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Direct Numerical Simulations of turbulent channel flows at friction Reynolds number
550, 1000, 1500, are used to analyse the turbulent production, transfer and dissipation
mechanisms in the compound space of scales and wall-distances by means of the Kol-
mogorov equation generalized to inhomogeneous anisotropic flows. Two distinct peaks of
scale-energy source are identified. The first stronger one belongs to the near-wall cycle.
Its location in the space of scales and physical space is found to scale in viscous units
while its intensity grows slowly with Re, indicating a near-wall modulation. The second
source peak is found further away from the wall in the putative overlap layer and it is sep-
arated from the near-wall source by a layer of significant scale-energy sink. The dynamics
of the second outer source appears to be strongly dependent on the Reynolds number.
The detailed scale-by-scale analysis of this source highlights well-defined features that
are used to make the properties of the outer turbulent source independent of Reynolds
number and wall-distance by rescaling the problem. Overall, the present results suggest
a strong connection of the observed outer scale-energy source with the presence of an
outer region of turbulence production whose mechanisms are well separated from the
near-wall region and whose statistical features agree with the hypothesis of an overlap
layer dominated by attached eddies. Inner-outer interactions between the near-wall and
outer source region in terms of scale-energy fluxes are also analysed. It is conjectured
that the near-wall modulation of the statistics at increasing Reynolds number can be
related to a confinement of the near-wall turbulence production due to the presence of
increasingly large production scales in the outer scale-energy source region.

1. Introduction

One of the most peculiar aspects of turbulence in wall bounded flows is the ability of
the turbulent fluctuations to regenerate themselves through self-sustained processes. In
wall flows, the production of turbulent fluctuations is embedded in the system instead of
being provided by an external agent. The dynamics of these self-sustaining mechanisms
has been extensively investigated over the past thirty years, since these processes are
responsible for the energy drain from the mean flow to the fluctuating field and for the
turbulent drag.

It has long been understood that the near-wall layer, being the site of the highest rate
of turbulent energy production and of the maximum turbulent intensities, is crucial to the
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dynamics of attached shear flows. The possibility to identify robust kinematic features
in the proximity of a wall fed the hope of the scientific community to obtain a complete
and consistent dynamical description of the underlying physics of these processes. The
turbulent fluctuations near a wall have been found to organize in well defined coherent
motions consisting of quasi-streamwise vortices and high/low velocity regions alternating
in the spanwise direction. The former are longitudinal vortices with typical streamwise
and spanwise length scales λ+x ≈ 200 and λ+z ≈ 50, respectively (hereafter a superscript +
will denote the so-called inner units, see e.g. Townsend (1976)), slightly tilted away from
the wall. The latter are long and wide alternating arrays of streamwise streaks of local
velocity excess/defect, with length scales λ+x ≈ 1000 and λ+z ≈ 100, superimposed on the
mean flow. These features have been recognized in several numerical and experimental
works, see e.g. Kim et al. (1971); Smith & Metzler (1983) and Robinson (1991). From
these observations, several scientists tried to derive a conceptual model of these processes.
Following the work of Jiménez & Pinelli (1999), the continuous creation and destruction
of these turbulent structures form a self-sustaining cycle maintaining near-wall turbulence
without the need of any input from the core flow, i.e. it is an autonomous cycle. The
streamwise vortices extract energy from the mean flow to create alternating streaks of
longitudinal velocity. Presumably by inflectional instabilities, these streaks in turn give
rise to the vortices closing the cycle, see also Hamilton et al. (1995); Jeong et al. (1997);
Schoppa & Hussain (2002).

From a more applied point of view, the near-wall cycle is crucial since it controls the
magnitude of the wall stress. But coherent structures exist also at larger scales in the
so-called overlap layer (Hutchins & Marusic 2007b,a; Jiménez & Hoyas 2008), and have
been recently suggested to form an outer self-sustaining mechanism of regeneration of
very large turbulent fluctuations, see e.g. Flores & Jiménez (2006); Mizuno & Jiménez
(2013); Hwang & Cossu (2010). The phenomenology resembles the self-regenerating cycle
near the wall though its characteristic dimensions are larger, see e.g. Monty et al. (2007);
del Alamo et al. (2006). The coherent motions involved in this outer cycle should scale
with external variables meaning that their dimensions and action should increase as
the extent of the log-layer widens with Reynolds number. Hence, the understanding of
these outer dynamics is crucial for the modeling of wall-turbulence in the asymptotic
regime of very large Reynolds number. Furthermore, its analysis could help to clarify the
interactions between the outer and inner regions of wall flows needed in the formulation
of near-wall models for LES, see e.g. Piomelli & Balaras (2002), and to explain the
controversial mixed inner/outer scaling of the near-wall quantities such as spectra and
turbulent intensities, see e.g. Hutchins & Marusic (2007b); DeGraaff & Eaton (2000).
Generally speaking, the problem of wall-turbulent flows has been classically studied

by dividing the flow domain into well characterized regions depending on wall-distance.
In particular, wall-bounded flows are divided in a near-wall, inner region, and an outer
region populated by large structures. These two distinct regions are present in all wall-
bounded flows and interact in the overlap region. While in the outer flow the velocity
profile depends on the particular flow configuration, in the inner and overlap regions it
exhibits a high degree of universality starting linearly from the wall and then approaching
a logarithmic behaviour. These behaviors opportunely scaled with viscous units should
collapse for different flows and different Reynolds numbers, see Nagib & Chauhan (2008)
for a detailed description of the controversies on this topic. The same scaling should
apply to the turbulent intensity profiles and to all the statistical observables of the inner
region.

However, the near wall quantities exhibit a Reynolds dependence as shown by the fact
that the energy of the long turbulent fluctuations of the overlap layer grows when the
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Case Reτ Lx Ly Lz Nx ×Ny ×Nz ∆x+ ∆z+

DNS550 550 8πh 2h 4πh 1024× 257× 1024 13.5 6.7
DNS1000 1000 8πh 2h 3πh 2560× 385× 1920 9.8 4.9
DNS1500 1500 12πh 2h 10.5h 6144× 577× 3456 9.2 4.5

Table 1. Parameters of the simulations. Reτ is the friction Reynolds number, Lx, Ly and Lz are
the lengths of the computational domain in the streamwise (x), wall-normal (y) and spanwise
(z) direction, Nx, Ny and Nz are the number of points in physical space and ∆+

x , ∆
+
y and ∆+

z

the corresponding grid spacing in viscous units.

Reynolds number increases. This large-scale motion is found to actively modulate the
near-wall turbulence by production of near-wall scales at increasing Reynolds number
(Hutchins & Marusic 2007b). The observed increase of the streamwise turbulent fluctua-
tion peak, the possible appearance of a second peak in the overlap flow and the presence
of a marked outer-scale peak in the energy spectrum are thought to be a signature of
these effects. An important consequence of the Reynolds number dependence of the large
turbulent motion in the overlap layer is that most of the turbulence production should
asymptotically come from this region due to the widening of the overlap layer with Re
(Smits et al. 2011). Even if no Reynolds dependence for the outer turbulent produc-
tion intensity is expected, the outer turbulent self-sustained mechanisms are thought to
dominate the high Reynolds number asymptotic state of wall turbulence.

Given the Reynolds dependence of these processes in the compound scale/physical-
space, an interesting approach to study the basic mechanisms of the outer cycle has
been recently proposed in Cimarelli et al. (2013) by extending the statistical approach
used in Marati et al. (2004) and applied by Saikrishnan et al. (2012) to moderately high
Reynolds number data. The classical approach for addressing these issues in the channel
flow is based on a Fourier decomposition along the homogeneous directions while keep-
ing a description in terms of the physical distance in the wall normal direction, see e.g.
del Alamo et al. (2004). However this more traditional approach does not allow for a
net distinction between position in the wall normal direction and wall normal scale at
which energy generation and energy flux take place. The tool used here to describe the
energy content associated with a given scale of motion in a given position in space is
based, instead, on the generalization of the Kolmogorov equation for the second order
structure function, originally introduced for homogenous and isotropic turbulence, and
successively extended to inhomogenous, anisotropic flows by Hill (2002). The generalized
Kolomogorov equation keeps the two concepts of wall normal position and wall normal
scale clearly distinct, thereby allowing to distinguish between the two associated com-
ponents of the energy flux. In Cimarelli et al. (2013), this multi-dimensional description
of turbulence has been used and proven fundamental for the understanding of the wall-
turbulent physics and for its modeling as shown in Cimarelli & De Angelis (2011). In
the present paper, we extend this work by analysing how the turbulent energy associated
to a certain scale (scale-energy) is generated, transferred and dissipated among different
scales and wall-distances varying the Reynolds number with particular attention to the
outer self-regeneration mechanisms.
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Figure 1. Mean velocity profiles U+(y+) and (premultiplied) mean velocity gradient
y+dU+/dy+ for the three channel DNS considered in this study, with Reτ = 550, 1000, 1500.
U+(y+) = y+ and U+(y+) = 1/κ log(y+)+B with κ = 0.41 and B = 5.2 are indicated by thick
gray lines.

2. DNS database and single point statistics

In the present study, we analyze data of three direct numerical simulations (DNS) of
fully developed turbulent channel flow at Reτ = uτh/ν = 550, 1000 and 1500 respectively.
Here, uτ is the friction velocity, h the channel half gap width and ν the viscosity. The
simulations were carried out with a pseudo-spectral code using Fourier expansions and
dealiasing in the homogeneous directions, and Chebyshev polynomials in the wall-normal
direction. Full details of the algorithm can be found in Chevalier et al. (2007). The domain
size and resolution of the three DNSs are given in table 1. Data of the DNSs at Reτ = 550
and 1000 have already been used for studies of wall-turbulence in Cimarelli et al. (2013)
and Lenaers et al. (2012), respectively. Let us mention that the lower resolution adopted
for the simulation of the lower Reynolds number case at Reτ = 550, has been tested and
found to not affect the statistical quantities we are analysing in the present work.

Profiles of the streamwise mean velocity and the log-law indicator function of the three
DNSs are shown in figure 1. The near-wall region has obviously a very high degree of
similarity for the three Reynolds numbers, while outside the buffer layer, in the overlap
layer, differences become visible due to Reynolds number effects. A tentative plateau in
the indicator function profile starts to appear with increasing Reτ but is not yet clearly
present, meaning that a true logarithmic layer is absent even at the highest Reτ .

The single-point turbulent kinetic energy balance compacts in a simple way the overall
multidimensional behavior of turbulence describing the energetics only in physical-space.
For the symmetries of the channel, this equation reads,

dψ

dy
= s(y) , (2.1)

and describes how turbulent energy is redistributed among different wall-distances y
through the spatial flux ψ = (〈u2i v〉 + 〈pv〉/ρ − νd〈u2i 〉/dy) from the production to the
dissipation regions of the flow defined by positive and negative values of the source term
s(y) = −〈uv〉(dU/dy) − 〈ǫ〉. Hereafter, 〈·〉 will be used to denote ensamble average. As
shown by the black lines in figure 2(a), in wall-turbulence the energy source is near
the wall in the so-called buffer layer. In this layer turbulence production exceeds the
local dissipation. Conversely, the wall and bulk flow behave as sink regions dissipating
turbulent energy emerging from the buffer layer through the spatial energy flux, see
gray lines in figure 2(a). Indeed, the spatial flux is zero at the peak of energy source
and becomes positive (towards the core flow) further away from the wall and negative
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Figure 2. (a) Source term of the kinetic energy budget s+ (black lines) and corresponding spatial
flux ψ+ (grey lines) for the three Reynolds numbers Reτ = 550, 1000, 1500. The inset shows a
zoom of the near-wall peak of the spatial flux ψ+. The two arrows indicate increasing Reynolds
numbers. (b) Magnification of the region around the second positive peak of s. Increasing Reτ
from dash-dotted to dashed and solid lines.

(towards the wall) closest to the wall. Actually, in between the buffer layer and the
core of the flow, a third region can be defined, the so-called overlap layer, which is the
main subject of the present work. Although this region is expected to be an equilibrium
layer where production and dissipation locally balance, production is actually larger than
dissipation leading to an outer energy source, see figure 2(b). The understanding of this
region of the flow is very important especially when dealing with the large Reynolds
number state of wall-turbulence. Even if its intensity is very small compared to the one
near the wall, this outer energy source shows an apparent Re-dependence, see again figure
2(b). In particular, it appears that by increasing the Reynolds number, the role of the
outer energy source becomes more important. By defining the overall inner and outer
energy source as the integral of the source s(y) restricted to the two (inner and outer)
regions where s(y) > 0, respectively,

Ξinn =

∫

y

s(y)dy y ∈ {inner region of energy source s(y) > 0}

Ξout =

∫

y

s(y)dy y ∈ {outer region of energy source s(y) > 0} ,

we can roughly estimate the relative importance of the two regions as function of Reynolds
number by means of the ratio Ξout/Ξinn. The present data show a significant increase
of this ratio from 0.0031 at Reτ = 550 to 0.0347 and 0.0617 at Reτ = 1000 and 1500,
respectively. Extrapolating this trend, one can expect the outer source to become dom-
inant above Reτ = 15000 ÷ 20000. The increased intensity of the outer source has also
consequences for the topology of the energy transfer. Indeed, as shown in figure 2(a), the
spatial flux in the overlap layer increases with Re and forms an outer peak given by the
increasing energy injection due to the outer energy source.

3. Generalized Kolmogorov equation

The generalized Kolmogorov equation proposed by Hill (2002) is the balance equation
for the second order structure function, 〈δu2〉, where δu2 = δuiδui and the fluctuating
velocity increment is δui = ui(Xs + rs/2) − ui(Xs − rs/2). According to its definition,
〈δu2〉(ri, Xi) depends both on the separation vector defined as ri = x′i − xi and on the
location specified by the mid-point Xi = (x′i + xi)/2. Hereafter, index repetition implies
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summation. The second order structure function can be interpreted as the amount of en-
ergy of a given scale rs at a certain position in the flow Xs and for that reason, hereafter,
we will refer to the concept of scale-energy. Let us note that, although 〈δu2〉 has the
dimensions of kinetic energy and it is strictly related to the energy spectrum, the second
order structure function is not an intensive quantity. However, it represents the natural
tool for the multi-scale analysis of turbulent flows that lack a classical spectral decom-
position due to violation of spatial homogeneity. The second order structure function
is defined in a four-dimensional space (rx, ry, rz, Yc) allowing to distinguish fluxes be-
tween different wall-distances Yc and fluxes between different wall-normal scales ry. This
distinction would be missed by using the balance equation for spectral energy. The gen-
eralized Kolmogorov equation derives directly from the Navier-Stokes equations. For the
symmetries of channel flow and considering increments rs only in the directions parallel
to the walls, ry = 0, (Marati et al. 2004), the equation reads,

∂〈δu2δui〉

∂ri
+ 2〈δuδv〉

(

dU

dy

)

∗

+
∂〈v∗δu2〉

∂Yc
=

−4〈ǫ∗〉+ 2ν
∂2〈δu2〉

∂ri∂ri
−

2

ρ

∂〈δpδv〉

∂Yc
+
ν

2

∂2〈δu2〉

∂Yc
2

. (3.1)

where U(y) is the mean velocity profile, Yc = X2 is the wall-normal coordinate of
the mid-point, (*) denotes the arithmetic average at the points Xs ± rs/2 and ǫ =
ν(∂ui/∂xj)(∂ui/∂xj) is the pseudo-dissipation. Equation (3.1) involves a four-dimensional
vector field, Φ = (Φrx ,Φry ,Φrz ,Φc), and can be restated as

∇4 ·Φ(r, Yc) = ξ(r, Yc) , (3.2)

where ∇4 is the four-dimensional gradient and ξ = −2〈δuδv〉 (dU/dy)
∗

− 4〈ǫ∗〉 is the
scale-energy source/sink given by the balance between production and dissipation. This
equation allows to identify the two transport processes occurring simultaneously in
wall-flows: the scale-energy transfer in the three-dimensional space of scales, Φr =
(Φrx ,Φry ,Φrz ) = 〈δu2δu〉 − 2ν∇r〈δu

2〉 and the spatial energy flux among different
wall-distances, Φc = 〈v∗δu2〉 + 2〈δpδv〉/ρ − ν/2∂〈δu2〉/∂Yc. In the inertial sub-range
of homogeneous isotropic turbulence, eq.(3.2) reduces to

∇3 ·Φr(r) = −4〈ǫ〉 , (3.3)

where the contributions due to production, viscosity and spatial inhomogeneity are either
negligible or zero. In this case, energy transport occurs only in the space of scales, is
radial and from large to small scales. The scale-energy source, ξhom = 〈δuδf〉 − 4〈ǫ〉
where f is the external forcing, is a function only of the separation vector modulus |r|
and it is always negative, ξhom = g(|r|) 6 0. In inhomogeneous flows, the turbulent
production can locally exceed dissipation leading to regions of scale-energy source in the
augmented (r, Yc)-space where ξ(r, Yc) > 0. This is a distinguishing feature of actual
inhomogeneous flows that has been shown responsible in Cimarelli et al. (2013) for a
complex redistribution of scale-energy where the controversial reverse energy cascade
plays a central role. Hence, in what follows, the study of the Reynolds number effects on
the energetics of the flow will mainly focus on the behavior of the source term ξ.

4. The structure of the source term

The topological structure of the source term obtained from the three DNS data sets
shows that all the basic characteristics observed at the lowest Reτ are also maintained
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Figure 3. Direct numerical simulation of turbulent channel flows at Reτ = 550, Reτ = 1000
and Reτ = 1500 from left to right. Energy source – ξ+(rx, rz, Yc) – isolines and field of fluxes –
(Φ+

rz ,Φ
+
c ) – vectors in the rx = 0 plane. Energy source intensity increases from black to white

colors. Solid lines denote postive values while dashed lines denote negative values.

at higher Reynolds numbers. By analyzing the data in the reduced space (rx, rz, Yc)
for ry = 0, the source ξ is found to reach its maximum at rx = 0 in a range of small
spanwise scales well within the buffer layer, see figure 3. This region of the reduced space
is a singularity point for the fluxes. As more clearly seen in figure 4, the scale-energy flux
vector field takes origin from this peak of scale-energy source which can be considered
as the engine of wall-turbulence and will be hereafter called the driving scale range
(DSR). The small-scale location of the scale-energy source actually violates the classical
paradigm of homogeneous isotropic turbulence. In wall flows, the turbulent energy is
generated amid the spectrum of turbulent fluctuations, not at the largest scales, and
this fact leads to a complex redistribution of energy (Cimarelli et al. 2013), with strong
consequences for turbulence modeling (Cimarelli & De Angelis 2012; Cimarelli & De
Angelis 2014).

Another interesting feature emerging from the analysis of the Kolmogorov equation
is the existence of a rescaled replica of the DSR, associated with a second peak in the
scale-energy source, called hereafter outer driving scale range (ODSR). This outer peak
of scale-energy source has been observed in Cimarelli et al. (2013) and is present also at
higher Reynolds numbers, see the isocontours of figure 3.

4.1. The driving scale range DSR

In agreement with the picture of a universal near-wall region, the geometrical properties
of the DSR are unaffected by the Reynolds number, see figure 4. For the three cases
considered, the source peak within the DSR is located at (r+x , r

+
z , Y

+
c ) = (0, 40, 12). This

Reynolds-number invariance and the clear matching of scales and positions suggests
a strong connection with the near-wall cycle. Note that for a given wall-distance the
source maximum ξ occurs at rx = 0. Its location in the (rz, Yc)-plane, reported in figure
5(a), defines the typical spanwise scale of the scale-energy source, (ℓξmax

z )+. Near the
wall, the spanwise location of the maxima increases quadratically with the wall distance,
(ℓξmax

z )+ ≈ 35 + 0.02Y +2
c , for all the Reynolds numbers considered. Clearly, within the

DSR for small distances from the wall, Y +
c < 30, this trend results in an almost constant

spanwise length scale: the typical spanwise scale of the most active structures of the
wall is independent of the wall distance and Reynolds number. Although the topology
of the DSR is basically Re-invariant, its intensity is not. The scale-energy source is
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Figure 4. Scaling of the near-wall scale-energy source (ξ+) and of the field of fluxes – (Φ+
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in the rx = 0 plane. Grey isolines and vectors denote the Reτ = 1000 case while black ones
denote the Reτ = 1500 case.

found to slightly increase with Reτ . In particular we measure ξ+max = 0.717, 0.732, 0.741
moving from the lower to the higher Reynolds number. This trend is consistent with
the commonly observed mixed inner/outer scalings of the near-wall quantities. In fact,
it is thought that the outer dynamics actively modulates the near-wall turbulence by
producing small scale fluctuations increasing Reynolds number (Marusic et al. 2010b).

As shown by the vector field in figure 4, a direct consequence of the Re-invariance of
the topology of the scale-energy source term, ξ, is that also the scale-energy flux vector
field, (Φrz ,Φc), remains identical for increasing Reynolds number, once rescaled in viscous
units. In this scenario, the Reynolds-number effects should come only from the ODSR
in the overlap region. Indeed, even if the observed second peak of scale-energy source ξ
is very small compared to the one in the DSR, its relevance increases with Re as will be
discussed in the next sections.

4.2. The outer driving scale-range ODSR

The ODSR belongs to the overlap layer and appears to be the result of a second outer
turbulent production mechanism well separated from the near-wall dynamics. The ODSR
is separated from the DSR by a scale-energy sink region. Interestingly, this separation is
found to be more pronounced by increasing Re. The solid contour lines shown in figure 3,
highlight that certain positive values for the source term ξ are shared by both the DSR
and ODSR for the Reτ = 550. On the contrary, for the larger Reynolds numbers, the
DSR and ODSR are more and more separated by negative values for the source term ξ
as shown by the number of dashed contours lines in between the inner and outer source
shown in figure 3.

Although the peak intensity is smaller than the DSR one, the extent of the ODSR
increases with Re suggesting how this object can play an important role at large Reynolds
numbers. In contrast with the DSR where production is concentrated at small scales
which are independent of Reynolds number, the ODSR involves larger scales and its
extent in inner units increases with Reτ . For the three Reynolds numbers considered,
the peak of the ODSR occurs in a well-defined scale-region expressed in outer units
corresponding to rz/h ≈ 0.34. On the other hand, the physical location of the peak in
the ODSR is Yc/h = (0.2; 0.18; 0.12) in outer units while Y +

c = (112; 186; 192) in viscous
units going from low to the high Reynolds number. Contrary to the space of scales, rz,
which is found to be Re-invariant once expressed in outer units, the wall distances, Yc, do
not scale with Re neither in inner nor outer units. This behavior is probably related to the
fact that the overlap layer extends from a lower limit given in viscous units to an upper
limit in outer units, e.g. for 100 < Y +

c < 0.2Reτ but the exact values are still a matter
of scientific debate, see Marusic et al. (2010b) and references therein. These arguments
suggest a mixed scaling with wall-distance of the outer scale-energy source, see section 5
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Figure 5. (a) Spanwise scale of maximum scale-energy source, (ℓξmax

z )+, as a function of
the wall distance. Diamonds denote the Reτ = 1500 case, circles the Reτ = 1000 case
and squares the Reτ = 550 case. The dashed line denotes the quadratic increase near the
wall, (ℓξmax

z )+ = 35 + 0.02Y +2
c while the solid lines the linear increase in the overlap layer,

(ℓξmax

z )/h = 0.14 + (Yc/h), (ℓ
ξmax

z )/h = 0.14 + 1.16(Yc/h) and (ℓξmax

z )/h = 0.14 + 1.4(Yc/h),
expressed in viscous units, i.e. (ℓξmax

z )+ = 80 + Y +
c , (ℓξmax

z )+ = 145 + 1.16Y +
c and

(ℓξmax

z )+ = 215+1.4Y +
c . (b) Energy source – ξ+ – isolines in the rx = 0 plane for the Reτ = 1500

case. The straight lines are r+z = γ(ξ+0 )(Y +
c − Ỹ +

c ) + r̃+z where ξ+0 defines the iso-level of ξ,

γ(ξ+0 ) ∈ [0.04, 1.4], r̃+z = 120 and Ỹ +
c = 80.

for a more detailed discussion. When considering the ODSR intensity, it is worth noting
that the peak of scale-energy source in the ODSR remains essentially unaltered with
Reynolds number once scaled in inner units and corresponds to ξ+ ≈ 0.0095.
The presence of the ODSR violates the equilibrium assumption of the overlap layer from

which a local balance of production and dissipation is expected. Within the ODSR the
energy injection is larger than the rate of dissipation, ξ > 0. As stated by equation (3.2),
this fact results in a positive divergence of the energy transfer, ∇4 ·Φ > 0, which under
the assumption of a true equilibrium is otherwise expected to be zero. This observation
is consistent with the single-point energy excess already discussed in connection with
figure 2 in section 2. Consequently, the overlap layer does not behave like a homogeneous
shear flow traversed by a constant spatial flux of energy both at the single-point and
two-point level. The ODSR continuously injects energy feeding the energy fluxes. As
shown in figure 2, the spatial flux starts from the DSR in the buffer layer, it decreases
by delivering energy in the sink layer wedged between the DSR and ODSR to increase
again due to the energy injected by the ODSR leading to the second peak of the spatial
flux. This second peak strongly depends on the Reynolds number, since the underlying
physics of the ODSR belongs to the overlap layer whose extent and, hence, its overall
energy injection, increases with Re, as figure 3 clearly suggests.

In this context, the existence of a simple near-wall viscous scaling may be questioned
by the fact that different turbulent engines with different characteristic scales are at work
thus leading to anomalous scaling. It is generally thought that the mixed inner/outer scal-
ing is due to the fact that with increasing Reynolds number the large-scale structures of
the overlap layer become more energetic and able to actively modulate the near-wall dy-
namics through production of near-wall fluctuations (Hutchins & Marusic 2007b; Mathis
et al. 2009; Marusic et al. 2010b,a). Complementary to this picture, Jiménez (2012) de-
scribes this modulation as a local effect where small-scales structures equilibrate with
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Figure 6. Behavior of the near-wall peak of the single point spatial flux, ψ+
max, equation (2.1),

as a function of the ratio Ξout/Ξinn for increasing Reynolds number.

their large-scale environment. From a point of view of scale-energy source and transfer,
the mixed inner/outer scaling of the near-wall region could be interpreted as the result
of a confinement of the scale-energy excess emerging from the near-wall region due to the
presence of increasingly large production scales in the overlap layer. At given Reynolds
number, the scale-energy flux originated in the DSR and directed toward the bulk of
the flow encounters the additional energy source given by the ODSR. This additional
energy source radiates scale-energy and contributes to the overall energy flux. Below the
ODSR the partial flux it generates is directed towards the wall, thereby opposing the
flux produced in the DSR. The result is a net decrease in the flux towards the bulk.
In fact, as stated by the turbulent kinetic energy and Kolmogorov equations (2.1) and
(3.2), the source regions are repulsor for the fluxes. Increasing the Reynolds number, the
DSR remains fixed when scaled in inner units, while the effect of the ODSR increases.
As shown in figure 3, the fluxes deviate to try to avoid the ODSR which involves increas-
ingly large scales with Re. Hence, the overall effect is a decrease with Reynolds number
of the scale-energy flux from the near wall region due to the presence of increasingly large
production scales with Re in the ODSR. Accordingly, in the inset of figure 2a a decrease
of the near-wall peak of the single-point spatial flux is observed at increasing Re. This
decrease is compared with the ratio between the overall outer and inner energy source,
in figure 6. By increasing the Reynolds number, the ratio Ξout/Ξinn increases and, as a
consequence, the near-wall peak of the single-point spatial flux, ψ+

max, significanlty de-
creases. In conclusion, the scale-energy produced within the DSR increasingly feeds the
turbulence in the near-wall region since the energy flux towards the channel center is
decreasing with Re. The resulting growth of the energy available near the wall is, thus,
responsible for intenser fluctuations with Re leading to a mixed inner/outer scaling of
near-wall quantities.

5. Overlap layer scalings

Let us now investigate more in detail the peculiar features of the Kolmogorov equation
within the overlap layer. The first point we address is the behavior with wall distance of
the spanwise scale of maximum scale-energy source for a given wall-distance, ℓξmax

z . The
present data show that for the three Reynolds number considered, ℓξmax

z increases almost
linearly with Yc, see figure 5(a). In particular, we observe (ℓξmax

z )/h ≈ 0.14 + (Yc/h),
(ℓξmax

z )/h ≈ 0.14+1.16(Yc/h) and (ℓξmax

z )/h ≈ 0.14+1.4(Yc/h) from low to high Reynolds
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Figure 7. Scale-energy source isolines for three distances from the wall within the overlap layer
for Reτ = 1500 (Y +

c = 140 light grey, Y +
c = 180 dark grey and Y +

c = 220, black). (a) In
inner units the dimensions of the source region increase with the distance from the wall. In (b)
spanwise and streamwise scales are normalized with the wall-normal distance and its square,
respectively. Apparently, the isolines of the scale-energy source at different wall-normal distances
tend to collapse one on top of the other.

numbers respectively. This behavior is similar to that reported in Saikrishnan et al. (2012)
for the shear scale Ls which is found to slightly increase its slope from Reτ = 300 up
to Reτ = 2000 where it seems to asymptotically approach the dimensional prediction
Ls = ky. Contrary to the slope, the intercept remains almost constant. This value of the
intercept could be considered as the characteristic spanwise scale of the lower overlap
layer. As shown by the isolines in figure 5(b) for Reτ = 1500, in the overlap layer
the iso-levels of positive scale-energy source, ξ > 0, intercept spanwise scales which
linearly increase with the distance from the wall. In particular, the iso-levels of ξ can
be approximated by a sheaf of lines originating from a unique point at r̃+z = 120 and
Ỹ +
c = 80 but with different slopes, i.e. r+z = γ(ξ+0 )(Y

+
c − Ỹ +

c ) + r̃+z where ξ+0 defines the
iso-level of ξ and γ(ξ+0 ) ∈ [0.04; 1.4].

As already stated, the source maximum is found at rx = 0 for all Yc while for rx > 0
the source decreases, see figure 7(a). By tracking the spanwise scale of the maximum of ξ
as a function of the streamwise scale, we find that these spanwise scales increase following

a square-root law, r+z ∼
√

r+x , independently of the Reynolds number. This behavior is
similar to that reported by del Alamo et al. (2004) for the spectral distribution of the
Reynolds stresses and it finds a possible theoretical explanantion in Moarref et al. (2013)
in terms of geometrically self-similar resolvent modes. Since we observe that the spanwise
scales involved in the scale-energy source increase linearly with wall-distance, r+z ∼ Y +

c ,
we argue that the streamwise scales should behave quadratically with wall-distance, i.e.
r+x ∼ Y +2

c . Hence, we expect the scale-space behavior of the scale-energy source of the
ODSR in the overlap layer to be approximatively self-similar if plotted as function of
r+x /Y

+2
c and r+z /Y

+
c . As shown in figure 7(b) this rescaling of ξ allows us for a unique

comprhensive view of the outer scale-energy source where the Yc-dependence is dropped.
The data we have available at other Reynolds numbers (not shown) suggest that this
behaviour is Reτ independent. The comparison with figure 7(a) highlights that this single
picture of the overall behavior of the outer scale-energy source would be missed when
using viscous units. It is worth mentioning that the observed scale-space distribution of
the outer scale-energy source, r+z ∼ Y +

c and r+x ∼ Y +2
c , is consistent with the energy

distribution found in Moarref et al. (2013) which, although different from the original
scaling proposed by Townsend (1976), is explained by the conjecture of an overlap layer
populated by self-similar structures attached to the wall, see e.g. del Alamo et al. (2006).
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Figure 8. (a) Scaling of production, −2〈δuδv〉(dU/dy), for rx = 0 and Reτ = 1500. From top to
bottom the four solid lines provide the production at Y +

c = 130, 160, 190 and 230, respectively.
Squares denote the logarithmic behavior described by equation (5.2) and circles denote the
inertial behavior, equation (5.1). The three thick lines show the characteristic scales reported
in (b). (b) Yc-behavior of the scale of maximum scale-energy source, (ℓξmax

z )+ ≈ 215 + 1.4Y +
c

(dashed line) and of the zero scale-energy source, (ℓξzeroz )+ ≈ 80+0.65Y +
c (solid line). The shear

scale, ℓ+S = κY +
c (dashed-dotted line), represents the cross-over between logarithmic and power

law scaling of production.

We address now the possibility to scale also the intensity of the outer scale-energy
source, ξ = −2〈δuδv〉 (dU/dy)

∗

− 4〈ǫ∗〉. The rate of viscous dissipation is constant in the
space of scales and can be easily modeled by means of the equilibrium hypothesis, 〈ǫ〉 ∼
u3τ/κy. On the contrary, the scale-dependent behaviour of the production intensity is not
trivial and need a detailed analysis. Two distinct regimes are expected whose transition
should be controlled by the shear scale ℓS (Jacob et al. 2008). For scales larger than ℓS the
prevailing mechanism which determines the scaling law is production. For scales smaller
than ℓS , the energy cascade prevails and an isotropy-recovering behavior is expected
to occur. This range should be characterized by a power law with universal exponents
based on the dimensional predictions proposed by Lumley (1965). As shown in figure
8(a) for Reτ = 1500 (the same behavior is observed also for the lower Reynolds numbers
considered), the scale-energy production follows the classical Lumley’s prediction for the
mixed structure function (Lumley 1965; Jacob et al. 2008), here extended to scale-energy
production by taking into account the mean shear, dU/dy,

−2〈δuδv〉
dU

dy
= βu3τ (r/y)

4/3/κy for r < κy , (5.1)

where κ is the von Kármán constant, see circles in figure 8(a). Production follows this
power law for scales smaller than the shear scale ℓS as shown by the thick dashed-dotted
line in figure 8(a). The shear scale defined as ℓS =

√

ǫ/S3 where S = dU/dy, is computed
here by using the overlap layer estimate, ℓS = κYc. Hence, the power law (5.1) is valid
for scales smaller than the distance from the wall, the so-called detached scales. At scales
larger than ℓS (attached scales), we find that the production in the overlap layer is well
described by a logarithmic law,

−2〈δuδv〉
dU

dy
= u3τ (C +D log(r/y))/κy for κy < r < ℓξzeroz , (5.2)

squares in figure 8(a). This law is closely related to the (k−1)-law for the energy spectrum
derived by Perry et al. (1986), see also Nikora (1999). As shown in Davidson et al. (2006),
the real space analogue of the (k−1)-law is a logarithmic law for the streamwise second-
order structure functions. Equation (5.2) represents an extention of this law to the mixed
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Figure 9. Energy source – ξ+ – isolines in the rx = 0 plane for Reτ = 1000 (grey) and
Reτ = 1500 (black). In (a) ξ+ is shown as a function of viscous quantity, (r+z , Y

+
c ), in (b) as a

function of mixed quantity, (rz/h, Y
m
c ), and in (c) as a function of rescaled quantity, (rz/h, Y

R
c ).

structure functions, 〈δuδv〉, which takes into account also the mean shear, dU/dy. Scaling
(5.2) remains valid up to rz = ℓξzeroz where ℓξzeroz is defined as the scale where the source
term becomes zero, ξ = 0. For scales smaller than ℓξzeroz the source term is actually a
sink for the scale-energy fluxes, ξ < 0, while for larger scales it is a source, ξ > 0.

According to equation (3.2) and as shown by the vector field in figure 3, scales smaller
than ℓξzeroz are characterized by a negative divergence of the fluxes since ξ < 0 and, thus,
by a forward cascade. As a consequence, the logarithmic behavior (5.2) is associated
with turbulent scales involved in a forward cascade process. Since, as anticipated, these
scales are larger than ℓS = κYc they are influenced by the presence of the walls. On the
other hand, the power law scaling characterizes scales smaller than ℓS = κYc. Hence, the
influence of the wall should be somehow negligible and, consequenlty, the forward cascade
should resemble the classical one proposed by Kolmogorov since an isotropic recovery
should start to take place, see Casciola et al. (2005). It could be worth stressing that the
shear scale, often identified with the distance from the wall, has been longly addressed to
explain the momentum and energy transfer between different scales of motion, starting
from the pioneering work of Townsend (1976) to more recent contributions, see e.g. Nikora
(1999) and Lozano-Duran & Jiménez (2014). As shown in figure 8(b), both ℓS and ℓξzeroz

linearly increase with the wall distance denoting again statistical features attached to
the wall. Since the slope of ℓξzeroz is larger than that of the shear scale, ℓS , we can expect
that the range of scales where the logarithmic scaling holds, should expand significantly
with Reynolds number increasing the importance of the scaling for the prediction of
production.

Figure 5 suggests a possible approximation for the source term for scales larger than
ℓξzeroz . By assuming that the production term for scales close to ℓξmax

z roughly behaves
linearly with rz, see figure 8, we can model the source term as ξ+ ≈ A(Y +

c )r+z +B(Y +
c )

since dissipation is a scale-independent process. In addition, we have also found in section
4.2 that the iso-levels of ξ > 0 form a sheaf of lines described by the equation, r+z =
γ(ξ+0 )(Y

+
c − Ỹ +

c )+ r̃+z where ξ+0 defines the iso-level of ξ we are considering, see figure 5.
By combining these two informations, the slope γ is given by γ(ξ+0 ) ≈ Gξ+0 +H, implying
that the source term can be approximated as ξ+ ≈ (r+z − r̃+z )/G(Y

+
c − Ỹ +

c )−H/G. From
our data we find G = 103.9 and H = 0.58.

Summarizing, we have shown that for a fixed Reynolds number the complex multi-
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dimensional features of the ODSR can be described in a simple way by using the self-
similarity of the streamwise and spanwise scales shown in figure 7 and the scaling of the
production intensity shown in figure 8. Despite the limited range of Reynolds numbers we
have available, let us address now how this picture changes for different Reynolds num-
bers. As already shown in section 4.2, the intensity of the outer scale-energy source scaled
in viscous units and its scale-space location scaled in outer units remain constant for the
present Reynolds numbers. Hence, the effect of Reynolds number mainly reduces to an ex-
pansion/shrinking of the wall-normal distances. A sufficiently general procedure could be
to consider a mixed scaling of the wall-normal distance in the form Y m

c = (Yc/h)
α(Y +

c )β .
Alternatively one could use outer units shifting the origin according to the expression
Y R
c = (Yc/h)−η

+/Reτ where η+ is a free parameter. By considering α = β = 1/2 in the
first case and η+ = 100 in the second one, the resulting scaling of the outer scale-energy
source is shown in figure 9. Although not conclusive given the small range of Reynolds
numbers investigated this result seems to be consistent with the possibility of a universal
rescaling of the outer scale-energy source (ODSR).

6. Concluding remarks

By means of the description of turbulence given by the generalized Kolmogorov equa-
tion we study the scale-energy transfer and production mechanisms of turbulent wall
flows at different Reynolds numbers. Two driving mechanisms in terms of scale-energy
source are identified for the fluxes. The first stronger one, the driving-scale range DSR,
belongs to the near-wall cycle. As expected, its inner-scaled topology remains unaltered
with Reynolds while its intensity is found to slightly increase with Re (near wall mod-
ulation). The second outer scale-energy source, outer driving scale range ODSR, takes
place further away from the wall in the overlap layer and is separated from the DSR by
a distinct scale-energy sink layer suggesting a possible independence of the production
mechanisms of the ODSR from the near-wall region which might be interpreted as an
autonomous outer cycle. Although its intensity is small compared to the DSR, the outer
region of scale-energy source expands with Reynolds number while its peak intensity
remains almost constant. These observations suggest the importance of the ODSR for
large Reynolds number wall-turbulence.

Further analysis of the ODSR demonstrates that the Re-dependence of the outer scale-
energy source can be dropped by scaling in outer units the space of scales and in mixed
one the wall-distance at least for the range of Reynolds numbers analysed here. Fur-
thermore, we found that the spanwise scales involved in the scale-energy source linearly
increase with the distance from the wall. On the other hand, the streamwise scales are
connected to these spanwise scales of scale-energy source through a square root law and,
hence, quadratically increase with wall distance. These observations allow us to scale the
outer scale-energy source highlighting its self-similarities for different wall distances and
Reynolds numbers. While considering the intensity of the outer scale-energy source, we
found that the space of scales within the overlap layer can be divided into two distinct
ranges. For scales larger than the shear scale, ℓs, but smaller than the cross-over scale of
zero scale-energy source, ℓξzeroz , the outer scale-energy source follows a logarithmic law,
ξ = u3τ (C+D log(r/y)−1)/κy. This behavior is theoretically consistent with the presence
of a k−1 law for the energy cospectrum. For scales smaller than the shear scale, the outer
scale-energy source follows a power law whose exponent equals Lumley’s dimensional
prediction, ξ = u3τ (β(r/y)

4/3−1)/κy. These scales are involved in a direct cascade whose
features should resemble the classical one since they are detached from the wall and,
hence, an isotropic recovery is expected to take place. Interestingly, both ℓξzeroz and ℓs



Sources and fluxes of scale-energy in the overlap layer of wall turbulence 15

increase linearly with wall distance. The different increase with wall-distance of these two
scales highlights the possible extention of the range of scales of validity of the logarithmic
law for the prediction of outer scale-energy source at large Reynolds numbers. Overall,
these observations suggest a strong connection of the observed outer scale-energy source
with the presence of an outer turbulence production cycle whose statistical features agree
with the hypothesis of an overlap layer dominated by self-similar structures attached to
the wall.

The topology of the energy transfer is also studied. The paths of energy resembles
the one reported in Cimarelli et al. (2013) for a lower Reynolds number case. Only one
singularity point related to the DSR exists from which the fluxes depart also for larger
Reynolds number. According to our observations we may expect a high Reynolds number
state of wall-turbulence where only one origin for the fluxes exists and corresponds to the
DSR at the small-scales of the near-wall region, since the intensity of the ODSR should be
substantially Re-independent. In this scenario, the Reynolds number effects on the energy
transfer should come only from the expansion of the ODSR both in scale and physical
space with Re. For increasing Reynolds numbers, the turbulent energy emerging from
the DSR near the wall experiences an expanding outer scale-energy source in the overlap
layer which acts as a repulsor for the fluxes as stated by equation (3.2). Hence, the fluxes
try to avoid the increasingly large production scales of the ODSR and remain partially
confined to the wall-region increasing the overall amount of energy locally available near
the wall. Accordingly, we observe a decrease of the spatial flux from the buffer to the
overlap layer at increasing Reynolds numbers. Hence we may conjecture that the near-
wall modulation is a result of a confinement of the near-wall source due to the presence
of increasingly large production scales in the overlap layer.

We acknowledge PRACE for awarding us via the REFIT project access to resource
Jugene at the Jülich Supercomputing Centre in Germany. Computational resources at
PDC were made available by SNIC. G. Brethouwer acknowledges finacial support by the
Swedish Research Council (grant number 621-2013-5784).
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