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Abstract: Cellular contacts modify the way cells migrate in a cohesive group with respect to a free
single cell. The resulting motion is persistent and correlated, with cells’ velocities self-aligning in
time. The presence of a dense agglomerate of cells makes the application of single particle tracking
techniques to define cells dynamics difficult, especially in the case of phase contrast images. Here, we
propose an original pipeline for the analysis of phase contrast images of the wound healing scratch
assay acquired in time-lapse, with the aim of extracting single particle trajectories describing the
dynamics of the wound closure. In such an approach, the membrane of the cells at the border of the
wound is taken as a unicum, i.e., the wound edge, and the dynamics is described by the stochastic
motion of an ensemble of points on such a membrane, i.e., pseudo-particles. For each single frame,
the pipeline of analysis includes: first, a texture classification for separating the background from the
cells and for identifying the wound edge; second, the computation of the coordinates of the ensemble
of pseudo-particles, chosen to be uniformly distributed along the length of the wound edge. We
show the results of this method applied to a glioma cell line (T98G) performing a wound healing
scratch assay without external stimuli. We discuss the efficiency of the method to assess cell motility
and possible applications to other experimental layouts, such as single cell motion. The pipeline is
developed in the Python language and is available upon request.

Keywords: wound healing dynamics; single pseudo-particle tracking; phase contrast image
segmentation

1. Introduction

In this paper, we propose a pipeline for the segmentation and analysis of phase
contrast images acquired in time-lapse in the wound healing scratch assay, to overcome
some limitations of standard approaches due to the change in shape and density of the
cells during migration.

Cellular migration is a fundamental process for animal’s physiology during both the
period of development and that of maturity. Cells migrate to shape organs and tissues
and, in the case of damage, regenerate them. Furthermore, motility is a primary skill in
cancer metastatic processes and in the immune responses [1,2]. The capability to migrate
is a highly regulated process in which cells respond to external and internal mechanical,
electrical, and chemical stimuli by complex physiological processes that promote, enhance,
or suppress cell motility [3,4]. Cells can be induced to move in a particular direction by
positive and negative guidance signals, while in the absence of external guidance, cells
move randomly [5,6].
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In cutaneous wound healing, which is a complex cellular and biochemical process
necessary to restore structurally damaged tissue, skin cells migrate from the wound edges
towards the empty space to restore skin integrity. In this case, the cohesive group of cells
organized in a layer modifies the classical characteristics of single cell migration, and the
presence of the wound induces peculiar migration behaviors. In fact, while a certain
freedom of movement is maintained inside the tissue, the cells along the edge of the wound
(front) move preferentially toward the gap. Such a process involves dynamical interactions
between both the contacting cells (which are absent in single cell migration) and the
extracellular matrix. These interactions regulate motility enhancement or suppression [7,8].

The wound healing scratch assay is a widespread experimental tool applied to study
the collective migration of cells cultured in vitro. Standard protocols provide that a highly
confluent monolayer of cells is scratched by a fine pipette tip to create a gap, which is then
allowed to heal. As a protocol of analysis, the area of the scratch is measured as a function
of time to determine the speed of the closure. This method is meant to simulate a natural
wound, and the procedure is simple and easy to set up, but it is difficult to analyze and
produce precise and reproducible results [9].

The mathematical continuum models that focus on the collective properties of cells
can explain the requirements for the onset of movement and some typical characteristics
of cell motility, but are usually limited to small space-time scales. Therefore, they provide
little information on how the integration of the lamellipodium protrusion, the retraction
of the posterior part, and the transduction of force on the extracellular matrix lead to
the long-term prolonged movement of the entire cell. This process is characterized by
alternating phases of direct migration and changes of direction and polarization. The
coordinated interaction of these phases suggests the existence of intermittency, strong
space-time correlations, and a close relationship between units (cell-cell interaction). It is
therefore an important question whether the long-term movement of the entire cell can still
be understood as a simple diffusive behavior such as Brownian movement or a random
walk or whether more advanced dynamic modeling concepts should be applied [10–12].

The change in shape and density of the cells during migration make it difficult to apply
standard automatic single particle tracking (SPT) pipelines to extract the cell migration
trajectory in phase contrast images acquired in time-lapse. These difficulties are even
greater when collective motion is considered and a dense agglomerate of cells is present.
To overcome such limitations, here, we propose a pipeline for segmentation and SPT
extraction in phase contrast images of the wound healing scratch assay. The pipeline
is original and follows the principle of Occam’s razor, based on a simple measure as
linear binary patterns (LBPs), which results in being sufficient to classify the texture
as cells or background by using a principal component analysis (PCA) and Gaussian
mixture classification, the code is available at the git-hub repository https://github.com/
riccardoscheda/AnomalousDiffusion (accessed on 1 November 2020). We chose the manual
segmentation performed over one experiment as the ground truth. We further compared the
performance of our pipeline with segmentation by Otsu thresholding [13] without manual
adjustment of the parameters for different frames of the same image. For all the cases,
the wound edge is approximated to a unique membrane and its dynamics approximated
by the stochastic motion of a point on the membrane, i.e., a pseudo-particle. This choice is
motivated by the fact that in the experiment under study, faster cells do not separate from
the borders during wound closure. Therefore, the dynamics and the heterogeneity of the
process are characterized through the collection of such SPT trajectories.

The paper is organized as follows: in the the Methods Section, we present step by
step our pipeline for phase contrast image processing and SPT; in the Results Section, we
show the trends of the pseudo-particle trajectories’ statistics for a wound healing scratch
assay, performed with glioblastoma T98G cells; in the Conclusions Section, we discuss the
performance and the SPT statistics of our pipeline, in comparison with the corresponding
measurements obtained through the professional tool ImageJ [14].

https://github.com/riccardoscheda/AnomalousDiffusion
https://github.com/riccardoscheda/AnomalousDiffusion
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2. Methods
2.1. Data

Glioma cells (T98G), derived from brain human tumor glioblastoma multiforme
(GBM), were plated at a density of 1× 105 cells/cm2 on 35 (�) mm sterile Petri dishes with
a 10 (�) mm glass microwell (MatTek Corporation, Ashland, MA, USA) suitable for optical
microscopy. The cell culture, with a population doubling time (PDT) approximately of
28 h, as reported by the ATTC Company, which provided the cell line, was maintained in
GibcoTM Minimum Essential Medium (MEM) with Earle’s salts (Fisher Scientific, Milano,
Italy) supplemented with 10% fetal bovine serum, 1% L-glutamine, 1% sodium pyruvate,
and antibiotics (1% penicillin and 1% streptomycin) inside the incubator at 5% of CO2 and
37 ◦C. All chemicals were purchased from Merck KGaA (Darmstadt, Germany). After 48
h from seeding, the population covered the entire surface as a monolayer of confluent
and tightly contacting cells. Using a sterile pipette tip for Gilson (10–200 µL), a scratch
ranging 200–400 µm along the middle axis was done. Right after, the specimen was placed
into the pre-heated microscope stage incubator in the motorized table of the inverted
optical microscope Eclipse Ti (Nikon, Bologna, Italy). The phase-contrast micrographs of
multiple visual fields, pre-selected along the narrow scrape by the NIS Elements AR 4.0
(Nikon, Bologna, Italy) software, were acquired at 100×magnification for 20 h at the rate of
4 frames/hour. The setup allowed the acquisition of time-lapse images of living cultured
cells maintained in standard conditions for the entire duration of the experiment.

2.2. Image Processing

The aim of the pipeline was to identify the wound edges, which correspond to the
free edge of the two cell layers, separated by the wound. The procedure was done in the
following steps, which should be applied to all the frames of an experiment: (i) equalization,
to make all the frames comparable; (ii) binarization, to separate the background regions
from the cell layers; (iii) wound edge identification; and (iv) storage of the coordinates.
We describe here two alternative procedures of binarization, the first based on texture
classification and the second on hand drawing the wound edges over the images by using
the professional tool ImageJ [14].

2.2.1. Equalization of the Frames

To improve the difference of the wound borders from the background regions, we
applied to all the frames contrast limited adaptive histogram equalization (CLAHE) [15].

The image was divided into small blocks (tiles), with a tile size of 50× 50, to enhance
the difference between the cell border and the background (tile size is 8× 8 by default
in [16]). Then, each of these blocks was histogram equalized. Therefore, in a small area,
the histogram would be confined to a small region (unless there was noise). If noise was
there, it would be amplified. To avoid this, contrast limiting was applied. If any histogram
bin was above the specified contrast limit (by default, 40 in [16]), those pixels were clipped
and distributed uniformly to other bins before applying histogram equalization. This
procedure increased the image contrast and enhanced the texture patterns (e.g., Figure 1b)
by equalizing pixels’ intensity distribution of all the frames to a fixed range wider than the
original ones.

2.2.2. Image Binarization by Texture Analysis

Image binarization was performed by dividing each frame into 10,000 subimages
(12× 16 pixel subimages in 1200× 1600 pixel image) and by classifying each of them as
the background or cell layer on the bases of a score. The score was built to characterize
the texture of each subimage and corresponded to the distribution of the local binary
pattern (LBP) values for all the pixels of the subimage (scikit-image Python library [17],
skimage.feature.local_binary_pattern). We considered grayscale images; thus, the LBP of
each pixel corresponded to a scalar value. We calculate the LBP for a pixel by comparing
the pixel with its 8 first neighbors. To each couple was assigned a score: if the central pixel
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value was greater than or equal to the neighbor pixel value, we assigned 1, otherwise, if the
central pixel value was less than the neighbor pixel value, the score was 0. The LBP value
of the pixel corresponded to the sum of these scores, ranging from 0 to 8, and contained
information about the 3 × 3 square of pixels. The frequency of such LBP scores for each
subimage was an array of 9 values representing a texture feature of the subimage. Therefore,
each frame (image) was characterized by a matrix of 10,000 (sub-images) × 9 (LBP score)
values. Principal component analysis (PCA) [18] was performed over the 9 dimensions of
the texture score to separate the 10,000 subimages into two clusters: one corresponding to
the background regions and one containing the cell layer regions (Figure 1c). Taking the
first 5 principal components, the points belonging to the two clusters were classified and
labeled (0 or 1) using the Gaussian mixture model clustering algorithm (scikit-learn Python
library [19], sklearn.mixture.GaussianMixture). Each point in Figure 1c corresponds to a
subimage; hence, the obtained binary color labels (yellow or blue) were used as binarized
intensities for the corresponding subimages to build the binarized image (Figure 1d).

The performance of the algorithm with respect to the size of the subimages was
studied in terms of the Pearson correlation of the segmented fronts with the ground
truth for squared and rectangular shapes of different sizes. For complete tessellation
of the image, it supported the choice of the subimages’ size of 12 × 16 pixels (see the
Supplementary Material).

(a) (b)

(c) (d)

Figure 1. Original image (a); transformed image by using adaptive histogram equalization (b); 3D
scatter plot of the first 3 principal components of the linear binary pattern (LBP) score PCA (c); the
data points in the scatter plot are clustered by the Gaussian mixture model clustering algorithm;
color labels refer to cells (blue) or background (yellow); binarized frame image by using texture
analysis (d).

2.2.3. Wound Edge Recognition from Binarized Images

Contour lines can be easily recognized in a binarized image as the contour of 0 or
1 regions. We applied a function for contour identification, returning a list of all the
contours in an image (OpenCV-Python library, findContours). In the frames, the longest
contour line refers to the central part of the image until the two cellular fronts remain
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separate, identifying at the same time the background regions an the two borders of the
cell layers (Figure 2a).

(a) (b)

Figure 2. Image binarized by texture analysis with borders recognized by OpenCV-Python (a);
example comparison of the borders obtained through the professional tool ImageJ (blue line) and the
texture analysis (red dashed line) method superposed on the original image frame (b).

2.2.4. Wound Edge Recognition with the ImageJ Professional Tool

The extraction of the fronts with the professional tool ImageJ for image analysis was
performed by hand drawing the line of the front over each image (Figure 2b) and then by
saving the corresponding coordinates for each frame and for left (L) and right (R) front in
a .txt file [14].

2.2.5. Wound Edge Recognition with Otsu Thresholding

For the simple thresholding of the images, we performed an adaptive histogram
equalization (CLAHE) to improve the difference of the wound borders from the back-
ground, then we blurred the image with OpenCV Gaussian Blur, in order to have better
results for the Otsu thresholding. Then, we applied Otsu thresholding on the image [17].
Then, we applied morphological transformations in order to have a smoother border of the
wound. After morphological transformations, we collected the coordinates of the borders
(OpenCV-Python library, findContours).

2.3. Pseudo-Particles’ Trajectories

The wound edge (L and R) of the cell layers was considered as a single homogeneous
elastic membrane. The movement of such a membrane was tracked by means of N points
uniformly distributed along its length as pearls on an elastic necklace. To derive the
coordinates of the N pseudo-particles, we interpolated the wound edges’ 2D coordinates
as a function of the front length (scipy Python library, scipy.interpolate.interp1d), and then,
we computed the coordinates of the N pseudo-particles uniformly distributed along its
length [20].

The collection of the N points constituted the collection of pseudo-particles, and for
each of them, an SPT was built by considering its coordinates in the time sequence of the
experiment frames. The SPTs in 2D were allowed to cross because of invaginations and
protrusions of the front, despite the cells being attached to each other and the membrane of
the wound edge being considered as a unicum. However, the average displacement along
the membrane was approximately zero because it was constrained by the geometry of the
system and the microscope field.

The pseudo-particle n at time tk was defined by the coordinates of the n-th pseudo-
particle in the k-th frame of the image. The collection of the coordinates of the pseudo-
particle n for all the frames represented the trajectory of the pseudo-particle n. Thus,
the dynamics of the membrane could then be tracked by working on a matrix N × M,
where N is the number of tracked pseudo-particle and M is the number of frames. The latter
represent the time steps of the sampling.
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2.4. SPT Statistics

To study the SPT statistics, we applied the discrete version of mean squared displace-
ment (MSD) and autocorrelation functions (ACFs). In fact, discrete SPT statistics can be
performed directly on an SPT N (pseudo-particles)×M (frames) matrix dataset, one for
the x coordinate and one for the y coordinate, where the frame index k = 0, 1, 2 . . . , M− 1
corresponds to the sampling time, i.e., the time step of the process, and n = 1, 2 . . . , N
corresponds to the index of the pseudo-particle. Statistics on the single trajectory could be
performed as matrix operations along the M columns, while the ensemble average could
be performed by averaging over the N rows of the transformed matrix. In the present
work, we considered only the movement toward the free edge of the layers for the sake
of simplicity, i.e., the x component of the quantities of interest. For statistical analysis, we
applied a shift to the pseudo-particle position such that 〈X(t = 0)〉 = 0. Moreover, due to
the lack of long stationary trajectories, we considered here only ensemble averages:

E(Y(k)) = 1
N

N

∑
n=1

yn(k) , (1)

where yn(k) is the value of the variable Y for the n-th pseudo-particle at time t = k. The
velocity of the pseudo-particle is defined as the increment of the pseudo-particle position
X per unit sampling time (0.25 h):

V(τ) = X(τ + 1)− X(τ) , τ = 0, 1, 2 . . . , M− 2 . (2)

The increments of the velocity per unit sampling time are defined as the following:

A(τ) = V(τ + 1)−V(τ) , τ = 0, 1, 2 . . . , M− 3 . (3)

The autocorrelation function ACFY for the generic variable Y reads:

ACFY(τ) =
E[(Y(t0)− µt0)(Y(t0 + τ)− µt0+τ)]

σt0 σt0+τ
, τ = 0, 1, 2 . . . , M− 1 , (4)

where the initial time is t0 = 0 and σk and µk represent respectively the standard deviation
and the mean of the variable Y at time t = k.

The mean squared value (MSY) for the generic variable Y reads:

MSY(τ) = E[(Y(t0 + τ)−Y(t0))
2] , τ = 0, 1, 2, . . . , M− 1 , (5)

where the initial time is again t0 = 0.

2.5. Fit Procedure

All the fits were performed through a ordinary least squares (OLS) regression (scipy
Python library, scipy.optimize.curve_fit), which returned the optimized parameters of the
model and their matrix of covariance [20]. Poissonian uncertainty for counts in histograms
was considered. We further compared (results not shown) the parameters estimated by
OLS with the ones obtained by the maximum likelihood estimate (MLE) (stats Python
library, scipy.stats.rv_continuous.fit).

3. Results

We considered a single field in an experiment of the wound healing scratch assay
(without external stimuli applied to the cell substrate) as the test image.

The trends of the N SPTs obtained through the texture analysis for the experiment
under study are compared with the ones obtained by using the professional tool ImageJ in
Figure 3. SPTs from the right front are also mirrored.
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(a) (b)

Figure 3. Comparison of the single particle trajectories obtained with the professional tool ImageJ (blue line) and the texture
analysis (red or dashed line) method for the left wound edge (a) and the right wound edge (b), for N = 103.

In Figure 4, we display the temporal trends of the area between the wound edges
during wound closure, estimated by using the texture analysis in comparison with the
wound edges recognized manually.

Figure 4. Normalized area between the wound edges during wound closure as a function of time for
the texture analysis (blue line) and the professional tool ImageJ (red line).

The pseudo-particle average position and average velocity for the two methods of
analysis are displayed in Figures 5 and 6. The ACFs of the pseudo-particle position
and velocity along the x coordinate are compared for the two methods of analysis in
Figures 7 and 8, respectively. A regime with stationary increments of the velocity was
identified for the time range between 5 h and 8 h (Table 1), corresponding to the duration
of the regime with constant drift velocity in the ensemble averaged position (Figure 5).
The medium could be roughly approximated as viscous, and a constant velocity implies
constant force, on average, applied against friction by the cells. This stationary regime
with constant drift velocity was supported by zero correlation in the VACF(Figure 8) and
by the symmetric distribution of velocity increments with a zero average. For such a
time range, the distribution of the instant acceleration (velocity increments) along the x
coordinate is shown in Figure 9 for the two methods of image segmentation. The tails
of these distribution are compatible with both the exponential and the Gaussian scaling,
with comparable characteristic scales (Table 2). However, the linear decay of the tails in
Figure 10 suggests that a truncated-exponential decay is more plausible. To estimate the
consistency between the two methods, we computed the Pearson’s correlation (Table 3) for
their estimates of the pseudo-particles’ coordinates, i.e., the entire collection of estimated
position for the x and y coordinates, the average position 〈X〉, the average velocity 〈V〉,
and the average velocity increments 〈A〉 for N = 103 and M = 40.
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(a) (b)

Figure 5. Comparison of the average position of the pseudo-particle obtained with the professional tool ImageJ (blue dotted
line) and the texture analysis (red dashed line) and their linear OLS best fit (black dashed line; see Table 1 for details) for the
left wound edge (a) and the right wound edge (b).

(a) (b)

Figure 6. Comparison of the ensemble averaged pseudo-particle velocity obtained with the professional tool ImageJ (blue
dotted line) and the texture analysis (red dashed line) for the left wound edge (a) and the right wound edge (b).

(a) (b)

Figure 7. Comparison of the coordinate X autocorrelation function obtained with the professional tool ImageJ (blue dotted
line) and the texture analysis (red dashed line) for the left wound edge (a) and the right wound edge (b).

(a) (b)

Figure 8. Comparison of the velocity autocorrelation function obtained with the professional tool ImageJ (blue dotted line)
and the texture analysis (red dashed line) method for the left wound edge (a) and the right wound edge (b).
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Table 1. Estimated average drift velocity of the cell front vd and the lag time of quiescence τ1 with their corresponding
standard error obtained through OLS regression of the model and goodness of fit (Adj. R-squared). The second time scale
τ2 = 8 h is estimated from Figure 5b.

Model Front Method vd ± SD (µm/h) τ1 ± SD (h) Adj. R-Squared

x(t)|τ1<t<τ2 =
vd · (t− τ1)

L ImageJ 19.5± 0.3 4.49± 0.03 0.990

L texture analysis 17.4± 0.3 4.75± 0.03 0.984
R ImageJ 23.9± 0.4 5.25± 0.03 0.987
R texture analysis 21.8± 0.5 5.25± 0.03 0.975

(a) (b)

(c) (d)

Figure 9. Comparison of the ensemble averaged pseudo-particle acceleration trajectory obtained with the professional tool
ImageJ (blue dotted line) and the texture analysis (red dashed line) method for the left wound edge (a) and the right wound
edge (b); comparison of the standard deviation of pseudo-particle acceleration of the ensemble of pseudo-particles obtained
with the professional tool ImageJ (blue dotted line) and the texture analysis (red dashed line) method for the left wound
edge (c) and the right wound edge (d).

(a) (b)

Figure 10. Comparison of the velocity increments (absolute value) obtained with the professional tool ImageJ (blue) and the
texture analysis (red) method for the left wound edge (a) and the right wound edge (b); the best OLS fit of the frequencies
of a exponential (dashed line) and a normal distribution (bold line) is shown for the two methods (see Table 2 for details).
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Table 2. Estimated parameters with their corresponding standard error obtained through OLS regression of the correspond-
ing model and goodness of fit (Adj. R-squared).

Model Front Method λ± SD (µm) σ ± SD (µm2) Adj. R-Squared

P(|∆V|) =
2 · G(|∆V|; 0, σ2)

L ImageJ 29± 1 0.982

L texture analysis 117± 2 0.980
R ImageJ 36± 1 0.976
R texture analysis 103± 2 0.982

P(|∆V|) =
1
λ e−|∆V|/λ L ImageJ 23± 1 0.976

L texture analysis 92± 2 0.948
R ImageJ 31± 1 0.987
R texture analysis 82± 2 0.949

Table 3. Pearson correlation of the collection of the pseudo-particles’ coordinates, x and y, the average
position 〈X〉, the average velocity 〈V〉, and the average velocity increments 〈A〉 estimated by ImageJ
with the one estimated by texture analysis for N = 103.

Front Variable Pearson’s Coeff. p-Value

L x-coords 0.942 0.0
y-coords 0.985 0.0
〈X〉 0.997 1 × 10−50

〈V〉 0.547 1 × 10−4

〈A〉 0.275 0.08
R x-coords 0.913 0.0

y-coords 0.986 0.0
〈X〉 0.997 1 × 10−48

〈V〉 0.630 1 × 10−6

〈A〉 0.156 0.19

4. Conclusions

We present an original method to extract a 2D discrete representation of the wound
edge in phase contrast images acquired in time-lapse by texture analysis, and we compare
the results with the ones obtained by using the professional tool ImageJ and by Otsu
thresholding (see the Supplementary Material for edges derived by thresholding). The
dynamics of the wound edges is defined by the SPT of N pseudo-particles uniformly
distributed along the length of the fronts.

Thus, discrete SPT statistics can be performed directly on the SPT N (pseudo-particles)
×M (frames) matrix dataset for the x coordinate (crossing the wound gap).

We compare SPT statistics of the data obtained by hand drawing with the texture
analysis: average values, squared mean values, and the autocorrelation function of position
and velocity. The two approaches lead to consistent results in terms of the trends of the
dynamics (qualitative analysis) and in terms of Pearson’s correlation (Table 3). By a visual
check, the texture analysis appears more capable of recognizing lamellipodium protrusions
than the professional tool ImageJ, because such tiny structures could be occasionally missed
by human recognition (Figure 2). On the other side, the automatized procedure may also
produce artifacts in the front profile, for example it would consider as part of the cell layer
pieces of dead cells remaining in the middle of the wound when the cells at the wound
edges get close to them. For these reasons, the wound edges detected by texture analysis
are associated with larger fluctuations between different frames than the ones detected
manually. For the same reasons, the pseudo-particles position fluctuates more in the texture
analysis dataset between different frames, generating larger tails in the distribution of
increments along the x coordinate for the velocity (and position) of the pseudo-particle
(Figure 10) and larger mean squared velocity, in comparison to the one obtained by the



Entropy 2021, 23, 284 11 of 12

professional tool ImageJ method. Despite such discrepancy, the average drift velocities
(Figure 5), which correspond to the mean of the distribution of the position increments and
the average velocity increments (Figure 10), are comparable.

Finally, by studying the SPT statistics, we are able to identify an intermediate regime
characterized by a constant average of the cellular front velocity and by exponential tails
for the velocity increments’ distribution (Table 2). We leave the full characterization of the
stochastic process and the biological meaning, which are beyond the scope of the present
paper, to future research with an enlarged cohort of experiments, in order to increase the
statistics, but also to characterize the inherent variability of the phenomena.

Supplementary Materials: The following are available online at https://www.mdpi.com/1099-430
0/23/3/284/s1.
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