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Parametric detection and classification of compact
conductivity contrasts with Electrical Impedance
Tomography

Andrea Samore, Marco Guermandi, Silvio Placati, Roberto Guerrieri

Abstract—Electrical Impedance Tomography (EIT) is a non-
invasive and cost effective imaging method which is increasingly
attractive in the field of medical diagnostics. Several health
conditions, such as stroke and solid tumors are characterized by
compact conductivity anomalies surrounded by a fairly regular
background. Commonly employed voxel by voxel reconstruction
methods for impedance imaging share the disadvantages of high
computational cost and substantial sensitivity to measurement
noise and imperfections in the electrical model describing the
domain of interest. We present a special purpose algorithm for
automatic detection and identification of compact conductivity
variations. The technique exploits a-priori structural information
and, by reconstructing only the limited number of parameters
required to describe a compact conductivity contrast, does not
depend on a critical regularization parameter. The most demand-
ing kernels are implemented to run on Graphics Processing Units
(GPUs) to accelerate computation. The parametric reconstruction
is quicker and more robust than widely employed approaches
with respect to measurement noise and imperfections in the
electrical model, as shown by computational analysis performed
on a segmented head domain and experimental measurements
acquired on a cylindrical phantom. When the goal is quick
detection of compact conductivity contrasts in complex 3D do-
mains, the inclusion of specific constraints relating to the problem
considered leads to enhanced quality of reconstruction, making
the presented technique a promising alternative to common voxel
by voxel reconstruction methods.

Index Terms—Impedance imaging, Impedance tomography,
Biomedical imaging, Detection algorithms, Inverse problems.

I. INTRODUCTION

LECTRICAL Impedance Tomography is a non-invasive
and cost effective imaging method in which an
impedance map of the region of interest is reconstructed from
measured electric potentials generated by current injections.
The technique has been applied in a wide variety of fields,
spanning from geoelectrical imaging [1] to industrial process
monitoring [2], robotics [3] and biomedical imaging [4] .
Focusing on the biomedical setting, a number of EIT
acquisition systems have been developed in the past by various
research groups, with several intended applications that span
from the monitoring of ventilation [5] and gastric emptying [6]
to the detection of solid tumors [7],[8] and localization of cere-
bral activity [9]. Recent developments include the realization
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of active electrodes which can be used to alternatively measure
potentials or inject current at the same spot [10], increasing the
portability of the system and its flexibility in terms of current-
injection patterns available, which increases the accuracy of
reconstruction.

Very often, as in the case of solid tumors, diagnosis of
localized variation in blood perfusion or identification of
intracerebral strokes, the goal consists in the detection and
approximate localization of a compact conductivity variation
that is surrounded by an electrically fairly uniform background
tissue. Due to the nature of the diagnosis process, baseline
measurements (healthy state) are generally not available. For
this reason, time difference (TD) imaging is not an option
and absolute or frequency difference (FD) algorithms, which
are more sensitive to modeling and measurement errors when
compared to TD [11], must be employed.

In what follows, stroke will be considered as a case study to
illustrate the performance of the proposed solution on complex
domains since it is known to alter the conductivity of brain
tissues in a predictable way: during ischemia the decreased
extracellular volume due to cellular swelling (cytotoxic edema)
reduces the average conductivity of the region affected [12]; on
the other hand, when intracranial bleeding occurs, the average
conductivity of the flooded region increases significantly due
to blood being more conductive than cerebral tissue [13].
Early recognition is crucial for therapy since, if an ischemic
condition is detected within 4.5 hours of onset, it is possible
to initiate treatment with Tissue Plasminogen Activator (tPA),
a clot-busting therapeutic agent [14]. At the same time, dis-
crimination is fundamental since treatment of a hemorrhagic
condition by tPA may well result in additional damage to the
patient [15].

Impedance imaging of stroke is a challenging task which re-
quires great precision in the description of the electrical model
of the head and very accurate acquisition systems. Previous
endeavours, many of which took advantage of multifrequency
measurements in an attempt to reduce the impact of various
systematic sources of noise, failed to yield reproducible results
due to limitations in the accuracy of instrumentation, and
significant and not easily avoided uncertainties in the electrical
model of the head [16]. Another factor that hampers the
application of FD techniques to the detection of hemorrhagic
conditions is the very weak dependency of blood impedance
with respect to frequency [17]. Bayesian approximation error
approaches have been applied in the past to reduce the effect of
uncertainty in the external boundary of the volume of interest
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in absolute reconstructions [18][19] and to increase contrast
in simple 2D models of the head [20], but their extesion to a
complex 3D domain describing accurately the main layered
tissues of the human head is not straightforward and the
computational cost of the inversion step remains significant.
Although EIT systems specifically designed to image stroke
have been developed [21], the image reconstruction problem
continues to be strongly underdetermined and remarkably
sensitive to measurement and discretization noise.

The aim of this work is to propose an algorithm for
automatic detection and classification of compact conductivity
variations based on an approach specifically tailored to the
application. This approach reduces the ill-posedness of EIT
inversion by avoiding the need to reconstruct a complete
absolute conductivity map of the domain of interest on a voxel
by voxel basis. Instead, reconstruction of regions of uniform
conductivity, representing the various underlying tissues, is
separated from the detection of a compact conductivity varia-
tion, so that only a small number of parameters are estimated at
each iteration of the nonlinear algorithm. While the proposed
approach shares some similarities with previously described
methods [22], [23], to the best of the authors’ knowledge
a parametric reconstruction algorithm able to quickly detect
and classify an unspecified number of compact conductivity
inclusions in realistic 3D complex domains, when significant
uncertainty in the electrical model and measurement noise are
present, is not reported in the literature.

The proposed parametric technique proves to be quicker,
devoid of a critical regularization parameter and resilient to
errors in the electrical model of the domain of interest.

EIT requires intense processing of the measured data, so
the critical kernels of the algorithm presented are tailored
to heterogeneous parallel systems based on multiple CPUs
and GPUs. A workstation equipped with Graphics Processing
Units (GPUs) allows for small-scale supercomputer perfor-
mances with off the shelf components [24], bringing the
advantages of limited cost, size and energy consumption [25].

This work is structured as follows. Section II introduces
the novel approach to EIT reconstruction and compares it
to a more standard automatic method based on Tikhonov
regularized inversion; Section III details the implementation
of both algorithms; Section IV deals with characterization of
their performance in the presence of various noise sources and
conclusions are drawn in Section V.

II. ALGORITHMS

In order to reconstruct an impedance map of the region of
interest, two different computational modules must be in place:
a forward and an inverse problem solver [26]. The forward
problem solver is used to compute the voltage distribution
in the volume of interest, given the applied current and
the physical properties of the domain. The forward problem
formulation stems from the Poisson problem in the quasi-
static case with Neumann boundary conditions [27] (system
of equations 1).

—V.oVp=0 on ()
ffSiUVqﬁ-ﬁdS:ffSig-ﬁdS:Ii withi=1---N,
oV¢-ndS =0 on Q/UN¢ S;
ey
where o is the local conductivity of the medium and ¢ is the
local electric potential. One convenient approach is to assume
o to be piecewise constant in each voxel of the discretized
volume €. In the second and third equation, g is the local
current density, 7 is the versor normal to the surface of the
electrode, and I; is the current injected in the i-th electrode
of area S;. The second equation defines the current that flows
through each of the NV, electrodes placed on the scalp. The
third one specifies that there is no current flow across the
boundary where injecting electrodes are not present.

The inversion method makes use of the forward problem
solver to provide an estimate of the physical properties of
the volume given the stimulation pattern and the set of
measurements. For our purposes, the domain under analysis
can be considered to be composed of five different tissues:
scalp, skull, connective tissue, cerebrospinal fluid (CSF) and
brain.

Early attempts to reconstruct images from impedance mea-
surements include the backprojection algorithm [28], which is
derived from the Radon transform used in computed tomog-
raphy, and the Landweber method, which can be considered a
modification of the generalized inverse matrix method [29].
Commonly used inversion methods typically reconstruct a
conductivity map of the region of interest by estimating the
conductivity of each voxel of the discretized domain and,
due to the ill-posedness of the inverse problem, nowadays
generally aim to minimize a least square functional which
is regularized by adding a penalty term. Different regular-
ization methods have been developed in the past by several
research groups. The L2-norm is arguably the most widely
used method in practice, it enhances the stability of recon-
struction by penalizing steep impedance variations. Several
options for the regularization matrix are available, from the
identity matrix [30], approximations of differential operators
[31] and matrices based on structural priors [32]. Tikhonov
regularization (TR) is a prime example of a L2-norm method.
Other regularization methods, such as Total Variation [33]
and sparsity regularization [34],[35] employ a L1-norm in an
attempt to enhance the reconstruction of piecewise constant
conductivity distributions. Subdomain methods have been used
to enhance reconstruction accuracy by either including prior
structural information or by limiting the image reconstruction
process to a specific subregion of interest inside the domain
[36],[37],[38]. A different class of reconstruction methods
based on a statistical approach that takes into account mod-
eling errors has been the focus of recent research [18],[19].
In the following, the proposed approach will be compared
to an implementation of TR, the most commonly employed
method which is also generally used as a benchmark to test the
performance of new EIT reconstruction algorithms [34],[39].

The idea behind the algorithm which we propose is that,
given the prior information provided by the specific problem,
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it is not necessary to reconstruct a conductivity map of the
volume of interest on a voxel by voxel basis, because the main
goal is to detect a compact conductivity anomaly, classify it
as an increase or decrease in conductivity with respect to the
background and be able to approximately identify its volume
without focusing on the exact shape of the variation. For this
reason we adopt a Parametric Approach to Reconstruction
(PAR), in which a conductivity distribution containing an
anomaly characterized by a first-guess position, size and
conductivity variation associated with a stroke condition is
iteratively modified in its properties up to two possible results.
If the algorithm converges to a feasible location and size for
the anomaly, a target is identified. Otherwise, no irregularity
is detected.

A. Parametric Algorithm

In order to grasp the basic concept underpinning the
proposed algorithm, we describe it first in a simplified 2D
domain where we consider a uniform disc of conductivity
0 containing a punctiform target anomaly having a small
variation in conductivity with respect to the background (see
Fig.1). Sixteen equally spaced electrodes are placed on the
boundary of the domain. Each electrode can be used to
inject current or to measure potential and the injection pattern
consists of 8§ different opposite injections. Previous research
demonstrated that an opposite injection pattern allows for
better reconstruction quality in presence of measurement noise
and when the anomalies that need to be detected are far from
the electrodes i.e. in the central region of the phantom [40]. For
this reason, in the following only the opposite injection pattern
will be considered. In this simple setup with 16 electrodes
the number of indipendent opposite current injections is 8
and, since for each current injection 2 of the electrodes are
used to inject current and one is used as a reference, the
number of measurements is 104 [41]. Considering the first
injection, the current enters the domain from electrode 1 and
exits from electrode 9. In the second injection the input and
output electrodes are numbers 2 and 10, and so on. For
each injection, all the non-injecting electrodes are measuring
surface potentials.

In this domain, for each injection, the forward problem takes
the form —oV?2¢ = 0, with Neumann boundary conditions.
The solution can be computed analytically to be:

(r,0) =577 r™ - [A, - cos(nf) + By, - sin(nd))]

Ao =free , A, = # : f027r k(0)cos(nd)dd  (2)
™ 0

Where R, is the radius of the disk and k(#) are the boundary
conditions:

k(V):il ) V:%7 7"'7(1*%)71-
i ”

To reconstruct the position of the target anomaly, we con-
sider a punctiform guess conductivity variation, placed at an
arbitrary point of the domain; the objective of the solver is to
update the position of the guess till it converges on that of the

INE

12 14
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Fig. 1. 2D domain of uniform conductivity containing a single-voxel target
anomaly depicted as a black square. Electrode positions are marked by dots
and each injection pattern is denoted by a circled number and a couple of
arrows that indicate the direction of the current.

target. The most straightforward way to act is to minimize
the error defined as the 2-norm of the difference between
potentials at the electrodes when only the target anomaly
is present, V;, and the potentials computable when only the
moving anomaly is placed in the first guess position, V:

E=|V; = V,|]? 4

As the minimization problem is non-linear, one common
practical approach is to formulate a linear approximation of
the surface potentials, V; = V, + J, - Ap, where Ap =
[Az Ay] defines the variation of spatial coordinates and
Jp = [Jps Jpy| is the Jacobian that relates a variation of
sampled surface potentials to a variation of spatial coordinates
for the guess. Using an iterative solver based on such a
linearized approach, the update at each step will be:

Ap=(Jy - Tp) "t Jy - (Vi= V) )

Since we assume that the conductivity variation do is small
compared to the background value, we can write:

Vi=Vo+J- Aoz — x4,y — Y1)
Vo=Vo+J -Ao(z—z4,y—y,)
Jpu(z,y) = J(z + Az, y) — J(z,y)
Jpy(@,y) = J(2,y + Ay) — J(2,y)

where (x:,y:) is the position of the target, (z4,y,) is the
position of the guess, Ac(u,v) = do for w = v = 0 and
Aoc(u,v) = 0 otherwise. V|, are the potentials sampled at
electrode positions when both target and guess anomalies are
absent (o(z,y) = 0p). The Jacobian J;(z,y) = %, that
relates the potential variation at the i-th measuring electrode to
the conductivity variation in (X,y), can be efficiently computed
by exploiting the reciprocity principle [42].

Computing Ap for each voxel, we generate bi-dimensional
maps which indicate the direction in which the guess anomaly
will be moved in the following iteration of the non-linear
solver, for every position inside the domain. The presence of

6)
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a basin of attraction (Fig.2, left-hand column) is clear when
the sign of the guessed conductivity variation matches that of
the target, while a repulsor appears if the guess conductivity
variation and the target are opposite in sign (Fig.2, right-hand
column). The first and second row illustrate maps relating to
two different locations of the target anomaly. One may obtain
similar results with different target anomaly positions.

The complete algorithm follows the same principle but
includes the 3D cartesian coordinates (x,y, z) and radius r of
the guess anomaly and also the conductivity of the background
tissues (scalp, skull, connective tissue, CSF and brain) as
variables to be reconstructed. The evolving conductivity map
initially contains a spherical anomaly (probe) placed at an
initial guess position with a first-guess radius and conduc-
tivity variation. The spherical shape of the wandering probe
approximates the generic structure of a compact conductivity
contrast. It is important to note that the actual anomaly
to be detected doesn’t have to be spherical. Approximate
prior information about the electrical properties of background
tissues and targets to be detected is readily available in the
literature [43],[44],[45], or in online databases such as [46],
and the initial guess conductivities are based on the available
data. Moreover, the initial guess dimension of the wandering
probe is selected to be in a realistic range for the considered
application of stroke detection and discrimination according
to previous studies [47].

At each iteration, the update is computed from (5). In this
case, Ap is a vector that contains the conductivity variation of
each kind of tissue considered as a whole unit, the variation
of the spatial coordinates of the center of the anomaly and
the variation of its radius. The algorithm stops in the case
of a convergent reconstruction, a divergent reconstruction or
when the maximum number of iterations set by the user
is reached. In a convergent reconstruction Ap drops below
a threshold and, in particular, the reconstruction is stopped
when the reconstructed variation of size and position of the
probe at the n-th inversion step is smaller than the spatial
discretization step of the domain. Whereas a reconstruction
is considered divergent if during the iterative process the
volume of the probe is reduced below a certain limit. As in
rare cases the wandering probe might enter a closed cycle
of spatial movement around the target contrast, an additional
stopping criterion based on a user-specified maximum number
of iterations is present to guarantee the termination of the
search process in a finite amount of time. The main steps
of the reconstruction algorithm are outlined in Fig. 3.

Focusing now on the case study considered, stroke detection
and discrimination, as the head domain is complex and the
error function may present several local minima, the space is
sampled by placing the probe in four different initial guess
positions inside the cerebral tissue.

For each location, to discriminate between an ischemic and
a hemorrhagic stroke, two different reconstructions are run in
parallel: in the first one, the conductivity of the probe is set so
as to be equal to that expected for an ischemic stroke; while
in the second one it matches that of a hemorrhagic stroke.

Once the 8 reconstructions have been obtained, they are
ranked according to their residual error E and the reconstruc-

tion with the lowest E (deepest minimum) is then chosen.

B. Tikhonov Based Algorithm

The regularized reconstruction algorithm considered in this
work is based on a standard approach in EIT imaging [31].
Since the problem in question is ill-posed, additional in-
formation must be employed to get a single solution in
reconstructing of the conductivity of each voxel relating to
the brain region. One practical way to regularize the problem
consists in including an additional term in the error function:

E(0) = |[Vin = V(o) + T - o ™

where V,,, are the measured surface potentials, V, are the
computed surface potentials with an initial guess conductivity
distribution oy while the regularization matrix I' = XA - M is
composed of a regularization parameter, A\, and a matrix M
that is constructed as a discrete Laplacian filter to enhance
the smoothness of the reconstruction [32]. This is done to
penalize gradient variation and thus favor the reconstruction of
compact contrasts. In the application considered, anatomical
information is taken into account by restricting M and the
reconstruction process to the tissues which may be affected
by strokes, namely the brain and CSE.
Under the linear approximation [48], E is minimized by:

Ao =JT-J+TT.T) 1 (JF (Vi = V) +TT T (0, —0,)
®)

Where Ao = 0,41 — 0y, is the conductivity update, o, is a
reference conductivity distribution and o, is the reconstructed
conductivity distribution at step n. The Jacobian matrix J can
be computed by exploiting the reciprocity principle as before.

Since the conductivity of a region affected by a stroke differs
significantly from healthy tissue, an iterative reconstruction
is employed. At each step, the Jacobian is calculated, the
linearized problem is solved and the guess conductivity distri-
bution o is updated adding the calculated contribution Ao.
The algorithm stops when the relative variation of the residual
between consecutive iterations drops below a threshold or a
user-defined maximum number of iterations is reached.

To extract meaningful information out of the reconstructed
conductivity map, it is necessary to ascertain the presence of a
conductivity anomaly and, if found, to classify it as an increase
or decrease of conductivity with respect to the background. For
this reason, the output image is segmented by thresholding it,
the result is then labeled and the volume of each recognized
region is computed.

III. IMPLEMENTATION

The reconstruction algorithms are developed in Matlab and
are based on the optimized parallel forward problem solver for
EIT developed by our research group in C and CUDA [49].
The solver is based on the finite volume method (FVM) for
evaluating the PDE and uses a cubic mesh.

The inversion algorithms considered in this paper share
one common part, the electrical model, consisting in volume
definition, and differ in the Jacobian calculation and inversion
loop. The flowchart is summarized in Fig. 4.
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Fig. 2. Considering a fixed target marked by a black dot, a single moving anomaly is placed in a point of the domain and Ap is computed according to
Eq.5. This process is then repeated for each point of the discretized domain to generate bi-dimensional maps illustrating the direction and magnitude of the
movement of the moving anomaly computed by the proposed approach for the first step. In the left-hand column, the first guess conductivity variation of each
voxel matches that of the target. A single voxel anomaly would be pushed toward the target, marked by a black dot. In the right-hand column, the first-guess
conductivity variation of each voxel has the same amplitude as, but opposite sign to, the target. What was previously an attractor now becomes a repulsor.
Two different locations of the target are considered in the first and second row. Arrows are normalized to the unit length for clarity of representation. The

intensity of gray is proportional to the magnitude of the first step.

loop

Iteratively
update
background
conductivities
and probe
size/location

Set initial
guess
background
conductivities

Place probe
in initial
guess location

Fig. 3. Main steps of the parametric reconstruction algorithm

The electrical model is built and a user-defined number of
electrodes is placed on the boundary of the region of interest.
Since stroke is usually characterized by local anomalies in
the brain region, we either employ a previous MRI scan of
the subject (if available) or we register the subject’s head to

a brain atlas in order to gather structural information on the
location of the different tissues which are characterized by
significantly different conductivities and exploit this informa-
tion to enhance reconstruction. The surface potentials V, are
computed from an initial guess conductivity distribution and
the measured surface potentials V,,, are then used to calculate
AV =V, — V,. After Jacobian computation, inversion takes
place and a variation of properties Ap is calculated. When
TR is considered, Ap consists in a vector that specifies the
conductivity variation of each voxel of the domain to be
reconstructed; while in PAR Ap specifies the variation in
conductivity of each background tissue as a whole and the
variation in spatial coordinates and dimension of the moving
anomaly. It is important to note that all the properties specified
in the vector Ap are always simultaneously reconstructed at
each step of the iterative inversion. If the stopping criterion is
satisfied, the algorithm exits. Otherwise, new surface potentials
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and Jacobian are calculated and the loop repeats itself.

Measured
Calculate Calculate Calculate
Surface [ .
N AV Jacobian Ap
Potentials 1

Build Calculate Stopping
Electrical —> Surface Criterion
Model Potentials Satisfied?

Fig. 4. General structure of an iterative EIT inversion algorithm.

A. Parametric Inversion

The position and dimension of the probe can vary inside
definite boundaries set by the shape and dimension of the
domain of interest.

In order to restrict the localization to the brain and CSF
regions, in the example of stroke detection and discrimination
considered, at each step the percentage of probe volume that
overlaps brain tissue is computed and, if it is found to amount
to less than 90%, the moving anomaly is moved towards the
center of the head till it satisfies the requirement. Moreover,
the radius of the probe has both upper and lower bounds. In
particular, the radius of the guess anomaly reaching the lower
limit is used as a stopping criterion identifying absence of the
kind of stroke being examined.

Since the properties that can vary are simply the conductivi-
ties of the segmented tissues as a whole, the spatial coordinates
of the center of the probe and its radius, in this case it pays to
calculate the Jacobian with a finite-difference approach (Fig.5).
The step for the spatial dimensions is 1 voxel and the one for
tissue conductivity is set to 1% of the current conductivity
value.

B. Tikhonov Based Inversion

The regularization parameter is selected by locating the
point of maximum curvature on the L-curve generated by
a one-step linear Gauss-Newton solver [50]. The iterative
reconstruction stops when a local minimum of the error
function is reached or the maximum number of iterations set
by the user is met.

To detect and classify the conductivity anomaly, segmenta-
tion is performed by thresholding the reconstructed image with
a threshold level computed as 75% of the maximum variation
with respect to the initial guess condition. It is possible to
correctly detect the absence of a target by considering only
threshold levels above a minimum expected variation.

After labeling, any anomalies found are ranked according
to their volume and those with a volume smaller than 20%
of the largest detected anomaly are discarded to filter spu-
rious lobes. If all the remaining anomalies differ from the
background tissue in the same direction (increase or decrease

Fig. 5. Jacobian construction. The current position and size of the probe is
depicted as a thick circle in the center of the image. The dotted lines represent
the position and size of the anomaly used to calculate the Jacobian matrix.

in conductivity), then the stroke is classified as ischemic or
hemorrhagic, depending on the conductivity of the detected
region as compared to healthy tissue. Otherwise, no stroke is
detected.

IV. EVALUATION OF PERFORMANCE

We now compare the detection and classification perfor-
mances of the two algorithms, first in a cylindrical phantom, a
commonly used benchmark for EIT reconstruction algorihms,
and then on a simulated head volume to illustrate their
behaviour in complex domains.

The computing system used in this work is specified in
Table I, and was designed to provide high performance com-
puting capabilities using low cost off-the-shelf components,
leading to a system cost of less than 10K€ and relatively
small size (4U rack mount).

CPUs | 2x Intel Xeon E5-2650 v2 @ 2.60GHz
GPUs 4x Geforce GTX Titan Black
RAM 64 GB

TABLE 1

COMPUTING SYSTEM SPECIFICATIONS

A. Cylindrical Phantom Reconstructions

To test the newly developed algorithm and compare it to TR,
we built a phantom consisting of a cylindrical polypropylene
tank with radius r = 175 mm containing 575 ml of saline
solution. Sixteen equally spaced metal electrodes were placed
on the boundary of the tank and four different opposite
sinusoidal current injections at a frequency of 32 kHz were
considered (see Fig. 6, first row). Each electrode consists of a
6 cm x 0.5 cm rectangular strip of aluminium tape (590 Series,
3M, U.S.A.) that spans from bottom to top of the vertical wall
of the tank and is partially immersed in the saline solution.
Four-terminal impedance measurements are performed with
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the Agilent 4294A impedance analyzer (Agilent Technologies,
U.S.A.) connected to a 16048H port extension cable [51]. In
this case, only four opposite injections are considered in order
to limit measurement drift due to the time required to manually
acquire data with the impedance analyzer.

At the selected bandwith level (4), frequency (32 kHz),
oscillator level (500mV) and dc bias range (ImA), each
data point is acquired in less than 100 ms and the SNR of
the impedance measurement at the terminals of 16048H is
approximately 54 dB [51], a value which is in the range of
what is achievable with existing EIT systems [4], [52]. It
has been verified that at the chosen frequency the noise at
the electrode-solution interface is several orders of magnitude
lower than the instrument noise, and is therefore neglected.

Four different conditions are considered: constant back-
ground conductivity (¢ = 0.25 [S/m]); two different lo-
cations of a single compact, uniform conductivity variation
(Ao = —0.25 [S/m]) with radius r = 24 mm; and the
simultaneous presence of two compact, uniform conductivity
variations (Ao = —0.25 [S/m] each) with radius r = 24mm
(see Fig. 6, first row). In the following characterization, non-
conductive cylindrical targets spanning the whole thickness of
saline solution have been employed. Similar results have been
experimentally obtained for background conductivities ranging
from 0.15 to 0.35 [S/m] and non-conductive targets that do not
span the whole thickness of saline solution and thus simulate
only a localized partial reduction of conductivity.

The second row illustrates the reconstructions performed
by PAR when the conductivity of the probe matches the
actual target conductivity variation. If the conductivity of
the probe is set to a value which is opposite in sign to
the target conductivity variation, the reconstructions diverge,
thus enabling correct classification. PAR can automatically
detect more than one target without user input: after each
convergent reconstruction the position and size of the recon-
structed anomalies is fixed, an additional probe is placed inside
the domain and a new inversion procedure is started. The
process stops when the additional probe leads to a divergent
reconstuction. As an example, in case of two different target
contrasts simultaneously present in the domain, the first and
second probes lead to convergent reconstructions in which the
moving anomaly stops somewhere inside the domain with an
above threshold radius. In contrast, the third probe has its
radius reduced below threshold during the iterative inversion,
thus leading to a divergent reconstruction.

The third row is relative to TR where the regularization
parameter was optimized for each target position. In each
column, the reconstructed conductivity variation is represented
on the left-hand side, where dark shades of gray indicate
a reduction in conductivity with respect to the background
value and light shades the opposite. On the right-hand side,
anomalies detected by the postprocessing procedure are high-
lighted in black or gray if the region is characterized by a
significant reduction or increase of conductivity, respectively.
Both algorithms perform equally well in the tested conditions.

To illustrate the importance of an appropriately adjusted
regularization parameter A\ for TR, in the fourth row it was
reduced to 20% of the optimal value. While the L-curve op-

timization is straightforward for simple known setups such as
the cylindrical phantom, in complex domains with significant
geometrical uncertainties even larger discepancies between the
optimized and optimal values are to be expected [53]. It is ap-
parent that both the raw reconstruction and the postprocessed
data cannot be used to reliably detect and categorize a compact
conductivity variation. If the regularization parameter is not
properly tuned, the automated thresholding may misinterpret
the image and classify the artifact as a real anomaly.

B. Simulated Head Domain Reconstructions

The simulation setup, consisting in the electrical model and
simulated measurements is initially described. The following
subsections compare the performances of both algorithms
in the presence of various sources of noise. Computational
performances are then discussed.

1) Electrical Model: Segmentation and labeling of the
MRI scan are performed by using BrainSuite, a collection of
open source software tools that enable processing of magnetic
resonance images (MRI) of the human brain [54].

The cubic mesh allows for a straightforward mapping be-
tween a 3 Tesla MRI scan and the electrical model, composed
of cubic voxels, with sides 3 mm long. The scan is segmented
in five layers: scalp, skull, connective tissue, CSF and brain.
Table II presents the conductivities associated with each of
the different tissues, the injection frequency being taken to be
8 KHz. Since at this frequency the complex conductivity has
a real part that is from 20 (skin) to about 200 (blood) times
larger than the imaginary part [45], the conductivity used in
the electrical model is assumed for simplicity’s sake to be real.
The average conductivity of an ischemic stroke is set to 50%
of the conductivity of the brain while a region associated with
a hemorrhagic stroke is supposed to have a conductivity equal
to that of the blood (Table II [45],[55][45]).

Tissue Conductivity [S/m]
Scalp 0.2
Skull 0.02
Connective 0.385
CSF 2
Brain 0.13
Blood 0.7

TABLE 11
CONDUCTIVITIES OF THE DIFFERENT TISSUES

Electrodes are evenly distributed on the surface of the scalp.
128 measuring electrodes are considered and the injection
pattern consists of 16 opposite injections [21]. Several tech-
niques can be employed to quickly and accurately measure
the positions of electrodes on the skin surface with an accu-
racy that is greater than the discretization considered in this
work. Commonly applied methods include electromagnetic
digitizers, ultrasound digitizers and geodesic photogrammetry
systems [56] but new techniques can also take advantage of
3D laser scanners or computer vision [57].

2) Simulated Measurements: Three different situations are
examined. The first one is a healthy condition where the
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Fig. 6. Experimental results. The first row illustrates the experimental setup, composed of a cylindrical tank containing saline solution and cylindrical targets
marked by black circles placed in various positions in the different columns. Sixteen electrodes are equally spaced on the border of the phantom and four
different current injections, denoted by circled numbers, are sequentially applied. The second row shows the results of the reconstruction performed by the
PAR algorithm, and the third one illustrates the conductivity variation reconstructed by TR and the anomalies recognized by means of the postprocessing
procedure, where black and grey denote a significant reduction or increase in conductivity with respect to the background value, respectively. In the fourth
row the reconstructions were performed with a regularization parameter that was approximately 20% of the optimized value.

conductivity is considered to be essentially uniform within
each tissue. The other two possible conditions refer to the
presence of a hemorrhagic or ischemic stroke, where a single
target anomaly of ellipsoidal shape is placed at a specific
location of the brain.

Four different sources of uncertainty are taken into consid-
eration:

1) individual variations in tissue conductivity;
2) small scale conductivity inhomogeneities;
3) inaccurate segmentation;

4) electrical noise.

To model the individual variation in electrical properties,
the conductivity of each segmented tissue ¢ as a whole is
considered to be affected by a random variation, modeled as:

oy =0¢+n- 0y &)

where o, is the conductivity value of tissue ¢ which is
reported in the literature and 7 is a Gaussian distribution with
average zero and standard deviation 0.1 [44].

Small-scale spatial fluctuations in the electrical properties
of each segmented tissue and the stroke region are taken into
account by considering the conductivity of each voxel to be
affected by an additional random variation, modeled as:

(10)

0j=0;+V-0j

where o is the conductivity of voxel j and v is a Gaussian
distribution with average value 0 and standard deviation 0.01.

The lack of exact knowledge as to head shape and tissue
position is modeled by altering about 2.5% of each boundary
between tissues, so that the electrical model considered in the

inversion step is structurally different from the one used to
generate the simulated measurements. Focusing for example
on the boundary between skin and air, the procedure consists
in:

1) locating the skin voxels that border air voxels;

2) locating the air voxels that border skin voxels;

3) randomly turning 2.5% of each set of voxels to the

neighboring tissue.

The robustness of EIT reconstruction algorithms to measure-
ment noise is commonly tested with additive gaussian noise
levels in the 0.1 to 10 percent range [20],[38],[S8]. Thus,
measurement noise modeled as a Gaussian random vector
with mean O and standard deviation at two different levels,
about 0.5% (low) and 5% (high) of the average amplitude of
the simulated measurements, is finally added to the simulated
measurements.

If we define our signal as the potentials at the electrodes
when a stroke is present, the low and high noise levels
correspond to SNRs (computed as the quadratic mean of the
measurements referenced to the average) of about 48 and 28
dB, respectively. If, conversely, the signal is defined as the
variation in electrode potentials in a stroke condition compared
to a healthy one, the SNR depends on the position of the
anomaly and its conductivity (see Table III, where P1, P2 and
P3 represent three different locations).

Three different locations of a target anomaly of elliptic
shape and both kinds of stroke are sequentially considered.
The first target position (P1) is located between the parietal
and occipital lobes of the left hemisphere, the second (P2)
is placed in the frontal lobe slightly on the right side while
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Low | High

Noise | Noise
P1 Ischemic 17 -3
P1 Hemorrhagic 15 -5
P2 Ischemic 25 5
P2 Hemorrhagic 22 2
P3 Ischemic 14 -6
P3 Hemorrhagic 19 -2

TABLE TIT

SNR STROKE - HEALTHY [DB]

the third one (P3) is placed in the temporal lobe of the left
hemisphere (Fig. 7). The target anomaly is modeled as an

N
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(d) (e) ()

ey

(€3] () @

Fig. 7. Sagittal (a), (d) and (g); transverse (b), (e) and (h); and coronal (c),
(f) and (i) sections passing through the center of the three target locations
considered. Targets are illustrated as white ellipses and circles, which are
sections of the 3D ellipsoid which simulates the generic structure of a compact
stroke.

uniform elliptical contrast with volume V =~ 40cm? [59]
and conductivity variation that resembles either an ischemic
or an hemorrhagic condition. Considering the fact that stroke
severity is correlated with the volume of the affected brain
tissue and that the intrinsic low resolution of impedance
imaging makes it difficult to reliably detect small contrasts,

especially when significant uncertainty in the electrical model
and measurement noise are present, we decided to focus on
medium sized strokes which are more likely, if not promptly
treated, to render the patient permanently dependent on other
people to perform everyday activities [60].

To rank the performances of the algorithms, two different
features are taken into account: the detection and the discrim-
ination capabilities. Both are evaluated specifying, for each
target considered as well as for the healthy condition, the
percentage of strokes classified as ischemic, hemorrhagic or
‘not detected’.

3) PAR Reconstructions: Ten different reconstructions,
each with a different realization of electrical and tissue con-
ductivity noise, are considered to produce the results illustrated
in Fig. 8(a). In each reconstruction the lower radius bound for
the moving probe is set to 5 voxels, corresponding to a volume
of about 14 cm® (about 33% of the actual target volume,
which has an equivalent radius of 7 voxels), and both its
shape (spherical) and initial volume (V' == 57 cm?) differ from
the target anomaly. The higher radius bound, set to 15 voxels
(V =~ 381 cm?), was never reached during reconstructions thus
it didn’t affect the presented results.

Both kind of strokes are always correctly identified at
all noise levels but some are not detected. At the lowest
measurement noise level almost all the healthy conditions are
correctly identified, however, a large amount of measurement
noise makes the detection of healthy states unreliable. It is
evident that increasing the electrical noise level leads to a
degradation in detection performance for all the locations
tested.

4) TR Reconstructions: In this case the reconstruction is
limited to the brain and CSF regions and the conductivities of
skin, skull and connective tissue are fixed at the correct values
from literature data. Moreover, since the outermost tissues
are not reconstructed by the TR algorithm, the noise due to
possibly inaccurate segmentation is limited to the skin-air and
CSF-brain boundaries. All the reconstructions are affected by
the same noise realizations considered for PAR. The results
are illustrated in Fig. 8(b).

In this case, even though the percentage of correct classi-
fications is nearly always over 60% and as high as 100% in
location P2, in all locations tested except P2 at least one real-
ization leads to a wrong classification despite the significantly
lower amount of uncertainty that affects the electrical model
of the head in TR with respect to PAR.

Wrong classifications are present at both low and high
electrical noise level, indicating that the main cause of mis-
classification is the noise affecting the electrical model of the
head.

5) PAR sensitivity to parameters: During the reconstruc-
tion process the conductivity variation corresponding to the
wandering probe is kept fixed at the values mentioned at the
beginning of this section. If the conductivity variation due
to the target differs from the fixed initial guess value of the
wandering probe, then PAR compensates the discrepancy by
varying the volume of the reconstructed region (see Fig. 9).
Considering as an example position P3, if the target consists of
an ischemic stroke with a conductivity difference that is 30%
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Fig. 8. Stroke detection and discrimination for each target location (P1, P2, P3) and kind (I: ischemic, H: hemorrhagic) and the healthy condition (HY)
characterized by the absence of a target. For each group of two bars, the left one is relative to the low noise level (0.5%) while the right one depicts the

results for the high noise level (5%). PAR inversion (a) and TR inversion (b).

smaller than the reference value, the algorithm converges upon
a solution with a volume that is about 20% larger than would
have been reconstructed for a target with nominal conductivity.
The same happens when a hemorrhagic condition is present,
though in this case the variation with respect to the background
value is opposite in sign, so a decrease in target conductivity
results in a decrease in the volume of the region reconstructed.
Hence precise knowledge of the variation in conductivity
due to a stroke condition is not a requirement for correct
detection and classification. While generally not necessary
for correct detection and classification, to obtain a unique
solution and be able to distinguish the two extreme cases of
very small inclusion with high conductivity variation and very
large inclusion with small conductivity variation, a reasonable,
but not accurate, guess about the electrical properties of the
inclusion is needed.

Fig. 9. A wrong assumption regarding the conductivity of the target region
is compensated by the volume of the anomaly reconstructed. The points
represent the average reconstructed radius of 10 noise realizations.

Fig. 10 illustrates how varying the minimum radius bound
of the wandering probe affects the detection and discrimi-
nation performances of the PAR algorithm. In Fig. 10 (a)
the parameter is lowered from 5 (V =~ 14 cm?) to 4 voxels
(V =~ 7cm?). As expected, the number of detections increases
but the same happens to the number of incorrectly classified
healthy conditions, due to the fact that a smaller reconstructed

inclusion is considered feasible. While at the lowest noise
level tested each target is properly detected and classified, at
the high noise level the algorithm misclassifies a hemorrhagic
stroke in position P3. However, it is important to note that
even the lowest noise level considered is easily achievable
with existing EIT acquisition systems.

In contrast, in Fig. 10 (b), the minimum bound is increased
from 5 (V =~ 14 em?) to 6 voxels (V = 24 ¢m?). In this case,
as the size of the minimum feasible detection is increased,
the number of detected targets is lower when compared to
the results obtained with the nominal parameter in Fig. 8 (a).
The upside is a better classification performance for healthy
conditions.

As illustrated, the detection and classification performances
of the PAR algorithm vary according to the selected minimum
bound of the wandering probe, however, for a realistic amount
of measurement noise, PAR still manages to avoid the misclas-
sification of the detected targets. This is very significant for
the presented case study of stroke detection and classification
because tPA administration to a hemorrhagic patient may well
aggravate his condition.

C. Computational Performances

In the general case, each iteration of TR requires computa-
tion of N, - N; forward problems and solution of (8), where
JT . J+T7.T is a matrix whose number of elements in the
head domain is in the order of 10°. In PAR, N;-(2-Nj+1)-N,
forward problem solutions are computed for each iteration and
the small matrix JpT -Jp, with a number of elements in the order
of 10, is inverted at each step as in (5). It is worth noting that
in this case the number of forward problems does not depend
on the number of measuring electrodes N, but is related only
to the number of different injections /V;, different properties
Ny, that are varied in the reconstruction process (5 tissues and
4 spatial parameters that define the position and dimension
of the moving anomaly, in the example considered) and the
number of initial guess locations of the moving anomaly N,.

A typical 3D setting for the application of stroke detection
considered consists of an acquisition system supporting 128
electrodes and an injection pattern composed of 16 different
injections. In this case the number of forward problems solved
for each iteration is 2048 for TR while for PAR it is 2432.

In the configurations tested, the number of forward problem
solutions needed for each iteration is similar for both methods
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Fig. 10. Detection and classification performances of the PAR algorithm when the minimum radius of the wandering probe is set to 4 voxels (a) and 6 voxels
(b). The results are relative to each target location (P1, P2, P3) and kind (I: ischemic, H: hemorrhagic) and the healthy condition (HY) which is characterized
by the absence of a target. For each group of two bars, the left one is relative to the low noise level (0.5%) while the right one depicts the results for the

high noise level (5%).

and PAR has a speed advantage over TR due to the much
smaller Jacobian matrix .J, and the absence of a critical
regularization parameter that needs to be tuned for the specific
domain and noise realization. The small .J, of PAR is also
quick to construct, with the time required basically consisting
of the necessary forward problem solutions, whereas the
implementation of the reciprocity principle for the construction
of J in TR is computationally expensive.

In large scale problems such as the present case study of
stroke detection, a generalized SVD analysis of the reconstruc-
tion as a function of the regularization parameter or methods
based on the computation of the condition number [61] are
prohibitive, and thus the L-curve is generally computed only
at a few points corresponding to discrete values of the reg-
ularization parameter and the value that leads to the point
of maximum curvature is selected [50]. In our experience,
at least 10 different points are needed to obtain a good
approximation of the L-curve in the application considered.
This is a significant drawback of regularized methods because
in real-life measurements the sources of noise are multiple
and generally not precisely characterized, so in large-scale
problems it is difficult to quickly determine a good value for
A

In our system (see Table I), with the previously considered
3D volume consisting of a segmented head discretized with
125850 voxels, each with a volume of 27 mm?, the average
time required for stroke detection and discrimination is 24
minutes for PAR and 105 minutes for TR (Fig. 11), thus PAR
provides a speedup greater than 4X over TR. Each forward
problem computation requires about 0.2 seconds; the time
needed for the implementation of the reciprocity principle
in TR is about 15 minutes; the inversion step in TR (8)
takes about three minutes for each iteration, while in PAR
(5) it is nearly instantaneous, and the postprocessing procedure
enabling automatic detection and classification of conductivity
contrasts for TR requires about 15 seconds for each inversion
process. The average number of inversion steps is 3 for both
methods and, for TR, the overhead due to optimization of the
regularization parameter amounts to an additional 30 minutes.

It is important to note that, in applications in which the
direction of the conductivity variation due to target with
respect to background is known a priori, the number of
forward problem solutions and inversion steps for PAR is
roughly halved. Another important advantage of the proposed
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Fig. 11. a) average time for stroke detection and discrimination. For the

considered task PAR is more than 4X quicker than TR. b), d) pie charts
detailing how the total reconstruction time is split among the main inversion
modules for PAR and TR, respectively. The absence of a regularization
parameter which needs to be optimized, a simple Jacobian construction and
a light inversion step give PAR a significant speed advantage over TR.

algorithm concerns the scalability of the inversion to meshes
with a large number of elements. Since the reconstruction is
parametric and not voxel by voxel, the computational cost of
the inversion step is independent of the number of discretrizing
elements.

D. Limitations

The aim of the proposed approach, PAR, is not precise
estimation of position and size of the target conductivity
contrasts but only their quick detection and classification
as increase or decrease of conductivity with respect to the
background. PAR is compared with an implementation of TR
which is combined with a postprocessing procedure that allows
automatic detection and classification of conductivity con-
trasts. In applications where accurate localization and ampli-
tude estimation are of main importance, while computational
cost and time to reconstruction are not a concern, sparsity
regularization techniques may provide finer spatial resolution.

The results presented in Fig. 8 demonstrate that PAR is
able to tolerate a level of background inhomogeneity which
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is consistent with the one present in the considered case
study. Nonetheless, in other potential applications a high-
contrast distributed inhomogeneous background (e.g. stripy or
grid like) may generate additional local minima and increase
the number of not found and wrong classifications for both
presented algorithms. In those cases, subdomain techniques
may be more appropriate.

While PAR has been tested extensively in several condi-
tions, both experimentally using phantoms and in simulated
complex 3D domains affected by both significant uncertainty
in the electrical model and considerable measurement noise,
theoretical proof of convergence in all cases is still not
available. Given the various sources of noise that affect EIT
measurements in practical applications, the analysis is focused
on an empirical evaluation of robustness with respect to several
sources of uncertainty.

PAR can automatically detect multiple targets by embedding
the probe in the electrical model after each convergent recon-
struction and by running additional reconstructions until the
radius of the last probe is smaller than threshold. As the first
detection tends to partly compensate for the presence of other
targets, it tends to be larger than the actual object. This process
might lead to the misdetection of a few very small targets,
especially if significant noise is present. For the considered
application of stroke detection and discrimination, simulta-
neous presence of ischemic and hemorrhagic conditions is
very rare [62] and reconstructions are in principle not affected
by the previously described potential misdetection mechanism
due to the opposite variations with respect to the background.
Moreover, acute pharmacological treatment is not dependent
on the precise number of strokes of the same kind [63], so
in this case the misdetection of a few very small contrasts is
not critical. Nonetheless, the detection of a mixture of small
and large targets may be of interest in other applications, and
the authors consider a thorough characterization of detection
performance in presence of several small target contrasts, for
both presented algorithms, an interesting development to be
included in a future work.

While both algorithms were tested with the same electrical
model discretization, to allow for an unbiased comparison,
further work is needed to assess the minimum number of
mesh elements required for good detection and discrimination
performance in the considered case study.

In the previous analysis it is assumed that the conductiv-
ity contrast to be detected and classified can be appropri-
ately approximated by a spherical probe. While the probe
is spherical, non spherical target contrasts have been tested.
As demonstrated by the results obtained with the simulated
3D head domain, where the target is an ellipsoid while the
wandering probe is spherical, PAR is able to correctly detect
and classify compact conductivity contrasts of unknown shape.
As a first paper on the topic, the analysis is limited to
ellipsoidal targets. As a future development, the authors plan
to test the reconstruction performance in presence of markedly
irregular target contrasts.

V. CONCLUSIONS

In this work, a special purpose imaging technique for EIT,
targeting the automatic recognition and classification of com-
pact conductivity anomalies, has been presented. PAR does
not follow the usual approach of reconstructing a complete
conductivity map of the region of interest on a voxel by
voxel basis, but instead resorts to a new strategy: it exploits
additional information given by the specific constraints of the
application to reduce the number of unknowns and efficiently
detect and classify a target without focusing on its shape.

Very often in practical applications, and in the case study
considered, the actual conductivity of the various volumes
that compose the domain and their boundaries are not pre-
cisely known; thus separating reconstruction of the background
regions from detection of a compact conductivity contrast
(identified by its size and location) is advantageous and leads
to reliable recognition of the target over a wider range of
conditions.

For the considered application, PAR proves to be quicker
and more robust than widely employed voxel by voxel reg-
ularized inversion methods, in particular when complex 3D
electrical models are required and significant discretization and
measurement noises are present, such as in stroke detection
and discrimination. While the gold standard for early stroke
detection remains MRI, EIT may be quickly employed in the
field well before an MRI scanner is available for definitive
diagnosis. The proposed approach may reduce the time to
detection, at least for a subset of cases, thus leading to an
increase in the number of patients able to receive treatment in
the narrow timeframe available for tPA.

Additionally, it has been shown how the algorithm proposed
is capable of compensating for erroneous assumptions as to the
conductivity and target shape, making the algorithm robust in
the presence of anomalies with unknown (compact) shapes and
electrical properties.

The reduced computational burden and the absence of
a critical regularization parameter make application of the
parametric reconstruction method a promising alternative for
quick detection and characterization of compact conductivity
variations.
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