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Abstract. Two parties bargain over a pie, the size of which is determined

by their previous investment decisions. Investment costs are heterogenoeus.

The bargaining rule is sensitive to investment behavior. Our main result is that

egalitarianism is more likely to emerge in situations in which private property

over the fruits of one’s own independent investment is not secured.
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1 Introduction

Many relevant economic problems are related to a simple two-stage game in

which a pie has to be firstly generated by the investment decision of some agent;

then, after the investment is made, bargaining determines the division of the

pie. An ineffi cient equilibrium is observed when the investing party, expecting

to receive a share not covering the investment cost, keeps from investing. This

is the so-called "hold-up problem".
1Permanent Address: Ministry of Economy and Finance, via Solferino 11, 47121 Forlì,

Italy. E-mail: lidia.bagnoli@tesoro.it
2Corresponding author. Department of Economics, University of Bologna, Strada Maggiore

45, 40125 Bologna, Italy. E-mail: giorgio.negroni@unibo.it
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Evolutionary dynamics in models with advance production and successive

bargaining have been studied by Troger (2002), Ellingsen and Robles (2002)

and Dawid and MacLeod (2001, 2008). Broadly speaking this literature has

shown that evolution may or may not support effi ciency depending on whether

only one (Troger, 2002; Ellingsen and Robles, 2002) or both parties (Dawid

and MacLeod, 2001, 2008) can invest in the project, respectively. This litera-

ture shares the common assumption that investment costs are the same for all

investing agents. Andreozzi (2010, 2012) is the first to investigate the conse-

quences of investment cost heterogeneity. He retains the same basic structure

as in Troger (2002) and Ellingsen and Robles (2002) so that, in each period,

the size of the pie is determined by the investment decision of one agent only;

however, the population of investing agents is now assumed to contain a fraction

of effi cient agents (those with low investment cost) and a fraction of ineffi cient

agents (those with high investment cost). When the evolved pie share is suffi -

cient to cover the cost of investment for the less effi cient agents, then the pie

share must also cover the cost of investment for the more effi cient ones; when

this occurs the resulting equilibrium is effi cient. When instead the evolved pie

share gives the incentive to invest to the more effi cient agents only, the less

effi cient ones do not invest and the resulting equilibrium is ineffi cient. By com-

paring payoff inequality at the effi cient equilibrium with payoff inequality at

the ineffi cient equilibrium, Andreozzi (2010) concludes that effi ciency calls for

greater inequality

In this paper we extend the existing literature in two directions. Firstly, we

introduce cost heterogeneity in a two-stage game in which the pie depends on

the investment decisions of two agents. Our game is played by two populations

of agents, A and B, of equal size. We study the case in which agents B are more

effi cient than agents A in the sense that they bear a smaller investment cost; the
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investment cost is assumed to be identical for agents of the same population.

This situation may arise, for instance, when (for whatever reason) A and B have

different productivity: in order to produce the same amount of output, agents

A have to work harder and/or for a longer period of time than agents B. 3

We assume that when both agents invest, they get involved in a joint ac-

tivity generating a big pie. When instead only one agent invests, an individual

activity is undertaken generating a small pie. Lastly, no pie is produced when

nobody invests. A neat example of this situation is provided by whale-hunting

at Lamalera (Alvard and Nolin, 2002). Whale-hunting is a risky activity which

is possible only if all hunters cooperate in the production stage, by going to

see on the same boat. This makes whale-hunting a joint venture, an activity

impossible to accomplish by a solitary hunter. The alternative is small-game

hunting, an individual activity which does not require any cooperation in the

production stage. In terms of our model, whale-hunting corresponds to a sym-

metric investment profile while individual small-game hunting corresponds to

an asymmetric investment profile. 4

Secondly, we consider the case in which the bargaining game played in the

second stage is sensitive to the investment profile observed and to the degree of

property rights protection. We assume that when both agents invest (so that

a big pie is produced), a Nash Demand Game (NDG) occurs; when nobody

invests there is no bargaining since there is no pie. What becomes critical is

the bargaining occurring when an asymmetric investment profile is observed (so

3Perhaps some reader might deem more adequate to suppose that agents could choose the
partner with whom to interact. In this case group selection may lead the effi cient agents to
interact with other effi cient agents only. This perspective is not considered here.

4The situation we have in mind is thus close to the game of life found in primitive economies
after the discovery of large-game hunting. These high quality food packages required the
cooperation of several hunters and were impossible to acquire by a solitary hunter (Boehm,
2012). Our model is thus not intended to represents the situation in which production is
individually pursued even when both agents invest. In this latter case egalitarianism may still
evolve; however, our conjecture is that its driving force has now to be found in risk-sharing
arrangements. This is the subject of ongoing reseach.
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that a small pie is produced). Two different scenarios are considered, depending

on whether property rights over the fruits of one’s own independent investment

are secured or not. When property rights are secured, we explore the case in

which the bargaining stage is described by a Dictator Game (DG) in which the

unique investing agent has full control of the surplus division. This is intended

to describe a situation in which sharing is contingent upon contribution. Those

who do not contribute might still receive a share of the small pie, but this is

entirely dependent on investor’s will. When instead individual property rights

are not secured, we explore the case in which the bargaining stage is described

by an Ultimatum Game (UG) in which the unique investing agent proposes a

division which is realized only if accepted by the opponent. This is intended

to describe a situation in which, since the fruits of one’s own independent in-

vestment are communal (rather than private) property, even those who do not

contribute to the pot are entitled to a rigth-to-a-share (Bell, 1985) of the small

pie. The division must thus respect this right. This, in turn, means that the

unique investing agent is not free to decide how to divide the fruits of her own

independent investment; rather she must share —and she must share fairly —to

avoid costly dispute.5

Unlike previous contributions6 , we thus study a setup where property rights

5Among hunter-gatherers, a meat division is not a fictitious game: feeling treated unfairly
may easily give rise to violent confrontations (what we called "costly dispute"). According
to Boehm (2004), "people in bands feel strongly about their meat-distribution systems and
about large game carcasses being essentially communal property (...); they can become quite
aggressive (...) if these norms are seriosly violated"

6Dawid and MacLeod (2001) is the contribution closer to our model. However, in our
opinion their way of shaping the distribution stage is rather critical. Indeed they assume that
equal split occurs after a symmetric investment profile while a NDG occurs after an asymmetric
investment profile. They defend the equal division assumption by appealing to Young (1993)
who, however, proved this result for an exogenously given pie. The equal split assumption
is even more critical in our model since the two agents have different investment costs. The
other assumption, namely that a NDG occcurs after an asymmetric investment profile, can
effectively be adequate in some context; nevertheless we contend its general validity. In a
preliminary study we considered the case in which a NDG, rather then an UG, occurs after an
asymmetric investment profile; however we were not able to derive the stochastically stable
equilibrium due to the occurrence of several non-singleton absorbing sets with complicated
structure.
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on the fruits of individual investment are strong and compare this with another

setup in which those property rights are slightly reallocated by granting a veto-

right to a non-investing partner.7

We are therefore concerned with two different two-stage games, that we label

ΓDG and ΓUG, which only differ in the bargaining rule following an asymmetric

investment profile.8 Both games have a multiplicity of equilibria. In order to

identify the evolved social norms we use the concept of stochastic stability and

claim that a social norm exists if the stochastically stable outcome is unique.

The existing literature focuses mostly on whether evolution favours effi cient

norms of distribution; in this paper, instead, we are mostly concerned with the

evolution of egalitarianism, i.e. a state of economic affairs minimizing payoff

inequality for all members of society. Since in our model agents are risk neutral,

payoff are given by the share of the gross surplus received minus the investment

cost (if any). Given cost heterogeneity among the two populations, payoff in-

equality is observed even if the gross surplus is equally distributed. Our main

result is that egalitarianism is more likely to emerge in situations in which prop-

erty rights over the fruits of one’s own independent investment are not secured.

More precisely, we show that in ΓDG the stochastically stable convention is al-

ways the one in which the effi cient pie is produced and is equally divided. We

also show that in ΓUG, when a unique stochastically stable convention exists, it

supports the effi cient pie; in this latter case, however, two divisions of the gross

surplus may evolve: one supporting equal sharing and one granting a larger
7Of course, other plausible alternatives could be considered; nevertheless, we believe that

our choice has the merit to adequately highlight the role of property rights protection in the
evolution of investment and bargaining behavior. We leave to further research to investigate
the robustness of our results

8Evidence from anthopology suggests that the two games, ΓDG and ΓUG, are indeed
plausible. For instance, Hill (2002) reports that sharing conditioned upon contribution is
observed among the Ache of Paraguay. On the other hand, Boehm (2004, 2012) says that
individuals living in small nomadic bands often do not have the right to treat the carcasses
they have killed as private property. This occurs, for instance, among the !Kung and the
Hazda, where forms of sharing not contingent upon contribution are observed (Woodburn,
1982).
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share to the less effi cient agent.9

The intuition behind these results is the following. We know from Young

(1993) that —provided some homogeneity conditions are satisfied10 —the NDG

has a natural tendency to evolve towards equal division. In our case, since the

pie is endogenous, we need to show that equal sharing provides an adequate

incentive to invest. This, in turn, crucially depends on what agents can get

by not investing, i.e. the outside option. However, since there is no stable

norm regulating the distribution of gross surplus at an asymmetric investment

profile, the outside option arises under evolutionary drift of agents’beliefs.11

The crucial point is that different rules of the game have different impact on

drifting beliefs.

To see this, let’s suppose drift lead an agent to believe to appropriate the

small pie produced by another investing agent with whom she interacts. Suppose

this belief effectively induces the former agent to refrain from investing. In ΓDG

the initial belief turns out to be a mistake because the single investing agent,

behaving as a dictator, gets the entire small pie (or its largest feasible division).

Learning this is enough to induce our agent to invest when she believes that

the big pie will be equally divided. In ΓUG instead the initial belief may not

be contradicted by the rules of the game. Two situations are now possible,

depending on the size of the effi cient pie. Equal sharing evolves when, at the

effi cient equilibrium, the gross surplus is so large to induce all agents to invest

9From a static analysis, ΓDG and ΓUG are essentially identical in the sense that the
subgame perfect equilibrium sustaining the effi cient investment profile is the same in the two
games. However, the evolutionary dynamics are quite different in the two contexts. The
fact that evolutionary dynamics of the kind we consider do not necessarily select outcomes
resulting from backward induction is known; see, for instance, Noldeke and Samuelson (1993)
and Samuelson (1997).
10These conditions hold in our case since agents are risk neutral and have the same infor-

mation (sample size) on opponents’past actions.
11As explained in details in Section 3, we adopt the evolutionary framework put forward by

Noldeke and Samuelson (1993) in which agents learn opponents’actions played at the node
reached by current play only. Beliefs about opponents’actions in nodes not reached by current
play are instead subject to drift and can take any value.
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even when they believe to obtain the entire small pie produced by the opponent

alone (i.e the original belief induced by drift). When instead at the effi cient

equilibrium the gross surplus is more limited —so that equal sharing no longer

gives the incentive to invest to the less effi cient agent when she believes to obtain

the entire small pie produced by the opponent alone —a new norm of division

evolves, giving to the less effi cient agents A a larger share.

This can be grasped by looking at Figure 1, in which ΓDG and ΓUG are

contrasted. In this Figure we assume that when one agent only invests a small

pie valued 40 is produced, that the investment cost for the less effi cient agent A

is 20 and that the more effi cient agent B bears no investment cost. The three

decreasing lines of dots represent respectively the payoff pairs in the case in

which both A and B invest (upper line), only B invests (middle line) and only

A invests (lower line).12 The upper increasing dotted line represents the payoff

pair corresponding to equal division of the gross surplus; the lower increasing

dotted line represents the gross surplus divisions generating payoff equality.

In each panel, the big dot represents the payoff profile corresponding to the

stochastically stable equilibrium. The dotted square represents the set of payoff

such that both agents get at least a payoff of 40 (this is the maximum payoff

an agent can obtain by not investing; given risk neutrality, it occurs when this

agent gets the entire small pie produced by the other). Figure 1 shows that case

in which stochastic stability supports the equal division of the big effi cient pie

in ΓDG but not in ΓUG. In this latter game, in fact, the size of the effi cient pie

is such that less effi cient agent A gets at least 40 (i.e. the maximum one can

hope to obtain by not investing) only if the effi cient pie is divided unequally;

the stochastically stable convention is then the convention closest to the equal

division giving to A a payoff equal to 40.13

12To each of these decreasing lines there corresponds a given gross surplus. For any payoff
pair resulting from a division of this gross surplus, the sum of the payoff gives the net surplus.
13Other two situations, not depicted in Figure 1, can arise in ΓUG. In one case the big pie
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These results have an interesting consequence for the inequality pattern ob-

served in the two games. When the size of the effi cient pie is large enough, payoff

inequality is the same in the two games; when instead the size of the effi cient

pie is more limited (i.e. the case illustrated in Figure 1), payoff inequality in

ΓUG is less than in ΓDG.

The paper is organized as follows. In Section 2 we present the model. The

evolutionary dynamics are studied in Section 3 and the main results are pre-

sented in Section 4. Section 5 contains some concluding remarks. All the proofs

are in the Appendix.

FIGURE 1 HERE

2 The model

Two risk neutral players (A and B) are engaged in a two-stage game. In stage

one both have to simultaneously decide whether to invest (action H) or not

(action L) in producing a pie. Investment costs are cA and cB , respectively.

When both choose H, agents are engaged in a joint activity and the resulting

gross surplus is VH ; when instead only one chooses H, an individual activity

is realized and the gross surplus is VM ; lastly, when both choose L there is

no surplus. Obviously, VH > VM > 0. At the end of stage one the produced

surplus is observed and each player can correctly estimate her opponent’s choice.

In stage two they bargain over the available gross surplus. If both invest, they

are engaged in a Nash Demand Game (NDG). If only one invests, the paper

is so small that there is no way to divide it such that both players get at least 40 (the upper
decreasing line has no intersection with the dotted area). In this case, stochastic stability
provides no guide to select one convention in ΓUG while equal pie division is still the evolved
convention in ΓDG. In the other case the big pie is is so big that dividing it equally yields
both agents a payoff bigger than 40; stochastic stability now select the same convention in
both games.
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explores two possibilities: either an Ultimatum Game (UG) or a Dictator Game

(DG).

We denote by ΓUG (resp. ΓDG) the whole extensive game in which a NDG

occurs when both players invest and a UG (resp. DG) occurs when only one

invests. In NDG players A and B simultaneously make demands y and x,

respectively. If these demands are compatible, each receives what she claimed;

otherwise they receive nothing. Since agents are risk neutral, the payoffs are

πA = y − cA and πB = x − cB if y + x ≤ VH ; πA = −cA and πB = −cB if

y+x > VH . In UG the player who invests makes a proposal which the opponent

can either accept or reject. In DG the division continues to be advanced by the

player who invests; however her opponent now has no choice but to accept. Let

D (Vj) = {δ, 2δ, ..., Vj − δ} , j ∈ {H,M} denote the set of feasible claims.

Throughout the paper we make the following assumption:

Assumption 1 (a) VH/2, VM , cA and cB are all divisible by δ;

(b) cA ≥ cB > δ;

(c) the maximum payoff attainable by playing H when the opponent chooses

L is positive, i.e.

cA < VM − δ; (1)

(d) the effi cient net surplus arises when both players choose H, i.e.

VH − cA − cB > VM − cB . (2)

(e) the population is suffi ciently large, i.e.

VH
N

< δ. (3)

When δ is negligible, points (b), (c) and (d) of Assumption 1 are satisfied
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when:

cB ≤ cA < VM if VM ≤ VH
2

cB ≤ cA < VH − VM if VM > VH
2 .

(4)

It is worth noticing that, under Assumption 1, both ΓUG and ΓDG ad-

mit a subgame perfect equilibrium which supports the investment profile HH.

However, both games admit a great number of ineffi cient subgame perfect equi-

libria. As stated in Result 1 below, there is a one-to-one relationship between

the subgame-perfect equilibria supporting the full investment profile in the two

scenarios considered; this means that, in a static context, the difference between

the two scenarios is negligible14 .

Result 1 For each Nash equilibrium supporting the effi cient investment profile

in ΓDG, there exists a Nash equilibrium in ΓUG supporting the same investment

profile and the same distribution of the gross surplus (and vice versa), provided

cB + δ < x < VH − cA − δ.

Proof. See the Appendix.

3 Evolutionary dynamics

We embed our model into the evolutionary framework put forward by Noldeke

and Samuelson (1993). To this end we postulate a finite population of size

N for each player, A and B. In each period, every possible match between

agents occurs meaning that each agent belonging to population A interacts with

each agent of population B, one at a time. We assume that investment costs

and payoffs are private information. An agent is described by a characteristic

which consists of a detailed plan of (pure) actions and a set of beliefs about the

14We thank an anonymous referee for suggesting this result.
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opponent’s behavior.15

Let θ be a state; this denotes a profile of characteristics of the overall popu-

lation; z (θ) denotes the distribution across the terminal nodes generated by θ;

lastly, Θ is the finite set of possible states.

Evolutionary dynamics are driven by learning and mutation. At the end of

every period, with probability λ an agent observes the distribution of outcomes

z(θ). This information allows agents to correctly update their beliefs on oppo-

nent’s choices at the reached information set; given these new beliefs, they also

update their action profile by choosing a best reply16 . Notice, however, that

when an agent has the opportunity to learn, she only observes the distribution

of outcomes but not the payoff received by the other agents. The following

assumption is introduced for the sake of simpler proofs.

Assumption 2 When an agent is indifferent between action H and action L

she will choose L.

The learning mechanism engenders an unperturbed Markov process (Θ, P )

where P is the transition matrix on Θ. By Ω we denote a generic absorbing set

of the unperturbed process; this is a minimal subset of states such that, once

entered, is never abandoned. The basin of attraction of an absorbing set is the

set of states β (Ω) such that, for all θ ∈ β (Ω) , a path from θ to θ′ ∈ Ω is observed

with positive probability. A state θ is an equilibrium17 of the unperturbed

process if no alternative state θ′ can be reached from θ. By ΣU (resp. ΣD) we

15 In ΓUG the plan of actions for player A must specify: (i) the type of investment; (ii) the
demand when both players choose H; (iii) the demand when A chooses H and B chooses L;
(iv) whether to accept the demands made by B when, in the first stage, B chooses H and A
chooses L. In ΓDG the plan of actions for player A must specify: (i) the type of investment;
(ii) the demand when both players choose H ; (iii) the division of the surplus when, in the
first stage, A chooses H and B chooses L. Analogously for player B.
16When there are multiple best replies, one of them is chosen at random according to a

distribution with full support.
17 In particular in our case a state θ is an equilibrium state if and only if it is a self-confirming

equlibrium of the stage game. See Noldeke and Samuelson (1993) for a definition.
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denote the union of absorbing sets of the unperturbed process in ΓUG (resp.

ΓDG).

Besides being updated, agents’beliefs and actions can also change by muta-

tion. In every period each agent has a probability ε of mutating. When mutat-

ing, agents change their characteristics according to a probability distribution

assigning positive probability on each possible characteristic. If this mutation

changes the action and/or belief at a decision node that is not currently reached,

this mutation is called drift.

Mutations allows the system to switch from an absorbing set to another

one. A collection of absorbing sets is a mutation-connected set X if every state

can be reached from every other state in the set by a sequence of one-mutation

transitions. A mutation-connected set X is locally stable if for any Ω ∈ X a

single mutation is not enough to enter the basin of attraction of another Ω′ /∈ X.

Mutations generate a new perturbed Markov process (Θ, P (ε)) which is er-

godic; hence it has a unique stationary distribution µε. Let µ∗ = limε→0 µε

denote the limit distribution. A state θ is stochastically stable if µ∗ (θ) > 0

(Foster and Young, 1990). Noldeke and Samuelson (1993) proved that: (i) the

stochastically stable set is contained in the union of the absorbing sets of the

unperturbed process; (ii) if an absorbing set Ω is contained in the support of

µ∗, then all absorbing sets which are reachable from Ω by a sequence of single-

mutation transitions are contained in the support of µ∗; (iii) local stability is

a necessary condition for stochastic stability. When the set of stochastically

stable states contains equilibria supporting the same unique outcome we can

speak of a stochastically stable outcome rather than a stochastically stable set.

We denote by ΣηS , η ∈ {U,D} , the set of stochastically stable states of ΓUG

and ΓDG. From now on, by slightly abusing notation, (HH, yHH , xHH) denotes

the outcome in which both agents have invested, agent A demands yHH and

12



agent B demands xHH . This also applies to other outcomes. We denote by

ρ (θ) the set of outcomes that can be observed given θ.

Definition 1 Consider the following classes of equilibria:

ΣηH = {θ| ρ (θ) = {(HH,VH − xHH , xHH)}}

ΣηHL = {θ| ρ (θ) = {(HL, VM − xHL, xHL)}}

ΣηLH = {θ| ρ (θ) = {(LH, VM − xLH , xLH)}}

ΣηL = {θ| ρ (θ) = {(LL, 0, 0)}} .

We denote by θx an equilibrium belonging to ΣηH with (VH − x, x) . The next

two Propositions give the properties of the absorbing sets.

Proposition 1 Consider ΓUG and let Assumptions 1 and 2 be satisfied. Then:

(a) all classes of equilibria in Definition 1 are not empty and there is a

collection of non-singleton absorbing sets Ωc such that ΣU = Ωc ∪ ΣUH ∪ ΣUHL ∪

ΣULH ∪ ΣUL ;

(b) from any absorbing set, an equilibrium θx ∈ ΣUH can be reached by a

sequence of single-mutation transitions.

Proof. See the Appendix.

In ΓDG it is immediate to observe that in every match with a non-investing

agent, every investing agent always demands the largest feasible share of the

small pie, VM − δ. Then every equilibrium in ΣDHL (resp. ΣDLH) only supports

the outcome (VM − δ, δ) (resp. (δ, VM − δ)). Moreover, ΣDL is empty since the

best reply to not investing is always to invest and demand VM − δ.

Proposition 2 Consider ΓDG and let Assumptions 1 and 2 be satisfied. Then:

(a) ΣD = ΣDH ∪ ΣDHL ∪ ΣDLH ;

13



(b) from any absorbing set, an equilibrium θx ∈ ΣDH can be reached by a

sequence of single-mutation transitions.

Proof. See the Appendix.

The difference between the two games is that every absorbing set in ΓDG

is singleton while this is not true for some of the absorbing sets in ΓUG. The

occurrence of a non-singleton absorbing set critically hinges upon agents’beliefs

on what happens at asymmetric investment profiles; this explains why it does

not occur in models in which the pie is produced by the investment of a single

agent.18 The intuition is that in ΓDG it is never profitable to be the only

agent who does not invest since she will get nothing (or the smallest share, δ);

this fact pushes learning dynamics towards an absorbing set containing a single

outcome. In ΓUG instead many beliefs on payoff at an asymmetric investment

profile can be sustained; for some of them the learning dynamics are trapped

in a cycle connecting different outcomes.19 This occurs, for instance, when at θ

we have20 :

(i) ρ (θ) = {(HH, δ, VH − δ) ; (HL, VM − δ, δ) ; (LH, VM − cB , cB) ; (LL, 0, 0)};

(ii) all agents B deem that at LH opponents reject a share smaller than VM−cB ;

(iii) all agents have just updated and pA (θ) = pB (θ) = 1/2.

As it can be easily verified, starting from θ, the process can not reach the basin of

attraction of an equilibrium belonging to
(
ΣUH ∪ ΣUHL ∪ ΣULH ∪ ΣUL

)
but rather

it cyclically visits all the four listed outcomes. Hence θ belongs to an absorbing

set Ω such that ρ (Ω) includes all the observed outcomes.

18A non-singleton absorbing set exists also in Dawid and MacLeod (2001).
19As a consequence of this fact, the process does not satisfy the no-cycling condition; see

Binmore, Samuelson and Young (2003).
20The interested reader can verify that the example corresponds to the case studied in the

proof of Proposition 1 in which A1 < 0, A2 > 0, B1 > 0 and B2 = 0.
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4 Main results

In this Section we show that a unique stochastically stable outcome always exists

in ΓDG and it supports the effi cient investment profile and the equal surplus

division. We also show that in ΓUG a unique stochastically stable outcome only

emerges under some circumstances; in this case the long run outcome continues

to support the effi cient investment profile but surplus division may not be equal.

Propositions 3 and 4 are the main results of the paper.

We start from ΓDG. Under Assumption 2 the equilibria in ΣDH support a pair

of compatible demands (VH − x, x) such that:

cB + 2δ ≤ x ≤ VH − cA − 2δ. (5)

For δ suffi ciently small the set ΣDH is well defined and it contains the equilibrium

θx in which the surplus is equally shared.

Consider now ΓUG. Let xUB (resp. VH −xUA) denote the share of the large pie

going to player B (resp. A) such that she receives an equilibrium payoff equal

to the largest feasible share of the small pie, VM − δ:

xUB − cB = VM − δ

VH − xUA − cA = VM − δ.

(6)

Hence, when B believes to get VM − δ in HL, she is induced to invest provided

she receives at least xUB + δ. Analogously, when A believes to get VM − δ in LH,

she is induced to invest provided she receives at least VH −
(
xUA − δ

)
. We have

xUB + δ ≤ xUA − δ if:

cA + cB ≤ VH − 2VM . (7)
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When this condition is satisfied, we can define the following set

ΣUIH =
{
θx | x ∈

[
xUB + δ, xUA − δ

]}
which represents the set of equilibria in which both agents invest and x ∈[
xUB + δ, xUA − δ

]
. The set ΣUH can thus be partitioned into ΣUIH and ΣUCH =

ΣUH�ΣUIH where ΣUCH denotes the set of equilibria in which both agents in-

vest but x /∈
[
xUB + δ, xUA − δ

]
. Hence, ΣUH = ΣUIH ∪ ΣUCH when (7) holds and

ΣUH = ΣUCH when (7) doesn’t hold.

By definition, at any θx ∈ ΣUIH each agent receives an equilibrium payoff

not smaller than the maximum payoff attainable when she deviates by playing

L; any equilibrium in ΣUIH thus dominates all the equilibria supporting other

investment profiles. Hence, even if at an equilibrium θx ∈ ΣUIH the beliefs on

the HL outcome drift, allowing some agents to expect to get almost the whole

surplus if they do not invest, this drift does not push the process away from the

basin of attraction of θx. This is not true for any θx ∈ ΣUCH .

Condition (7) is compatible with point (b) of Assumption 1 providedVH2 −

cB ≥ VM saying that, for the more effi cient agent B, investing and getting

half of the bigger pie is better than not investing and getting the entire smaller

pie. However, this last condition is compatible with point (c) of Assumption 1

only for cB < VH
4 . Hence, under Assumption 1, condition (7) is never satisfied

when cB ≥ VH
4 . The following Proposition summarizes our result concerning

the evolution of an investment norm in both games.

Proposition 3 Let δ be suffi ciently small and let Assumptions 1 and 2 be sat-

isfied. Then:

(a) the equilibria θx ∈ ΣDH are locally stable;

(b) when (7) holds, the equilibria θx ∈ ΣUIH are locally stable while the equi-

libria θx ∈ ΣUCH are not;
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(c) when (7) doesn’t hold, the set ΣUCH ∪ ΣUL ∪ ΣULH ∪ ΣUHL is mutation

connected and locally stable.

Proof. See the Appendix

Point (a) states that evolution always selects the effi cient equilibrium in ΓDG;

this occurs in region ADE of Figure 2. Points (b) and (c) state that not all the

effi cient equilibria evolve in ΓUG; rather evolution only selects the equilibria in

ΣUIH . This, of course, is only possible when ΣUIH is not empty, condition satis-

fied when (7) holds; this occurs in region ACF of Figure 2 in which investments

are complements and the total investment cost is limited. According to Dawid

and MacLeod (2008), investments are complements if the surplus gain result-

ing from investing when the opponent invests is greater that the surplus gain

resulting from investing when the opponent does not invest; in our case this is

satisfied if VM < 1
2VH . When instead condition (7) is violated, ΣUIH is empty

and ΣUH = ΣUCH ; since the set ΣUCH∪ΣUL∪ΣULH∪ΣUHL is mutation connected and

locally stable, one mutation is enough to move from one equilibrium to another

without leaving the whole set; as a consequence, all the outcomes belonging to

this mutation connected set are stochastically stable. All this occurs in region

CDEF of Figure 2 which corresponds to the case in which either investments

are not complements or investments are complements but total investment cost

is too high.

FIGURE 2 HERE

Before turning our attention to the bargaining norm we observe that, under

condition (7) , the set ΣUIH is compatible with two different settings. In the first

we have xUB + δ < VH
2 ≤ x

U
A − δ; this occurs when

cA ≤
VH
2
− VM . (8)
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In the second we have instead xUB + δ ≤ xUA − δ < VH
2 ; this occurs when

VH
2
− VM < cA ≤ VH − 2VM − cB . (9)

In the next Proposition we derive the stochastically stable outcome for each

game. Stochastic stability basically calls for counting the number of mutations

needed to move from one equilibrium to another. Since ΓDG satisfies the no-

cycling condition, we can use the naive minimization test (Binmore et al. 2003).

However this test can not be used in ΓUG since this game does not satisfy the

no-cycling condition (see point (a) of Proposition 1); in this case we have no

alternative but to resort to the suffi cient condition developed in Ellison (2000)

and known as radius modified coradius criterion. Both techniques are briefly

summarized in the Appendix.

Proposition 4 Let δ be suffi ciently small and let Assumptions 1 and 2 be sat-

isfied. Then:

(a) ΓDG has always a unique stochastically stable outcome; this supports the

effi cient equilibrium and the equal surplus division, i.e. (VH/2, VH/2);

(b) ΓUG has a unique stochastically stable outcome provided condition (7)

holds; this supports the effi cient equilibrium and a surplus division which is

either (VH/2, VH/2) if cA ≤ VH
2 −VM or (VM + cA, VH − VM − cA) if VH2 −VM ≤

cA ≤ VH − 2VM − cB.

Proof. See the Appendix

The intuition of this Proposition is the following. Consider ΓDG first. At

the effi cient equilibrium, the equal split grants to A a payoff 1
2VH − cA. Suppose

A believes to get VM −δ > 1
2VH−cA if she deviates by playing L. However, if A
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deviates and LH is observed, then B is a dictator meaning that A’s belief soon

turns out to be a mistake since B will only offer δ. By realizing that, A is better

off by investing since 1
2VH − cA > δ. Consider now ΓUG. In this game the equal

split evolves when cA is limited; this occurs in region ABF of Figure 2. In this

case, even if the beliefs of the less effi cient agents drift, they can not destabilize

the effi cient equilibrium being 1
2VH − cA > VM − δ. As a result A does not have

any incentive to choose L.When instead the investment cost of the less effi cient

agent is bigger, the equal surplus division might not be enough to prevent A

from deviating from the effi cient equilibrium. This happens if beliefs drift such

that A expects to get at LH a payoff VM − δ > 1
2VH − cA. In order to induce

A to invest, now B must give to A a larger share of the surplus (i.e. VM + cA)

so that A’s payoff is equal to VM , slightly bigger than the maximum payoff she

could hope to get at LH. This occurs in region BCF of Figure 2.

Proposition 4 has an interesting implication for inequality. In both our

games, at the observed convention the more effi cient agent receives a bigger

payoff. In ΓDG inequality follows from the same mechanism described by An-

dreozzi (2012): since all the investing agents receive the same share of the gross

surplus, the more effi cient agent gets a higher payoff. The same mechanism is

at work in ΓUG when cA is limited. When instead cA is greater, the mechanism

which is responsible for the observed inequality is different; now, in order to

provide to the less effi cient A the incentive to invest, the evolved bargaining

norm has to give to this agent a share of the gross surplus that is larger than

the share going to B (still preserving for the latter the incentive to invest). As a

consequence, although πA < πB , the observed payoff inequality is now smaller.

Since the inequality observed in this last case represents the maximal inequality

compatible with cooperation in the production stage, it has a Rawlsian taste.21

21A somehow similar result has been derived by Barling and von Siemens (2010) in the
framework of incentivating contracts. They show that equal sharing is the optimal solution
to the incentive problems in partnership provided that partners are inequity averse. This
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5 Concluding remarks

In this paper we extended previous literature on the evolution of social norms

in models in which the parties bargain over a pie the size of which is determined

by their previous investment decisions. We considered the case in which the

pie is determined by the investment decisions of two agents, with different in-

vestment costs. Andreozzi (2010, 2012) was the first to study the consequence

of investment cost heterogeneity. He concluded that effi ciency calls for greater

inequality. However, Andreozzi (2010) also suggested that his result does not

necessarily lend support to the conclusion that, in economies with production,

social justice has to be less egalitarian. The main result of the present paper

supports this conjecture.

6 Appendix

Before giving the proofs we introduce some notation and some preliminary re-

sults. Consider a state θ and suppose that all agents observe z (θ). In ΓUG an

agent i ∈ A chooses H if

pB (θ)
(
ỹiHH (θ)− ỹiLH (θ)− cA

)
+ (1− pB (θ))

(
ỹiHL (θ)− cA

)
> 0; (10)

an agent i ∈ B chooses H if

pA (θ)
(
x̃iHH (θ)− x̃iHL (θ)− cB

)
+ (1− pA (θ))

(
x̃iLH (θ)− cB

)
> 0. (11)

Here we denote by pA (θ) (resp. pB (θ)) the frequency of agents A (resp. B)

who played H in θ, and by ỹiHH (θ) (resp. x̃iHH (θ)) the expected payoff of agent

because equal sharing maximizes the incentive of the partner who has the weakest incentive
to exert effort. We do not consider inequity aversion. Moreover, in ΓDG equal sharing always
provides adequate incentive to invest to the less effi cient agent. However, in ΓUG it provides
incentive to invest in region ABF of Figure 4, but not in region BCF.
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i ∈ A (resp. i ∈ B) at the information set HH, given z (θ). Similar conditions

hold for ΓDG. Following Young (1993) we denote by dse the least integer number

greater than s when s is not an integer and s+ 1 otherwise.

Proof of Result 1. In order to prove the statement we show that ΓDG

and ΓUG admit the same subgame perfect equilibrium supporting the effi cient

investment profile. This implies that, at this equilibrium, the gross surplus is the

same in the two cases. Notice first that effi ciency requires pie exhaustion when

both invest (yHH + xHH = VH) and when only one invests (yHL + xHL = VM

at node HL and yLH + xLH = VM at node LH). Now observe that A invests

if yHH − cA > yLH while B invests if xHH − cB > xHL. Consider ΓUG first.

The maximal punishment A can impose upon B for not investing is to demand

yPHL = VM − δ for herself so that xPHL = δ. Agent B will play H if xHH − cB >

xPHL = δ. Analogously the maximal punishment B can impose upon A for not

investing is to demand xPLH = VM − δ for herself so that yPLH = δ. Agent A will

play H if VH − xHH − cA > yPLH = δ. Consider now ΓDG. It is immediate to

observe that, given the rules of the game, yHL = VM − δ (resp. xLH = VM − δ)

is A’s best demand at node HL (resp. B’s best demand at node LH). It then

follows that the same condition we have just derived for ΓUG ensures that HH

is subgame perfect equilibrium in ΓDG as well. �

Lemma 1 Let xHH,1 < xHH,2 < ... < xHH,k be the demands made by B at

HH for some state θ. Then the set of best behavioral demands following HH

for agents A is a subset of {VH − xHH,l}kl=1.

Proof. See Lemma A.1 in Ellingsen and Robles (2002)).

Lemma 2 Consider ΓUG and let Ω be a absorbing set. If (HL, yHL, xHL) ∈

ρ (Ω) [resp. (LH, yLH , xLH) ∈ ρ (Ω)] then:
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(i) xHL = VM − yHL [resp. yLH = VM − xLH ] ;

(ii) (HL, yHL, xHL) [resp. (LH, yLH , xLH)] is the only outcome supporting

the investment profile HL [resp. LH] .

Proof. We only consider profile HL; the same holds true for LH.

Point (i). Consider a state θ belonging to an absorbing set and suppose

that (HL, yHL, xHL) belongs to the support of z (θ) but xHL 6= VM − yHL.

Let’s suppose that only agents B update their characteristics: they accept yHL.

Denote by θ′ this new state reachable from θ. Since θ is not accessible from θ′,

then θ can not belong to an absorbing set.

Point (ii). Consider a state θ belonging to an absorbing set and suppose that

multiple demands are made by agents A at HL. We already know from point

(i) that agents B accept the demands made by their opponents. Suppose only

agents A revise their characteristics. In the newly reached state θ′, any agent A

will make the maximum demand (y∗) observed at HL and no agent will have

the incentive to deviate from the action profile (y∗, VM − y∗). Since θ is not

accessible from θ′, then θ can not belong to an absorbing set. Analogously two

states θ and θ′ sustaining a different equilibrium action profile at HL can not

belong to the same absorbing state Ω since these states do not communicate.

Thus, for any absorbing set Ω, only one outcome supporting the HL profile

and such that the claims exhaust the surplus can belong to ρ (Ω) . �

Lemma 3 Consider either ΓUG or ΓDG and let Ω be a absorbing set. If

(HH, yHH , xHH) ∈ ρ (Ω) then:

(i) xHH = VH − yHH ;

(ii) (HH, yHH , xHH) is the only outcome supporting the investment profile

HH.

Proof. Consider a state θ belonging to an absorbing set Ω and suppose
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that at least two agents B (resp. A) have invested but have proposed different

demands. Suppose all agents A (resp. B) revise. With positive probability the

process moves from θ to a new state θ′ in which all As (resp. Bs) choose the

same best reply y∗ (resp. x∗) at HH.

Denote by θ̂ the state accessible from θ′ and such that the profile HH occurs

for the first time22 . Consider θ̂ and let all agents B (resp. A) update; by Lemma

1 they will demand VH − y∗ (resp. VH −x∗) at HH. In the newly reached state

no agent has the incentive to deviate from (y∗, VH − y∗) by updating. Therefore

states θ and θ′ do not communicate. Then θ can not belong to Ω. Analogously,

two states which sustain a different pair of compatible demands at HH can not

belong to the same absorbing set Ω since these states do not communicate.

Thus, for any absorbing set Ω, only one outcome supporting the HH profile

and such that the claims exhaust the surplus can belong to ρ (Ω). �

Proof of Proposition 1. Consider ΓUG and let Assumptions 1 and 2 be

satisfied. We know from Lemmas 2 and 3 that in any absorbing state only one

division is observed. Clearly, all classes of equilibria are not empty.

Point (a). We explore the occurrence of non-singleton absorbing set. We first

show that when Ω is non-singleton, then ρ (Ω) must include four outcomes (i.e.

all possible investment profiles are observed), each of which is an equilibrium.

Then we show that from a state θ belonging to this non-singleton absorbing set

it is possible to reach either the basin of attraction of one equilibrium or a state

in which all bargaining nodes are observed.

Let ρ (Ω) = {(HH,VH − x, x) , (HL, VM − x∗, x∗)} . In Ω a state θ sup-

porting both outcomes must exist. Suppose x − cB > x∗. When B update,

they will choose H. When A revise, the process moves to θx ∈ ΣUH when

ỹiLH (θ) < VH − x − cA for all i ∈ A. When instead ỹiLH (θ) ≥ VH − x − cA
22Notice that if θ̂ does not exist, then θ /∈ Ω because state θ is not reachable from θ′.
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for some agent i ∈ A, these specific agents choose L so that the state θ ∈ ΣULH

can be reached. Suppose now x − cB ≤ x∗. When all B update, they choose

L. When A revise, the process moves either to θ ∈ ΣUL or to θ ∈ ΣUHL, de-

pending on the sign of VM − x∗ − cA. These facts contradict the assumption

that ρ (Ω) = {(HH,VH − x, x) , (HL, VM − x∗, x∗)}. It is easy to verify that the

same conclusion holds when ρ (Ω) includes any two different outcomes (of course

ρ (Ω) 6= {(HH,VH − x, x) , (LL, 0, 0)}). Therefore, when Ω is non-singleton,

ρ (Ω) includes four outcomes, each of which is an equilibrium.

Let thus θ ∈ Ω be a state in which all the investment profiles are observed.

Of course, 0 < pA (θ) < 1 and 0 < pB (θ) < 1. Agents A will choose H if (10)

is satisfied while agents B will choose H if (11) holds true; conditions (10) and

(11) can be written more compactly as

pB (θ)A1 + (1− pB (θ))A2 > 0

pA (θ)B1 + (1− pA (θ))B2 > 0

where the terms Aj and Bj have an obvious meaning.

Suppose A1 > 0 and A2 ≥ 0. When updating, agents B play H if B1 > 0

so that the process reaches an state θ∗ such that ρ (θ∗) = {(HH, yHH , xHH)} .

Suppose instead B1 > 0 and B2 ≥ 0.When updating, agents A play H if A1 > 0

and the process reaches a state θ∗ such that ρ (θ∗) = {(HH, yHH , xHH)} . By a

similar argument we can see that an equilibrium ρ (θ∗) = {(HL, yHL, xHL)} is

observed when either A1 ≥ 0, A2 > 0 and B1 ≤ 0 or when B1 ≤ 0, B2 ≤ 0 and

A2 > 0. Moreover, an equilibrium ρ (θ∗) = {(LH, yLH , xLH)} is observed when

either A1 ≤ 0, A2 ≤ 0 and B2 > 0 or when B1 ≥ 0, B2 > 0 and A1 ≤ 0. Lastly

an equilibrium ρ (θ∗) = {(LL, 0, 0)} is observed when either A1 ≤ 0, A2 ≤ 0

and B2 ≤ 0 or when B1 ≤ 0, B2 ≤ 0 and A2 ≤ 0.
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When B1 > 0 (resp. < 0) and B2 < 0 (resp. > 0), agents B play H if

pA (θ) > p∗A (resp. pA (θ) < p∗A) where p
∗
A = cB−xLH

xHH−xHL−xLH . When instead

A1 > 0 (resp. A1 < 0) and A2 < 0 (resp. A2 > 0), agents A play H if

pB (θ) > p∗B (resp. pB (θ) < p∗B) where p∗B = cA−yHL

yHH−yLH−yHL
. In these last two

cases the process reaches a state θ∗ such that either ρ (θ∗) = {(HH, yHH , xHH)}

or ρ (θ∗) = {(LL, 0, 0)} provided that A1A2 < 0, B1B2 < 0 and A1B1 > 0 and

provided one population revises at a time.

The remaining possible cases are those in which either A1 > 0, A2 ≤ 0,

B1 < 0 and B2 > 0 or A1 ≤ 0, A2 > 0, B1 > 0 and B2 ≤ 0. In all these cases

θ ∈ β (Ω) where Ω is an absorbing set such that ρ (Ω) includes all the outcomes

observed at θ. Denote by Ωc the collection of all these non-singleton absorbing

sets. We conclude that ΣU = Ωc ∪ ΣUH ∪ ΣUHL ∪ ΣULH ∪ ΣUL .

Point (b). Consider first the case in which the absorbing state is non-

singleton, i.e. Ω ∈ Ωc. We already know that at Ω : (i) the process will

cyclically visit all the four investment profiles; (ii) at any bargaining node the

demands are compatible; (iii) the claim configuration is such that either A1 > 0,

A2 ≤ 0, B1 < 0, B2 > 0 or A1 ≤ 0, A2 > 0, B1 > 0, B2 ≤ 0.

Consider a state θ ∈ Ω and suppose xLH − cB ≤ 0 (i.e. B2 ≤ 0); then,

necessarily, we must have A1 ≤ 0, A2 > 0 and B1 > 0. Point (c) of Assumption

1 assures that the outcome (LH, δ, VM − δ) will never be observed at θ. A drift

can thus lead all agents A to accept the opponent’s maximum feasible demand

at LH. Suppose now a single agent B mutates her demand from xLH to VM −δ.

When all agents B revise, they will demand VM − δ and play H (since B1 > 0

and VM − δ − cB > 0). When all agents A update, their best reply depends on

the sign of yHH − cA − δ; however, since yHH − cA − δ < 0 when A2 > 0 and

B1 > 0, agents A′s best reply is L. Therefore, by a sequence of single-mutation

transitions the process reaches an equilibrium θ ∈ ΣULH supporting the outcome
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(LH, δ, VM − δ) . A similar argument can be used to show that, when yHL−cA ≤

0 (i.e. A2 ≤ 0), by a sequence of single-mutation transitions the process reaches

an equilibrium θ ∈ ΣUHL supporting the outcome (HL, VM − δ, δ) .

We are left with the case in which the absorbing state is singleton. The

relevant cases are ΣUHL ∪ ΣULH ∪ ΣUL .

Consider first an equilibrium θ ∈ ΣUL . Let agents’ beliefs drift such that:

(i) all agents A accept any proposal made by agents B at LH; (ii) all agents

A expect to get VH − x > cA + δ at HH; (iii) all agents B expect to get the

minimum payoff at HL; (iv) all agents B expect to get x > cB + δ at HH.

Suppose now an agent B mutates by playing H and demanding VM − δ. When

agents B update they will choose H since all agents A have accepted. When

agents A revise they will play H since VH − x > cA + δ. Hence the process

reaches a new equilibrium θx ∈ ΣUH .

Consider now an equilibrium in which only one agent invests. Let θ ∈ ΣUHL

be such equilibrium and suppose that at this equilibrium a pair of demands

(VM − x∗, x∗) is observed, with x∗ > δ. Let agents’beliefs drift such that (i)

all agents B accept the maximum feasible demand made by A at HL and (ii)

all agents B deem that at HH all agents A shall demand a share larger than

VH − cB + δ. Suppose now a single agent A demands VM − δ. Since all B accept

this demand, when agents A update they all imitate. When agents B revise

they continue to play L. Hence, the process reaches a new equilibrium θ′ ∈ ΣUHL

where ρ
(
θ′
)

= (HL, VM − δ, δ). Consider now this equilibrium θ′ and let agents’

beliefs drift such that: (i) all agents A expect to get the minimum payoff at LH;

(ii) all agents A expect to receive VH−x such that cA+δ < VH−x < VH−cB−δ.

Suppose an agent B mutates by playing H and making a demand x. When all

agents B revise, they will choose H and demand x. When agents A update, the

process reaches a new equilibrium θx ∈ ΣUH . A similar argument can be used to
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show that from θ ∈ ΣULH it is possible to reach an equilibrium θx. �

Proof of Proposition 2. Consider ΓDG and let Assumptions 1 and 2 be

satisfied.

Point (a). A non-singleton absorbing set like that described at point (a) in

the proof of Proposition 1 cannot exist in ΓDG. Suppose the contrary and let θ

be a state such that ρ (θ) includes three outcomes (as described in the main text,

(LL, 0, 0) cannot be observed). Since, at any absorbing set, yHL = xLH = VM−δ

and yHL− cA > 0 and xLH − cB > 0, it follows that the process reaches a state

in which one outcome only is observed. This contradicts the initial assumption.

Point (b). Consider an equilibrium θ ∈ ΣDHL and let the beliefs of agents

A drift such that A expect to get a share δ + cA < y ≤ VH − VM . Suppose an

agent B mutates by playing H and demanding VH − y at HH. When all agents

B revise they imitate the mutant. When agents A update, the process reaches

a new equilibrium θx. �

We know from Propositions 1 and 2 that an effi cient equilibrium can be

reached by a sequence of single-mutation transition. In order to establish the

local stability of this equilibrium we have to know the minimum number of

mutations needed to escape, in all possible directions, its basin of attraction.

This information is provided by the following three Lemmas. In particular,

Lemma 4 gives (for both games) the minimum number of mutations required to

leave the basin of attraction of an effi cient equilibrium and reaching the basin

of attraction of another effi cient equilibrium with a different distributional rule.

Lemmas 5 and 6 give (for ΓDG and ΓUG respectively) the minimum number of

mutations required to leave the basin of attraction of an effi cient equilibrium and

reach the basin of attraction of another equilibrium which does not support the

effi cient investment profile. Let x̂ ≡ 1
2VH and denote by θx̂ the corresponding

equilibrium outcome.
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Lemma 4 Consider ΓDG and ΓUG. The minimum number of mutations needed

to get from θx (where either θx ∈ ΣDH or θx ∈ ΣUIH) to an equilibrium with the

same investment profile but different demands is:

r+
B (x) =

⌈
N
(

δ
VH−x

)⌉
if x < x̂

r−A (x) =
⌈
N
(
δ
x

)⌉
if x > x̂

(12)

where r+
B (x) is the number of mutations in the B population needed for the

transition from θx to θx+δ and r−A (x) is the number of mutations in the A

population needed for the transition from θx to θx−δ.

Proof: By a direct application of Young (1993). �

Lemma 5 Consider ΓDG. The minimum number of mutations required to get

from θx ∈ ΣDH to an equilibrium which supports an ineffi cient investment profile

are:

rA (x) =
⌈
N
(
1− δ+cB

x

)⌉
if x < x̂

rB (x) =
⌈
N
(

1− δ+cA
VH−x

)⌉
if x > x̂.

Proof. We give the proof for rB (x) only. We first show that agents are

not induced to play L when, in θx, some opponents mutate and play L; then we

show that agents are instead induced to play L when some opponents mutate

by demanding a larger share.

Consider θx ∈ ΣDH and suppose that drift leads agents A to believe to get

the maximum payoff in an LH match. Suppose p1 agents B mutate by playing

L and that this induce all agents A play L. A new state θ′ /∈ ΣDH is thus

reached. In any LH match, non mutants B behave as dictators and demand

xLH = VM − δ. Since all agents A interact with these non mutants B, it follows
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that all A learn yLH = δ. After updating their beliefs, agents A play H since

(N − p1) (VH − x− cA − δ) + p1 (VM − δ − cA) > 0. A new state θ′′ is thus

reached in which all agents A play H.When mutants B update, they play H so

that a new state θ′x ∈ ΣDH is reached.

Consider again θx ∈ ΣDH and suppose p2 agents B mutate by claiming x′ >

xDA ≡ VH − δ − cA. Consider the NDG in which agents B either play x or

x′ > x and agents A either play VH − x or VH − x′ < VH − x. A’s expected

payoff are respectively (VH − x) N−p2N − cA and VH − x′ − cA. Hence, A’s best

reply to B’s mutations is VH − x if p2 ≤ N x′−x
VH−x and it is VH − x

′ otherwise.

When p2 ≤ N x′−x
VH−x , agents A play L if

N−p2
N (VH − x)−cA−δ ≤ 0, giving p2 ≥

N VH−x−cA−δ
VH−x .When instead p2 > N x′−x

VH−x , agents A play L if VH−x
′−cA−δ ≤

0, condition always satisfied when x′ ≥ xDA . Notice that N VH−x−cA−δ
VH−x < N x′−x

VH−x

for x′ > xDA ; hence

rB (x) =

⌈
N

(
1− δ + cA

VH − x

)⌉
.

Analogous considerations can be used to derive rA (x) . By comparing rB (x)

with rA (x) we get rB (x) < rA (x) if x > x̂. �

Lemma 6 Consider ΓUG. The minimum number of mutations required to get

from θx ∈ ΣUIH to an equilibrium which supports an ineffi cient investment profile

are:

rA (x) =
⌈
N
(
1− VM−δ+cB

x

)⌉
if x < x̂

rB (x) =
⌈
N
(

1− VM−δ+cA
VH−x

)⌉
if x > x̂.

(13)

Proof. We give the proof for rB (x) only. We first derive the mutations

required to induce agents to play L when, in θx, some opponents mutate and

play L; then we derive the mutations required to induce agents to play L when

some opponents mutate by demanding a larger share.
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Consider θx ∈ ΣUIH and suppose agents A believe to get the maximum

payoff in an LH match and to obtain the minimum payoff in an HL match.

Suppose p1 agents B mutate by playing L; this will induce agents A to play L

if (N − p1) (VH − x− cA − VM + δ) + p1 (δ − cA) ≤ 0. Solving for p1 gives:

r1
B (x) =

⌈
N

(
VH − x− cA − VM + δ

VH − x− δ − VM + δ

)⌉
.

Suppose now p2 agents B mutate by claiming x′ > xUA ≡ VH − cA− VM + δ.

Consider the NDG in which agents B either play x or x′ > x and agents A

either play VH − x or VH − x′ < VH − x. A’s expected payoff are respectively

(VH − x) N−p2N − cA and VH − x′ − cA. It thus follows that A’s best reply to

B’s mutations is VH − x if p2 ≤ N x′−x
VH−x and it is VH − x

′ otherwise. When

p2 ≤ N x′−x
VH−x , A play L if N−p2

N (VH − x) − cA − (VM − δ) ≤ 0, giving p2 ≥

N VH−x−cA−VM+δ
VH−x . When instead p2 > N x′−x

VH−x , A play L if VH − x′ − cA −

(VM − δ) ≤ 0, condition always satisfied when x′ > xUA. We conclude that

N VH−x−cA−VM+δ
VH−x < N x′−x

VH−x for x
′ > xUA; hence

r2
B (x) =

⌈
N

(
VH − x− cA − VM + δ

VH − x

)⌉
.

Since r2
B (x) < r1

B (x) then rB (x) = r2
B (x). Analogous considerations can be

used to derive rA (x) . By comparing rB (x) with rA (x) we get rB (x) < rA (x)

if x > x̂.�

Proof of Proposition 3. Point (a). Consider an equilibrium θx ∈ ΣDH .

The minimum number of mutations required to leave this equilibrium are given

in Lemma 11 and Lemma 12. Few computations show that r+
B (x) ≤ rB (x) and

r−A (x) ≤ rA (x) . Point (e) of Assumption 1 then implies thatmin
(
r+
B (x) , r−A (x)

)
>

1. Taking point (b) of Proposition 2 into account we conclude that any equilib-

rium θx ∈ ΣDH is locally stable so that ΣDS ⊆ ΣDH .
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Point (b). The proof that θx ∈ ΣUIH is locally stable when condition (7) holds

true is as for point (a) above. The minimum number of mutations needed to

leave this equilibrium are now given by Lemma 11 and Lemma 13. As before,

r+
B (x) ≤ rB (x) and r−A (x) ≤ rA (x) ; point (e) of Assumption 1 still implies

min
(
r+
B (x) , r−A (x)

)
> 1. From point (b) of Proposition 1 we conclude that

any equilibrium θx ∈ ΣUIH is locally stable so that ΣUS ⊆ ΣUIH . Consider now

an equilibrium θx ∈ ΣUCH and let condition (7) be satisfied. We show that

starting from this equilibrium it is possible to enter the basin of attraction of

an equilibrium θ ∈ ΣUL , through a sequence of single-mutation transitions; this,

in turn, implies that θx ∈ ΣUCH is not locally stable. To see this, let x ≥ xUA

(the case in which x ≤ xUB is symmetric) and let agents’belief drift such that:

(i) all agents A expect to get a payoff lower than cA at HL and (ii) all agents

B claim δ at LH. Suppose an agent A mutates by playing L and accepting her

opponent’s demand at LH; this mutant thus receives VM − δ. When agents A

update, they all imitate and play L. When agents B revise they play L. The

process then reaches a new equilibrium θ ∈ ΣUL .

Point (c). When condition (7) fails, point (b) of Proposition 1 implies that,

starting from ΣUL ∪ ΣULH ∪ ΣUHL, it is possible to enter the basin of attraction

of an equilibrium θx ∈ ΣUCH through a sequence of single-mutation transitions.

From this equilibrium, a new equilibrium θ ∈ ΣUL is reached by a sequence of

single-mutation transitions; this follows from the analysis of the second part

of point (b) above which is still valid (when condition (7) fails, we only have

to consider that xUA < xUB). Consider an equilibrium θ ∈ ΣUL and suppose

agents’ belief drift such that: (i) all agents A accept any proposal made by

agents B at LH and (ii) all agents A expect to get a share smaller than cA

at HH. Suppose an agent B mutates by playing H and demanding x∗ > cB

in LH. When all agents B update, they choose H since population A has
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accepted her proposal. When agents A revise they continue to play L. Hence

a new equilibrium θ′ ∈ ΣULH is reached through a sequence of single-mutation

transitions (a similar argument can be used to show that from θ ∈ ΣUL it is

possible to reach an equilibrium θ′ ∈ ΣUHL). Collecting all these informations

we conclude that the set ΣUCH ∪ΣUL ∪ΣULH ∪ΣUHL is mutation connected. Local

stability follows from the observation that, when (7) doesn’t hold, one mutation

is not enough to leave this mutation connected set. �

Before giving the proof of Proposition 4 we briefly summarize the naive min-

imization test (Binmore at al., 2003) and the radius modified coradius criterion

(Ellison, 2000). Let θ and θ′ be two equilibria. The most salient concept is

the resistance from θ to θ′, r
(
θ, θ′

)
; this represents the minimum number of

mistakes required to enter β
(
θ′
)
starting from θ.

Consider a game with an unperturbed process satisfying the no-cycling con-

dition. In this case for each equilibrium θ we can draw a tree rooted at θ. This

is a direct graph involving all equilibria different from θ and such that from

any equilibrium θ′ 6= θ there is a single path leading to θ′. For any tree rooted

at θ we can compute its total resistance by summing all the resistances associ-

ated with its edges. The stochastic potential of θ is the least total resistance

among all θ−trees. Young (1993a) proves that an equilibrium is stochastically

stable if it has the least stochastic potential among all equilibria. Therefore,

to get the stochastically stable equilibrium we must construct the minimum re-

sistance tree. By definition, any transition between equilibria requires at least

one mutation. Hence, when constructing a minimum resistance tree, we can

ignore all equilibria that are not locally stable. The minimum resistance tree

can be found by applying the naive minimization test and it works as follows.

Take any locally stable equilibrium and join it to the locally stable equilibrium

which can be reached with the minimum number of mutations. Suppose this
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generates a directed graph with a single cycle and this cycle contains the edge

with the largest resistance. By removing that edge we obtain a tree rooted at

the equilibrium that was the origin of the edge. This is the minimum resistance

tree and its root is the only stochastically stable equilibrium of the game.

Consider now a game with an unperturbed process which does not satisfy the

no-cycling condition. In this case we can only hope that the suffi cient condition

for stochastic stability developed by Ellison (2000) work. Consider a union of

absorbing sets, Σ′. The Radius R (Σ′) is the minimum number of mutations

needed to escape from β (Σ′) and enter another one with positive probability.

Consider an arbitrary state θ /∈ Σ′ and let (m1,m2, ..,mT ) be a path from θ to

Σ′ where Ω1, Ω2, ... Ωr is the sequence of absorbing sets through which the path

passes consecutively. Obviously Ωi /∈ Σ′ for i < r and Ωr ⊂ Σ′. Notice that an

absorbing set can appear several times in this sequence but not consecutively.

The modified cost of this path is defined by:

c∗ (m1, ...,mT ) = c (m1, ..,mT )−
r−1∑
i=2

R (Ωi)

where c (m1, ..,mT ) is the total number of mutations over the path (θ,m1,m2, ..,mT ).

Let c∗ (θ,Σ′) be the minimal modified cost among all paths from θ to Σ′. The

Modified Coradius of β (Σ′) is then:

CR∗ (Σ′) = max
θ/∈Σ

c∗ (θ,Σ′) .

Theorem 2 of Ellison (2000) shows that every union of absorbing sets Σ′ with

R (Σ′) > CR∗ (Σ′) encompasses all the stochastically stable states.

Proof of Proposition 4. Point (a) follows by applying the naive mini-

mization test to the set of locally stable equilibria ΣDH . Consider Lemmas 4

and 5; we already know that r+
B (x) ≤ rB (x) and r−A (x) ≤ rA (x) . Consider an
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equilibrium θx with x < x̂; we know from Lemma 4 that r+
B (x) < r−A (x) so that

the least resistance path out of θx is toward θx+δ. Consider now an equilibrium

θx with x > x̂; we know by Lemma 4 that r−A (x) < r+
B (x) so that the least

resistance path is toward θx−δ. Since r
+
B (x) is a strictly increasing function of

x and r−A (x) is a strictly decreasing function of x, at θx̂ we get

r+
B (x̂− δ) < r+

B (x̂) = r−A (x̂) > r−A (x̂+ δ) .

Hence, for each equilibrium θx, the naive minimization test produces a set

of edges pointing to θx+δ if x < x̂ and to θx−δ if x > x̂. Moreover there is a

directed graph with a single cycle formed by the edge pointing from θx̂ to θx̂+δ

(or to θx̂−δ) and the edge going to the opposite direction. By removing the edge

with the highest resistance (i.e. θx̂ → θx̂+δ) we get the minimum resistance

tree, which is rooted at θx̂. The unique stochastically stable outcome is thus

(HH,VH/2, VH/2).

Point (b). Let (7) be satisfied so that the set ΣUIH is well defined. Let us

fix an equilibrium θx ∈ ΣUIH . We know from point (b) of Proposition 1 that

c∗ (θ, θx) = 1 for any equilibrium θ ∈ ΣULH ∪ΣUHL ∪ΣUL as well as c
∗ (Ω, θx) = 1

for any Ω ∈ Ωc. Hence, the minimal modified cost among all paths from an

absorbing set outside ΣUIH to any equilibrium θx is equal to 1. We now derive the

equilibrium θx compatible with the radius modified coradius criterion. In order

to derive R (θx) we use Lemmas 4 and 6. We already know that r+
B (x) ≤ rB (x)

and r−A (x) ≤ rA (x) . Therefore we conclude that R (θx) = r+
B (x) if x < x̂ while

R (θx) = r−A (x) if x ≥ x̂. Recall that r+
B (x) (resp. r−A (x)) is an increasing

(resp. decreasing) function. Two cases must be considered, both compatible

with condition (7).

In the first case xUB + δ < x̂ ≤ xUA − δ; this occurs when cA ≤ VH
2 − VM .

Consider the equilibrium θx̂ and let θx be a different equilibrium. From Lemma
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4 we know that c∗ (θx, θx̂) = r+
B (x) if xUB + δ ≤ x < x̂ and c∗ (θx, θx̂) = r−A (x) if

x̂ < x ≤ xUA − δ. Therefore CR∗ (θx̂) = max(r+
B (x̂− δ) , r−A (x̂+ δ)). Of course,

R (θx̂) = r+
B (x̂) = r−A (x̂) . Monotonicity implies R (θx̂) > CR∗ (θx̂) ; it then

follows from Theorem 2 of Ellison (2000) that the only stochastically stable

outcome is (HH,VH/2, VH/2) .

In the second case xUB + δ < xUA − δ < x̂; this occurs when. VH
2 − VM <

cA ≤ VH − 2VM − cB . Let x̃ ≡ xUA − δ. Consider the equilibrium θx̃ and

let θx be a different equilibrium. For any x ∈
[
xUB + δ, x̃

)
, we know from

Lemma 4 that c∗ (θx, θx̃) = r+
B (x) . The monotonicity of r+

B (x) implies that

CR∗ (θx̃) = r+
B (x̃− δ) . Since R (θx̃) = r+

B (x̃) , we get R (θx̃) > CR∗ (θx̃) ;

it follows from Ellison (2000) that the only stochastically stable outcome is(
HH,VH −

(
xUA − δ

)
, xUA − δ

)
and the distributional norm is (VM + cA, VH − VM − cA).

�
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Figures captions

Figure 1: When one agent only invests, a small pie valued 40 is produced;

investment cost is 20 for A and 0 for B. The three decreasing lines of dots

represent (feasible) payoff profiles in the case in which both A and B invest

(upper line), only B invests (middle line) and only A invests (lower line). To each

of these decreasing lines there corresponds a given gross surplus. For any payoff

pair resulting from a division of this gross surplus, the sum of the payoffgives the

net surplus. The upper increasing line represents the payoff pair corresponding

to the equal division of the gross surplus; the lower increasing line represents

the gross surplus divisions giving rise to payoff equality. The dotted square

represents the set of payoff such that both agents get at least 40 (this matters

for ΓUG only since it represents the maximum payoffan agent can hope to obtain

by not investing). The big dot represents the payoff profile corresponding to the

stochastically stable equilibrium. Stochastic stability selects equal division of

the effi cient gross surplus in ΓDG but not in ΓUG where instead the less effi cient

agent A receives more than half of the effi cient gross surplus.

Figure 2: The Figure illustrates Proposition 6. In ΓDG the equilibria θx are

stochastically stable in region ADE. In ΓUG the equilibria θx are stochastically

stable in region ACF ; no norms evolve in region CDEF since several outcomes

are stochastically stable.
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