 s, depending mainly on the Sun-Earth-Probe angle (Iess et al., 2014b). 

This accuracy is well below the expected spacecraft’s velocity variations induced by Rhea’s GM and J2 
during R1 and R4, while it is comparable to the upper bound contribution due to J3. 

2.2. Dynamical Model 
To correctly estimate the orbit of Cassini, the dynamical model implemented in the orbit determination 
program must take into account all non-negligible accelerations acting on the spacecraft. 

The implemented dynamical model includes the point-mass relativistic gravitational acceleration exerted by 
all the main solar system bodies and the main satellites of Saturn. The gravitational parameters and state 
vectors of the planets, the Sun, the Moon and Pluto were obtained from JPL planetary ephemerides DE430 
(Folkner et al., 2014). The gravitational parameters and a priori state vectors of Saturn and its main 
satellites were obtained from Saturn’s satellites ephemerides, SAT355, provided by the Cassini Navigation 
Team by fitting a large number of radio, astrometric, and optical data (Jacobson et al., 2006) (Available at 
ftp://ssd.jpl.nasa.gov/pub/eph/satellites/). 

ftp://ssd.jpl.nasa.gov/pub/eph/satellites/


The dynamical model also included the gravitational acceleration due to the even zonal spherical harmonics 
of Saturn from J2 up to J8, whose updated values were provided by the satellite ephemerides, along with an 
updated model of Saturn’s rotation.  Rhea’s gravity field was modeled using a degree-2 spherical harmonics 
expansion, which was the minimum degree field capable of fitting the data at the noise level, without clear 
signatures. Given the very small orbital eccentricity (about 0.001), the periodic tidal effects of Saturn on 
Rhea were neglected: in this condition the tidal bulge is almost constant, and the quadrupole coefficients J2 
and C22 are a function only of the secular Love number kf. 

Given the very small eccentricity, Rhea is considered to be in synchronous rotation around Saturn, with the 
spin axis normal to the orbital plane and prime meridian always oriented toward Saturn. The rotational 
model adopted was based on the latest coordinate orientations adopted by the IAU (Archinal et al., 2011), 
with small corrections applied to obtain a better fit of Cassini and other astrometric data. The adopted 
Rhea rotational model is reported in Equations (4), (5), and (6). 

 

𝛼0(°) = 40.347 − 0.17089132𝑇 − 2.958 sin 𝜃 + 0.076 sin 2𝜃 (4) 
𝛿0(°) = 83.550 − 0.01277063T − 0.332 cos 𝜃 + 0.004 cos 2𝜃 (5) 
𝑊(°) = 235.16 + 79.69005069d + 2.941 sin 𝜃 − 0.077 sin 2𝜃 (6) 

 

Where α0 and δ0 are the right ascension and declination of the north pole with respect to EME2000, 
respectively, W is the angle measured easterly along the body’s equator between the prime meridian and 
the ascending line of nodes, T is the time measured in Julian centuries (36525 days) past J2000, d is the 
time measured in days past J2000, and θ is a nutation-precession term given by Equation (7). 

 

𝜃 (°) = 9.151048 + 1004.6342250T (7) 
 

A dynamically defined, perfectly synchronous, rotational model was also used, but the solution was not 
affected significantly. 

The dynamical model also included the most important non-gravitational forces acting on Cassini during the 
flybys: the solar radiation pressure (SRP) and the thermal thrust. Both accelerations were described by the 
same models adopted by the Cassini navigation team and whose parameters were estimated using cruise 
and tour data. 

The SRP is caused by momentum transfer between the spacecraft and the photons hitting its surface. In 
general a proper modeling of this acceleration is very difficult but, during tracking passes, Cassini keeps the 
large High Gain Antenna (HGA) pointed to the Earth, shadowing the spacecraft bus. Hence, during gravity 
flybys the total frontal area exposed to the Sun is nearly constant, resulting in a constant acceleration on 
the order of 5×10-13 km/s2 (Di Benedetto et al., 2009). 

During tracking passes, SRP is essentially a function of the thermo-optical coefficients of the HGA, whose 
value has been computed from the readings of two temperature sensor mounted on the HGA backside, 
using a simple thermal model of the element (Di Benedetto et al., 2009). In order to assess the effect of an 
imperfect knowledge of the HGA thermo-optical coefficients their uncertainty was taken into account in 
the computation of the formal covariance of the solution. In particular, using a conservative uncertainty 
equal to 100% of the value, the solution covariance increases by a negligible amount. 

The thermal thrust is caused by an anisotropic thermal emission of Cassini, and in particular caused by the 
thermal heat generated by the three onboard Radio-isotope Thermal Generators (RTG). Due to the 
spacecraft geometry, the main effect is an acceleration along the spacecraft Z body-fixed axis (which is the 
HGA boresight axis) of about 5×10-12 km/s2 (Di Benedetto et al., 2009). 



The RTG-induced acceleration is modeled using a simple exponential model: 

 

𝑨(𝑡) = 𝑨𝟎𝑒−𝛽(𝑡−𝑡0) (8) 

 

where A(t) is the thermal acceleration vector at time t, in body-fixed coordinates, A0 is the spacecraft 
thermal acceleration at the reference epoch t0, and β is the time scale of the exponential law, which derives 
from the 87.7-year half-life of 238Pu used as nuclear fuel in the RTGs. 

The magnitude of the RTG reference acceleration A0 has been estimated during the cruise phase to a 3% 
uncertainty for the radial component (Di Benedetto et al., 2009).  

The force due to Saturn’s thermal radiation incident on Cassini was neglected, because the resulting 
acceleration is on the order of 10-16 km/s2, increasing up to 5×10-15 km/s2 near Saturn pericenter (Di 
Benedetto et al., 2009), i.e., about three orders of magnitude smaller than the RTGs acceleration. 

2.3. Data Selection and Calibration 
During the encounters, Doppler data at X (8.4 GHz) and Ka band (32.5 GHz) were acquired by the antennas 
of NASA’s DSN at the three complexes of Goldstone, Madrid and Canberra. In addition to data obtained 
around the closest approach, the analysis also used data obtained up to two days before and after the 
closest approach, during standard navigation tracking passes. The additional data allow an improvement of 
the orbit determination, in particular the estimation of Rhea’s ephemerides and Rhea’s GM, because of the 
stronger constraints that are imposed on the relative trajectories between Cassini, Rhea and Saturn. 

It is important to note that the closest approach of R1 was tracked only in three-way mode, meaning that 
the receiving and transmitting stations were different. This represents a sub-optimal condition, due to the 
possible delay between the reference oscillators of the two different uplink and downlink stations. During 
R4, the closest approach was tracked in two-way mode. 

Dual frequency X-band uplink and Ka-band downlink (X/Ka) Doppler data were preferred to the standard 
X/X data when available, to reduce the effects of the dispersive noise sources, mainly the solar corona and 
the Earth ionosphere. Two-way Doppler data were preferred to three-way data in the same band when 
both were available, to remove the errors due to the clock synchronization between the uplink and 
downlink ground stations. 

When only two-way X/X data and three-way X/Ka data were available, the selection was made on a case by 
case basis.   

When available, the wet path delay due to the Earth’s troposphere was calibrated using measurements 
from advanced water vapor radiometers (Bar-Sever et al., 2007). When not available, the Earth’s 
troposphere was calibrated using a combination of weather data and dual frequency GPS measurements. 

2.4. Estimation 
Data analysis was carried out using two different approaches, producing a multi-arc solution (SOL1) and a 
global solution (SOL2). 

SOL1 was obtained using JPL’s orbit determination program MONTE (Mission Analysis, Operations, and 
Navigation Toolkit Environment) and a multi-arc approach, in which radiometric data obtained during non-
contiguous orbital segments, called “arcs”, are jointly analyzed to produce a single solution of a set of 
“global” parameters, which do not vary with time. 

MONTE is the new orbit determination software developed by JPL to replace the Orbit Determination 
Program (ODP) and it is now used for the operations of all NASA’s space missions managed by JPL. MONTE 



and ODP share the same mathematical formulation (described in detail in (Moyer, 1971) and (Moyer, 
2000)) which, apart from navigation, proved successful also for radio science data analysis.  

The a priori values of GM, J2, C22 and S22 were retrieved from (MacKenzie et al., 2008). The a priori values of 
C21 and S21 were set to zero. In order to avoid constraining the estimation, the a priori uncertainties of the 
GM and the estimated quadrupole coefficients were set to at least one order of magnitude larger than their 
formal uncertainty. No hydrostatic equilibrium constraint between J2 and C22 was imposed. 

To properly fit the radiometric data, an updated state vector of Rhea at a reference epoch was estimated, 
and the ephemerides of all main Saturn satellites were updated by numerically integrating the equations of 
motion, in order to keep constant the mass and the trajectory of the system’s center of mass. The a priori 
values for the Rhea state were retrieved from the Saturn satellite ephemerides SAT355.  

For each arc, a separate initial condition for the Cassini state vector was estimated. The a priori values were 
obtained from the reconstructed trajectory provided by the Cassini Navigation Team (The updated Cassini 
trajectory Spice kernels are available at ftp://naif.jpl.nasa.gov/.).  

The residuals were weighted on a pass-by-pass basis using their own RMS value. 

Solution SOL2 was made using JPL's original orbit determination program, the ODP. Moreover, it was 
obtained as part of the ongoing global analysis that seeks to determine the satellite ephemerides, Saturn's 
rotational model, and the gravitational parameters and gravity fields of Saturn and it major satellites. The 
global analysis, described in detail in (Jacobson et al. 2006), utilizes an extensive data set that includes: 
Earth-based and Hubble Space Telescope astrometry, satellite mutual events, Saturn ring occultations, 
imaging from the Voyager and Cassini spacecraft, and radiometric tracking of Pioneer 11, Voyager, and 
Cassini.  

As in the SOL1 solution, the Doppler data that are sensitive to the gravity parameters are weighted pass-by-
pass at the RMS of their residuals. However, the data are pre-processed to remove the correlation between 
data points caused by scintillation in the solar plasma, assumed to be the dominant noise source and 
having a spectrum that follows the Kolmogorov power law. 

2.5. Results 
Figure 3 and Figure 4 plot the post-fit residuals of the tracking passes around the closest approaches of R1 
and R4. The residuals do not show any evident signature around the closest approach, the mean is 
approximately zero and the RMS are about 76 μm/s for R1 and about 17 μm/s for R4. 

Figure 5 shows the different estimations of Rhea’s unnormalized J2 and C22 in the J2 -C22 plane, along with 
their 1-σ error ellipses, compared to the results published in (MacKenzie et al., 2008) and (Anderson & 
Schubert, 2010). As a reference, Table 3 collects all the estimated gravity coefficients for all the different 
solutions displayed in Figure 5. 

Although obtained with two independent analyses and following different approaches, SOL1 and SOL2 are 
statistically compatible: the difference between the estimated values of J2 and S22 is less than 1-σ, while the 
difference in the estimates of C22 is within 3-σ. Moreover, both solutions are statistically compatible with 
(MacKenzie et al., 2008). This provides strong evidence of the reliability and robustness of the solution. 
However, the discrepancy with (Anderson & Schubert, 2010) is statistically significant, being larger than 3-σ 
and 5-σ for J2 and C22, respectively. Recall, however, that the (Anderson & Schubert, 2010) solution was 
obtained by constraining the hydrostatic ratio J2/C22 to 10/3. Applying the same condition, our solution 
becomes fully compatible with (Anderson & Schubert, 2010), but the residuals show a large signature at the 
closest approach of R1, in a similar way as (MacKenzie et al., 2008). Moreover, considering only a time 
interval of ± 15 minutes around C/A, where almost the entire quadrupole field signal on the range-rate is 
concentrated, the RMS of the residuals increases by about 56%, from 64 μm/s to 100 μm/s, a strong 
indication of a wrong dynamical model. Given the larger altitude at the closest approach of R4, applying the 



hydrostatic constraint the residuals of that pass do not show any evident signature, while their RMS 
increases only slightly, from 17 μm/s to 18 μm/s. 

From  MacCullagh’s theorem the quadrupole gravity coefficients are related to the body’s inertia tensor. In 
particular, J2 and C22 are a function of the differences between the diagonal terms, while C21, S21, and S22 are 
a function of the off-diagonal terms, which are null in a frame of principal axes of inertia. 

Under the assumption of small rotations, C21 and S21 are related to a misalignment between the assumed 
spin axis and the real maximum inertia axis, while S22 is related to a misalignment between the adopted 
reference frame and the principal axes frame around the spin axis. 

The estimated values of C21 and S21 are null within 2-σ, as expected, while S22 is slightly larger, being about 
3-σ away from zero. However, this proved to be due to the particular choice of the adopted Rhea-fixed 
reference frame, as shown in the following. Indeed, Rhea’s prime meridian used in the model and the 
Saturn-pointing direction were found to be misaligned by about 3°, probably because the former was 
retrieved using different Satellite ephemerides and Rhea’s orbit was updated as part of the fitting process. 
Instead, using a perfectly synchronous frame, dynamically defined using Rhea’s updated orbit, S22 
decreases becoming null within 2-σ, while C22 increases in a statistically non-significant way. Therefore, 
there is a good alignment within uncertainty between the principal inertia axis of Rhea and a synchronous 
rotational state. Rhea’s quadrupole is dominated by J2 and C22, as expected by a satellite in synchronous 
rotation around its planet. However, the ratio J2/C22 is 3.91 ± 0.10 for SOL1 and 4.22 ± 0.19 for SOL2, which 
are equivalent to each other at the 2-σ level and more than 5-σ away from the hydrostatic value of 10/3. 
Therefore Rhea’s gravity field is significantly non-hydrostatic, meaning that the moment of inertia cannot 
be inferred directly from either J2 or C22 using the Radau-Darwin approximation. Estimating the moment of 
inertia directly from the J2 or C22 coefficients of SOL1 yields incompatible and unrealistic values of about 
0.40 and 0.38, respectively. 

As pointed out by (Anderson & Schubert, 2010), errors in the thermal acceleration model may produce 
biases in the estimation of the gravity coefficients. In particular, a relatively high correlation (about 0.71) 
between Rhea’s J2 and the radial component of the thermal acceleration was found. To take into account 
this possible error source, an updated value of the reference thermal acceleration vector was estimated, 
using a 5% a priori uncertainty for the radial component, and a 10% a priori uncertainty for the non-radial 
components.  

The estimated values of the thermal acceleration are compatible within 1-σ with the a priori values, which 
were adopted by the Cassini navigation team. The formal uncertainty in the radial component is 3%, while 
the uncertainties in the other components are equal to the a priori value of 10%. Therefore, using data 
collected during Rhea’s flybys, only the knowledge of the radial component of the thermal acceleration 
could be improved, because Doppler measurements are directly sensitive only to velocity variations along 
the line of sight. 

To test the stability of the solution the a priori uncertainties of the thermal accelerations were increased to 
100% of their a priori value, which can be considered a conservative upper bound. Rhea’s J2 and C22 change 
by less than 2-σ, their formal uncertainty increase by about 25% and 7%, respectively, and the ratio J2/C22 
becomes 3.85 ± 0.11, still 4.8-σ away from the hydrostatic value. Therefore, we conclude that even a 
modelization error in the thermal acceleration of 100% is not sufficient to absorb the excess of the J2/C22 
ratio with respect to the hydrostatic value. 

3. Interpretation 
There are a number of ways to explain the excess oblateness (greater than hydrostatic J2/C22 ratio) in 
Rhea’s gravity field that are consistent with the observed shape, which has been determined via analysis of 
limb profiles (e.g., Thomas et al., 2007; Thomas et al. 2010; Nimmo et al., 2011). Incorporating the latest 



available data (Thomas, pers. comm., 2014), we adopt for this analysis a best-fitting triaxial ellipsoid with 
semi-axes: 

 

a = 765.68 ± 0.25 km 
b = 763.60 ± 0.25 km 
c = 762.86 ± 0.15 km 

(9) 

 

from which we obtain the unnormalized degree-2 shape coefficients: J2 = 1190±260 m and C22 = 350±120 m 
(uncertainties are all one-sigma) (blue square and crosshairs in Figure 6). The large uncertainties result from 
Rhea’s relatively small tidal/rotational distortion and rough topography. The shape is not as well 
determined as the gravity; for instance, the topography coefficients are consistent (within error) with a 
hydrostatic body, while the gravity coefficients are not. 

In the analysis that follows we will assume that the degree-2 coefficients provide a record of the time the 
shape and gravity were “frozen in”. We do not consider the possibility that these coefficients were 
modified by later processes, such as the formation of impact basins. Most such basins are sufficiently small 
that they will not have an appreciable degree-2 signature. Tirawa represents a possible exception, but we 
do not consider this issue further here. 

 We first take the simplest case of a homogeneous, uniform density Rhea. For a body of uniform density, it 
can be shown (Jeffreys, 1976; Hemingway et al., 2013; Iess et al., 2014a) that the shape required to explain 
the observed gravity is given by 

𝐻𝑙𝑚 =
(2𝑙 + 1)𝑅

3
𝐺𝑙𝑚 (10) 

 

where R is Rhea’s mean radius, and Glm and Hlm are spherical harmonic coefficients of degree l and order m, 
representing the dimensionless gravitational potential and the topography, respectively. The green circle 
and crosshairs in Figure 6 illustrate the topography coefficients obtained from equation (10), representing 
the shape required for a homogeneous Rhea to match the observed gravity field (for clarity, we use only 
SOL1 for the remainder of this analysis; results are not significantly different when we use SOL2 instead). 
The large uncertainties in the shape allow for the possibility of a homogeneous Rhea (we will discuss this 
issue further below). However, because the surface is likely primarily water ice (Clark et al., 1981; Stephan 
et al., 2012) we next consider a two-layer model consisting of an H2O mantle overlying a denser core. Of 
course, as soon as the assumption of homogeneity is abandoned, the problem becomes non-unique. 
Nonetheless, below we focus on the two-layer model because it is relatively generic, and also consistent 
with the inferred structures of differentiated icy satellites such as Enceladus (Iess et al., 2014a). 

In general, and setting aside the point mass term, the dimensionless gravitational potential coefficients for 
a two-layer body, referenced to radius R, assuming constant density in each layer, is given by a 
generalization of equation (10) (e.g., Lefevre et al., 2014): 

𝐺𝑙𝑚(𝑅) =
3

(2𝑙 + 1)𝑅�̅�
[𝜌𝑚𝐻𝑙𝑚

𝑠 + ∆𝜌𝐻𝑙𝑚
𝑐 (

𝑅𝑐

𝑅
)

𝑙+2
] 

(11) 

where the superscripts on the Hlm terms refer to the surface (s) and core (c) topographies, �̅� is Rhea's bulk 
density (1236 kg/m3), 𝜌𝑚 is the mantle density, which we take to be 920 kg/m3, ∆𝜌(= 𝜌𝑐 − 𝜌𝑚) is the 
density contrast at the core-mantle-boundary, and 𝑅𝑐 is the mean core radius. Hence, the observed gravity 
(𝐺𝑙𝑚) can be accommodated by a combination of core and surface topographies.  

If we assume zero core topography (i.e., a spherical core), then significant surface topography (mass 
anomalies at the top of the H2O mantle) would be required to account for the J2 and C22 terms in the 



observed gravity field. Figure 6 illustrates that this scenario (red triangle and crosshairs) is not compatible 
with the observed shape at the one-sigma level, although it remains compatible at the two-sigma level. The 
case of a spherical core is not meant to be realistic but rather to serve as a point of reference for 
subsequent discussion. 

The addition of topography at the core mantle boundary would contribute additional mass anomalies that, 
if placed in-phase, could reduce the need for large surface topography to account for the observed gravity 
field. We start by assuming a weak (fluid) core and relax this assumption below. Taking a theory-of-figures 
approach (Murray & Dermott, 1999; Tricarico, 2014), we compute the expected hydrostatic core 
topography (𝐻𝑙𝑚

𝑐 ) and use equation (11) to compute the surface topography (𝐻𝑙𝑚
𝑠 ) required to account for 

the remainder of the observed gravity (𝐺𝑙𝑚). We carry out this calculation for various mantle thicknesses 
ranging from 5 km (representing the maximum likely moment of inertia) to 300 km (corresponding to 
significant differentiation, with a normalized moment of inertia of ~0.335). The resulting surface 
topographies (Figure 6) are consistent with the observed topography at the one-sigma level, provided the 
mantle thickness is less than about 200 km.   

The presence of deep impact basins such as Tirawa (~5 km in depth) suggests that the present day icy 
surface is rigid enough to support considerable topography on spatial scales of up to a few hundred km. 
Support for degree-2 topography, however, may be more limited, especially if the degree-2 shape and 
gravity field were established early, when Rhea's heat flux was still high (White et al., 2013). In that case, it 
may be more appropriate to assume that the J2 (=-C20) and C22 surface topography is relaxed and therefore 
conforms closely to the geoid (equipotential surface at reference radius R), given by  

𝐻20
𝑔𝑒𝑜𝑖𝑑

= 𝑅 (𝐺20 −
5

6
𝑞) 

𝐻22
𝑔𝑒𝑜𝑖𝑑

= 𝑅 (𝐺22 +
1

4
𝑞) 

(12) 

where 𝑞 = (𝑅3𝜔2)/(𝐺𝑀) is the ratio of centrifugal to gravitational acceleration, with 𝜔 being Rhea's rate 
of rotation (currently once every ~4.5 days).  

In this scenario of the surface conforming to the geoid, an irregular (non-hydrostatic) core shape is required 
to account for the observed gravity. We can use equation (11) to compute the required core shape (𝐻𝑙𝑚

𝑐 ), 
setting the degree-2 surface topography (𝐻𝑙𝑚

𝑠 ) to match the present day geoid obtained from equation 
(12). For degree 2, the efficacy of adding core topography in balancing equation (11) depends linearly on 

core radius (because ∆𝜌 is proportional to 𝑅𝑐
−3). That is, the gravity observations can be most efficiently 

accommodated by core topography when the H2O mantle is thin. With larger mantle thicknesses, the core-
mantle-boundary is deeper and so larger amplitudes of core topography are required to give rise to the 
same gravity signal at the surface. Figure 7 shows, for various mean mantle thicknesses, the core 
topography required to accommodate the observed gravity, assuming the surface topography conforms to 
the geoid.  The magnitude of the required core topography is not much greater than what is expected for a 
hydrostatic core. Even in the case of a thick (300 km) mantle, the required excess core topography (i.e., 
beyond the hydrostatic expectation) is less than 2 km (on a core of ~460 km radius). For comparison, 
Vesta's longest and shortest dimensions are roughly 573 km and 446 km, suggesting that much larger core 
topography is likely to be easily supportable. Thomas et al. (2007) and McKinnon (2013) have likewise 
argued that a rigid, distorted core is plausible for Enceladus and Tajeddine et al. (2014) have discussed a 
similar scenario regarding Mimas. 

4. Conclusions 
The main message of this paper is that the addition of a second gravity flyby has allowed independent 
estimates of Rhea’s J2 and C22 without having to make a priori assumptions. The ratio of the degree-2 
gravity coefficients (J2/C22=3.91±0.10) indicates a statistically significant departure from the expected 
hydrostatic ratio of 10/3. As a consequence, the moment of inertia cannot be inferred directly using the 
Radau-Darwin relation.  



As a point of comparison, the J2/C22 ratio for Enceladus was recently determined by (Iess et al., 2014a) to be 
3.51±0.02, also significantly in excess of the hydrostatic ratio (note that whereas 10/3 is a good 
approximation for Rhea, the appropriate hydrostatic ratio to assume for Enceladus is closer to 3.24, due to 
its rapid rate of rotation (McKinnon, 2015; Tricarico, 2014)). The presence of significant non-hydrostatic 
topography at Enceladus suggested a differentiated interior with an isostatically compensated ice shell (Iess 
et al., 2014a). In contrast, Rhea's large non-hydrostatic gravity and small topography are more suggestive of 
internal mass anomalies that have little or no surface expression, as might be expected for a body with an 
irregular core surrounded by a weak, relaxed mantle (e.g., McKinnon, 2013). 

We investigated a number of internal structure models, none of which can be strictly excluded due to the 
large uncertainties in the observed shape and the inherent non-uniqueness of the problem. The observed 
gravity and topography are consistent with Rhea being of uniform density (undifferentiated). However, 
spectroscopic observations suggest that the surface is more likely to be uncontaminated water ice down to 
at least a few kilometers, leading us to prefer a two-layer model. Two-layer models, with water ice mantles 
overlying denser cores, can accommodate the gravity observations with modest amounts of topography at 
the surface and/or at the core mantle boundary. However, if the current degree-2 shape was established 
early, during an epoch of high heat flux, then the degree-2 water ice surface topography may conform 
closely with the geoid, in which case the majority of the excess J2 gravity must be accommodated by an 
irregular core (McKinnon, 2013). Low moment of inertia models (corresponding to highly differentiated 
interiors) are permitted and require only a modestly oblate core (less than 2 km of excess core topography) 
and/or hundreds of meters of excess surface topography.  

It is evident that the absence of hydrostatic equilibrium renders any conclusions non-unique, and this 
problem is compounded by the relatively poor shape determination. How might this situation be 
improved? Theoretical arguments of whether Rhea should be differentiated are not useful; even much 
larger bodies like Titan could theoretically remain undifferentiated if they accreted sufficiently gently (Barr 
et al. 2010). Potentially more promising are observational ways of determining the normalized moment of 
inertia (𝐶/𝑀𝑅2) of Rhea.  

One possibility is to measure Rhea’s obliquity. As argued by Bills and Nimmo (2008), given J2 and C22, a 
measurement of the obliquity is then sufficient to determine the normalized moment of inertia of a 
satellite, assuming that it is in a Cassini state. Chen et al. (2014) calculated a predicted obliquity for Rhea of 
0.03o (assuming hydrostatic equilibrium). This translates into a surface distance of 0.4 km, which would be 
hard to detect with optical images, but perhaps not entirely out of the question. 

Since C22 is known, one could also measure the longitudinal libration amplitude to determine the moment 
of inertia, as was done at Mimas by Tajeddine et al. (2014). Unfortunately, Rhea’s comparative lack of tidal 
distortion and its extremely low eccentricity (e=0.001) conspire to produce a very small libration amplitude. 
For a normalized moment of inertia of 0.35, the amplitude is 12.6 m (cf. Comstock and Bills 2003). Optical 
images would not be sufficient to resolve such a small displacement, although radar measurements might. 

In spite of the improved determination of Rhea's gravity field, the significant uncertainties in shape prevent 
us from drawing strong conclusions about the interior structure. In particular, neither undifferentiated nor 
fully-differentiated structures can be excluded. Without additional observational constraints, which may be 
difficult to obtain, further insights into Rhea's internal structure may remain elusive. 
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Figures 

 

Figure 1 Cassini ground track on Rhea during R1 and R4, considering a time interval of ±2h around the closest approach. 

 

Figure 2 Previously published values of Rhea’s quadrupole coefficients J2 and C22. 



 

Figure 3 Range-rate residuals around the closest approach of R1 (dashed vertical line), in mm/s. The RMS is about 76 µm/s. 

 

Figure 4 Range-rate residuals around the closest approach of R4 (dashed vertical line). The RMS is about 17 µm/s. 



 

Figure 5 Estimated J2 versus C22 and formal 1-σ uncertainty ellipses for the different approaches described in this paper. The 
most recent published values are also shown as reference. (Anderson & Schubert, 2010) solution was obtained by constraining 
the J2/C22 ratio to the hydrostatic value 10/3. 

 

 

Figure 6 Comparison of observed surface topography (blue square and large crosshairs, representing 1 uncertainties in the 
shape model) against the topography required to match the measured gravity for the models discussed in Section 3 (each shown 



with crosshairs illustrating the 1 uncertainties propagated from the SOL1 gravity model). For the homogeneous interior case, 
the shape was determined via equation (10). For the spherical core case, the shape was determined via equation (11), with 𝑯𝒍𝒎

𝒄  
set to zero. For the hydrostatic core (hyd-core) cases, the core shape, 𝑯𝒍𝒎

𝒄 , was determined using a theory-of-figures approach 
for a two-layer fluid body (e.g., Tricarico, 2014), assuming various mantle thicknesses (d). Corresponding normalized moments of 

inertia (𝑪/𝑴𝑹𝟐) are also given in parentheses. Finally, the geoid was obtained via equation (12). For reference, the surface 
topography expected for a hydrostatic two-layer body is indicated for various normalized moments of inertia along the dashed 
black line. 

 

 

Figure 7 Core topography required to give rise to the observed gravity under the assumption that the degree-2 surface 
topography conforms to the geoid. The required core topography is computed via equation (11) and depends on the assumed 

mantle thickness (d); four examples are shown. In each case, the crosshairs illustrate the 1 uncertainties propagated from the 
SOL1 gravity model. For reference, the core topography expected for a hydrostatic two-layer body is indicated for various 
normalized moments of inertia along the dashed black line.  
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Tables 

Table 1 Main geometrical and orbital characteristics of R1 and R4 gravity fybys. 

Values at C/A Unit R1 R4 

Epoch (UTC) 26-NOV-2005, 23:50 09-MAR-2013, 19:40 

Altitude (km) 502 999 

Relative velocity (km/s) 7.3 9.3 

Inclination (°) 17 106 

Latitude (°N) -10.2 18.8 

Longitude (°E) -91.5 -176.2 

Normal-to-Earth angle (°) 106 117 

Sun-Earth-Probe angle (°) 113 128 

 

Table 2 Expected ΔV due to Rhea's gravity during R1 and R4. The reference values are: GM = 153.9398 km3/s2, J2 x 106 = 931, J3 x 
106 = 25. 

Contribution Unit R1 R4 

ΔV(GM) (m/s) 16.7 9.4 

ΔV(J2) (mm/s) 5.6 1.6 

ΔV(J3) (mm/s) 0.09 0.02 

 

Table 3 Estimated values and 1-σ formal uncertainties of Rhea's quadrupole gravity unnormalized coefficients for the different 
approaches described in this paper compared to the results published in (MacKenzie et al., 2008) and (Anderson & Schubert, 
2010). (MacKenzie et al., 2008) did not provide the correlation between J2 and C22, a zero value was assumed. (Anderson & 
Schubert, 2010) solution was obtained by constraining the J2/C22 ratio to the hydrostatic value 10/3. A priori values and 
uncertainties used for SOL1 are also shown in the first column. 

 Unit SOL1 (a priori) SOL1 SOL2 (MacKenzie 
et al., 2008) 

(Anderson & 
Schubert, 2010) 

J2 (x106) 930 ± 600 946.0 ± 13.9 957.0 ± 20.3 931.0 ± 12.0 892.0 ± 1.6 

C21 (x106) 0 ± 300 -19.9 ± 11.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 

S21 (x106) 0 ± 300 23.5 ± 21.3 0 ± 0.0 0 ± 0.0 0 ± 0.0 

C22 (x106) 240 ± 250 242.1 ± 4.0 227.0 ± 6.4 237.2 ± 4.5 267.6 ± 4.9 

S22 (x106) 0 ± 250 -15.3 ± 5.0 -14.9 ± 5.0 3.8 ± 3.8 0 ± 0.0 

J2/C22  3.9 ± 4.8 3.91 ± 0.10 4.22 ± 0.19 3.92 ± 0.09 3.33 ± 0.0 

corr J2-C22  0.0 -0.34 -0.58 0.0 (N/A) 1.00 

 

 


