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Simple Summary: The engineering of self-organising cyber-physical systems can benefit from a
variety of “logical devices”, including digital twins, virtual devices, and (augmented) collective
digital twins. In particular, collective digital twins provide for a design construct towards collective
computing, which can be augmented with virtual devices to improve the performance of existing
self-organising applications—as shown through swarm exploration and navigation scenarios.

Abstract: The engineering of large-scale cyber-physical systems (CPS) increasingly relies on princi-
ples from self-organisation and collective computing, enabling these systems to cooperate and adapt
in dynamic environments. CPS engineering also often leverages digital twins that provide synchro-
nised logical counterparts of physical entities. In contrast, sensor networks rely on the different but
related concept of virtual device that provides an abstraction of a group of sensors. In this work, we
study how such concepts can contribute to the engineering of self-organising CPSs. To that end, we
analyse the concepts and devise modelling constructs, distinguishing between identity correspon-
dence and execution relationships. Based on this analysis, we then contribute to the novel concept of
“collective digital twin” (CDT) that captures the logical counterpart of a collection of physical devices.
A CDT can also be “augmented” with purely virtual devices, which may be exploited to steer the
self-organisation process of the CDT and its physical counterpart. We underpin the novel concept
with experiments in the context of the pulverisation framework of aggregate computing, showing
how augmented CDTs provide a holistic, modular, and cyber-physically integrated system view that
can foster the engineering of self-organising CPSs.

Keywords: cyber-physical systems; self-organisation; digital twins; virtual devices; collective systems;
aggregate computing

1. Introduction

Recent techno-scientific developments are promoting a vision of smart large-scale
Cyber-Physical Systems where computational and physical processes integrate to support
novel types of applications and services [1,2]. Examples of such future-generation systems
include Wireless Sensor and Actuator Network, robotic swarms, people equipped with
smart devices, and smart computing ecosystems. Often, such systems are equipped with
autonomic or self-* capabilities [3] to provide adaptive system functions and/or promote
quality aspects like resilience and efficiency—we call these Self-* Cyber-Physical Systems.

In typical Cyber-Physical System (CPS) designs, physical devices have corresponding
software counterparts, known as digital twins [4], to represent and exploit them in computa-
tional settings. There is a close connection between these two parts, essential for effective
cyber-physical integration and maintained in implementations by the so-called digital thread
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process [5]. In settings like Wireless Sensor and Actuator Network and Internet-of-Things,
the related but different notion of a virtual device (where there is no twinning relation-
ship but rather only hosting or execution relationships with some physical devices) has
sometimes been proposed to achieve abstraction or improved Quality of Service [6–9], for
example, by abstracting a whole set of underlying physical sensors.

In this paper, we focus on self-organising Cyber-Physical Systems [10,11], namely col-
lectives of physical devices monitored and controlled by computer-based algorithms that
allow them to autonomously organise as a whole towards global goals. In this context,
we sustain a vision whereby logical representations of system entities (e.g., digital twins
and virtual devices) are key for: (i) separation of concerns in system design and imple-
mentation [11,12]; and (ii) achieving improved application cost/performance profiles,
for example, through smart deployment or controlled augmentation of the system to
improve or facilitate self-organisation processes [13–15]. Our position is also that program-
ming approaches to self-organisation can especially benefit from such logical represen-
tations, for example, in terms of separation of concerns, declarativity, modularity, and
execution optimisability.

In particular, we address the problem of modular abstraction and the design of self-
organising Cyber-Physical Systems. We aim to address it by decoupling cyber vs. physical
components, as per [11], decoupling virtual devices from twinning relationships, and
devising corresponding modelling concepts at a collective level. Indeed, in this work, we
provide the following contributions:

• We review from literature various kinds of logical devices, and provide a concep-
tual characterisation including digital twins, virtual devices, and “collective” devices.
We do so by distinguishing between the relationships of identity correspondence and
execution existing between logical and physical devices, and by taking both an individ-
ual and collective stance (Section 2);

• We re-interpret and conceptually extend the meta-model of self-organising Cyber-
Physical Systems presented in [11] in light of the novel proposed concepts, especially
discussing how it can express a notion of augmented collective digital twin considering
digital twins and virtual devices by a global perspective;

• We run an experimental investigation showing how virtual nodes can opportunisti-
cally be integrated [15] into an existing self-organising CPS (providing discovery and
navigation services in dynamic environments) to improve its performance without
changing its logic.

This work extends the conference paper [16] with the following:

• a revision and more formal description of the proposed taxonomy;
• a larger discussion of background, motivation, and coverage of related work (both on

virtual nodes and soft control of self-organising systems);
• a whole new experimental part, with a new case study (self-organising exploration

of dynamic environments), and a much larger set of simulations for an extensive
coverage of parameter configurations.

The manuscript is organised as follows. In Section 2, we review the uses of the concepts
of digital twins and virtual devices in the literature and propose a new taxonomy for CPS
elements and digital representations. In Section 3, we provide motivation for the paper
contribution and describe a reference application scenario where the discussed techniques
can be applied. In Section 4, we introduce and discuss the pulverisation meta-model
according to the taxonomy, and consider how system augmentations may contribute to
self-organisation processes. In Section 5, we evaluate the approach by means of simulations.
Finally, Section 6 wraps up and gives an outlook to the future.

2. Digital Twins and Virtual Devices for CPS Engineering: A Review and Taxonomy

In this section, we review the literature on digital twins and virtual devices—both
referred to as logical devices in this paper, where a logical device can be defined as a software
model (e.g., one or more objects, actors, or agents) of an application-level concept (e.g.,
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an environment element, a robot, or a wearable-augmented person). Then, we propose
an integrated taxonomy based on two concepts: identity (of logical and physical devices,
possibly related by some notion of correspondence) and execution (of logical devices by
physical computing devices). Moreover, we introduce the novel notion of a collective digital
twin, namely the digital twin of an entire collective of physical devices, which we leverage
in Section 4 to describe a model of self-organising CPS.

2.1. The Concepts of Digital Twin and Virtual Node in the Literature
2.1.1. Digital Twin

Rasheed et al. define a digital twin as a connected, virtual model of a physical entity [4].
The connection—which can be uni- or bi-directional—is established through a digital
thread [5]. A digital thread realises the data flows that are needed to keep the physical and
digital counterparts in sync. The concept of a digital twin is related to other engineering
concepts such as “plain old” models, yet, there are subtle but important differences. For
example, Fuller et al. make a distinction between a digital model (where a manual flow
of data ensures the synchronisation between the physical entity and the digital entity), a
digital shadow (where updates on a physical entity are automatically mirrored on the digital
entity, however, not in the other way), and a digital twin (where changes are automatically
reflected through a bi-directional flow of data between the physical and digital entities) [17].
To make the notion of a digital twin helpful in engineering, it is crucial to clearly demarcate
it from related concepts and be precise about its design dimensions and characteristics,
enabling to classify its possible realisations. Van der Valk et al. present a taxonomy of digital
twins [18]. The authors classify the concept of a digital twin based on the type of data link
(uni or bi-directional), the purpose of the twin (repository, transfer, processing), the physical
binding (bound or unbound), its accuracy (from identical to partial), its synchronisation
(present or not), and the order of creation (first the physical part, first the digital part, both
parts created at the same time).

2.1.2. Virtual Node

For a digital twin to exist, there must be an associated physical twin. In contrast, we
define a virtual device as a logical device that has no corresponding physical device, that is, the
virtual device does not provide a model for any physical device. In other words, a virtual
device models an application-level concept that has no corresponding physical counterpart.

The concept of virtual device has been adopted in multiple works, as discussed in
the following and reported in Table 1. Bose et al. refer to a virtual sensor as an “entity
consisting of a group of sensors along with associated knowledge which enables it to provide services
which are beyond the capabilities of any of its individual member sensors” [6]. These authors
group virtual sensors in three distinct categories: singleton is a virtual sensor that represents
an associated physical sensor; basic is a virtual sensor that comprises a homogeneous
collection of sensors of the singleton class; and derived is a virtual sensor that comprises a
heterogeneous collection of sensors of the singleton class. Following this view, a virtual
device provides an abstraction for a set of underlying physical devices. This leads to the
problem of how to find efficient ways for the creation of the aforementioned abstractions,
for example, in the context of sensor-cloud infrastructures, Chatterjee and Misr introduce
new efficient algorithms for the virtualisation of groups of constrained physical sensors
in the form of virtual sensors [7]. The concept of virtual node used as an abstraction for
groups may serve specific purposes. For instance, Khansari et al. use the concept of a
virtual sensor for load-balancing and data-sharing, promoting service compositions that are
Quality of Service-aware in cloud-based Internet-of-Things applications [8]. On the other
hand, Brown et al. propose a layer of virtual nodes and offer programming abstraction
to obtain reliable low-cost ad-hoc networks [9]. In this proposal, the programmer has
“predictable” virtual nodes at his or her disposal to deal with “unpredictable” client nodes,
that is, the underlying collection of physical devices that are emulated by the virtual nodes.
The emulation architecture relies on the “regional coordination pattern” [19] that divides
the network into regions regulated by a leader, where the individual nodes coordinate to
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support leader election, joining of regions, and consistent data processing. Other works
do not associate the concept of a virtual with a group-like abstraction. For instance,
Almobaideen et al. use the concept of virtual node to improve the Quality of Service in
clustered Wireless Sensor Networks (WSNs) that work using a Time-Division Multiple
Access (TDMA) protocol that gives precedence to “critical nodes” [20]. The latter work is
especially interesting, as it shows an example of how purely virtual devices may be used to
induce application-level effects without direct actions on the physical system.

Table 1. Occurrences of “virtual nodes” in the literature.

Work Objectives Techniques Scenarios Topology
Type of Virtual

Device (See
Table 2)

[9] Predictability
Collaborative
emulation of
virtual nodes

WSN applications Ad-hoc Virtual aggregate

[20] Improved QoS TDMA
prioritisation WSN applications Clustered Virtual copy

[7] Abstraction and
efficiency

Optimal
composition of

resource-
constrained

sensors

WSN applications Cloud-based
(Hierarchical) Virtual aggregate

[8] Improved Quality
of Service

Quality of
Service-aware
composition of

services

Cloud-based IoT
applications

Cloud-based
(Hierarchical) Virtual aggregate

[14] Swarm behaviour
control Potential field

Mixed
swarm-WSN

systems
Layered Virtual device

Table 2. Different identity relations between cyber and physical nodes help us derive different concepts
(and corresponding terms). This paper has an explicit focus on the notions in the highlighted cells.

Correspondence of Logical
Identities with

Physical Identities

Logical Device (Through
Their Software Components) Physical Device Description

one-to-zero Virtual device – A logical device identifies
with no physical device.

zero-to-one – Infrastructural device

A physical device identifies
with no logical device (e.g., it

only provides
execution support).

one-to-one Digital twin Physical twin
A logical device identifies

with exactly one
physical device.

one-to-N, N > 1 Virtual aggregate Physical view/copy/member
A logical device identifies

with a group of
physical devices.

N-to-one, N > 1 Digital view/copy/member Physical aggregate
A physical device identifies

with a group of multiple
distinct logical devices.
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2.2. Logical and Physical Devices: A Taxonomy
2.2.1. Background: Cyber-Physical Systems (CPS)

A cyber-physical system (CPS) is a system where software and physical components
are connected in a feedback loop and carry out sensing, actuation, and computation
(communication can be regarded as a form of sensing and actuation). Of such aspects,
sensing and actuation typically need to be situated, that is, localised in the physical context to
accomplish their application-specific function of perceiving and affecting the environment.
The situatedness is obtained by deploying concrete sensors and actuators in the physical
world, for example, by embedding them in a larger device (such as a smartphone or
a drone). Conversely, computations may be often run (almost) anywhere and hence be
offloaded from the concrete devices. However, since data must be communicated to/from
computational processes, there might exist constraints on where computations can actually
be executed while preserving functionality. Still, the possibility of detaching computation
from for example, the device requesting a service or the device to be controlled, provides
engineers with larger design spaces where trade-offs (in terms of flexibility or performance
metrics) can be made.

In general, it is possible to distinguish physical devices based on their role in the
design of the system. For instance, it is significant to distinguish between application-level
physical nodes (APN), which are the target of monitoring and control in the application; and
infrastructure-level physical nodes (IPN), which are those providing support, for example,
in terms of networking, storage, and execution offloading. For example, consider a cyber-
physical swarm: the APNs are the robots, while the IPNs may consist of edge servers upon
which certain computations can be offloaded (e.g., allowing robots to save energy). Essen-
tially, a typical APN may be a sensor, an actuator, or a larger device (such as a smartphone
or a drone) packaging multiple sensors, actuators, and computing units together.

Another sensible demarcation in the CPS engineering approach, based on the nature of
the modelled entities, is between logical devices (which exist as abstractions or components
in models), software entities (providing a representation of logical devices in terms of
computational and possibly deployable components), and physical devices (namely, actual
entities existing in the real world—such as smartphones and drones). Notice that the logical
and software devices are related in a way similar to digital twins with their digital threads.

2.2.2. Taxonomy

As per the above discussion, it makes sense to distinguish between identity correspon-
dence and execution relationship to characterise the relation (mediated by software compo-
nents) between logical devices and physical devices. The result of such a characterisation
is summarised in Tables 2 and 3. In the following, we focus on the former, whereas the
latter is discussed in Section 4.

Let L be a set of unique logical identities (which allow us to distinguish between
different software components—for example, one Java object from another) and P be a
set of unique physical identities (which allow us to distinguish between different physical
components—for example, one robot from another).

Moreover, let N be a label used to distinguish different associations. Then, we can
define digital twin, virtual device, and other notions based on a labelled binary symmetric
relation I ⊆ L × N × P that exists between logical and physical identities (and corre-
sponding roles) and that we call identity correspondence. Accordingly, we call a virtual node
(VN) an entity whose logical identity l ∈ L has no corresponding physical identity, that is,
(l,
, p) /∈ I , ∀p ∈ P for a given label 
∈ N . With abuse of language, we denote entities
by their identities and vice versa, and so we also say that the virtual device has no corre-
sponding physical device. Similarly, we call an infrastructural physical node (IPN) a physical
device p ∈ P which has no corresponding logical device, that is, (l,
, p) /∈ I , ∀l ∈ L; we
can think of such a device as providing “infrastructural services” in terms of execution
support or environmental functionality. Instead, a digital twin (DT) is a logical device l ∈ L
which has one corresponding physical device p ∈ P , known as its physical twin (PT), that is,
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(l,
, p) ≡ (p,
, l) ∈ I . Considering multiplicities, further notions could be derived as
shown in Table 2.

Table 3. Different execution relationships between cyber and physical nodes help us derive dif-
ferent concepts (and corresponding terms). This paper has an explicit focus on the notions in the
highlighted cells.

Execution Relationship of
Logical Devices with

Physical Devices

Logical Device (e.g., via
Software Components) Physical Device Description

one-to-zero Undeployed/idle device –
The logical device is not

executed by any
physical device.

zero-to-one – Free/thin host
The physical device does not

(or cannot) host any
logical device.

one-to-one Embedded logical device Host
A logical device is executed by

exactly one physical device,
namely its host.

one-to-N, N > 1 Distributed/Pulverised device Pulverisation
infrastructure element

A logical device is executed in
a distributed fashion by a
group of physical devices.

N-to-one, N > 1 Tenant Server
A collection of logical devices
is executed by an individual

physical device.

Then, we define a collective digital twin (CDT) as a (possibly dynamic) collection of
DTs. Similarly, we define a collective physical twin (CPT) as a (possibly dynamic) collection
of PTs. The relevance of such conceptual constructs is fostered by emerging paradigms
like aggregate computing [21,22] that address collectives as whole computational machines,
namely by a global perspective. Indeed, a CDT could also be reified as a single, logical
device corresponding to a group of physical devices—what has been called a virtual
aggregate in Table 2. Finally, we consider augmentations as systems involving also entities
not appearing in I . So, an augmented CDT is a CDT including virtual devices, whereas an
augmented CPT is a CPT including infrastructural devices. Notice that logical augmentations
indirectly affect physical devices through their DTs and, vice versa, physical augmentations
indirectly affect logical devices through their PTs. So, we can also say that a CPT (resp.
CDT) is augmented if so is the corresponding CDT (resp. CPT). Refer to Figure 1 for a
pictorial representation of this idea.
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As per the above discussion, it makes sense to distinguish between identity correspon-
dence and execution relationship to characterise the relation (mediated by software compo-
nents) between logical devices and physical devices. The result of such a characterisation
is summarised in Table ??. In the following, we focus on the former, whereas the latter is
discussed in Section 4.

Let L be a set of unique logical identities (which allow us to distinguish between
different software components—e.g., one Java object from another) and P be a set of unique
physical identities (which allow us to distinguish between different physical components—
e.g., one robot from another).

Moreover, let N be a label used to distinguish different associations. Then, we can
define digital twin, virtual device, and other notions based on a labelled binary symmetric
relation I ⊆ L × N × P that exists between logical and physical identities (and corre-
sponding roles) and that we call identity correspondence. Accordingly, we call a virtual
node (VN) an entity whose logical identity l ∈ L has no corresponding physical identity,
i.e., (l,
, p) /∈ I , ∀p ∈ P for a given label 
∈ N . With abuse of language, we denote
entities by their identities and vice versa, and so we also say that the virtual device has
no corresponding physical device. Similarly, we call an infrastructural physical node (IPN) a
physical device p ∈ P which has no corresponding logical device, i.e., (l,
, p) /∈ I , ∀l ∈ L;
we can think of such a device as providing “infrastructural services” in terms of execution
support or environmental functionality. Instead, a digital twin (DT) is a logical device l ∈ L
which has one corresponding physical device p ∈ P , known as its physical twin (PT), i.e.,
(l,
, p) ≡ (p,
, l) ∈ I . Considering multiplicities, further notions could be derived as
shown in Table 2.

Then, we define a collective digital twin (CDT) as a (possibly dynamic) collection of
DTs. Similarly, we define a collective physical twin (CPT) as a (possibly dynamic) collection
of PTs. The relevance of such conceptual constructs is fostered by emerging paradigms like
aggregate computing [? ? ] that address collectives as whole computational machines, namely
by a global perspective. Indeed, a CDT could also be reified as a single, logical device
corresponding to a group of physical devices—what has been called a virtual aggregate in
Table 2. Finally, we consider augmentations as systems involving also entities not appearing
in I . So, an augmented CDT is a CDT including virtual devices, whereas an augmented CPT
is a CPT including infrastructural devices. Notice that logical augmentations indirectly
affect physical devices through their DTs and, vice versa, physical augmentations indirectly
affect logical devices through their PTs. So, we can also say that a CPT (resp. CDT) is
augmented if so is the corresponding CDT (resp. CPT). Refer to Table 1 for a pictorial
representation of this idea.

3. Motivation twoand Related Work

Our target type of system is a cyber-physical collective, namely a collection of interacting
cyber-physical components situated in some cyber-physical environment (e.g., an actual

Figure 1. Augmented collectives of digital and physical twins.
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3. Motivation and Related Work

Our target type of system is a cyber-physical collective, namely a collection of interacting
cyber-physical components situated in some cyber-physical environment (e.g., an actual
city plus ICT infrastructure including e.g., cloud data centres). Examples include robot
swarms, crowds equipped with smart wearables, smart buildings, or smart cities. Our goal
is to design the collective, self-organising behaviour of the entire system of devices, which
involves coordinating and collectively computing local data and actions for each individual
device such that the desired global goal is achieved (or pursued, in case of never-ending
operational goals—cf. so-called eternal systems [23]).

To this end, one approach is to define a DT for each physical device of the collective,
and then implementing communications between the DTs and computations to determine
the actions they would need to perform, which may ultimately drive the actuators of the
corresponding physical devices. This approach is followed by the aggregate computing
paradigm, which enables the definition of a global program, to be repeatedly executed by
all the DTs, which is meant to specify the collective behaviour of the whole. Using the
terminology introduced in this paper, the aggregate computing approach considers the
CDT of the physical collective as the “target computational machine”.

The implementation of the digital thread may have a non-functional (and sometimes
even functional) impact on the application. In this regard, it is important to consider two
main elements: (i) the partitioning of the digital thread logic into deployable software
components; and (ii) the deployment strategy, namely the kind of mapping of software
components to the available physical devices. The most straightforward deployment is
where each DT is hosted by the corresponding PT, but more complex systems can be
designed. The pulverisation meta-model [11] provides exactly that: a partitioning schema
and formal model for describing deployments of self-organising Cyber-Physical Systems
like aggregate computing systems. However, previous research on aggregate computing
and pulverisation model did not explicitly consider the notions like digital twin, virtual
device, and the other concepts introduced in Section 2.2. In particular, we would like to
show that the notion of virtual devices can be especially useful for improving or driving
self-organisation processes.

3.1. Reference Example: Self-Organising Navigation and Exploration in Dynamic Environments

Virtual nodes can support situated computations in dynamic environments, for exam-
ple, in applications where the underlying structure of the environment needs to be mapped
(i.e., represented) on a distributed system and exploited computationally. The challenge is
to adapt distributed state and behaviour to continuous changes—including those induced
by the computation itself (e.g., through hard or soft control on mobility of devices).

For instance, consider a post-disaster scenario, in which an urban area has been hit
by a natural disaster (e.g., an earthquake or a hurricane) which damaged the local infras-
tructure, occluding roads and making the pre-existing information about road connections
obsolete. A similar scenario occurred in central Italy between 2016 and 2017, when a tragic
seismic sequence caused multiple building collapses that in turn occluded roads [24,25];
the geophysics changes induced by the earthquakes [26] triggered landslides [27] and
avalanches [28] few weeks later, continuously disrupting the actual shape of the road
infrastructure. Consider for this scenario a team of explorers who can sense their own posi-
tion. The explorers could be human beings equipped with a portable device or unmanned
ground vehicles (UGV). We assume that devices are able to communicate to every other
device, either directly (e.g., via long-range wireless links such as LoRaWAN), or through the
support of a local network node, (e.g., leveraging a temporary emergency network access
using airborne base stations [29]), or through to the cloud (for instance, in the case the event
did not disrupt the cellular network infrastructure, or in the case it had been recovered
quickly enough). In other words, we assume that the network is not segmented, or that at
least that segmentations are momentary (e.g., cellular network signal losses, or temporary
occlusion of the line-of-sight connection with the airborne base station). The goal is to
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explore the area and build a reachability map. To do so, the system runs an aggregate
program that collectively computes paths among devices in real time, considering their
current position. The aggregate system considers logically connected devices within some
range, and spawns a new virtual device situated at its current position whenever no other
device is logically reachable (isolation), or all the reachable devices are considered “too far
away”. The idea is to exploit logical connectivity to create a live physical reachability map
quickly, at the expense of some virtualisation overhead, as it is likely that devices separated
by a short space are directly reachable in physical space.

A similar scenario is crowd-aware navigation. The system we consider counts hun-
dreds of nodes deployed in an urban environment: these may include infrastructural
elements (e.g., fog nodes), smart city devices, smartphones, and wearables held by people.
The system is programmed via aggregate computing [22], and collectively computes an
estimate of the local crowding in order to handle “navigation requests” in a crowd-sensitive
fashion—extending over the crowd tracking example seen in [21]. The system’s goal is to
react to navigation requests to reach a Point of Interest (PoI), providing as a response a route
that does not get across overly crowded areas. Of course, since the phenomenon is dynamic,
such a route may need to be readjusted at runtime. One possible collective solution is to
leverage multiple gradients [30] to build a spatial data structure carrying information about
position and direction of neighbouring nodes, distorting the information about distance
considering the crowding level (e.g., as perceived with Bluetooth proximities), and thus
making overcrowded areas appear naturally farther away than they actually are to model
the inconvenience and risk of passing through these locations. Further, these gradients
can be leveraged to sustain a collective infrastructure known as the self-healing “channel”.
Devices that are located inside the channel represent safe locations that can be followed as
waypoints to move from the current location to the PoI.

Usually, the approach is implemented through repeated computation of the self-
organising logic in asynchronous rounds (although some models promote reactivity [31]),
interwoven by exchanges of the information processed locally with devices considered
to be logical neighbours. Devices can be neighbours because of the physical structure
of the network (e.g., because they are communicating through a direct channel, such as
a managed Wi-Fi network), or, more commonly, because of a logical network layer. In
principle, the programming model takes no stance on the nature of a device: it could be
a piece of hardware as well as a digital twin corresponding to some situated physical
device. The consequence of this flexibility has been partly explored in [11], where different
architectural deployments, with very diverse performance and cost profiles, are shown to
be viable when implementing the “digital thread” (synchronising sensor readings from
physical sensors to digital twins, forwarding actuation commands to physical twins, and
dealing with the network required to enable logical interaction).

Logical decentralisation makes the proposed approach to crowd-aware navigation
scalable. Additionally, it is agnostic to the specific network infrastructure: it can work
with mobile, opportunistic ad-hoc networks, and thus be available even when cloud-based
navigation services such as Google Maps are not available. The sole requirements are: the
ability to communicate with other devices, the capacity to provide an estimation of the
distance to neighbours, and the ability to locate the PoI when in-range. Of course, the
approach also has limitations: on the one hand, reachability issues may arise if crowded
areas are considered entirely inaccessible (the channel may not be formed); on the other
hand, diverse device density across the area may result in spotty service quality, with areas
less covered by devices getting underexploited during path computation. To mitigate the
latter issue, we consider spawning virtual devices to support coverage for areas with a
low density of physical nodes, improving the application performance and availability,
potentially finding shorter paths, at the cost of some additional virtualisation overhead.
See Figure 2 for a graphical example of the idea.
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Figure 2. Pictorial representation of the crowd-aware navigation scenario. Physical devices are
depicted with a solid square, logical devices are depicted with a dashed circle; an overlap of the two
indicates that a logical device is associated to a physical device, a circle outside any box denotes a
purely virtual device. Nodes sensing overcrowding are depicted in grey, the requester is coloured in
blue, and the PoI is filled in red. The requester desires to reach the red device, walking along a path
that can avoid overcrowded areas. Considering solely the physical devices as part of the system, no
available route can be computed in a self-organising way; however, by populating the system with
virtual nodes, a route circumventing the problematic area can still be found. The system could also
(in principle) continuously look at strategies to self-improve such an integration for non-functional
benefits.

of devices, as discussed previously in this section. This aligns with approaches like
aggregate computing that are explicitly designed to address the global behaviour of
collective adaptive and self-organising systems.

2. Motivation for the “augmentation” of CDTs. The part of augmentation leverages on
concepts proposed in the literature, such as virtual agents, that are exploited for soft
control of swarms [? ? ].

Therefore, the novel concept of augmented CDT integrates the collective viewpoint with
augmentation, making it – we believe – especially interesting and a useful contribution
towards tackling some challenges of self-organising CPS engineering.

Our proposal differs from related work for it provides an integrated approach that
considers: (i) a meta-model where logical entities are decoupled from physical entities
(see Section 4 for details)—like in [? ? ]; (ii) a distinction between identity and execution
relationships, allowing to distinguish between digital twins and virtual devices; and (iii) a
collective computing approach whereby the focus is on collective-level behaviour, rather
than individual behaviour (so, e.g., we do not assume behavioural differences between
digital twins and virtual devices).

Models for self-organising Cyber-Physical System The approach aims to provide
a structure for self-organising collective systems. This is in contrast with approaches that
distinguish between managed system and managing system—the latter being typically or-
ganised around the MAPE-K pattern [? ]. In particular, there are similarities with the
idea of self-organising software models [? ], where the goal is to reduce the need for manual
composition. In our case, we assume a composition of collective behaviours is specified by
a developer (e.g., using aggregate programming), and let the platform deal automatically
with deployment and possibly with the de/augmentation (management of virtual devices)
e.g., given high-level goal specifications. A similar approach for separating cyber entities
from physical entities as well as other responsibilities when modelling self-organising
Cyber-Physical System is provided in [? ], with a focus on production systems; however,

Figure 2. Pictorial representation of the crowd-aware navigation scenario. Physical devices are
depicted with a solid square, logical devices are depicted with a dashed circle; an overlap of the two
indicates that a logical device is associated to a physical device, a circle outside any box denotes a
purely virtual device. Nodes sensing overcrowding are depicted in grey, the requester is coloured
in blue, and the PoI is filled in red. The requester desires to reach the red device, walking along
a path that can avoid overcrowded areas. Considering solely the physical devices as part of the
system, no available route can be computed in a self-organising way; however, by populating the
system with virtual nodes, a route circumventing the problematic area can still be found. The system
could also (in principle) continuously look at strategies to self-improve such an integration for
non-functional benefits.

3.2. Summary and Related Work

In a nutshell, the motivation of the proposed augmented CDT notion has two parts:

1. Motivation for the CDT notion. Taking a collective viewpoint leverages abstracting
groups of devices (cf. virtual aggregates in Table 1) and “macro-programming” groups
of devices, as discussed previously in this section. This aligns with approaches like
aggregate computing that are explicitly designed to address the global behaviour of
collective adaptive and self-organising systems.

2. Motivation for the “augmentation” of CDTs. The part of augmentation leverages on
concepts proposed in the literature, such as virtual agents, that are exploited for soft
control of swarms [13,14].

Therefore, the novel concept of augmented CDT integrates the collective viewpoint
with augmentation, making it—we believe—especially interesting and a useful contribution
towards tackling some challenges of self-organising CPS engineering.

Our proposal differs from related work for it provides an integrated approach that
considers: (i) a meta-model where logical entities are decoupled from physical entities
(see Section 4 for details)—like in [32,33]; (ii) a distinction between identity and execution
relationships, allowing to distinguish between digital twins and virtual devices; and (iii) a
collective computing approach whereby the focus is on collective-level behaviour, rather
than individual behaviour (so, e.g., we do not assume behavioural differences between
digital twins and virtual devices).

• Models for self-organising Cyber-Physical Systems.
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The approach aims to provide a structure for self-organising collective systems. This
is in contrast with approaches that distinguish between managed system and managing
system—the latter being typically organised around the MAPE-K pattern [3]. In particular,
there are similarities with the idea of self-organising software models [32], where the goal is to
reduce the need for manual composition. In our case, we assume a composition of collective
behaviours is specified by a developer (e.g., using aggregate programming), and let the
platform deal automatically with deployment and possibly with the de/augmentation
(management of virtual devices) for example, given high-level goal specifications. A similar
approach for separating cyber entities from physical entities as well as other responsibilities
when modelling self-organising Cyber-Physical Systems is provided in [33], with a focus on
production systems; however, it somewhat neglects the collective viewpoint, and does not
clarify a difference between digital twins and virtual devices. Other approaches exist for
general specification and analysis of dynamic architectures, including DR-BIP (Dynamically
Reconfigurable - Behaviour Interaction Priority model) [34] and DReAM (Dynamically Recon-
figurable Architectural Modelling) [35], using meta-entities like components (for modelling
behaviour), connectors (for modelling interaction), maps (for modelling logical connections),
and deployments (for mapping components to deployment loci), and motifs (modelling
architectural configurations that may change at runtime); however, they are not tailored to
self-organising systems.

• Self-organisation algorithms and their control.

Our reference example leverages self-organising algorithms such as gradients [30]
and information flows which are typically used in multi-scale and situated systems [36,37].
Our emphasis is not on the algorithms themselves; rather, we show how self-organisation,
for example, based on information flows, can be improved through virtual devices. The
general idea of using a kind of internal or external intervention for driving the emergent
behaviour of a “given” system (for which e.g., the behavioural and interactional rules of
the member agents are not considered to or cannot be re-designed) is not new, and has
been referred to with different terms like soft control [13,38], control kernel [39], and pseudo-
emergence [40]. For instance, in [13], a “shill agent” is used for soft control of a flock of birds—
idea leveraged in subsequent works proposing multiple “influencing agents” [41]. In [42],
the authors introduce a notion of “virtual leader” to control groups of vehicles; however,
the virtual leader is not really an entity but rather a construct used to reify additional
artificial potentials. Similarly, in [43], decoy objects are introduced to improve performance
in swarm searching problems. Finally, in [14], notions of virtual individuals, virtual targets,
and virtual pheromones, are proposed as a way to combine WSNs and robot swarms to
steer collective behaviours of the latter. In this paper, we bring and extend these ideas
to cyber-physical aggregate computing settings, where the influencing agents are virtual
and the control target is the collective physical twin of a virtually-augmented collective
digital twin. Moreover, differently from the aforementioned related work, the introduced
virtual entities will play the same control behaviour of the other, regular entities—hence
showing an interesting, original “structural” interplay with self-organisation algorithms.
Indeed, we also suggest further uses for virtual entities (see Section 3.1) that, to the best
of our knowledge, are not present in literature. Additionally, we suggest that dynamic
addition and removal of virtual devices can be key from a self-improving system integration
perspective [15].

4. Digital Twins and Virtual Nodes in Self-Organising Cyber-Physical Systems

In this section, we reinterpret and extend the meta-model of self-organising Cyber-
Physical Systems introduced in [11] (Section 4.1) according to the conceptual framework
of the previous section, then show how it can be used to support purely virtual devices
(Section 4.2).
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4.1. The Pulverisation Meta-Model of Self-Organising Cyber-Physical Systems

The pulverisation meta-model of self-organising Cyber-Physical Systems [11] can be
summarised with the following elements:

1. Platform subsystem: an abstraction over the physical networked system consisting of
hosts possessing a network identity; these can be either physical (bare metal), virtualised,
or containerised systems, as far as they can be identified as network devices (e.g.,
through an IP address or a URI), and can communicate with other hosts.

2. Cyber subsystem: a network of logical devices connected as per a logical neighbouring re-
lationship; logical devices are segmented (i.e., “pulverised”) into five logical components
(computation β, sensors σ, actuators α, state κ, and communication χ); these can be
deployed independently (see Figure 3), as far as the physical devices where they are
located can communicate with each other.

3. Deployment: a cyber-physical mapping between logical device components and hosts,
defining the way the former are deployed on the latter (the so-called execution relation-
ship). See Figure 4.

In such a system, the software architect focusses on the cyber subsystem, while the
system integrator and the middleware provider focus, respectively, on the platform and
the deployment.

logical
device

β
behaviour

χ
communication

κ state

σ
sensors

α

actuators

neighbour
device

χ β

κ

σ α

Figure 3. Two neighbouring logical devices, depicted as pulverised into their logical components.
Arrows mark directional data flows among pulverised components. The neighbour relationship is
reified by the existing connection between the two communication components of the devices.
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Logical device

σ Device’s sensor set
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χ Device’s communication interface
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Figure 4. A view of an instance of the extended pulverisation architectural meta-model. The image
shows the correspondence between the logical system (top) and its actual physical deployment,
over an infrastructure enriched with support nodes (e.g., fog devices, edge servers, or cloud service
providers). Different colours are associated with different logical devices: in some cases, components
(dotted boxes) of a single logical device (dotted circle) are spread across multiple physical nodes (solid
boxes), as intra-logical-device connections (not shown here, refer to Figure 3) are allowed to cross the
host boundaries. Logical inter-device connections are represented with thick dotted red lines.
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The meta-model enforces an architectural organisation principle that fosters deployment-
independent logic, thus fostering self-organisation by allowing the software designer to
reason without any constraint in terms of the underlying platform. Although provid-
ing an ideal substrate, the architectural model by itself does not imply self-organisation:
behavioural and interaction logic are still to be designed and injected into the logical com-
ponents. More specifically, self-organising behaviour can be achieved by organising the
roles of the pulverised components as follows:

• Sensors σ perceive the context if the logical device, integrating their readings into the
device state κ;

• based on the current state, the behaviour component β performs a “reasoning step”,
and accordingly updates the latter;

• the communication component χ integrates information from neighbours into the
device state κ, and shares the results of the reasoning step with the χ components of
neighbouring virtual devices to enable coordination;

• finally, Actuators α retrieve state information to control the device itself.

The model abstracts away the actual implementation of the logical components and
does not mandate any specific platform. In [11], the model has been instantiated into
the aggregate computing framework [21,22]. In this incarnation, all devices share the
same behaviour component β; namely, they run the same program, represented by a pure
function operating over the previous state κ and producing a new state that includes
messages to be forwarded through χ and actuations to be performed by α. In this setup,
the cost and performance of an actual system vary importantly with different deployments
of the logical entities over the available edge-fog-cloud infrastructure, as shown by the
cost-performance profiles presented in [11]. Importantly, the model is simulation-friendly,
and allows informed decisions on the cyber-physical mapping to be performed before the
actual deployment of the system. In this work, we extend [11] to its extreme consequence,
by considering the integration of purely virtual devices into self-organising CPSs.

Pulverised Aggregate Model of the Reference Example

Here, we briefly explain how the reference example presented in Section 3.1 can be
modelled using the aggregate instantiation of the pulverisation framework—whose details
can be found in [11].

• Each explorer logically maps to a logical device δ, which is partitioned into sub-
components as per Figure 3;

• The behaviour β consists of a round-based execution of an aggregate program express-
ing the logic of coordination and exploration (the technical details are not important
here but the program is publicly available at [44]);

• The sensors σ include those logical sensors needed by program β; in this application,
we require a identity sensor (providing the UID of the device), a position sensor (e.g.,
providing the GPS coordinate of the device), and a sensor for estimating the distance
from neighbours;

• The actuators α might include a clue for the direction of movement (e.g., for a human
with a smartphone), or a high-level control for moving in that direction (e.g., for an
autonomous robot);

• The communication component χ handles round-based interaction with neighbours—
identified according to a logical neighbouring relationship based on the estimated
spatial distance—cf. Figures 2 and 4. The specific content of the message broadcast to
neighbours depends on the executed aggregate program;

• A deployment delivers such components, properly integrated into a working sys-
tem/middleware, onto physical devices for execution—cf. Figure 4. For instance, a
straightforward deployment would deploy logical devices to the computer of each cor-
responding explorer; however, more complex deployments are possible in general [11]
(e.g., only σs and αs on the explorers’ physical devices and the other sub-components
on the cloud).
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Additional details about this configuration are provided when discussing the simula-
tion environment in Section 5.

4.2. Augmented Collective Digital Twins in the Pulverised Aggregate Computing Meta-Model
4.2.1. Digital Twins and Collective Digital Twins

The meta-model discussed in detail in [11], captures the execution relationship through
a deployment relation specifying the cyber-physical mapping, but does not consider the
twinning relationship, which is enforced implicitly depending on the deployment of the
sensors σ and actuators α components of each logical device (digital twin) to the designated
host (physical twins). Indeed, whereas computation, communication, and state can be
offloaded and disembodied, sensors and actuators should typically be situated together
with their physical twins in order to properly perceive and act, in real time, on their very
context. Instead, we propose to make the twinning relationship explicit—see Figure 4.
Making the connection explicit, in terms of an identity correspondence between logical
devices and physical hosts, has both a descriptive role and an operational role. For instance,
it may be used to define custom deployment constraints or digital thread mechanisms.

Moreover, the cyber subsystem is ultimately a network of logical devices, and as such
it can be seen as the collective digital twin of the collective physical twin composed of the hosts
of the platform subsystem. In aggregate computing, this is even more evident since the
aggregate program defining the behaviours β is conceptually associated with the system as
a whole. The benefit of considering the aggregate abstraction of a CDT lies in the possibility
of getting and reasoning about collective descriptors of the system, expressed, for example,
in terms of computational fields [22] mapping each device to a corresponding computational
value (such that, e.g., a temperature field maps each device to the temperature it senses,
a Boolean field represents a domain of devices, for instance denoting those available to
provide a service, or those belonging to a team, and a field of percentages may denote the
level of charge of the devices in the system).

4.2.2. Augmentation with Virtual Devices

The platform subsystem is “augmented” with an additional (not necessarily disjunct)
set of infrastructural nodes supporting improved connectivity, computation offloading,
and other non-functional requirements. Similarly, the cyber subsystem can be “augmented”
through the addition of purely virtual devices, not mapped (in terms of identity correspon-
dence) to any existing host, giving birth to what we call an augmented collective digital twin:
these virtual devices constitute an augmented reality for the physical twins.

Since they have no direct correspondence with any application-level host, sensors and
actuators of virtual devices need to be virtualised. Obviously, there must be at least one
physical device providing the mere execution support (i.e., in terms of virtualisation) for any
given virtual device. A virtual device exists for another device once the latter can perceive
the former: the details of how this existence is reified essentially depend on the interface
component χ (which is the mediator for the interactions between any couple of devices)
and how the state κ of the virtual device is populated. One approach is to model the virtual
device exactly as a normal device, that is, by letting the state be determined by proper
sensors σ, messages χ, and behaviour β. In particular, virtual devices—being decoupled
from reality (besides mere execution needs)—can be positioned at arbitrarily in space, and
their position and distance sensors can be populated based on the position information
of devices bound to physical hosts. In other words, as far as it is possible to generate
reasonable data for synthesised sensors and actuators and the network performance of
the specific deployment (in particular, information propagation speed) remains adequate
for the application at hand, virtual devices and their physical hosts are spatially decoupled.
For the virtual devices to be part of the logical network, the middleware treat them as
it does with physical devices: it must synchronise, collect, reason about, and propagate
information as it would for any ordinary device, such that any of its neighbours perceive
and interact with it exactly as if it were real. Achieving a completely transparent emulation
is relatively easy in centralised deployments (e.g., cloud-based or hierarchical), but it grows
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increasingly challenging with the degree of decentralisation of the physical network. In
particular, in decentralised settings there is the problem of network partitions which may
lead to inconsistencies or availability issues (cf. CAP theorem [45]). It seems opportune to
assume a single reachable and available “virtualiser node” owning a given virtual device,
otherwise the determination of the state of a virtual device, and interaction with it, becomes
a problem of distributed consensus. Another typical requirement for spatial situation of
virtual devices is the availability of a global coordinate system and accessibility of services
like the GPS. Finally, whereas the set of virtual nodes (and the corresponding situation)
might be determined statically, an interesting opportunity arises when a more dynamic
management is considered.

In summary, augmenting a system with virtual devices requires solving two key problems:

1. virtual device synthesis—which involves determining what must be virtualised and
how (namely, filling it the details);

2. virtual device integration—which involves determining how to make the actual system
perceive the virtual device as a regular device.

Such problems can, and often need to be addressed at runtime.

4.2.3. Self-Adaptive Management of Virtual Nodes

The main insight of the paper is that virtual devices can be leveraged to enable new
functionality and improve the application performance reusing the pre-existing self-organising
logic. As an example, consider the swarm exploration scenario of Section 5: a system
enriched with virtual devices better covers or approximates physical environments, hence
enabling the computation of additional, possibly shorter, and more precise reachability
maps. In other scenarios like crowd-aware mobility systems, the creation of virtual devices
can be leveraged to prevent navigation paths from using some slices of space and time—
for example, as a way to reify a prediction of a future crowding due to planned events.
Other use cases include mixed-reality simulations, in-field testing (cf. chaos engineering),
or learning.

Depending on the actual deployment conditions (and especially in decentralised
implementations) the execution of virtual devices may introduce a significant overhead.
Consequently, the existence of virtual devices might be ephemeral, they could be spawned
or torn down depending on opportunistically [46], making the case for a self-adaptive managing
system [47]. Interestingly, the approach could be used at the lower level to implement the
management platform itself, resulting in a lower application layer programmed with the
same principles, where the collective system reifies a distributed virtualisation platform
that is in turn exploited at the application level. The exploration of such a strategy is left as
a potential future direction of research.

5. Evaluation

Our main evaluation goals are the following:

• show how purely virtual nodes, that do not exist physically but are synthesised
virtually at static time or runtime, can improve the performance of a self-organising
cyber-physical system;

• understand under which conditions the proposed techniques are effective;
• roughly understand (via proxy metrics) how the cost of keeping the system in opera-

tion varies with changes in the setup.

5.1. Case Study: Post-Disaster Area Exploration

We consider a post-disaster area exploration application as a case study, inspired by
the Italian seismic sequence events mentioned in Section 3.1. The system consists of a team
of Nr explorers that can sense their own position, the aggregate system considers logically
connected devices within a range R, and spawns a new virtual device situated at its current
position whenever one of the following conditions hold:

• no other device is logically reachable (isolation); or
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• all the reachable devices are at a distance higher than a parameter Rv.

The idea is to exploit logical connectivity to create a live physical reachability map
quickly, at the expense of some virtualisation overhead: low values of R and Rv are expected
to raise the system precision, as it is increasingly likely that devices separated by a short
space are directly reachable in physical space.

5.2. Experiment Setup

In order to exercise the idea on a challenging environment, we setup our experiments
to run in the city map of Urbino in central Italy. We picked the city as it features a medieval,
irregular road structure with sharp turns, U-shaped roads, and considerable altimetric
changes; making exploration harder and naturally producing the potential problems that
the system would encounter in a real-world situation.

Nr explorers, equipped with a physical device, are deployed at random location in the
urban area. These are instructed to explore the area by generating random destinations and
renewing them every time they are reached (or, if they are unreachable, the closest point on
a reachable road has been reached).

Explorers move at a mean speed of 1.4 ms, which is a reasonable approximation of
the average walking speed of a pedestrian [48] (although people in charge of exploring
would probably walk faster than the average person, the terrain in a post-disaster situation
is often rough and attention is advised, we thus think that the mean speed should not differ
too much). Devices, both physical and virtual, run rounds asynchronously with an average
frequency of 0.5 Hz. We assume message delivery to be instantaneous, namely, we do not
simulate network delays. This choice was made, as reasonable network delay modelling
would require assumptions on the specific deployment (including networking technologies
and protocols and actual execution location of pulverised logical components) that we do
not want to investigate in the current work, whose focus is on evaluating the approach
regardless of the actual deployment details. We simulate one hour of area exploration for
every run (3600 s). Figure 5 depicts subsequent snapshots of a simulation run, providing
an idea of the correspondence between deployed virtual devices and road shapes, as well
as showing the reachability map formation with time.

Figure 5. Snapshot of the simulation. Initially, (top left) explorers (red dots) are deployed in random
positions in the simulation arena. A PoI (yellow square) is generated randomly as a reference point
for route computation. When the simulation begins (top right), explorers begin wandering the map
along the available routes, and when conditions are appropriate, they spawn virtual devices (blue
dots). With time, explorers indirectly increase the knowledge of the actual road structure (bottom).
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5.2.1. Metrics

Given the set of unique device identifier associated to physical devices H ⊂ N, we
evaluate the system performance by measuring the following metrics, summarised in
Table 4:

• distance error δj, defined, for each physical device with id j ∈ H, as the difference in
length between the route towards a PoI computed by the collective system and the
actual shortest length as provided by an oracle, provide a measure of precision in
route estimates;

• isolated device count I, defined as the number of physical devices located on a logical
network segment that does not allow to find any valid route to the PoI, provides a
measure of how densely the area is being covered;

• virtual device count Nv, defined as the number of virtual devices currently operating, is
a proxy metric for the cost in computational resources;

• communication cost Mj, defined, for each physical device with id j ∈ H, as the occupied
dimension of the buffer for received messages normalized by the size of the last
message sent—in other words, it measures how many messages, produced either by
real or virtual devices, have been received by the real node with id j. Higher values
indicate more stress on the network capacity. Since messages require processing, if the
behaviour component β of pulverised devices is executed on physical devices (as it
is likely in the case of “thick” end devices, such as modern smartphones), then this
metric also correlates with higher battery energy consumption.

Table 4. Summary of all symbols used in the evaluation.

Symbol Meaning Unit Values

δj distance error for device j m n.a. (metric)

δ
mean distance error:

∑j∈H δj Nr
m n.a. (metric)

I isolated devices devices n.a. (metric)

Mj comm. cost for device j messages
round n.a. (metric)

H set of physical devices UIDs adim. n.a. (H ⊂ N)

∑j∈H Mj total communication cost messages
round n.a. (metric)

M mean comm. cost: ∑j∈H Mj Nr
messages

round n.a. (metric)

Nv virtual device count devices n.a. (metric)

Nr physical devices (explorers) devices 5, 15, 50, 158, 500 (Nr = |H|)
R logical communication range m 10 · (1, 2, 5, 10, 20, 50, 100, 200)

RvR relative spawn range adim. 0.25, 0.5, 0.75, 1, 1.25, 1.5, ∞

Rv virtual device spawn range m n.a. (derived as R · RvR)

5.2.2. Parameters

We let the system run varying the following parameters, whose meaning and set of
tested values are also summarised in Table 4. We run a simulation for each combination of
the variable values (we test the Cartesian product of the parameters values).

• Logical communication range R: the maximum distance as the crow flies at which
communication between devices is allowed. We explore the system behaviour with
a large range of options, exploring the possible space approximately geometrically,
ranging from 10 m to 2000 m. The former option builds a logical network that
behaves similarly to an opportunistic network with short range radio systems (e.g.,
Bluetooth 2.0); the latter option, considering the map size of the town centre of Urbino,
implies a fully connected map. We experiment by (approximately) doubling R in
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each simulation set. Since the performance of the system is largely unknown, we
preferred to investigate using an approximately geometric progression in place of a
linear progression.

• Virtual device spawn range Rv: the maximum distance from the closest virtual device
than a physical device tolerates before spawning a new virtual device in its current
position, when set to ∞ disables spawning new devices entirely. We decided to control
this parameter indirectly by tuning the relative span range RvR. The decision was
taken after an initial exploratory testing which showed that varying R and Rv indepen-
dently produced results of little significance and/or extremely expensive simulations;
for instance, setting R = 2000 m and Rv = 10 m quickly produced a fully connected
network of tens of thousands virtual devices, which had extremely high distance
error δ and cost (both in terms of virtual device count Nv and communication cost
Mj), and also resulting in a simulation that required tens of gigabytes in memory and
weeks of computation to terminate. The opposite extreme situation, with R = 10 m
and Rv = 2000 m (but we obtained similar results values of Rv larger than few times
R) resulted in the same results fo setting Rv = ∞m, de-facto disabling the virtual
device generation. We concluded that what really matters for the system performance
and cost is the ratio RvR and one between Rv and R (of course, the interested reader
may experiment with the provided kit for reproducing the experiments, and explore
the system behaviour with these or even more extreme settings). Thus, we decided
to control independently R (spanning over a geometrically growing range) and RvR
(spanning over a linear range, as discussed below).

• Physical device count Nr: the number of explorers in the scenario, equal to the number
of physical devices in the scenario, hence Nr = |H|. The values for this parameter are
selected by taking five logarithmic samples between two extreme (but still reasonable)
values: five people (a severely undermanned team, caused for example, by a limited
number of working devices), and 500 people (a rather impressive exploration force,
considering a city of approximately 15,000 residents, that could be achieved if the
application can run on smartphones and citizens are allowed to help in the mapping
operations). To take S ∈ N : S > 1 samples geometrically distributed between two
values v, V ∈ R+ : V > v, we use the following function f : {0, 1, . . . , S − 1} → Z
given by f (i) = bm · (Mm)

i
S−1 c (Nr = 158, the only tested value that is not a multiple

of five results from the formula when i = 3).
• Relative spawn range RvR: the ratio between Rv and R. As mentioned when discussing

the set of values selected for Rv, the ratio RvR provides more insightful information
than modifying R and Rv independently. Since initial testing showed that both values
of RvR close to 0 and values much higher than 1 produced respective situations with a
gigantic cost and poor performance and results akin to those of RvR = ∞, we decided
to use a linear range of six samples between 0.25 and 1.5, plus the special value ∞ that
entirely disables the generation of virtual devices.

5.2.3. Toolchain and Reproducibility

We implemented the route-tracing program in the Protelis aggregate programming
language [49], and we leveraged the Alchemist simulator [50] to model the environment
and the devices’ movements. Data for the road infrastructure have been extracted from
OpenStreetMap (OSM) [51], as Alchemist provides native support for route computation
and navigation within these maps.

All experiments are entirely reproducible, all data have been archived and made pub-
licly available [44]. The code and the software infrastructure have been open-sourced, and
they are freely available at a public repository (https://github.com/DanySK/experiment-
2021-virtual-devices, accessed on 30 November 2021), which also contains further details
and charts, omitted here for space reasons.

https://github.com/DanySK/experiment-2021-virtual-devices
https://github.com/DanySK/experiment-2021-virtual-devices
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5.2.4. Repetitions

For each combination of the values of the free values listed in Table 4, we run 50 rep-
etitions changing the random seed. Random seed changes influence the initial position
of the real devices, the generated destinations to explore, the position of the PoI, and
the scheduling order of the computation rounds. The results presented in this paper are
averaged across these 50 runs.

5.3. Experiment Results and Discussion

The results in Figure 6 (mean distance error δ) and Figure 7 (isolated devices I) show
that the system, augmented with virtual devices, can (i) provide more precise route esti-
mates than the original version (identified with RvR = ∞) and (ii) improve reachability.
In more detail, the system achieves good performance across the board when RvR ≤ 0.5,
indicating that the generation of virtual devices can indeed provide an increased system per-
formance.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s) ×103

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n 
di

st
an

ce
 e

rro
r 

 (m
)

×103 Mean distance error  when R=10 and Nr=5

Rv
R

0.25
0.5
0.75
1

1.25
1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s) ×103

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n 
di

st
an

ce
 e

rro
r 

 (m
)

×103 Mean distance error  when R=10 and Nr=50

Rv
R

0.25
0.5
0.75
1

1.25
1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s) ×103

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n 
di

st
an

ce
 e

rro
r 

 (m
)

×103 Mean distance error  when R=20 and Nr=5

Rv
R

0.25
0.5
0.75
1

1.25
1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s) ×103

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n 
di

st
an

ce
 e

rro
r 

 (m
)

×103 Mean distance error  when R=20 and Nr=50

Rv
R

0.25
0.5
0.75
1

1.25
1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s) ×103

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n 
di

st
an

ce
 e

rro
r 

 (m
)

×103 Mean distance error  when R=50 and Nr=5

Rv
R

0.25
0.5
0.75
1

1.25
1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s) ×103

0

1

2

3

4

5

6

7

M
ea

n 
di

st
an

ce
 e

rro
r 

 (m
)

×103 Mean distance error  when R=50 and Nr=50
Rv
R

0.25
0.5
0.75
1

1.25
1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s) ×103

0

1

2

3

4

5

M
ea

n 
di

st
an

ce
 e

rro
r 

 (m
)

×103 Mean distance error  when R=100 and Nr=5
Rv
R

0.25
0.5
0.75
1

1.25
1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s) ×103

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
di

st
an

ce
 e

rro
r 

 (m
)

×104 Mean distance error  when R=100 and Nr=50
Rv
R

0.25
0.5
0.75
1

1.25
1.5

Figure 6. System performance measured as distance error for increasing communication range R
(top to bottom) and different count of explorers Nr (5 in the left column, 50 in the right column).
Implementations that generate virtual devices outperform the base implementation consistently, as
far as virtual devices are generated densely enough. In most scenarios, setting Rv = R2 achieves a
consistently good result. When Rv is larger than R, the system performance degrades very quickly,
mostly due to insufficient coverage, which, with few explorers, also causes erratic behaviour.
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Figure 7. System performance measured as count of isolated devices I for communication range
R = 10 m (left column) and communication range R = 100 m (right column), and increasing count
of explorers Nr (top to bottom). As expected, systems that generate virtual devices more densely
achieve better coverage. With many explorers, the benefits of a denser generation lower. Even with
few explorers, there is little difference between RvR = 0.25 and RvR = 0.5, confirming the results
seen in Figure 6.
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From Figure 6, we see that the system has an initial stabilisation phase: initially,
explorers can hardly communicate with each other, and with time, through the generation
of virtual devices, the virtual communication network gets closer and closer to the shape
of the actual communication routes. We can see that the larger is the count of explorers,
the shorter is the time required for the system to stabilise (as more roads get explored
more quickly). We note however that in some cases the system error, after a period of
reduction, grows out of control. This phenomenon occurs in particular when RvR ≥ 1, and
when RvR = 0.75 and R ≥ 100 m, and it is typically coupled with an erratic behaviour of
the error. We believe that this effect is due to the logical network no longer mapping the
underlying physical infrastructure correctly: virtual devices become too sparse and their
connection range too large, the virtual network infrastructure that they build grows further
and further different from the curvy structure of the Medieval roads that make the city
centre. In some cases, a device placed in an unexplored area may lead to an improvement
in the distance error, yet normally there is a high chance that its reification may cause the
creation of a non-existing passage between two locations.

By observing Figure 7, we can further appreciate how a larger count of explorers
helps to reach stability faster. Interestingly, even with reasonably short values for R (e.g.,
R = 100 m), the system shows a pretty high reachability (the lower the count of isolated
devices, the higher the reachability). As expected, for any given value of R, the more virtual
devices get generated, the higher is the reachability.

Of course, as shown in Figure 8 (cost in computational resources, using the count of
virtual devices Rv as a proxy metric) and Figure 9 (communication cost, measured as the
sum of messages received per round on all real devices ∑j∈H Mj), it is not a free lunch. In
particular, the system is very sensible (both performance-wise and cost-wise) to the way
virtual devices are generated, in this case tuned via the parameter Rv (regulated along with
the communication range R by tuning RvR). Figure 8 shows that the count of generated
virtual devices Nv grows sub-linearly with time, and approximately linearly with shorter
ranges. Deploying more explores leads to more virtual devices generated more quickly in
the initial phase of the simulation, and then to a flatter generation curve, as most of the map
gets covered. Finer strategies to deploy devices may present further trade-offs, especially
in case virtual devices can be removed dynamically.

Finally, we remark that the augmented CDT approach can be useful whenever there is the
need to affect the behaviour of collective and self-organising systems. Example scenarios
might include swarm robotics [13], WSNs [38] and crowd computing [21], as well as large-
scale CPS ecosystems. For instance, a CDT can be developed to represent and control the
state and motion of a fleet of drones; at this point, virtual devices may be spawned to
dynamically regulate the overall distribution and direction of the fleet, using techniques
like those presented in [13,38]. The idea is that such a soft control technique can help
when (i) we cannot change the behaviour of the components of the CPS, (ii) to avoid the
specification of an overly complex behaviour (e.g., whereby decisions are based on several
non-local situations or to previsions about future events), or (iii) to apply perturbations or
simulate conditions that do not exist in the real world (e.g., to test how the CPT reacts to
crowding situations). In other words, the approach provides an additional mechanism for
self-organisation design (steering). Whether it is the most suitable approach depends on the
problem at hand, but some general observations can be made. Indeed, the approach appears
most applicable when the application depends on spatial structures (e.g., to propagate
information, to move in space, or to make decisions based on spatial arrangements). More
generally, it is a matter of decentralisation and partial observability: in our and most
approaches to self-organisation engineering, the behaviour of individuals is organised in
terms of local environment information (e.g., sensed data) and messages (e.g., neighbour
data); augmentations through virtual devices, then, allow changes in the local context of the
individual devices, hence affecting the overall emergence of global results. The main issue,
which may affect applicability, lies in the ability to determine reasonable local contexts for
the virtual devices (or, similarly, defining their ad-hoc interactive behaviour).
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Figure 8. System cost in computational resources, using the count of virtual devices Nv as a proxy
metric, for 50 explorers (left column) and 500 explorers (right column), and increasing logical
communication range R (top to bottom). The system cost grows more than linearly with shorter Rv

values. Considering the performance seen in Figures 6 and 7, it is clear that the value of Nv needs to
be selected carefully, as values too small do not improve performance substantially, but increase the
computation cost considerably.
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Figure 9. System communication cost, measured as the sum of messages received per round on all
real devices ∑j∈H Mj, for 50 explorers (left column) and 500 explorers (right column), and increasing
logical communication range R (top to bottom). Similarly to the results depicted in Figure 8, the
cost grows more than linearly with RvR The cost is lower for intermediate values of R, suggesting
that a trade-off in the logical communication range could be found between performance and use of
network resources.
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6. Conclusions and Future Work

In this manuscript, we present a conceptual and modelling framework supporting
the modular abstraction and design of self-organising Cyber-Physical Systems. The idea
is to use multiple notions of logical devices, based on two typical constructs found in
the literature—virtual devices and digital twins, which we distinguish on the basis of an
identity relationship between logical and physical devices—and the adoption of a collective
viewpoint. Indeed, the novel concept of the collective digital twin is introduced, referring to
a collection of digital twins that can be considered as a whole. This notion can further be
augmented with virtual devices in order to define a richer logical system, which we call an
augmented collective digital twin, which can be exploited to provide an augmented reality
to a collection of actual, physical twins. Additionally, we perform experiments to prove
that this is not just an abstraction exercise, but an enabler mechanism to improve and steer
certain kinds of self-organisation processes.

Arguably, the ideas presented in this paper can pave the path for more research
and investigations.

• Logical abstractions for engineering of self-organising Cyber-Physical Systems. This work
discusses how purely virtual devices can be used to steer existing self-organising ap-
plications. We believe that defining logical constructs and formalising the relationship
between these and physical counterparts can provide benefits for the engineering
of Cyber-Physical Systems. In particular, collective-level notions such as CDTs (and
strategies for implementing the corresponding digital threads) are still to be explored
in depth.

• Self-adaptive deployment of digital thread components. The location of the software com-
ponents responsible for implementing the digital thread can be optimised w.r.t. non-
functional metrics such as bandwidth and energy usage. Moreover, for highly dynamic
systems subject to changes affecting connectivity and available computing infrastruc-
ture, (re-)deployment decisions may be taken at runtime.

• Self-adaptive and opportunistic management of virtual devices. In the case study of Section 5,
the system can dynamically spawn virtual nodes in order to support connectivity
and self-organised exploration in a dynamic environment. In general, the trade-off
between the functional benefit (current and future) and the virtualisation overhead can
be analysed in order to take the best decisions for the situation at hand. This could be
supported by an autonomic platform where opportunities for virtualisation, execution
cost, and user preferences are altogether considered for the efficient spawning or
removal of virtual devices in the system. This could be seen as a form of self-improving
integration [15] of virtual and physical devices.
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