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Viale Risorgimento 2, Bologna 40136, Italy
bDepartment of Mechanical Engineering, University of Bath,

Claverton Down, Bath BA2 7AY, U.K.

antonio.barletta@unibo.it

ensdasr@bath.ac.uk

Abstract

The two-temperature model of local thermal non-equilibrium (LTNE) is employed

to investigate the onset of secondary convective flow in a fluid-saturated porous

layer inclined to the horizontal and heated from below. The layer is assumed to

be bounded by impermeable plane parallel walls with uniform and unequal tem-

peratures. The linear instability of the stationary pure-conduction single-cell basic

flow is studied by employing a normal mode decomposition of the disturbances.

A Squire-like transformation is adopted to map all the oblique roll modes onto

equivalent transverse roll modes. It is shown that the longitudinal rolls are the

most unstable modes at the onset of the instability. The neutral stability condition

for the longitudinal modes corresponds to that for a horizontal layer, by scaling

the Darcy-Rayleigh number with cosine of the inclination angle to the horizontal.

This scaling law, coincident with that well-known for the local thermal equilibrium

(LTE) regime, implies a monotonic increment in the stability of the basic flow as

the inclination to the horizontal increases.

Key words: Porous medium; Darcy’s law; Linear stability; Inclined layer; Local

thermal non-equilibrium
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Nomenclature

a dimensionless wave number

ax; az components of the dimensionless wave vector

c specific heat

êx; êy; êz unit vectors in the (x, y, z)−directions

g; g gravitational acceleration; modulus of g

h inter–phase heat transfer coefficient

H dimensionless inter–phase heat transfer parameter, Eq. (2)

k thermal conductivity

km effective thermal conductivity, χkf + (1− χ)ks

K permeability

L layer thickness

LTE local thermal equilibrium

LTNE local thermal non-equilibrium

p dimensionless pressure disturbance amplitude, Eq. (10)

P dimensionless pressure disturbances, Eq. (8)

R Darcy–Rayleigh number, Eq. (2)

Re; Im real part; imaginary part

S; S̃ transformed Darcy-Rayleigh numbers, Eqs. (12) and (22)

t dimensionless time, Eq. (2)

Ts,f dimensionless temperatures, Eq. (2)

u dimensionless velocity, (u, v, w), Eq. (2)

U dimensionless velocity disturbance, (U, V,W ), Eq. (5)

x dimensionless position vector, (x, y, z), Eq. (2)

Greek symbols

α thermal diffusivity

αm effective thermal diffusivity, km/(ρ c)f

β thermal expansion coefficient

γ dimensionless parameter, Eq. (2)

∆T reference temperature difference

ε dimensionless perturbation parameter, Eq. (5)
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η1 ··· 4 real dimensionless parameters, Eq. (B1)

θ average dimensionless temperature, Eq. (27)

θs,f dimensionless temperature disturbance amplitudes, Eq. (10)

Θs,f dimensionless temperature disturbances, Eq. (5)

λ dimensionless parameter, Eq. (2)

Λc(Φ) dimensionless function, Eq. (31)

ν kinematic viscosity

ρ density

φ porosity

ϕ inclination angle to the horizontal

Φ transformed angle, Eq. (12)

χ porosity

ω complex dimensionless parameter, Eq. (10)

Superscript, subscripts

¯ complex conjugate

⋆ dimensional quantity

b basic solution

c critical value

f fluid phase

s solid phase

′ differentiation with respect to y

1 Introduction

The study of the onset of thermal instability in a saturated porous layer heated from

below is a classical problem in convection heat transfer. This topic deserved a wide

space in the literature of the last decades, and it has been reported in many books

and review papers such as Nield and Bejan [1], Rees [2], Tyvand [3] and Barletta [4].

A special focus has been made by several authors on the case where a plane porous

layer is inclined to the horizontal and bounded by impermeable isothermal walls. A

temperature difference between the walls may lead to an unstable stratification that,
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however, has a nature different from that of a horizontal layer, viz. the usual Darcy-

Bénard setup [2]. In fact, the inclination to the horizontal results in a basic stationary

state where the fluid is not at rest, but circulates along a single cell of infinite width.

Strictly speaking, the basic velocity field is parallel, bidirectional, and with a vanishing

mass flow rate.

Among the first investigators of the inclined layer instability, we mention Bories and

Combarnous [5], Weber [6], Caltagirone and Bories [7]. The main effect of the inclination

is that the onset of the thermal instability is with a critical Darcy-Rayleigh number given

by 4π2/ cosϕ, where ϕ is the inclination angle of the layer to the horizontal. In other

words, for the onset of the linear instability, a simple scaling law with respect to the

Darcy-Bénard problem for a horizontal layer was proved [1]. Further results on the

stability of an inclined porous layer were obtained by Storesletten and Tveitereid [8],

Karimi-Fard et al. [9], Rees and Bassom [10], Rees et al. [11]. Karimi-Fard et al. [9]

carried out an investigation of oscillatory instability for the case of double-diffusion.

Rees and Bassom [10] defined a Squire-like transformation allowing a general study of

normal modes with an arbitrary orientation. Storesletten and Tveitereid [8] included in

the stability analysis the effect of anisotropy in the porous medium, while Rees et al.

[11] extended this analysis by considering an arbitrary orientation of the principal axes

of anisotropy.

A recent note by Nield [12] contains new insights into the question of the preferred

patterns at the onset of the instability: rolls or polyhedral cells. Nield et al. [13]

investigated the influence of the viscous dissipation effect on the onset of instability

in an inclined layer. Uniform heat flux boundary conditions, as possible models of the

heating from below, were considered in the stability analyses of the inclined porous layer

carried out by Barletta and Storesletten [14] and by Rees and Barletta [15].

The aim of this paper is to revisit the topic of instability in an inclined porous

layer, by relaxing the assumption that the solid phase and the fluid phase are in local

thermal equilibrium (LTE). Thus, a two-temperature model will be adopted to describe,

through a finite inter-phase heat transfer coefficient, the condition of local thermal non-

equilibrium (LTNE) [1, 16–31]. The study described in this paper is to be considered as

a generalization of the LTNE stability analysis, relative to the Darcy-Bénard problem

and hence to a horizontal layer, presented in the paper by Banu and Rees [21].
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2 Mathematical model

Let us consider an inclined porous layer saturated by a fluid. We denote as ϕ ∈ [0◦, 90◦]

the inclination angle to the horizontal. The boundary planes, y⋆ = 0, L, are assumed to

be impermeable and isothermal with different temperatures: T0+∆T is the temperature

of the lower boundary, while T0 is the temperature of the upper boundary, with ∆T > 0.

A sketch of the layer is given in Fig. 1.

We assume that the saturated porous medium is isotropic and homogeneous, that the

effect of viscous dissipation can be neglected, and that the local thermal non-equilibrium

(LTNE) can be described by a two-temperature model [1]. Thus, according to the

Oberbeck-Boussinesq approximation, we can write the local mass, momentum and en-

ergy balance equations in a dimensionless form as

∇ · u = 0, (1a)

∇× u =
1 + γ

γ
R ∇× [Tf (sinϕ êx + cosϕ êy)] , (1b)

λ
∂Ts

∂t
= ∇2Ts +H γ (Tf − Ts) , (1c)

∂Tf

∂t
+ u ·∇Tf = ∇2Tf +H (Ts − Tf) . (1d)

The dimensionless quantities employed in Eqs. (1) are defined as

(x, y, z) = (x⋆, y⋆, z⋆)
1

L
, t = t⋆

αf

L2
,

u = (u, v, w) = (u⋆, v⋆, w⋆)
L

χαf
= u⋆ L

χαf
, Ts,f =

T ⋆
s,f − T0

∆T
,

R =
gβ∆TKL

αmν
, γ =

χkf
(1− χ)ks

, λ =
αf

αs
, H =

hL2

χkf
.

(2)

Here, the stars denote the dimensional time, coordinates and fields, while the subscripts

“s” and “f” denote the solid phase and the fluid phase, respectively. The inter-phase

heat transfer coefficient h serves to model the heat exchange between the fluid and the

solid phase. We point out that h describes a local volumetric heat transfer and, as a

consequence, it is expressed in W/(m3K) instead of W/(m2K) as it usually happens

when modelling surface heat transfer.

The four dimensionless parameters, appearing in the governing equations (1) and

defined by Eq. (2), are the Darcy-Rayleigh number, R, the conductivity ratio, γ, the

diffusivity ratio, λ, and the inter-phase heat transfer parameter, H. We note that the

definition of Darcy-Rayleigh number given in Eq. (2) is consistent with that declared
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under local thermal equilibrium (LTE) conditions. The same definition has been recently

employed also by Barletta and Rees [31]. An alternative definition has been proposed,

for instance, in Banu and Rees [21]. These authors defined a Darcy-Rayleigh number

that coincides with R multiplied by (1 + γ)/γ.

Equation (1b) expresses the local momentum balance including, on the right hand

side, the buoyancy force contribution. This equation is obtained by taking the curl of

Darcy’s law, so that the pressure force term does not appear explicitly.

The boundary conditions on the velocity field and the temperature field are expressed

in dimensionless form as

y = 0 : v = 0, Ts = Tf = 1,

y = 1 : v = 0, Ts = Tf = 0.
(3)

3 The single-cell basic flow

A stationary solution of Eqs. (1) can be found such that the velocity field is a parallel

vector field directed along the x-axis, and the temperature field depends only on y,

ub =
1 + γ

γ

(
1

2
− y

)
R sinϕ, vb = 0, wb = 0,

Tsb = Tfb = 1− y,

(4)

where the subscript “b” stands for “basic solution”. Equation (4) corresponds to a

LTE solution. This basic flow with a vanishing mass flow rate is induced by the buoy-

ancy force, and describes a single-cell circulation having an infinite width along the

x-direction.

4 Small-amplitude disturbances

The perturbation of the basic velocity and temperature fields Eq. (4) can be expressed

as

u = ub + εU, Ts,f = Tsb,fb + εΘs,f, (5)

where ε is an amplitude parameter. Thus, Eqs. (1) yield the linearised set of equations

∇ ·U = 0, (6a)
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∇×U =
1 + γ

γ
R ∇× [Θf (sinϕ êx + cosϕ êy)] , (6b)

λ
∂Θs

∂t
= ∇2Θs +H γ (Θf −Θs) , (6c)

∂Θf

∂t
+

∂Θf

∂x

1 + γ

γ

(
1

2
− y

)
R sinϕ− V = ∇2Θf +H (Θs −Θf) , (6d)

where the terms O(ε2) have been neglected. The boundary conditions for the disturb-

ances, (U,Θ), are

y = 0, 1 : V = 0, Θs = Θf = 0. (7)

A pressure representation of the velocity disturbance U,

U =
1 + γ

γ
RΘf (sinϕ êx + cosϕ êy)−∇P, (8)

allows one to satisfy identically Eq. (6b), and to express the other governing equations

(6) and boundary conditions (7) as

∇2P =
1 + γ

γ
R

(
∂Θf

∂x
sinϕ+

∂Θf

∂y
cosϕ

)
, (9a)

λ
∂Θs

∂t
= ∇2Θs +H γ (Θf −Θs) , (9b)

∂Θf

∂t
+

∂Θf

∂x

1 + γ

γ

(
1

2
− y

)
R sinϕ− 1 + γ

γ
RΘf cosϕ+

∂P

∂y

= ∇2Θf +H (Θs −Θf) , (9c)

y = 0, 1 :
∂P

∂y
= 0, Θs = Θf = 0. (9d)

We now study the normal modes of Eqs. (9) expressed as P (x, y, z, t)

Θs,f(x, y, z, t)

 =

 p(y)

θs,f(y)

 exp
[
i(axx+ azz − ωt)

]
, (10)

where axêx + azêz is the wave vector, a =
√

a2x + a2z is the wave number, and ω is a

complex parameter. The real part of ω, Re(ω), is the angular frequency of the wave.

The imaginary part, Im(ω), is the exponential growth parameter. If Im(ω) < 0, the

normal mode describes a stability condition. On the other hand, if Im(ω) > 0, the

normal mode yields instability. The breakup of the single-cell flow regime occurs at the

marginal stability threshold, namely when Im(ω) = 0. In the following, we will focus

on the marginal stability condition, so that we will tacitly assume Im(ω) = 0.

General modes with 0 ≤ ax ≤ a and 0 ≤ az ≤ a are termed oblique rolls. The modes

with ax = a and az = 0 are called transverse rolls, while the modes with ax = 0 and

az = a are the longitudinal rolls.
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Substitution of Eq. (10) into Eqs. (9) yields

p′′ − a2p− 1 + γ

γ
R
(
iax θf sinϕ+ θ′f cosϕ

)
= 0, (11a)

θ′′s − a2θs +H γ (θf − θs) + iωλ θs = 0, (11b)

θ′′f − a2θf +H (θs − θf) + iω θf − iax θf
1 + γ

γ

(
1

2
− y

)
R sinϕ

+
1 + γ

γ
R θf cosϕ− p′ = 0, (11c)

y = 0, 1 : p′ = 0, θs = θf = 0, (11d)

where primes denote the derivatives with respect to y. By employing the same trans-

formation defined by Rees and Bassom [10], the eigenvalue problem Eqs. (11) for ar-

bitrary oblique rolls can be mapped onto an equivalent eigenvalue problem for two-

dimensional normal modes with ax = a and az = 0, viz. transverse rolls. More precisely,

we can map the pair of parameters (ϕ,R) onto a new pair (Φ, S) such that R cosϕ = S cosΦ,

axR sinϕ = aS sinΦ.
(12)

Equation (12) implies that Eqs. (11) can be rewritten as

p′′ − a2p− 1 + γ

γ
S
(
ia θf sinΦ + θ′f cosΦ

)
= 0, (13a)

θ′′s − a2θs +H γ (θf − θs) + iωλ θs = 0, (13b)

θ′′f − a2θf +H (θs − θf) + iω θf − ia θf
1 + γ

γ

(
1

2
− y

)
S sinΦ

+
1 + γ

γ
S θf cosΦ− p′ = 0, (13c)

y = 0, 1 : p′ = 0, θs = θf = 0. (13d)

This system of homogeneous differential equations with homogeneous boundary con-

ditions can be solved as an eigenvalue problem to obtain, for prescribed input data

(H, γ, λ,Φ), the marginal stability function S(a) and the dispersion relation ω(a). The

minimum of function S(a) defines the critical values ac and Sc.

5 Longitudinal rolls

If we set ax = 0, Eq. (12) can be solved with

Φ = 0◦, S = R cosϕ. (14)
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Thus, Eqs. (13) for the longitudinal rolls yield

p′′ − a2p− 1 + γ

γ
Sθ′f = 0, (15a)

θ′′s − a2θs +H γ (θf − θs) + iωλ θs = 0, (15b)

θ′′f − a2θf +H (θs − θf) + iω θf +
1 + γ

γ
S θf − p′ = 0, (15c)

y = 0, 1 : p′ = 0, θs = θf = 0. (15d)

Since in Eqs. (15) there is no explicit dependence on the inclination angle, the eigenvalue

problem for the longitudinal rolls is formally the same as that for the Darcy-Bénard

problem in a horizontal layer with LTNE conditions. This problem was solved by Banu

and Rees [21]. These authors stated that the eigenvalue problem expressed by Eqs. (15)

satisfies the exchange of stabilities, so that ω = 0. A formal proof is given here in

Appendix A. Thus, Eqs. (15) can be simplified to

p′′ − a2p− 1 + γ

γ
Sθ′f = 0, (16a)

θ′′s − a2θs +H γ (θf − θs) = 0, (16b)

θ′′f − a2θf +H (θs − θf) +
1 + γ

γ
S θf − p′ = 0, (16c)

y = 0, 1 : p′ = 0, θs = θf = 0. (16d)

In agreement with Banu and Rees [21], we find that Eqs. (16) can be solved analytically.

For the lowest marginal stability mode, we determine the solution by assuming that p

is proportional to cos(πy), while θs and θf are proportional to sin(πy). Hence, Eqs. (16)

yield the marginal stability condition

S =
γ

1 + γ

(
a2 + π2

)2 (
a2 + π2 +H +Hγ

)
a2 (a2 + π2 +Hγ)

. (17)

We note that, on account of Eq. (14), the marginal stability condition expressed in

terms of the Darcy-Rayleigh number R exploits a dependence on the inclination angle

ϕ through a factor 1/ cosϕ. This conclusion is exactly the same as that drawn for the

case of LTE and described, for instance, in Nield and Bejan [1]. As a consequence, an

increasing inclination to the horizontal implies a stabilizing effect on the basic flow, viz.

a monotonic increment of the lowest eigenvalue R corresponding to assigned values of

(a,H, γ), evaluated through Eqs. (14) and (17).

There are two sensible limiting cases of Eq. (17), H → 0 and H → ∞. The former

limit defines the complete thermal uncoupling between the solid phase and the fluid
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phase, while the latter limit defines the local thermal equilibrium (LTE) between the

phases. If H → 0, with γ ∼ O(1), Eq. (17) yields

S =
γ

1 + γ

(
a2 + π2

)2
a2

. (18)

If H → ∞, with γ ∼ O(1), Eq. (17) yields

S =

(
a2 + π2

)2
a2

. (19)

An important point is that the same limiting expression of S(a) expressed by Eq. (19)

is also obtained when γ → ∞, with H ∼ O(1). In fact, the LTE condition can be

also reached with a finite inter-phase heat transfer coefficient provided that γ ≫ 1, viz.

χkf ≫ (1− χ)ks.

We mention that the neutral stability conditions, Eqs. (18) and (19), for the two

opposite regimes H → 0 and H → ∞ just differ by an overall scaling factor, γ/(1 + γ).

In the limiting cases defined above, the critical conditions for the onset of the in-

stability to longitudinal rolls are given by, respectively,

ac = π, Sc =
4π2γ

1 + γ
, when H → 0, with γ ∼ O(1),

ac = π, Sc = 4π2,


when H → ∞, with γ ∼ O(1)

when γ → ∞, with H ∼ O(1)

.

(20)

6 Oblique rolls

If we consider a general angle Φ ∈ [0◦, 90◦], the solution of Eqs. (13) is to be obtained

numerically. An efficient and accurate procedure is the combined use of a Runge-Kutta

solver and the shooting method. A description is provided in Appendix B.

Several limiting cases can be explored where the general eigenvalue problem, Eqs. (13),

is significantly simplified.

6.1 Limit H → 0, with γ ∼ O(1)

In this case of complete thermal decoupling between the phases, Eq. (13b) becomes

independent of the others. Its unique solution for a general a satisfying the boundary

conditions, Eq. (13d), is θs = 0. Then, we may reduce Eqs. (13) to a system of two

differential equations,

p′′ − a2p− S̃
(
ia θf sinΦ + θ′f cosΦ

)
= 0, (21a)
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θ′′f − a2θf + iω θf − ia θf

(
1

2
− y

)
S̃ sinΦ + S̃ θf cosΦ− p′ = 0, (21b)

y = 0, 1 : p′ = 0, θf = 0, (21c)

where the parameter S̃ is defined as

S̃ =
1 + γ

γ
S. (22)

Equations (21) are independent of λ, and depend on γ only implicitly through the

parameter S̃.

6.2 Limit γ → 0, with H ∼ O(1)

This case corresponds to a condition where χkf ≪ (1−χ)ks. We may infer that Eq. (13b)

becomes independent of the others, and that its unique solution for a general a satisfying

the boundary conditions, Eq. (13d), is θs = 0. If we assume that the parameter S̃ defined

by Eq. (22) is O(1), then Eqs. (13) yield, in the limit γ → 0,

p′′ − a2p− S̃
(
ia θf sinΦ + θ′f cosΦ

)
= 0, (23a)

θ′′f − a2θf −Hθf + iω θf − ia θf

(
1

2
− y

)
S̃ sinΦ + S̃ θf cosΦ− p′ = 0, (23b)

y = 0, 1 : p′ = 0, θf = 0. (23c)

Equations (23) are independent of λ. We note that, from a purely mathematical view-

point, Eqs. (21) are just a special case of Eqs. (23) obtained in the limit H → 0.

Proving that S̃(a) ∼ O(1), in the limit γ → 0, by solving the eigenvalue problem

Eqs. (23) implies that S(a) is in fact identically zero for every input data (H,Φ). On

inspecting Eq. (17), it is evident that this is the case for longitudinal rolls (Φ = 0), since

one has

S̃(a) =

(
a2 + π2

) (
a2 + π2 +H

)
a2

. (24)

The minimum of S̃(a) defines the critical values for longitudinal rolls that, on account

of Eq. (24), are given by

ac =
√
π
(
H + π2

)1/4
, S̃c = H + 2π

(
π +

√
H + π2

)
. (25)
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6.3 Local thermal equilibrium (LTE)

The LTE condition can be attained by two possible limiting cases,

limit H → ∞, with γ ∼ O(1);

limit γ → ∞, with H ∼ O(1).
(26)

We first define

θ =
θs + γ θf

γ
, (27)

so that, by combining Eqs. (13b) and (13c), Eqs. (13) can be rewritten as

p′′ − a2p− 1 + γ

γ
S
(
ia θf sinΦ + θ′f cosΦ

)
= 0, (28a)

θ′′s − a2θs +H γ (θf − θs) + iωλ θs = 0, (28b)

θ′′ − a2θ + iω
λθs + γθf

γ
− ia θf

1 + γ

γ

(
1

2
− y

)
S sinΦ

+
1 + γ

γ
S θf cosΦ− p′ = 0, (28c)

y = 0, 1 : p′ = 0, θs = θf = 0. (28d)

In both the limiting cases given by Eq. (26), Eq. (28b) is satisfied only if θs = θf . This

equality implies that Eqs. (28) can be rewritten as

p′′ − a2p− S
(
ia θ sinΦ + θ′ cosΦ

)
= 0, (29a)

θ′′ − a2θ + iω̃ θ − ia θ

(
1

2
− y

)
S sinΦ + S θ cosΦ− p′ = 0, (29b)

y = 0, 1 : p′ = 0, θ = 0, (29c)

where

ω̃ =


ω

λ+ γ

1 + γ
, in the limit H → ∞, with γ ∼ O(1);

ω, in the limit γ → ∞, with H ∼ O(1).

(30)

We realize immediately that the form of the eigenvalue problem Eqs. (29) coincides

with that of the eigenvalue problem Eqs. (21). The two eigenvalue problems can be

made identical if, in Eqs. (21), we replace ω with ω̃, S̃ with S, and θf with θ. This

mathematical feature establishes an interesting bridge between two opposite regimes:

the limit H → 0 where the two phases are thermally uncoupled, and the limit of LTE.

We mention that the linear stability analysis in the case of LTE was carried out

by Rees and Bassom [10] with a streamfunction-temperature formulation instead of a

pressure-temperature formulation as in Eqs. (29).
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7 Discussion of the results

The analysis of the behaviour of oblique and transverse rolls, as compared to the longit-

udinal rolls, can be carried out by testing the change of the critical values (ac, S̃c) when

Φ increases above 0◦, for prescribed (λ, γ,H). On tracing numerically the evolution of

the critical values, (ac, S̃c), by increasing continuously the angle Φ, the detected oblique

rolls display a vanishing angular frequency, ω = 0. The possibility of oblique rolls with

ω ̸= 0 may arise only for higher modes, not involved in the onset of the instability.

The circumstance that we may set ω = 0 in studying the onset of unstable oblique rolls

implies that ac and S̃c are independent of λ. In all cases examined, the oblique rolls

(Φ > 0◦) are more unstable than the longitudinal rolls (Φ = 0◦). A convenient way to

show up this feature is by plotting, for given values of γ and H, the ratio between S̃c

evaluated for Φ > 0◦ and S̃c evaluated for Φ = 0◦,

Λc(Φ) =
S̃c,Φ

S̃c,0◦
=

Sc,Φ

Sc,0◦
. (31)

What we obtain is that Λc(Φ) > 1 for Φ > 0◦, in all the cases examined. The behaviour

of the oblique and transverse rolls depends on the pair of input parameters (γ,H). The

plots of Λc(Φ) reported in Figs. 2-5 are for assigned values of γ. The cases γ → 0,

γ = 0.1, 1, 10 are considered. Each figure displays different curves relative to different

values of H.

We note that, for every assigned value of γ, the definition of Λc(Φ), Eq. (31), ensures

that this function is identical in the two opposite regimes: H → 0, described by the

solution of Eqs. (21), and H → ∞, described by the solution of Eqs. (29). These two

regimes are denoted in Figs. 3-5 by a dashed curve. In Fig. 2, relative to the case γ → 0,

the dashed curve describes only the limit H → 0, as the LTE limit H → ∞ is ill-defined

in this case. It can be immediately recognised on inspecting Figs. 2-5 that the value

of the parameter H becomes less and less important as γ increases, and its influence

becomes practically immaterial when γ = 10 (Fig. 5) or larger. As we anticipated

above, Figs. 2-5 show that Λc(Φ) > 1 whenever Φ > 0◦, and this implies that the most

unstable modes are always the longitudinal rolls (Φ = 0◦). The function Λc(Φ) increases

monotonically and, close to the threshold Φ = 31.49032◦, it becomes very steep. In fact,

Φ = 31.49032◦ is a vertical asymptote of Λc(Φ) in the limit of LTE (H → ∞), as it was

shown by Rees and Bassom [10]. Physically, this means that no unstable normal modes
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are found with Φ > 31.49032◦ in the limit of LTE. Figures 2-5 reveal that this statement

holds also for the LTNE regime, as all graphs of function Λc(Φ) for a finite nonvanishing

H lay on the left of the graph for the limiting case H → ∞ (dashed curve). Finally, we

note that increasing H from 0 to ∞ means that the graph of Λc(Φ) first moves to the

left and then to the right in order to match the dashed curve in both the limiting cases

H → 0 and H → ∞. It is evident in Figs. 2-5 that the graph with H = 0.1 is always

almost overlapped to that for H → 0 (or ∞), namely the dashed curve.

The neutral stability curves in the parametric plane (a, S̃) are drawn, for increasing

values of Φ, in Figs. 6-9. Each figure refers to a given γ, increasing from 0 to 10, and

each frame is for a prescribed H. These figures show that the lowest neutral stability

curve is that for Φ = 0◦ (longitudinal rolls). The curves with increasing angles Φ > 0◦

(oblique rolls) move continuously upward, thus describing less unstable modes. We also

see that, with a fixed γ, the curves corresponding to a higher H yield higher values of

S̃. In other words, an increasing inter-phase heat transfer results in a stabilisation of

the basic single-cell flow. We mention that this feature was recognized by Banu and

Rees [21], with reference to a horizontal porous layer. Figure 9 illustrates the behaviour

already observed in Fig. 5: when γ is large, the influence of the parameter H is definitely

a minor one, since a condition close to LTE is approached.

As anticipated in Section 6.2, Fig. 6 suggests that S̃(a) ∼ O(1), in the limit γ → 0,

and this implies that S(a) is identically zero in this limit.

8 A neat example

The Squire-like transformation, Eq. (12), is extremely useful in order to map arbitrary

oblique rolls, with wave vector axêx + azêz, onto transverse rolls, with az = 0. This

transformation allows us to trace the change of ax from 0 to a =
√

a2x + a2z by increas-

ing the angle Φ from 0◦, meaning ax = 0 (longitudinal rolls), to ϕ, meaning ax = a

(transverse rolls). However, the use of this transformation, as well as the use of S and S̃

instead of R, makes the physical interpretation of the results a bit cumbersome. Thus,

a neat example where the neutral stability curves in the parametric plane (a, S̃), with

increasing Φ, are illustrated in the anti-transformed parametric plane (a,R), with in-

creasing ax/a, may be useful. To this end, we refer to the case γ = 1, H = 1 (upper

frame of Fig. 8).
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Figure 10 shows the change of the neutral stability curves in the (a,R)−plane for

three tilt angles, ϕ = 0◦, 45◦, 60◦, as the ratio ax/a increases above 0. An increasing

ratio ax/a means an increasing inclination of the wave vector to the z−axis, and hence

a progressive departure from the longitudinal rolls. The neutral stability curve relative

to ϕ = 0◦ is not affected by the value of ax/a. In fact, when the porous layer is

horizontal (ϕ = 0◦), the oblique rolls are equivalent to the longitudinal rolls as the

system is invariant by rotations around the vertical axis. As ax/a increases, the neutral

stability curves with ϕ = 45◦ and 60◦ move upwards and eventually disappear. The

neutral stability curve with ϕ = 60◦ disappears when ax/a increases from 0.25 to 0.5.

The neutral stability curves with ϕ = 45◦ disappears when ax/a increases from 0.5 to

0.75. The reason why the neutral stability curves with ϕ = 45◦ and 60◦ disappear may

be inferred from Fig. 4. In fact, if ϕ = 60◦ and ax/a = 0.5, Eq. (12) implies that

Φ = 40.8934◦, namely a value where the instability to oblique rolls is not allowed, as it

is deduced by inspecting Fig. 4. By the same reasoning, we exclude also the possibility

of instability to oblique rolls with ϕ = 45◦ and ax/a = 0.75; in fact, Eq. (12) implies

that Φ = 36.8699◦ in this case.

9 Conclusions

The stability of the basic stationary single-cell flow in an inclined porous layer saturated

by a fluid has been studied in a regime of local thermal non-equilibrium (LTNE). The

LTNE regime has been modelled by a two-temperature scheme employing a finite inter-

phase heat transfer coefficient. The characteristic dimensionless parameter of LTNE

is H, with H → 0 meaning a complete thermal decoupling between the phases, and

H → ∞ leading to a condition of local thermal equilibrium (LTE). Another important

dimensionless parameter is the thermal conductivity ratio γ, where γ → 0 models a

medium with a solid phase much more conductive than the fluid phase, and γ → ∞

leads to a LTE condition even if H is finite. We mention that the limit γ → 0 may have

a special interest when studying the behaviour of porous media such as the metallic

foams.

The response to small-amplitude linear disturbances has been tested by adopting a

normal mode analysis. Normal modes with an arbitrary inclination of the wave vec-

tor have been considered, viz. oblique rolls, including longitudinal rolls (wave vector
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perpendicular to the basic velocity) and transverse rolls (wave vector parallel to the

basic velocity) as special cases. The exchange of stabilities has been proved for the lon-

gitudinal rolls. A Squire-like transformation has been adopted to map all the oblique

rolls onto corresponding transverse rolls. Accordingly the tilt angle of the layer, ϕ, has

been replaced with a transformed angle Φ, and the Darcy-Rayleigh number R has been

replaced with a transformed Darcy-Rayleigh number S.

The neutral stability curves and the critical values of the Darcy-Rayleigh number

have been obtained for different choices of the governing parameters (Φ, γ,H). The

study was carried out with a numerical solution of the eigenvalue problem, based on a

combined Runge-Kutta solver and shooting method. The analysis allowed us to deduce

the following.

(a) The longitudinal rolls are the most unstable normal modes. This instability exists

for every tilt angle ϕ smaller than 90◦. At neutral stability, the Darcy-Rayleigh

number depends on ϕ through a cosine factor, thus allowing a simple correspondence

to the neutral stability threshold for a horizontal layer. The LTNE condition implies

that the instability to longitudinal rolls is enhanced with respect to the asymptotic

LTE regime.

(b) The oblique and transverse rolls are unstable only for sufficiently small tilt angles.

The upper bound, ϕ = 31.49032◦, for the existence of transverse roll instability

under LTE conditions (see Rees and Bassom [10]) is not exceeded in the LTNE

regime. Higher branches of travelling oblique modes may exist, but they have been

disregarded in this analysis as they have no relevance to the onset of the instability.

The above described stability analysis was carried out by modelling the heating from

below through a pair of isothermal and impermeable boundary planes. An opportunity

for future developments of this research is the study of different models for the temper-

ature boundary conditions. This task is specially challenging if uniform heat flux at a

boundary is assumed. This type of boundary conditions require a non-trivial modelling

in the LTNE regime as it was pointed out, for instance, by Amiri et al. [17], Alazmi and

Vafai [20], Yang and Vafai [28], Barletta and Rees [31].
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Appendix A – Exchange of stabilities

It can be proved by an integral method [32, 33] that the exchange of stabilities holds

for Eqs. (15), namely that only non-travelling (ω = 0) longitudinal modes are allowed.

In the following, we denote by an overline the complex conjugate of a function. On

multiplying Eq. (15b) by θ̄s, integrating with respect to y in the interval 0 ≤ y ≤ 1, using

the integration by parts wherever needed, and simplifying according to the boundary

conditions, Eq. (15d), we obtain

−
∫ 1

0

(
|θ′s|2 + a2|θs|2

)
dy +H γ

(∫ 1

0
θ̄sθf dy −

∫ 1

0
|θs|2dy

)
+iωλ

∫ 1

0
|θs|2dy = 0.

(A1)

Then, we multiply Eq. (15c) by θ̄f , integrate with respect to y in the interval 0 ≤ y ≤

1, and simplify according to the integration by parts with the boundary conditions,

Eq. (15d),

−
∫ 1

0

(
|θ′f |2 + a2|θf |2

)
dy +H

(∫ 1

0
θ̄fθs dy −

∫ 1

0
|θf |2dy

)
+ iω

∫ 1

0
|θf |2dy

+
1 + γ

γ
S

∫ 1

0
|θf |2dy +

∫ 1

0
θ̄′fp dy = 0.

(A2)
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From Eqs. (15a) and (15d), one obtains the integral equation

1 + γ

γ
S

∫ 1

0
θ̄′fp dy = −

∫ 1

0

(
|p′|2 + a2|p|2

)
dy, (A3)

so that Eq. (A2) can be rewritten as

−
∫ 1

0

(
|θ′f |2 + a2|θf |2

)
dy +H

(∫ 1

0
θ̄fθs dy −

∫ 1

0
|θf |2dy

)
+ iω

∫ 1

0
|θf |2dy

+
1 + γ

γ
S

∫ 1

0
|θf |2dy −

γ

(1 + γ)S

∫ 1

0

(
|p′|2 + a2|p|2

)
dy = 0.

(A4)

We now multiply Eq. (A4) by γ and sum Eqs. (A1) and (A4), so that we obtain

−
∫ 1

0

[
γ|θ′f |2 + |θ′s|2 + a2

(
γ|θf |2 + |θs|2

)]
dy

+Hγ

[
2

∫ 1

0
Re(θ̄fθs) dy −

∫ 1

0

(
|θf |2 + |θs|2

)
dy

]
+ iω

∫ 1

0

(
γ|θf |2 + λ|θs|2

)
dy

+(1 + γ)S

∫ 1

0
|θf |2dy −

γ2

(1 + γ)S

∫ 1

0

(
|p′|2 + a2|p|2

)
dy = 0.

(A5)

Equation (A5) is satisfied if both the real part and the imaginary part of the left hand

side are zero. In particular, if we set the imaginary part to zero, we obtain

ω

∫ 1

0

(
γ|θf |2 + λ|θs|2

)
dy = 0. (A6)

Since the trivial solution of the eigenvalue problem Eqs. (15) is to be excluded, and

both γ and λ are positive, Eq. (A6) holds if and only if ω = 0. This proves that the

exchange of stabilities is satisfied for Eqs. (15).

Appendix B – Numerical solution

The eigenvalue problem defined by Eqs. (13) can be solved numerically by employing

a fourth-order Runge-Kutta solver combined with the shooting method. To this end,

we first reformulate Eqs. (13) as an initial value problem, by completing artificially the

conditions at y = 0, namely

y = 0 :

p = 1, p′ = 0,

θs = 0, θ′s = η1 + iη2,

θf = 0, θ′f = η3 + iη4.

(B1)

Since the differential problem defined by Eqs. (13) is homogeneous, the condition p(0) =

1 serves for fixing the otherwise arbitrary scale of the solutions (p, θs, θf). The four

real parameters η1 ··· 4 are unknown a priori. They can be determined by the shooting

method, through the following scheme:
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1. prescribe the values of (a,H, γ, λ,Φ);

2. solve numerically the initial value problem given by Eqs. (13a)-(13c) and (B1);

3. use the final conditions at y = 1 expressed by Eq. (13d) to determine the unknown

real parameters (ω, S, η1, η2, η3, η4).

In this regard, we note that the final conditions p′(1) = 0, θs(1) = 0 and θf(1) = 0 are

complex, so that they yield six real equations in the six real unknowns (ω, S, η1, η2, η3, η4).

The Runge-Kutta solution of the initial value problem is achieved by means of the func-

tion NDSolve available in the Mathematica 10 environment (© Wolfram, Inc.), while

the shooting method can be managed, in the same environment, by using the function

FindRoot.
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Figure 1: The fluid saturated porous layer and the thermal boundary conditions
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Figure 2: Case γ → 0: plots of Λc(Φ) for different values of H; the dashed curve is

for H → 0; the dotted vertical line denotes the threshold angle for the existence of

transverse rolls when H → 0
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Figure 3: Case γ = 0.1: plots of Λc(Φ) for different values of H; the dashed curve is

for H → 0 and for H → ∞; the dotted vertical line denotes the threshold angle for the

existence of transverse rolls in the LTE regime (H → ∞)
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Figure 4: Case γ = 1: plots of Λc(Φ) for different values of H; the dashed curve is for

H → 0 and for H → ∞; the dotted vertical line denotes the threshold angle for the

existence of transverse rolls in the LTE regime (H → ∞)
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Figure 5: Case γ = 10: plots of Λc(Φ) for different values of H; the dashed curve is for

H → 0 and for H → ∞; the dotted vertical line denotes the threshold angle for the

existence of transverse rolls in the LTE regime (H → ∞)
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Figure 6: Case γ → 0: neutral stability curves in the (a, S̃)−plane for different angles

Φ; the upper frame is for H → 0, while the lower frame is for H = 10
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Figure 7: Case γ = 0.1: neutral stability curves in the (a, S̃)−plane for different angles

Φ; the upper frame is for H = 1, while the lower frame is for H = 10
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Figure 8: Case γ = 1: neutral stability curves in the (a, S̃)−plane for different angles

Φ; the upper frame is for H = 1, while the lower frame is for H = 10
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Figure 9: Case γ = 10: neutral stability curves in the (a, S̃)−plane for different angles

Φ; the upper frame is for H = 1, while the lower frame is for H = 10
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Figure 10: Case γ = 1, H = 1: neutral stability curves in the (a,R)−plane for different

inclination angles ϕ; each frame corresponds to a different ratio ax/a
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