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A B S T R A C T   

Cholangiocarcinoma (CCA) includes a heterogeneous group of malignancies with limited treatment options. 
Despite recent advances in medical oncology, the prognosis of CCA patients with metastatic disease remains 
poor, with a median overall survival of less than a year. In the last decade, notable efforts have been made by the 
CCA medical community in an attempt to improve clinical outcomes of patients, with the development of 
molecularly targeted therapies in this setting. Among these treatments, the fibroblast growth factor receptor 
(FGFR) 2 inhibitor pemigatinib has received accelerated approval in April 2020 by the US Food and Drug 
Administration (FDA) in CCA patients harboring FGFR2 gene fusions or other rearrangements, on the basis of the 
results of the FIGHT-202 trial, and thus, representing the first molecularly targeted therapy to be approved for 
the treatment of CCA. However, several issues remain, including the emergence of polyclonal mutations 
determining resistance to pemigatinib, the identification of biomarkers predictive of response, and the knowl-
edge gaps regarding the role of other FGFR gene aberrations. 

This review aims to provide an overview of recent development of pemigatinib, especially focusing on the 
results of the pivotal FIGHT-202 trial, the approval of this FGFR inhibitor, and the future challenges concerning 
the use of FGFR-directed treatments in CCA patients.   

Introduction 

Cholangiocarcinomas (CCAs) represent a group of aggressive and 
relatively rare malignancies arising from different locations of the 
biliary tree and including intrahepatic cholangiocarcinoma (iCCA) and 
extrahepatic cholangiocarcinoma (eCCA) – with the latter further sub-
classified into perihilar cholangiocarcinoma (pCCA) and distal chol-
angiocarcinoma (pCCA) [1-3]. Classically, iCCA originates from the 
biliary tree within the liver parenchyma, while pCCA and dCCA arise 
outside the liver [4-6]. Notably enough, despite CCAs have been his-
torically considered rare tumors reporting wide epidemiological differ-
ences, according to the presence of well-known risk factors such as liver 
flukes in Asian countries, the last decades have witnessed a marked in-
crease in most western countries [7-10]. 

Although radical surgery remains the mainstay of treatment for 
resectable disease, resection is beneficial for only a small proportion of 
CCA patients [11]; in addition, even following curative resection and 
despite aggressive approaches, recurrence rates are high [12,13]. On the 
basis of these premises, adjuvant treatments have been explored in 

resected CCA, and despite the recent BILCAP study has raised several 
controversies, the results of this trial have provided evidence supporting 
the use of adjuvant capecitabine following CCA resection, based on a 
median overall survival (OS) benefit (53 months versus 36 months in the 
observational arm, Hazard Ratio [HR] 0.75, 95% Confidence Intervals 
[CI] 0.58–0.97, p = 0.028) [14-17]. 

In patients with metastatic disease, ten years after the publication of 
the ABC-02 and the BT22 trials, the combination of cisplatin plus 
gemcitabine (CisGem) remains the standard of care first-line therapy 
[18-20]. However, the overall moderate survival benefit provided by 
CisGem, with most of patients reporting a median survival of less than 
one year, has led to huge efforts aimed at identifying more effective 
treatments in this setting [21,22]. Notably enough, the last decade has 
witnessed the advent of genomic sequencing, an epochal change which 
has provided an unprecedented amount of information regarding the 
processes of cancer pathogenesis in human malignancies [23-26]. As 
regards CCA, molecular profiling has become increasingly important, 
with a wide range of studies describing genetic aberrations which are 
exclusive to specific subtypes of these hepatobiliary tumors [27-33]; 
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these findings have paved the way towards the development of molec-
ularly targeted therapies in CCA, whose role has been explored and is 
currently under investigation as monotherapy or in combination with 
other anticancer agents in several phase I to III clinical trials [34-41] 
(Fig. 1). However, a large proportion of CCA patients (approximately the 
50%) does not harbor potentially actionable aberrations, and the vast 
majority of data regarding targeted therapies are limited to a highly 
specific population [42-44]. In fact, “Precision Oncology” is primarily 
limited to iCCA patients so far, where isocitrate dehydrogenase (IDH) 
and fibroblast growth factor receptor (FGFR)2 represent the most 
promising therapeutic targets, as witnessed by several recently pub-
lished or presented studies [45, 46]. Among these trials, the open-label, 
multicenter, phase II FIGHT-202 study investigated the role of the 
FGFR1, FGFR2, and FGFR3 inhibitor pemigatinib in previously treated 
CCAs, providing an objective response rate (ORR) of 35.5% and median 
progression-free survival (PFS) of 6.9 months in patients harboring 
FGFR2 gene fusion or other rearrangements [47]. Following these re-
sults, on 17 April 2020, the United States (US) Food and Drug Admin-
istration (FDA) granted accelerated approval of this molecule [48]. 
Nonetheless, the use of pemigatinib has raised important issues, 
including the emergence of genetic alterations driving acquired resis-
tance, the identification of biomarkers able to predict response to this 
molecule, and the application of liquid biopsies and circulating tumor 
DNA (ctDNA) in an attempt to optimize FGFR-directed treatments [49, 
50]. 

In this paper, we provide an overview of the development of pemi-
gatinib as novel therapeutic option in CCA, especially focusing on the 
results of the FIGHT-202 clinical trial, together with current and future 
controversies and challenges in this setting. 

FGFR2 aberrations in cholangiocarcinoma 

The FGFR receptors family is composed of FGFR1, FGFR2, FGFR3, 
FGFR4, and FGFR5 [51]; from a structural point of view, the first four 
receptors contain intracellular tyrosine kinase domains, while FGFR5 
lacks the tyrosine kinase domain, and thus, the fifth receptor does not 
seem to be involved in carcinogenetic processes [52]. Notably enough, 
the FGF/FGFR signaling is implicated in cell proliferation, differentia-
tion, angiogenesis, and intracellular survival, and it is readily apparent 
that FGFR aberrations have been described in several solid tumors [53]. 
More specifically, the interaction between FGF ligands to FGFRs causes 
the dimerization the receptor and the transphosphorylation of the 
tyrosine kinase domains [54]; subsequently, this process leads to the 
activation of several intracellular signaling cascades, including JAK/-
STAT, phospholipase Cγ (PLCγ), RAS-dependent mitogen-activated 
protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K-
CA)/Akt/mTOR (Fig. 2) [55]. 

As previously stated, FGFR alterations have been observed in a wide 
range of malignancies, including ovarian cancer, glioma, breast cancer, 
endometrial cancer, and especially urothelial carcinoma and iCCA 
[56-59]. With regard to the latter, the predominance of FGFR aberra-
tions have been highlighted in the gene encoding for FGFR2, and in 
particular, a majority of gene fusions or rearrangements have been 
identified, with amplifications and mutations reported as less frequent 
events [60]. 

FGFR2 gene fusions are estimated to range between 10 and 20% of 
iCCAs, presenting a mutual exclusivity with KRAS/BRAF mutations and 
observed as more frequent in non-Opistorchis Viverrini-related malig-
nancies [61]. Notably enough, FGFR2 gene fusions have been reported 

Fig. 1. Schematic representation of therapeutically relevant signaling pathways and selected targeted therapies currently under evaluation in biliary tract cancer. 
AKT: protein kinase B; EGFR: epidermal growth factor receptor; FGF: fibroblast growth factor; HER2: epidermal growth factor receptor 2; HGF: hepatocyte growth 
factor; IL-6: interleukin 6; IDH: isocitrate dehydrogenase; JAK: Janus kinase; mTOR: mammalian target of rapamycin; PDGFR: platelet derived growth factor re-
ceptor;; PDK1: phosphoinositide-dependent kinase-1; PI3K: phosphoinositide 3-kinase. 
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almost exclusively in iCCAs, and represent an extremely rare finding in 
pCCA, dCCA, and gallbladder cancer [62,63]. Over the years, FGFR2 
fusion-positive iCCAs have been suggested to constitute a distinct and 
unique molecular subtype of CCA, due to the younger age at onset, the 
less aggressive clinical course, and the female predominance, compared 
to wild-type iCCA [64,65]. Additionally, patients harboring FGFR2 fu-
sions frequently present concomitant BAP1 mutations and, despite these 
findings would deserve further evidence, bone metastases [66]. 

Genomic sequencing has made it possible to describe a wide range of 
FGFR2 fusion partners, including CREB5, TXLNA, KCTD1, PPHLN1, 
TACC3, MGEA5, AHCYL1, and BICC1 [67]. In particular, BICC1 has 
been the first partner to be identified in two cases of iCCA harboring 
FGFR2-BICC1 fusions in a pivotal report by Wu and colleagues [68]; 
more recently, several other studies have reported more than 150 fu-
sions partners, with the same BICC1 resulting as the most frequent one 
[69, 70]. 

Non-selective and selective FGFR tyrosine-kinase inhibitors: a 
changing landscape 

In recent years, the role of FGFR-directed therapies has been 
explored in phase I to III clinical trials, with various agents which have 
been evaluated or are currently being assessed [71]. Firstly, early studies 
on FGFR inhibition in CCA evaluated non-selective tyrosine kinase in-
hibitors (TKIs), including lucitanib, lenvatinib, pazopanib, dovitinib, 
and regorafenib [72-74]; of note, these agents inhibit a multitude of 
targets beyond the FGFR signaling, such as RET, FLT3, VEGFR, PDGFR, 
and KIT. However, these drugs reported low antitumor efficacy in 
FGFR2 fusion-positive iCCAs, and thus, have not entered into clinical 
practice [75]. 

On the basis of these premises, further efforts have been directed 
towards the development of selective FGFR inhibitors, with a wide range 
of these agents which have reported clinically meaningful activity in 
several phase II trials on pretreated FGFR2 fusion-positive iCCA patients 

[76]. As previously stated, pemigatinib represents the FGFR selective 
inhibitor furthest developed in CCA, and thus, this recently approved 
molecule will be discussed in detail in the following section. 

Among selective FGFR inhibitors, infigratinib (BJG398) reported a 
median PFS of 5.8 months in previously treated iCCA patients harboring 
FGFR2 fusions, with an ORR of 18.8% and a disease control rate (DCR) 
of 83.3% in a phase II trial [77]. Most common all grade toxicities 
included hyperphosphatemia, fatigue, stomatitis, alopecia, and con-
stipation, while grade 3–4 adverse events comprised hypo-
phosphatemia, hyperphosphatemia, and hyponatremia. Similarly, the 
use of the orally bioavailable, multi-kinase inhibitor derazantinib 
(ARQ087) was associated to an ORR of 20.7% and a DCR of 82.8%, 
according to the results of a recent phase II clinical study [78]. 

Several other FGFR inhibitors have been assessed and are currently 
under investigation, including futibatinib, erdafitinib, and Debio 1347. 
With regard to the latter, the FUZE phase II trial has investigated the role 
of Debio 1347 not only in FGFR2 fusion-positive iCCAs, but also in pa-
tients harboring FGFR1 or FGFR3 gene fusions or rearrangements 
(NCT03834220). Of note, this study has finished recruitment, with re-
sults pending. 

As witnessed by results presented by Goyal and colleagues at ESMO 
World Congress on Gastrointestinal Cancer 2020, the irreversible FGFR 
inhibitor futibatinib (TAS-120) has reported remarkable results in the 
FOENIX-CCA2 phase II trial [79]. In this open-label, multicenter study, 
67 iCCA patients harboring FGFR2 gene fusions or other rearrangements 
were treated with futibatinib monotherapy; according to the results of 
this trial, ORR and a DCR were 34.3% and 76.1%, respectively. Not only 
that, the CCA medical community has shown growing attention towards 
this molecule, which has shown antitumor activity in patients previously 
treated with other FGFR inhibitors, and thus suggesting that futibatinib 
could play an important role in overcome acquired resistance in this 
setting [80,81]. 

Fig. 2. Schematic figure representing Fibroblast Growth 
Factor Receptor (FGFR) structure, network, and alteration 
in tumors. As reported in the text, the FGFR family in-
cludes transmembrane receptors composed of three 
extracellular immunoglobulin-like domains and one 
intracellular split tyrosine kinase domain, with the 
exception of FGFR5. The complex of FGF, HSPG, and 
FGFR results in the receptor dimerization, and subsequent 
transphosphorylation of tyrosine kinase domains and 
activation of downstream signaling. Aberrations in FGFR 
(including mutation, amplification, translocation, etc.) 
causes a constitutive activation of the kinase domain. 
Abbreviations: FRS2: fibroblast growth factor receptor 
substrate 2; HSPG: heparan sulfate proteoglycan; PLC-γ: 
phospholipase gamma; PIP2: phosphatidylinositol 4,5- 
bisphosphate; IP3: phosphatidylinositol 3,4,5-triphos-
phate; DAG: diacylglycerol; PKC: protein kinase C; 
GRB2: growth factor receptor-bound protein 2; GAB1: 
GRB2-associated-binding protein; MEK: MAPK/ERK 
Kinase.   
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Pemigatinib and FIGHT-202 

Pemigatinib is a small molecule inhibitor of FGFR1, FGFR2, and 
FGFR3 (Table 1) [82]. Although the assessment of this molecule in CCA 
patients is recent, pemigatinib represents the first targeted treatment to 
be approved in CCA [48]. This US FDA approval has been based on the 
results of a phase II, open-label, multinational trial, the FIGHT-202, 
which explored the role of pemigatinib in previously treated metasta-
tic CCA patients with FGFR2 fusions or rearrangements (n = 107), other 
FGF/FGFR aberrations (n = 20), or without FGFR alterations (n = 18) 
[47]. Pemigatinib was administered orally at the following starting dose: 
13.5 mg once daily, on days 1–14 of 21-day cycles - 2 weeks on, 1 week 
off [47]. According to the study design of FIGHT-202, this phase II trial 
included patients with Eastern Cooperative Oncology Group Perfor-
mance Status (ECOG-PS) of 0, 1, or 2, and whose disease had progressed 
following at least one treatment. Tumor response was evaluated by in-
dependent review according to RECIST 1.1 [47]. 

Notably enough, after a median follow-up of 17.8 months, the 35.5% 
(38/107) of patients harboring FGFR2 fusions or rearrangements 
showed an objective response, with 3 CCAs achieving complete re-
sponses and a median duration of treatment of 7.2 months [47]. 
Conversely, no responses were highlighted in the other two cohorts of 
CCA patients. With regards to other clinical outcomes, median PFS and 
median OS were 6.9 months and 21.1 months in patients with FGFR2 
fusions or rearrangements. On the contrary, median PFS in the subgroup 
of patients with other FGF/FGFR alterations and in those without 
FGF/FGFR alterations was 2.1 months and 1.7 months, respectively; in 
the same patient populations, median OS was 6.7 months and 4.0 
months, while median duration of treatment 1.4 months and 1.3 
months, respectively [47]. 

In terms of side effects, the safety profile of pemigatinib was similar 
to what observed in previous trials on FGFR inhibitors in CCA and other 
malignancies, as well as in the FIGHT-101 on advanced solid tumors and 
the FIGHT-201 in metastatic urothelial carcinoma [24,56]. In 
FIGHT-202, hyperphosphatemia was recorded as the most frequent 
all-grade adverse event, which was observed in the 60% of enrolled 
subjects (88/146) [47]. In addition, 93 of 146 patients (64%) had grade 
3 or worse toxicities, the most frequent of which were hypo-
phosphatemia (12%), arthralgia (6%), abdominal pain (5%), stomatitis 
(5%), fatigue (5%), and hyponatremia (5%). Lastly, no grade 5 adverse 
events were deemed to be pemigatinib-related [47]. 

Based on these results, on April 17, 2020, the US FDA granted 
accelerated approval to pemigatinib for the medical treatment of pre-
viously treated patients with metastatic CCA harboring FGFR2 fusion or 
other rearrangement detected by the FoundationOne® CDX (Foundation 
Medicine, Inc.) test [48]. Of note, this approval has symbolically marked 
a new era, since pemigatinib represents the first targeted treatment 
approved for CCA in the USA. 

However, the results of the FIGHT-202 warrant further validation 
and more studies are warranted. 

Pemigatinib and other FGFR inhibitors: open questions and new 
frontiers 

Although the recently published results of the FIGHT-202 and the 
approval of pemigatinib represent a “breath of optimism” in a setting 
with traditionally limited treatment options and extremely disap-
pointing prognosis, the efficacy of pemigatinib and other FGFR in-
hibitors is considerably limited by the emergence of acquired resistance 
[83]. In fact, secondary polyclonal mutations represent a notable chal-
lenge in FGFR-directed treatments in CCA, and further efforts are needed 
to optimize the use of these molecularly targeted therapies [83,84]. In 
2017, a landmark report by Goyal and colleagues represented the first 
evidence of acquired resistance to FGFR inhibitors [83]; in this study, 3 
iCCA patients with FGFR2 fusion received BGJ398 [83]. Notably 
enough, sequencing of cell-free DNA and biopsy samples collected at 
different stages (at baseline and post-progression) highlighted poly-
clonal mutations in the FGFR2 kinase domain [83]. In addition, a more 
recent report by the same author showed that futibatinib showed effi-
cacy in 4 patients with FGFR2 fusions who previously experienced dis-
ease progression on FGFR inhibitors [81]. All things considered, in such 
a scenario a growing role will be played by liquid biopsy, which has the 
potential to track the emerging of acquired resistance, and thus to guide 
treatment selection [85]. In fact, strategic sequencing of FGFR in-
hibitors, oriented by serial biopsies and ctDNA could prolong the 
duration of benefit from these molecularly targeted treatments, and the 
coming years will probably tell us if this non-invasive strategy could 
become a fundamental tool in the everyday management of these 
patients. 

In addition, since the therapeutic landscape of CCA is rapidly mov-
ing, novel strategies are currently under investigation and will be 
assessed. Among these, FGFR inhibitors are being explored as first-line 
treatment option in CCA patients with metastatic disease, as witnessed 
by the ongoing FIGHT-302 trial (NCT03656536). In fact, this study aims 
at comparing the reference doublet CisGem versus the FGFR inhibitor 
pemigatinib in treatment-naïve patients harboring FGFR2 rearrange-
ments. Of note, the results of this phase III trial are awaited, and will 
provide important information regarding the superiority of pemigatinib 
or systemic chemotherapy as front-line treatment. The study has a 
planned enrollment of 432 participants, with an estimated primary 
completion date in October 2023. 

Moreover, another potential approach includes the attempt to ach-
ieve more durable responses using the synergistic effect of combination 
therapies. In fact, despite only preclinical results have been observed so 
far, murine models have suggested that immune microenvironment of 
tumors can be altered by FGFR inhibition, and thus resulting in 
enhanced antitumor T cell responses [86]. Additionally, specific FGFR 
inhibitors have shown activity against other tyrosine kinases, with 
derazantinib which has been suggested to inhibit in vitro the Colony 
Stimulating Factor 1 Receptor (CSF1R), whose activity has been 
involved in the inhibition of immune checkpoints [87,88]. 

Lastly, another strategy under assessment involves the addition of a 
third drug to the reference doublet CisGem as first-line treatment, 
exploring the synergistic effect of combination therapies including 
pemigatinib plus systemic chemotherapy (NCT04088188). 

Conclusions 

The recent US FDA approval of pemigatinib in previously treated 
patients with locally advanced unresectable or metastatic CCA and 
FGFR2 gene fusions or rearrangements has symbolically marked a new 
era in CCA management, representing the first targeted therapy to be 
approved in this setting. However, several questions remain unan-
swered, including the development of secondary polyclonal mutations, 

Table 1 
Drug summary of pemigatinib features.  

Drug names Pemigatinib; IBI-375; INCB-054,828; INCB-54,828; 
Pemazyre 

Route of 
administration 

Recommended dose: 13.5 mg once daily, on days 1–14 of a 
21-day cycle until unacceptable toxicity or disease 
progression 

Pharmacokinestics Pemigatinib concentrations increase proportionally over a 
1–20 mg dose range at steady state; the drug can be 
administered with or without food; median time to 
maximum plasma pemigatinib concentration is 1.13 h 

Pharmacodynamics Selective inhibitor of FGFR1, FGFR2, and FGFR3 
Most common 

toxicities 
Hyperphosphatemia, alopecia, diarrhea, fatigue, dysgeusia 

Chemical name 3-(2,6-difluoro-3,5-dimethoxyphenyl)− 1-ethyl-8- 
(morpholin-4-ylmethyl)− 1,3,4,7-tetrahydro-2H-pyrrolo 
[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2-one 

Molecular formula C24H27F2N5O4  
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the proper use of liquid biopsy, and the identification of biomarkers 
predictive of response to FGFR inhibitors. 

A more comprehensive definition of resistance mechanisms and the 
development of novel therapeutic strategies represent urgent needs, and 
results of ongoing clinical trials are highly awaited. 
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