Supporting Information for:

2 Conversion of Sugar Cane Molasses to 5-Hydroxymethylfurfural using

Molasses and Bagasse-Derived Catalysts

- 4 Joshua Howard † , Darryn W. Rackemann † , John P. Bartley † , Chiara Samori ‡ and William
- 5 O.S. Doherty †*

1

- 6 * Corresponding author. ORCID: 0000-0002-5975-8401
- 7 email: w.doherty@qut.edu.au
- 8 [†]Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 2
- 9 George St, Brisbane, QLD 4001, Australia
- [‡] Dipartimento di Chimica, University of Bologna, Via S.Alberto 163, Ravenna, Italy
- Supporting Information contains 4 pages including 2 Figures and 2 Tables as follows:
- 13 FTIR differential spectrum of fresh catalysts subtracted from the spectrum of the
- corresponding spent catalysts after hydrolysis of the industrial molasses (Figure S1).
- 15 XRD analysis of the solid residue recovered after acid pretreatment of industrial molasses
- 16 (Figure S2)
- 17 Effect of catalyst loading on HMF yield from industrial molasses (Table S1)
- 18 Hydrolysis of pretreated molasses at 170 °C by M-SO₃H (Table S2)

19

11

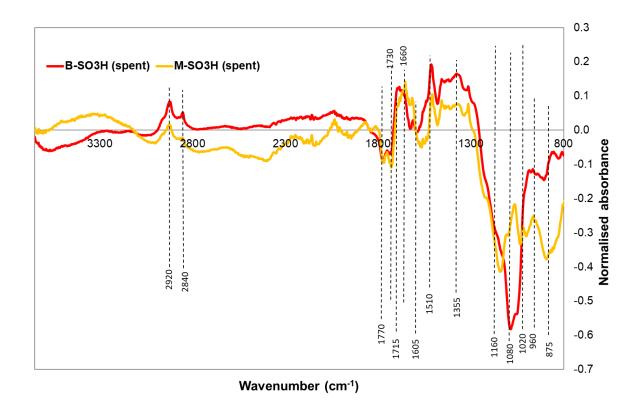


Figure S1 FTIR spectra of solids on catalyst after hydrolysis of industrial molasses (fresh catalyst spectra subtracted)

1

2

3

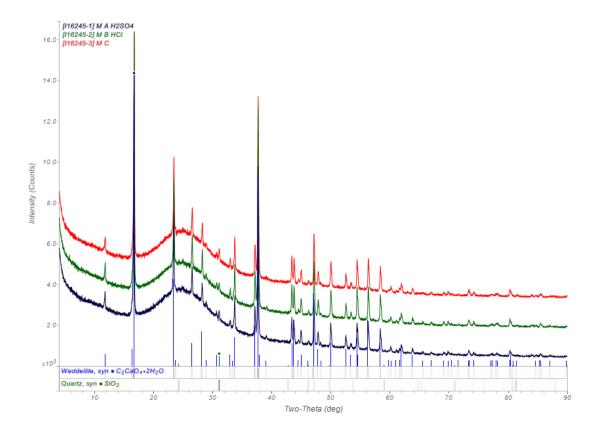


Figure S2 XRD spectra of solids recovered after acidification of molasses

1

2

3

Table S1 Effect of catalyst loading on HMF yield

1

56

7

8 9

10

M-SO ₃ H (mg)	HMF yield (mol %)	Sucrose remaining	Glucose remaining (%)	Fructose remaining (%)	Total saccharides remaining (%)
N/A	31.4	0	78.5	20.4	49.4
300	34.6	0	71.5	13.0	42.2
900	29.7	0	77.2	13.1	45.1
1800	19.2	0	77.0	8.13	42.5

Notes: Molasses solution, 25 mL of 67 g/L sugars; time, 4 h; M-SO₃H catalyst; microwave (MW) power max 500 W; 150 °C; 4 h; HMF, RSD < 10%; individual sugars, RSD < 4%; total sugars, < 8%; molasses treated at pH 3.5 (formic acid), yield based on hexose sugar content hydrolysed to HMF

Table S2 Hydrolysis of pretreated molasses solutions at 170 °C by M-SO₃H

Time (h)	HMF yield (mol%)	Sucrose remaining	Glucose remaining (%)	Fructose remaining (%)	Total saccharides remaining (%)
1	40.8	0	86.0	16.5	51.2
2	36.7	0	52.6	5.5	29.0
3	36.2	0	40.1	3.17	21.6
4	35.5	0	30.6	1.8	16.2

Notes: Molasses solution, 25 mL of 67 g/L sugars; M-SO₃H catalyst, 300 mg; microwave (MW) power max 500 W;

HMF, RSD < 10%; individual sugars, RSD < 4%; total sugars, < 8%; molasses pretreated at pH 3.5 with formic acid,

yield based on hexose sugar content hydrolysed to HMF