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Abstract

In spite of considerable progress, computing curvature in Volume of Fluid (VOF) methods
continues to be a challenge. The goal is to develop a function or a subroutine that returns the
curvature in computational cells containing an interface separating two immiscible fluids, given
the volume fraction in the cell and the adjacent cells. Currently, the most accurate approach is
to fit a curve (2D), or a surface (3D), matching the volume fractions and finding the curvature
by differentiation. Here, a different approach is examined. A synthetic data set, relating
curvature to volume fractions, is generated using well-defined shapes where the curvature and
volume fractions are easily found and then machine learning is used to fit the data (training).
The resulting function is used to find the curvature for shapes not used for the training and
implemented into a code to track moving interfaces. The results suggest that using machine
learning to generate the relationship is a viable approach that results in reasonably accurate
predictions.

1 Introduction

Computing the evolution of a fluid interface separating immiscible fluids goes back to the beginning
of CFD (Harlow and Welch, 1965). The most common approach is to use one grid for the whole
domain and solve the governing equations simultaneously for both fluids using the so-called one-
fluid formulation where the different fluids are treated as one fluid with different material properties
and a singular source term is added to account for surface forces. The use of the one-fluid form
of the governing equations requires an index or marker function to identify the different fluid and
several methods are available to advect the index function (Tryggvason et al., 2011). Of those, the
Volume of Fluid (VOF) approach, where volume fraction of one fluid is used as an index function,
is one the oldest (Hirt and Nichols, 1981) and most widely used strategy.

One of the biggest challenge in VOF methods is the computation of surfaces forces. Major
progress was made by the introduction of the Continuous Force method (Brackbill et al., 1992)
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Figure 1: Sketch showing an interface crossing several computational cells and the volume fractions
constructed by the PLIC method.

which made it possible to compute the surface force at fluid interfaces in a reasonably reliable
way, by numerically differentiating an normal vector field extended off the interface and using
the geometrical identity κ = ∇ · n. A similar strategy was also used by Lafaurie et al. (1994)
who worked directly with the stress field. Those approaches, coupled with the Piecewise Linear
Interface Calculation (PLIC) strategy (Youngs, 1982) to advect the volume fraction, played a major
role in making the VOF method one of the most—if not the most—used method for simulations of
flows with sharp, moving interfaces. More recent methods have improved on the above technique
by using 1) the so called “balanced-force methods” (defined in Francois et al. (2006) but used
previously by Renardy and Renardy (2002); and 2) the so-called Height Functions method that
allow a point on the interface to be found with fourth order accuracy (Bornia et al., 2011). The
Height-Function method yields precise results in 2D (Popinet, 2009), decreasing spurious currents to
machine accuracy, and somewhat less precise results in 3D (Owkes and Desjardins, 2015). Despite
this success, the Height-Function method is limited to situations where the number of grid points
per radius of curvature is about ten or more. For smaller radii, one needs to resort to various kinds
of fitting. One either directly fits the area or volume under a curve to the volume fraction (Renardy
and Renardy, 2002) or finds approximate points on the interface and fits a paraboloid curve or
surface the set of points. More complex methods have been suggested (Owkes and Desjardins,
2015). Even for these more advanced methods, when there are less than ten points in the radius
of curvature the error remains large, of the order of one. A review of recent numerical methods for
surface tension may be found in Popinet (2018).

Figure 1 shows an interface cutting though several cells and the void fraction in each cell.
Although we show the original interface as a line in the figure, in actual computations the only
information available is the volume fraction, Ci,j , in the cell that we are considering and the adjacent
cells. We focus on two-dimensional flow below, to simplify the discussion, but the approach should
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carry over to fully 3D flows in a straightforward way. To find the curvature in each interface cell,
κi,j , we seek a functional relationship

hκi,j = f

(Ci−1,j+1 Ci,j+1 Ci+1,j+1

Ci−1,j Ci,j Ci+1,j

Ci−1,j−1 Ci,j−1 Ci+1,j−1

) (1)

relating the curvature to the nine volume fractions in and around the cell denoted by (i, j). Since
the curvature has dimension one over length, it is multiplied by the cell width h (assuming that the
cell height and width are the same), to make the expression nondimensional.

Instead of attempting to derive the relationship expressed by equation (1) analytically, here we
examine an alternative approach and find the relation between curvature and the volume fractions
using Machine Learning. The closest approach to ours was developed by Meier et al. (2002), where
the curvature is found by fitting a dataset generated using circles of different sizes. However, instead
of using the nine volume fractions in equation (1), Meier et al. (2002) use three variables accounting
for the volume fraction in the nine cells, the volume fraction in the center cell, and the “tilt” of the
interface.

2 Learning the Curvature and Testing

Finding the functional relationship between curvature and volume fractions—as expressed by equa-
tion (1)—using Machine Learning, involves three steps:

• Generating of a synthetic dataset, spanning a large range of interface curvatures and orienta-
tions with respect to the grid.

• Fitting the data using Neural Networks (the learning stage) to find the curvature as a function
of the volume fractions.

• Testing the fit using shapes not used for the fitting

To generate a data set containing curvature and volume fractions for well-defined shapes where
the curvature and volume fractions are easily found, we use circles of varying sizes (as in Meier
et al. (2002)). The circles are placed on a grid, and the volume fraction in each cell found. Since we
work with the curvature scaled by the grid size, one grid is sufficient. The volume fraction in each
grid cell is found by integrating the area under a circle crossing the cell and for cells away from the
interface the volume fraction is either zero or one and can be determined by checking if the distance
from the center of the cell to the center of the circle is shorter or longer than the radius of the circle.
For each circle we gather data for both positive and negative curvatures, since the sign is defined
by whether the fluid inside or outside the circle is identified by C = 1. By using circles we first
of all ensure that the single curvature for each circle is known exactly and we do not have to deal
with the question of exactly where in a cell it is computed, and secondly, our data is completely
symmetric with respect to rotations and reflections. For the results presented here our data set is
generated using a 1 × 1 domain resolved by a fixed grid of 2000 × 2000 grid points and circles of
different radii with a center in the middle of the grid. The radius of the circles ranges from 0.00225
to 0.475 (so that there are 9 grid points across the smallest circle). The scaled curvature (hκ thus
ranges from 0.001 to 0.222. A total of 65 circles are used, going in increments of 0.001 between
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Figure 2: Plots of the fitted curvature versus the exact curvature. (a) training data; (b) test data;
(c) validation data; (d) complete dataset. Plots generated by the Matlab Neural Network Toolbox.
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Figure 3: The distribution of the error for the fit shown in figure 2. Plots generated by the Matlab
Neural Network Toolbox.

the smallest one and the one with radii of 0.05, and then in increments of 0.025 for the rest of the
range. This results in 188,232 rows of data, each relating the curvature and the nine void fractions.

The fitting is done using Matlab and the built-in Neural Network Toolbox. The curvatures
constitute a 1 × ND array of ”targets” and the void fractions a 9 × ND array of inputs, where
ND is the total number of relationships (188,232 for the dataset used here). After the data has
been loaded, the Matlab function train is used to relate the curvature to the void fractions. We
use the default settings of a two-layer feed-forward network with 100 hidden neurons and linear
output neurons using the Levenberg-Marquardt process for the back propagation. The data is
divided in three parts for training, testing and validation, and we use the default of 70%, 15% and
15%, respectively. The training stops when the mean square error of the validation sample stops
improving or the maximum number of steps (1000 in our case) is reached. At that point the network
is saved as a Matrix-Only Function. Figure 2 shows the quality of the fit. The curvature as found
by the neural network is plotted versus the exact curvature for each point in the dataset. If the fit
was perfect, all the points should lie on the 45 degree line. In (a) fit is shown for the training data;
(b) shows the same thing for the test data; In (c) we examine the validation data; and in (d) the
fitted curvature and the exact curvatures are compared for the complete dataset. The solid line is
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Figure 4: (a) Plots of the curvature found by machine learning (circles) and the exact curvature
(line) for a sine wave. (b) The curvature found by machine learning versus the exact curvature.

a least squares fit through the points shown in each frame. Figure 3 shows the error distribution
for the final fit. Obviously, most of the training data points have close to zero error, but even the
validation points are closely distributed around the origin.

The fitting (or learning) results in a function that is saved and can be called from other programs
to find the curvature for values of the volume fractions resulting from arbitrarily shaped interfaces.
To test the fit on a more complex curve, where the curvature varies along the interface, we look at
a large amplitude sine wave, defined by y(x) = A sin(x). The curvature can be found analytically:
κ(x) = −A sin(x)× (1 +A2 cos2(x))−3/2. For the results presented here A = 1.0. The curve divides
a rectangular 2π × 2π domain into two regions, and the value of the volume fraction of an index
function is set to unity in cells below the curve and zero above the curve. The domain is resolved by
a 100× 100 grid and the volume fractions in cells crossed by the curve are constructed in the same
way as for the learning cases, by representing the curve by connected marker points and finding
the fractional area on one side of the curve. The curvature was calculated analytically for the
midpoint of each cell. In figure 4(a) we plot the fitted curvature and the exact curvature versus the
x coordinate, for one value of the amplitude. Overall the agreement is reasonably good, although
the points near zero curvature show some scatter. The quality of the fit is also shown in figure
4(b), where the curvature from the neural network is plotted versus the exact curvature. If the
agreement was perfect, all the points should lie on the 45-degree line. We have also tested the fit
using larger amplitudes for the sine function and different grid resolution and find similar results.
As an aside we mention that initially our data set lacked points for very small curvatures (nearly
flat interfaces) and in those cases we generally saw large errors where the curvature was small. A
more complete data set solved this problem, emphasizing the need for the data to span all possible
cases.
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Figure 5: The initial conditions used to test the curvature routine generated by the neural network.

3 Implementation in a Flow Solver

To test how finding the curvature by machine learning works in a flow solver, we have implemented
the function developed by the neural network machine learning in a finite-volume/front-tracking
code, where the interface is tracked by connected marker particles advected by the flow. The flow
solver is a standard finite volume scheme implemented on a regular staggered grid, where all spatial
variables are approximated by centered second-order finite differences and the time integration is
done by a third-order Runga-Kutta method (Tryggvason et al., 2011). A simple SOR iteration
is used to solve the pressure equation. All boundary conditions are taken to be no-slip walls.The
interface is represented by connected marker points and the volume fraction (and thus the index
function) is found directly from the front (Aulisa et al., 2003, 2004), in the same way as for the
learning data and the sine function example above. To find the surface force we follow a procedure
similar to Meier et al. (2002) and first find the normal to the interface by differentiating the volume
fraction field, and then use it and the volume fraction to find a straight line approximation, ∆l,
to the length of the interface in each cell. The surface force per unit volume is then given by
fσi,j = σκi,jni,j∆li,j/h

2. The surface tension is computed in each pressure cell and averaged to find
the value at the velocity nodes. We note that for interface cells we divide the surface force by the
average density of the different fluids, following Meier et al. (2002), instead of the actual density in
the cell. The interface is smoothed slightly at each time step to suppress small “wiggles.”

Figure 5 shows the initial conditions for one case. Here the initial interface is a three-armed
“star” specified by r(θ) = Ro +Ao× cos(nθ) with n = 3, Ro = 0.15, and Ao = 0.05, defining a drop
with density ρd = 2.0 and viscosity µd = 0.02. The ambient fluid has ρo = 1.0, viscosity µo = 0.01
and the surface tension is σ = 10. We follow the motion of the drop as surface tension pulls it into
a circular shape. In figure 5 the interface and contours of the index function are shown on the left
and a 3D view of the index function on the left. The fluid solver uses a 642 grid to resolved the
1× 1 domain and the time step is equal to ∆t = 0.005. The interface shape, contours of the index
function and the velocity field at one time are shown in figure 6 for two different grid resolutions.
At the time shown the shape been “inverted” in the sense that “valleys” have replaced “bulges”
and vice versa, although the amplitude is still growing, as seen in the velocity field.
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Figure 6: The interface shape and the velocity field at time 0.02 as computed on a 642 grid (left)
and a 1282 grid (right).

A more quantitative comparison is shown if figure 7a where the moment of the drop, defined by

M(t) =

∫ ∫
C(x, y)

(
(x− x0)2 + (y − y0)2

)
dxdy (2)

is plotted versus time. Here, (x0, y0) is the center of the drop. The moment is plotted for for three
different grid resolutions (642, 1282 and 2562), and it is clear that the results on the two finest grids
are relatively close. As a reference we have also plotted results computed using a front-tracking
code where the surface tension is found directly from the connected marker particles. The results
are shown in red, for two different grid resolutions (1282 and 2562 grids). With the exception of the
lowest resolution for the machine learning approach all the results are close. In machine learning
the fit is not an exact relationship so repeated fitting does not, in general, result in identical results.
To test the sensitivity of the results to the specific fit we show the moment versus time in figure 7b
as found by three different fits. Although a very slight difference can be detected near the end, for
most of the time shown all three fits result in essentially identical results.

4 Conclusions

Finding a relationship between the volume fractions and the curvature in VOF methods has been
a topic of considerable interest since the pioneering paper by Brackbill et al. (1992). Here we have
showed that using machine learning to extract the relationship from a dataset, generated using
circles of variable sizes, is able to capture the curvature of a more complex interface with a spatially
varying curvature reasonably well. The results suggest that when it is complicated to generate an
exact relationships from fundamental considerations, but easy to generate a synthetic dataset from
simple examples, this approach may be a viable alternative to more conventional derivations. For
the application described here we could keep the learning cases extremely simple, but more complex
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Figure 7: The moment of the drop versus time. (a) Results computed on a 642 grid (dashed black
line), a 1282 grid (dot-dashed black line) and 2562 grid (solid black line), as well as using a front
tracking method (dashed and solid red line). (b) Results using three different fits computed on a
1282 grid.

cases are easily generated. We note that we have not tested the efficiency of this method compared
to more traditional ones, and no attempt has been made to make the function efficient. It is is likely
that there are significant opportunities to do so. We also note that while the accuracy is easily
established for a given shape and numerical parameters, there is no explicit order that guarantees
convergence under grid refinement.

The programs used to generate the data set, do the fitting and generate the neural network,
and the flow solver are available as supplementary material.
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Supplementary Material

The codes used for the results reported in the manuscript are included as Supplementary Material.
The codes are written in Matlab and require the Neural Network Toolbox. The codes are:

1. DataGen.m. A code to generate database (inputs and targets) using circles. The volume
fraction of interface cell and its adjacent cells is found as input data and the target is the
curvature of interface cell which is constant for a circle. The saved .mat file contains an
input matrix with nine columns and a target matrix with one column. More data could be
generated by changing the radius of the circle or the grid spacing.

2. ML-Train.m. A code to solve an input-output problem with the Neural Network tool box in
MATLAB. One may also do the same thing using GUI by typing “nftool” in the command
window. The code assumes that two variables are defined: input - input data and output -
output data.

3. VOF-ML.m. A very simple Navier-Stokes solver for a drop in a rectangular box, using a
conservative form of the equations. A 3-order explicit projection method and centered in
space discretizations are used. The density is advected by a front tracking scheme and surface
tension and variable viscosity is included. The VOF volume fraction is found directly from
the front and the surface tension is found by machine learning

4. NNCircle2.m. The neural network simulation function generated by ML-Train.m and called
by VOF-ML.m. Generated by Neural Network Toolbox function genFunction, 13-May-2018

The codes can be downloaded by the following links:

DataGen.m:

https://www.dropbox.com/s/cmbb221pjdv0g7w/DataGen.m?dl=0

ML-Train.m:

https://www.dropbox.com/s/1edci5uxnpj0c9t/ML-Train.m?dl=0

VOF-ML.m:

https://www.dropbox.com/s/zr6ifrxiwgygaww/VOF-ML.m?dl=0

NNCircle2.m

https://www.dropbox.com/s/pedy9h53w25mkge/NNCircle2.m?dl=0
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