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Catalytic Enantioselective Addition of Indoles to Activated N-Benzyl
Pyridinium Salts: Nucleophilic Dearomatization of Pyridines with

Unusual C-4 Regioselectivity

Giulio Bertuzzi, Alessandro Sinisi, Lorenzo Caruana,* Andrea Mazzanti, Mariafrancesca Fochi,*

and Luca Bernardi*

Department of Industrial Chemistry “Toso Montanari” and INSTM RU Bologna, Alma Mater Studiorum - University

of Bologna, V. Risorgimento 4, 40136 Bologna (Italy).

ABSTRACT: The catalytic enantioselective dearomatization of pyridines with nucleophiles represents a direct and conven-
ient access to highly valuable dihydropyridines. Available methods, mostly based on N-acyl pyridinium salts, give addition
to the C-2/C-6 of the pyridine nucleus rendering 1,2-/1,6-dihydropyridines. Herein, we present an alternative approach to
this type of dearomatization reaction, employing activated N-benzyl pyridinium salts in combination with a bifunctional
organic catalyst. Optically active 1,4-dihydropyridines resulting from the addition of the nucleophile (indole) to the C-4 of
the pyridine nucleus are obtained as major products, rendering this method for nucleophilic dearomatization of pyridines

complementary to previous approaches.
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Enantioselective dearomatization of pyridines repre-
sents a convenient access to highly valuable dihydro-
pyridine and piperidine scaffolds. Besides reductions,
available methodologies include mainly nucleophilic
dearomatizations? relying on stoichiometric chiral auxilia-
ries or transition metal catalyzed reactions.3 Various or-
ganometallic catalysts were demonstrated to be able to in-
duce stereoselectivity in the addition of different nucleo-
philes (cyanide,* alkynes,5 alkyl/arylzinc)® to the C-2/C-6
of N-acyl activated pyridinium ions (Scheme 1, top). A re-
cent report? introduced organocatalysis, and in more detail
anion binding by multiple hydrogen bond donors,? as a
suitable approach to this kind of reaction, using a silylke-
teneacetal as nucleophilic partner. Variable C-2 or C-4 se-
lectivities, depending on the substitution pattern at the
pyridine ring, were observed.” Previous asymmetric or-
ganocatalytic examples were all limited to less demanding
dearomatization of N-acyl quinolinium and isoquinolin-
ium substrates.%

We envisioned that N-alkyl pyridinium salts 1, more sta-
ble and easy to handle compared to their N-acyl analogues,
may provide an alternative platform with unforeseen op-
portunities in catalytic enantioselective nucleophilic
dearomatization of pyridines. N-alkyl pyridinium salts
bearing an electron-withdrawing group at C-3, to render
more electrophilic the pyridine nucleus and to stabilize the
dihydropyridine adducts, have been widely applied in al-
kaloid synthesis (i.e. the “Wenkert procedure”).3 How-
ever, only one catalytic asymmetric reaction with these
substrates - a C-6 selective [Rh]-catalyzed addition of aryl
and alkenyl boronic acids to N-benzyl nicotinates — has
been reported to date.*> Herein, we present an asymmet-
ric nucleophilic dearomatization of N-benzyl pyridinium
salts 1, using indoles 2 as nucleophiles (Scheme 1, bottom).3

A key feature of this organocatalytic reaction is the for-
mation of the 1,4-dihydropyridine regioisomers 4 as the
major products, thus providing a new platform for nucleo-
philic pyridine dearomatization reactions complementary
in several aspects to existing methodologies.+7
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Scheme 1 Catalytic asymmetric dearomatization of pyri-
dines.

Our initial plan involved a reactivity enhancement of
pyridinium salts 1 by drifting apart the tightly bound halide
counterion. Exploiting the low solubility of salts 1 in apolar
organic solvents, an inverted phase-transfer catalytic ap-
proach® was first attempted, followed by an anion binding
activation strategy using typical Jacobsen-type thiou-
reas.8™ Whereas these approaches failed (see the Sup-
porting Information), further experiments demonstrated
that catalysts bearing tertiary amine basic moieties could
promote the C-4 selective addition of indole 2a to N-benzyl



3-nitropyridinium bromide 1a, affording the 1,4-dihydro-
pyridine product 4aa in enantioenriched form. A screening
(see Supporting Information) of basic catalysts and auxil-
iary bases, to neutralize the HBr formed in the reaction, led
to the identification of the conditions outlined in Table 1,
entry 1 as a promising hit result. In more detail, a catalyst
such as 3a, bearing not only a basic tertiary amine moiety,
but also an acidic thiourea group, and a stoichiometric
amounts of the “thermodynamic”s base 1,8-bis(dimethyla-
mino)naphthalene (proton sponge, PS), were required to
achieve both good conversion and enantioselectivity in the
reaction. In all these preliminary screening experiments,
adduct 4 was accompanied by substantial amounts of the
indole N-alkylation product 5, as a racemate in all cases.
Further optimization showed that lowering the reaction
temperature gave better enantioselectivity in 4, without
giving a great detriment in conversion (entries 1-3). The 4/5
ratio was also slightly improved. Variations in the aryl ring
of the N-benzyl substituent were then explored. Substrates
1b-e bearing electron-withdrawing groups (1b, entry 4 and
1¢, entry 5) and additional aromatic rings (1d, entry 6 and
1e, entry 7) gave lower enantioselectivities, compared to
the unsubstituted substrate 1a (entry 3), accompanied by
variable conversions. In contrast, an electron-donating
methoxy substituent (1f, entry 8) incremented slightly the
enantioselectivity. Interestingly, the reaction outcome
worsened considerably when employing the pyridinium
salt 1'f, bearing chloride, instead of bromide, as the coun-
terion (entry 9, compare with entry 8). We were instead
pleased to find that a bulky substituent, such as t-Bu (1g),
gave a remarkable improvement in both reactivity and en-
antioselectivity, along with a promising selectivity for
product 4ga vs 5ga (entry 10). This positive result may be
rationalized taking into account the sandwich-like struc-
ture of substrates 1, inferred from the X-ray structure of re-
lated N-benzyl pyridinium salts,® in which the halide is fit-
ted between the two aromatic rings. A bulky (and electron-
rich) substituent may open this structure rendering the
bromide anion more available for thiourea coordination
(vide infra). Finally, we found that the undesired isomer 5
is apparently generated as a background PS-promoted pro-
cess. Thus, we envisioned that a controlled addition of this
auxiliary base would have resulted in a selectivity improve-
ment. Indeed, when PS was added portion-wise over 10
hours, a good 91:9 ratio in favor of the desired product 4ga,
along with a satisfactory 91% ee, was achieved (entry 11).

Table 1. Representative optimization results.®

Ar
1a-g: X = Br .
1'f: X =Cl
Y
3a (10 mol%)
PS (100 mol%) NO,
toluene (0.2 M) ||
16-24 h
|\Ar
4aa-4ga  5aa-5ga (racemic)
En- T 1a-g, Ar Conv. 4/s5b ee
try [°C] (%)< (%)?
1 RT 1a, Ph 60 55:45 68
2 0 1a, Ph 50 55:45 75
3 -20 1a, Ph 50 70:30 75
4 -20  1b, 4-BrC¢H, 52 80:20 70
5 20 16, 3,5-(CF;).CeH, 89 7129 63
6 -20  1d, 2-naphtyl 51 8812 67
7 -20 1e, 4-PhCeH, 13 955 45
8 -20 1f, 4-MeOCe¢H, 52 8218 82
9 20  1'f, 4-MeOCeH, 31 76:24 58
10 -20 1g, 4-t-BuCeH, 88 7129 87
n¢ -20 1g, 4-t-BuCeH, 92 91:9 o1

@ Reaction conditions: salts 1a-g or 1'f (0.05 mmol), indole
2a (0.065 mmol), 3a (10 mol%), PS (0.05 mmol), toluene (250
uL), 16-24 h. ® Overall conversion in products 4 and 5. ¢ Deter-
mined on the crude mixture by 'H NMR. ¢ ee of products 4,
determined by CSP HPLC. € 0.2 equiv. of PS were added every
2 h: overall 1 equiv. in 10 h.

Having identified reaction conditions and substrate re-
quirements for optimal results, the reaction scope was in-
vestigated (Scheme 2). Variation of the bulky substituent
in the N-benzyl moiety afforded dearomatized products
4ha and 4ia in similar yields (75-70%) and enantioselectiv-
ities (91-90%) to adduct 4ga. Variation at the indole 2 re-
action partner showed that methyl and methoxy substitu-
ents at the 5-position were well tolerated (4gb and 4gc 73-
76% yield and 91-87% ee). Indoles 2d,e bearing an electron
withdrawing group (Cl) at 5- and 6- positions afforded the
desired adducts 4gd and 4ge with moderate enantiomeric
excess (80% ee). Their lower reactivity required 15 mol%
catalyst 3a and a reaction temperature of o °C to afford sat-
isfactory yields (66-67%). Crystallization of compound 4gd
afforded enantiopure single crystals which, upon X-ray
analysis,” provided the absolute configuration S at the C-
4-stereocenter, extended by analogy to all other com-
pounds 4. Also the more challenging 2-methylindole 2f was
a suitable nucleophile, affording product 4gf in good yield
(79%) and a moderate ee value of 75%.'
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@ Conditions: 1g-j (0.15 mmol), 2a-f (0.195 mmol), 3a (10 mol%), toluene (750 pL), -20 °C. Reaction was set up without PS, then 0.2
equiv. (0.03 mmol) of PS were added every 2 h: overall 1 equiv. ® Yields of isolated products 4. ¢ ee determined by CSP HPLC. ¢
Reaction performed at o °C with 15 mol% 3a. ¢ After one crystallization. f Reaction performed at RT with 15 mol% 3a.

We then explored the possibility of changing the EWG
at the C-3 of pyridinium salts 1. While 3-acetyl and 3-meth-
oxycarbonyl derivatives did not show sufficient reactivity,
we were pleased to find that compound 1j bearing a cyano
group was a competent substrate for the present nucleo-
philic dearomatization. Although its lower reactivity com-
pared to 1g-i forced us to increase the reaction temperature
and the catalyst loading (15 mol%), dihydropyridines 4ja-
jc were obtained with useful results (45-55% yield, 80-89%
ee) in the reactions with indoles 2a-c. Possibly due to the
higher temperature, the isomeric ratios 4/5 of these reac-
tions were found to be lower than in the previous examples
(see Supporting Information) accounting for the lower
yields obtained with this less activated substrate 4j.

The 1,4-dihydripyridines 4 bear two enamine-type dou-
ble bonds amenable to various synthetic manipulations
(Scheme 3). For example, treatment of 4ga with excess
NaBH4 in methanol afforded piperidine 6 as an equimolar
mixture of epimers at C-3, which, upon adsorption and
standing on silica, converted to the more stable 3,4-trans-
diastereoisomer in quantitative yield with retainment of
the enantiomeric excess. On the other hand, exposure of
4ga to an oxidative functionalization with 12 in methanol
afforded the highly substituted tetrahydropyridine 7 as a
single diastereoisomer, in 72% yield and 87% ee.

NaBH,_ NO, 2510, \No,

MeOH RT 5h

RT, 15 min
NH
%
t-Bu

6:>95% Y, 1:1 dr 6:>95% Y,
| | — >20:1 dr, 90% ee

4ga: 91% ee

I, MeOH, I, NO,
POvE. |
0 °C, 30 min
" Meo” N
: “t-Bu
7:72% Y,

>20:1 dr, 87% ee

Scheme 3. Synthetic elaborations on 1,4-dihydropyridine
4ga.

Several control experiments (see the Supporting Infor-
mation) were carried out to gain insights about the path-
way followed by this transformation. 'H and 3C NMR stud-
ies pointed to the extraction of the insoluble pyridinium
salt 1in the apolar reaction medium through formation of



the covalent adduct I with the catalyst, resulting from the
addition of the tertiary amine to the C-6 of the pyridinium
ring (Scheme 4).>° Assistance of the thiourea moiety,
through coordination of the bromide, could also be in-
ferred. Although in substrates 1 the C-6 position can be
considered the most reactive, while C-4 products are ther-
modynamically favored,” the nature of the nucleophilic
species and the reaction conditions can heavily influence
the regioselectivity of the reaction.>'* In the present case,
the C-6 adduct with the catalyst (I) is favoured both kinet-
ically and thermodynamically. In contrast, the addition of
indole 2 occurs at C-4, plausibly through a two-step SN2’
like*> pathway from adduct 1.3 Subsequent rearomatiza-
tion of the indole nucleus leads to products 4 and to pro-
tonated (i.e. inactive) catalyst 3a. PS scavenges HBr ensur-
ing catalyst turnover. However, this base is also able to pro-
mote the slow N-alkylation of indoles with substrates 1,
rendering isomers 5 in racemic form.>+ Its controlled addi-
tion is thus required to achieve good selectivity and yields
in the catalytic reactions.

Y
N
H
2

covalent adduct
at C-6 (I), soluble

- MeO.
in toluene
(observed by NMR)
Z N
H I
~ NN
H
AN s
“Brin,-N
H7N
EWG .
3a-HBr
3a (cat.) PS
foluene ).
PS-HBr

solid phase
,t‘/ 1: poorly soluble

Br in toluene
kAr

Scheme 4. Proposed reaction pathway.

To summarize, we have developed a catalytic asymmet-
ric dearomatization reaction of activated N-benzyl pyri-
dinium bromides 1 with indoles 2 as nucleophile partners.
The 1,4-dihydropyridine adducts 4 were obtained with
good results in terms of yields and enantioselectivities. A
peculiar feature of the present reaction is the addition of
the nucleophile to the C-4 of the pyridine. This regioselec-
tivity is unusual in catalytic enantioselective nucleophilic
pyridine dearomatization reactions, rendering this ap-
proach complementary to previous methodologies. Cur-
rent efforts in our laboratory are directed at exploring N-
benzyl pyridinium salts 1 as a useful synthetic platform for
the preparation of different 1,4-dihydropyridines, employ-
ing different nucleophilic reaction partners and catalytic
approaches.
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