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PRODUCTS OF ARITHMETIC MATROIDS AND

QUASIPOLYNOMIAL INVARIANTS OF CW-COMPLEXES

EMANUELE DELUCCHI AND LUCA MOCI

Abstract. In this note we prove that the product of two arithmetic multiplic-

ity functions on a matroid is again an arithmetic multiplicity function. This

allows us to answer a question by Bajo–Burdick–Chmutov [3], concerning the
modified Tutte–Krushkal–Renhardy polynomials defined by these authors.

Furthermore, we show that the Tutte quasi-polynomial introduced by Brändén

and Moci encompasses invariants defined by Beck–Breuer–Godkin–Martin [4]
and Duval–Klivans–Martin [1] and can thus be considered as a dichromate for

CW complexes.

1. Introduction

The enumeration of colorings, flows and spanning trees on graphs are classical
topics, unified by a two-variable polynomial due to W. T. Tutte [23]. This polyno-
mial specializes to both the coloring counting and the flow counting functions, and
it evaluates to the number of spanning trees. H. Crapo extended Tutte’s definition
to arbitrary matroids and since then the Tutte polynomial went on to become one
of the most studied matroid invariants, with great theoretical significance and a
host of applications — e.g., in statistics and physics. Recently, this classical setup
has been generalized in two ways.

On the one hand, the concepts of coloring and flow have been generalized from
graphs to higher dimensional objects such as simplicial complexes by Beck and Kem-
per [5] and, more generally, to CW complexes by Beck–Breuer–Godkin–Martin [4]
and Duval–Klivans–Martin [1]. These authors showed, among other things, that
the functions counting the number of colorings and flows with q values on a CW
complex is a quasi-polynomial in q. In a related vein, Bajo, Burdick and Chmutov
[3] introduced a family of modified TKR polynomials that connects Kalai’s enumer-
ation of weighted cellular spanning trees of complexes [14] to a class of polynomials
defined by Krushkal and Renhardy [16] in their study of graph embeddings and to
a polynomial defined by Bott [6].

On the other hand, in collaboration with M. D’Adderio [9] and with P. Brändén
[7] the second-named author developed a theory of arithmetic matroids as “ma-
troids decorated with a multiplicity function”, abstracting the arithmetic proper-
ties of lists of elements in finitely generated abelian groups. To each arithmetic
matroid is naturally associated an arithmetic Tutte polynomial. These polynomials
have been in the focus of recent and lively research, which brought to light manifold
connections and a rich structure theory. For instance, arithmetic Tutte polynomials
specialize to Poincaré polynomials of toric arrangements [20], to Ehrhart polyno-
mials of zonotopes [8] and to the Hilbert series of some zonotopal spaces [18].
Moreover, they can be recovered from the Tutte polynomials for group actions on
semimatroids [11], and they satisfy a convolution formula [2].

With a list of elements in a finitely generated abelian group is also associated a
Tutte quasi-polynomial [7], which interpolates between the (ordinary) Tutte polyno-
mial and the arithmetic Tutte polynomial. This quasi-polynomial does not depend

1



2 EMANUELE DELUCCHI AND LUCA MOCI

only on the arithmetic matroid, but on a finer structure: a matroid over Z in the
sense of [13]. As pointed out in [4], the enumerating functions of colorings and
flows on a CW complex are not matroidal, and hence cannot be obtained from the
ordinary Tutte polynomial. In this paper we show that, however, they are spe-
cializations of the Tutte quasi-polynomial, which hence can be viewed as the the
dichromate for CW complexes, just as the Tutte polynomial is the dichromate for
graphs. In the same spirit, one may look for a higher-dimensional analogue of the
graphical arrangement associated to a graph. This is an arrangement of subgroups
of the torus (see Definition 3.9) and, as such, a special case of a construction studied
e.g. by Kamiya, Takemura and Terao [15] and Lawrence [17].

Moreover, we show that the set of arithmetic matroids over a fixed underlying
matroid has a natural structure as a commutative monoid. This implies that the
modified TKR polynomials are indeed arithmetic Tutte polynomials; in particular,
their coefficients are positive.

In this way we address questions of the authors of [1, 3, 4], who ask whether and
how the coloring and flow polynomials for CW complexes and the modified TKR
polynomials are related to arithmetic matroids.

Structure of the paper. In Section 2 we start off with some preliminaries on
incidence algebras and arithmetic matroids. We prove a general theorem about
products of integer functions on posets (Theorem 2.2) and specialize it to one
about products of arithmetic multiplicity functions (Theorem 2.8).

In Section 3 we recall the definitions of flow and chromatic quasi-polynomials
for CW complexes, and we show that they are indeed specializations of the Tutte
quasi-polynomial (Theorem 3.6).

We close with Section 4 where we prove that the modified TKR polynomial is
the arithmetic Tutte polynomial of an arithmetic matroid (Theorem 4.4).

Acknowledgements. The first-named author has been supported by the Swiss
National Foundation Professorship grant PP00P2 150552/1. We thank Yvonne
Kemper for pointing out [19], Fengwei Zhou for finding an error in a previous
version of this paper, and an anonymous referee for his suggestions.

2. On arithmetic matroids

2.1. Poset theory preliminaries. The goal of this section is to prove a result
on Möbius functions of posets (short for “partially ordered sets”) which will serve
as a stepping stone towards Theorem 2.8. We will assume familiarity with basic
terminology of poset theory and refer the reader unfamiliar with it to [22].

Throughout, we will let P denote a finite poset.1 An interval of P is any subset
of P of the form [x, y] := {z ∈ P | x ≤ z ≤ y} for some x, y ∈ P , x ≤ y. The set of
intervals of P is denoted I(P ).

The so-called Möbius function of P is the function

µ : I(P )→ Z
defined recursively as follows

µ(p, p) = 1 for all p ∈ P,∑
p1≤q≤p2

µ(p1, q) = 0 for all p1 < p2 in P,

where for simplicity we write µ(x, y) := µ([x, y]).

1This will avoid unnecessary technicalities and will suffice for the applications later in the
paper, even though most of what we will prove in this section holds in the generality of locally
finite posets.



CW COMPLEXES AND ARITHMETIC MATROIDS 3

Let R be a commutative ring and let m : P → R be any function. The (dual)
Möbius transform2 of m is the function

mµ : P →R

p 7→
∑
q≥p

µ(p, q)m(q).

It is characterized by m(p) =
∑
q≥pm

µ(q).

Consider two elements p, p′ ∈ P . If there is an element x ∈ P with

{q ∈ P | q ≥ p, q ≥ p′} = {q ∈ P | q ≥ x}

then x is unique, called the meet (or minimal upper bound) of p and p′, and denoted
by p ∨ p′. If every pair p, p′ ∈ P admits a meet, the poset P is called a meet
semilattice.

The following lemma should be folklore. We give here a proof for completeness,
because we do not know of a reference for it.

Lemma 2.1. Let P be a meet-semilattice, and D : P → Sets be a function such
that D(p) ∩D(q) = D(p ∨ q) for all p, q ∈ P . Then,∑

q≥p

µ(p, q)|D(q)| ≥ 0

for all p ∈ P .

Proof. Define for all p ∈ P

G(p) := D(p) \
⋃
q>p

D(q), f(p) := |G(p)| ≥ 0.

We claim that

D(p) =
⊎
q≥p

G(q).

The right-to left inclusion is clear: q ≥ p means q = p ∨ q, hence G(q) ⊆ D(q) =
D(p) ∩ D(q) ⊆ D(p). For the left-to-right inclusion consider x ∈ D(p). The set
Px = {q ∈ P | x ∈ D(q)} has a unique maximal element p̂ (since x ∈ D(q) and
x ∈ D(q′) imply x ∈ D(q ∨ q′) – hence, q, q′ ∈ Px imply q ∨ q′ ∈ Px). Now we
see that x ∈ D(p̂) \

⋃
q>p̂D(q) = G(p̂). Uniqueness of p̂ implies that the union is

indeed disjoint.
Thus, for all p ∈ P we have

|D(p)| =
∑
q≥p

f(q)

and, by Möbius inversion, ∑
q≥p

µ(p, q)|D(q)| = f(p) ≥ 0

as required. �

Theorem 2.2. Let P be a meet-semilattice, and consider two functions m1,m2 :
P 7→ Z. If (m1)µ(p) ≥ 0 and (m1)µ(p) ≥ 0 for all p ∈ P , then (m1m2)µ(p) ≥ 0 for
all p ∈ P .

2We will henceforth simply use the term Möbius transform. It is referred to as the “dual form”
in [22, Proposition 3.7.2].
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Proof. The positivity hypothesis allows us to define, for every i = 1, 2 and p ∈ P ,
a set

Gi(p) := {Xi,p
1 , . . . , Xi,p

mµi (p)
},

where the Xi,p
j are pairwise distinct formal elements – i.e., Xi,p

j = Xi′,p′

j′ if and only

if i = i′, p = p′, j = j′. Then, set

Ai(p) :=
⊎
q≥p

Gi(q).

Then,
Ai(p

′) ∩Ai(p′′) = Ai(p
′ ∨ p′′)

Notice also that, by definition of mµ
i ,

|Ai(p)| =
∑
q≥p

mµ
i (q) = mi(p).

Consider now the family of sets (A12(p))p∈P defined by

A12(p) := A1(p)×A2(p).

Since cartesian products commute with intersections, for p′, p′′ ∈ P we have

A12(p′) ∩A12(p′′) = (A1(p′) ∩A1(p′′))× (A2(p′) ∩A2(p′′)) = A12(p′ ∨ p′′)
and thus, by Lemma 2.1, ∑

q≥p

µ(p, q)|A12(q)| ≥ 0.

The claim now follows because |A12(q)| = m1(q)m2(q) for all q ∈ P .
�

2.2. Arithmetic matroids. In this section we recall basic definitions on matroids
and arithmetic matroids in order to set some notation, and we prove Theorem 2.8.
For background on matroid theory we refer, e.g., to Oxley’s textbook [21], while
our presentation of arithmetic matroids follows mostly [7].

Definition 2.3. A matroid is given by a pair (E, rk), where E is a finite set and
rk : 2E → N is a function such that, for all X,Y ⊆ E,

(R1) rk(X) ≤ |X|,
(R2) X ⊆ Y implies rk(X) ≤ rk(Y ),
(R3) rk(X ∪ Y ) + rk(X ∩ Y ) ≤ rk(X) + rk(Y ).

A molecule in a matroid is a triple α := (R,F, T ) of disjoint subsets of E such
that, for every A ⊆ E with R ⊆ A ⊆ R ∪ F ∪ T ,

rk(A) = rk(R) + |A ∩ F |.
Notice that if α = (R,F, T ) is a molecule, then so is the triple (R′, F ′, T ′) for every
F ′ ⊆ F , every T ′ ⊆ T and every R′ with R ⊆ R′ ⊆ (R ∪ F ∪ T ) \ (F ′ ∪ T ′).

To any molecule α, following e.g. [11], we associate a poset

Bα = {(T ′, F ′) | T ′ ⊆ T, F ′ ⊆ F}
ordered by (T ′, F ′) ≤ (T ′′, F ′′) if T ′ ⊆ T ′′, F ′ ⊇ F ′′.

Remark 2.4. The poset Bα is bounded, with unique minimal element (∅, F ) and
unique maximal element (T, ∅). Moreover, every interval inBα (say, [(F ′, T ′), (F ′′, T ′′)])
is the poset Bα′ for another molecule (i.e., α′ = (R ∪ F ′′ ∪ T ′, F ′, T ′′ \ T ′)).

Given any function m : 2E → Z and a molecule α = (R,F, T ) of a matroid over
the ground set E, we define mα : Bα → Z as the function with

mα(F ′, T ′) := m(R ∪ F ′ ∪ T ′).
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Definition 2.5. An arithmetic matroid is a triple (E, rk,m) where (E, rk) is a
matroid, and m : 2E → Z is a function satisfying the following axioms.

(P) For every molecule α = (R,F, T ) of (E, rk),

(−1)T
∑

R⊆A⊆R∪F∪T

(−1)|(R∪F∪T )\A|m(A) ≥ 0

(Q) For every molecule α = (R,F, T ) of (E, rk)

m(R)m(R ∪ F ∪ T ) = m(R ∪ F )m(R ∪ T ).

(A) For all A ⊆ E and all e ∈ E,
if rk(A ∪ e) > rk(A), m(A) divides m(A ∪ e);
if rk(A ∪ e) = rk(A), m(A ∪ e) divides m(A).

Remark 2.6. Axiom (P) is equivalent to

(P’) For every molecule α of (E, rk)

(mα)µ(0̂) ≥ 0.

In fact, for a molecule α = (R,F, T ) we see that the poset Bα is boolean and the
length of the interval (Bα)≤(T ′,F ′) is |T ′|+ |F \F ′|. Therefore, the Möbius function
of Bα satisfies

µ(0̂, (T ′, F ′)) = (−1)|T
′|+|F\F ′|.

If we now expand axiom (P’) we get

(mα)µ(0̂) =
∑
T ′⊆T
F ′⊆F

µ(0̂, (T ′, F ′))m(R ∪ F ′ ∪ T ′)

=
∑
T ′⊆T
F ′⊆F

(−1)|T
′|+|F\F ′|m(R ∪ F ′ ∪ T ′)

= (−1)|T |
∑
T ′⊆T
F ′⊆F

(−1)|T\T
′|+|F\F ′|m(R ∪ F ′ ∪ T ′)

= (−1)|T |
∑

R⊆A⊆R∪F∪T

(−1)|(R∪F∪T )\A|m(A),

and we recover the formulation of axiom (P) in Definition 2.5.

2.3. Product of multiplicity functions. Consider now a fixed matroid (E, rk),
two (possibly different) functions m′,m′′ : 2E → Z and their (pointwise) product
m := m′m′′

Lemma 2.7. If both m′ and m′′ satisfy axiom (P), so does m = m′m′′.

Proof. Suppose m′ and m′′ both satisfy (P) and consider a molecule α. The poset
Bα is boolean, hence in particular a (meet semi-)lattice. Since every interval of
Bα defines a molecule, m′α and m′′α satisfy the conditions of Theorem 2.2 on Bα.

Hence, ((m′m′′)α)µ(0̂) ≥ 0.
�

Theorem 2.8. If both (E, rk,m′) and (E, rk,m′′) are arithmetic matroids, then
(E, rk,m′m′′) is also an arithmetic matroid.

Proof. The triple (E, rk,m′m′′) satisfies (P) by Lemma 2.7, and (Q), (A) trivially.
�

Remark 2.9. This theorem endows the set of arithmetic matroids over a fixed
underlying matroid with a natural product, which makes it into a commutative
monoid. We leave the investigation of this algebraic structure as an open problem.
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3. On Tutte quasi-polynomials associated to cell complexes

3.1. The Tutte quasi-polynomial. Let G be a finitely generated abelian group,
E be a finite set, and L = {{ge : e ∈ E}} be a list (multiset) of elements in G. For
every A ⊆ E we denote by LA the sublist {{ge : e ∈ A}}, by 〈LA〉 the subgroup
that it generates, and by GA := tor(G/〈LA〉) the torsion subgroup of the quotient
G/〈LA〉. In [7, Section 7], the Tutte quasi-polynomial of L is defined as follows.

QL(x, y) :=
∑
A⊆E

|GA|
|(x− 1)(y − 1)GA|

(x− 1)rkE−rkA(y − 1)|A|−rkA.

Remark 3.1. If for every A ⊆ E the integer k = (x−1)(y−1) is coprime with |GA|,
then kGA := {kg|g ∈ GA} equals GA and we get the ordinary Tutte polynomial of
the matroid of linear dependencies among elements of L:

TL(x, y) :=
∑
A⊆E

(x− 1)rkE−rkA(y − 1)|A|−rkA.

On the other hand, when for every A ⊆ E the integer k is a multiple of |GA| we
have that kGA is trivial and we obtain the arithmetic Tutte polynomial :

ML(x, y) :=
∑
A⊆E

|GA|(x− 1)rkE−rkA(y − 1)|A|−rkA.

Therefore QL(x, y) is a quasi-polynomial function that in some sense interpolates
between these two polynomials. It appeared as a specialization of a multivariate
“Fortuin–Kasteleyn quasi-polynomial”.

Now recall the following definitions.

Definition 3.2 ([7, Section 7]). Let G, E and L be as above.

(1) A proper q-coloring is an element c ∈ Hom(G,Zq) such that c(ge) 6= 0 for
all e ∈ E.

(2) A nowhere zero q-flow is a function φ : E −→ Zq \ {0} such that∑
e∈E φ(e)ge = 0 in G/qG.

The number of proper q-colorings and the number of nowhere zero q-flows are
denoted by χL(q) and χ∗L(q) respectively.

The following statement generalizes a result of [10].

Lemma 3.3 ([7, Theorem 9.1]).

χL(q) = (−1)rkEqrkG−rkEQL(1− q, 0)

χ∗L(q) = (−1)|E|−rkE | tor(G)|−1QL(0, 1− q).

In particular, χL(q) and χ∗L(q) are quasi-polynomial functions of q, called the
chromatic quasi-polynomial and the flow quasi-polynomial respectively.

3.2. On flows and colorings on CW complexes. We start by recalling some
definitions by Beck–Breuer–Godkin–Martin [4] and Duval–Klivans–Martin [1]. Let
C be a CW complex of dimension d and, for every i = 0, 1, . . . , d, let Ci be the set of
the i-dimensional cells of C. The top-dimensional boundary map ∂ : ZCd → ZCd−1

is represented by a matrix with integer entries, that (by a slight abuse of notation)

we denote again by ∂. By reducing modulo q, we get a map ∂ : ZCdq → ZCd−1
q , that

we can view as a matrix with coefficients in Zq.

Definition 3.4 (cf. [5] and [4]). Let C and ∂ be as above.
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(1’) a proper q-coloring of C is an element c ∈ ZCd−1
q such that all the entries

of the vector c∂ are nonzero.
(2’) a nowhere zero q-flow on C is an element φ ∈ ker ∂ such that the coordinate

φ(e) is nonzero for every e ∈ Cd.

The authors of [5] and [4] prove that the number of proper q-colorings and the
number of nowhere zero q-flows are quasi-polynomial functions, that we will denote
by χC(q) and χ∗C(q).

In fact, to the (integer) matrix ∂ one can associate a Tutte quasi-polynomial,
an arithmetic matroid and an arithmetic Tutte polynomial. With the following
lemma we address Remark 3.15 of Beck-Breuer-Godkin-Martin [4] by showing that
the coloring- and flow-counting quasi-polynomials of [4] and [1] are instances of the
coloring- and flow- quasi-polynomials associated to the matrix ∂.

Lemma 3.5. Definitions (1’) and (2’) agree with definitions (1) and (2), when
G = ZCd−1 , E = {1, 2, . . . |Cd|}, and L = {columns of ∂}.

Proof. Every c ∈ ZCd−1
q uniquely extends to a homomorphism c̃ ∈ Hom(ZCd−1 ,Zq).

Then since c̃(ge) = c∂, (1) specializes to (1’). On the other hand, definition (2’) is
equivalent to saying that φ is a function Cd → Zq \ {0} such that ∂φ = 0. This is
precisely the specialization of definition (2). �

The following statement, which now follows immediately from Lemmas 3.3 and
3.5, can be interpreted as saying that the Tutte quasi-polynomial is indeed a
“higher-dimensional analogue” of Tutte’s dichromate for graphs [23] :

Theorem 3.6. With the notations above, we have:

χC(q) = (−1)rk ∂q|Cd−1|−rk ∂Q∂(1− q, 0)

χ∗C(q) = (−1)|Cd|−rk ∂Q∂(0, 1− q).

Remark 3.7. As pointed out in [7], the Tutte quasi-polynomial is not an invariant
of the arithmetic matroid, but is an invariant of the matroid over Z associated to
the matrix ∂. We call this matroid the cellular matroid over Z of C.

Remark 3.8. Underlying matroids of cellular matroids over Z (i.e., the matroids
defined by the matrices ∂) have been studied in their own right. Allowing different
generality for the complex C one obtains different interesting classes of matroids.
Already in the case where C is a simplicial complex, the matroids obtained this
way are strictly more general than graphical matroids [19].

The following subgroup arrangement has been studied by Kamiya, Takemura
and Terao [15] and Lawrence [17] for an arbitrary list of vectors in a lattice.

Definition 3.9. Let v1, . . . vm denote the columns of the top-degree boundary
matrix ∂ of a CW-complex C (so m = |Cd−1|). For every i = 1, . . . ,m let

φi : (Zq)|Cd| → Zq, x 7→ 〈x, vi〉.

Define then A(C, q) to be the arrangement of the subgroups {kerφ1, . . . , kerφm} in
(Zq)|Cd|. (This is, in fact, a family of subgroup arrangements parametrized by q).

Remark 3.10. The chromatic quasi-polynomial of the cellular complex coincides
with the characteristic quasi-polynomial of the arrangement A(C, q) studied in [15],
just like the chromatic polynomial of a graph coincides with the characteristic poly-
nomial of the corresponding graphical arrangement. In particular, the complement
of this arrangement has cardinality χC(q) = (−1)rk ∂q|Cd−1|−rk ∂Q∂(1− q, 0).
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Remark 3.11. Given a d-dimensional CW-complex C, for every j = 0, 1, . . . , d−1
the j-skeleton of C is itself a j-dimensional CW-complex Cj for which we can
carry out all considerations of this section. Thus, C in fact gives rise to a class of
arithmetic quasi-polynomials and arithmetic matroids. In the following section we
will consider properties of this class as a whole.

4. On the modified Tutte-Krushkal-Renhardy polynomial

When considering cell complexes as higher dimensional generalizations of graphs,
besides flows and colorings it is natural to enumerate the analogue of spanning trees.
Following Kalai [14], this enumeration is weighted by the square of the cardinality of...vero? (l’ha

detto il referee
1)

...vero? (l’ha
detto il referee
1)

the torsion of the subcomplexes that are enumerated. This line of thought inspired
[3], where the authors introduced a class of polynomials arising as a modification of
Krushkal and Renhardy’s polynomial invariants of triangulations. This last section
is devoted to answering a question of [3] which we will state after reviewing some
definitions (following [3, 16]).

Definition 4.1. We denote by Sj the family of all spanning subcomplexes of di-
mension j, i.e., of all the subcomplexes S such that Cj−1 ⊆ S ⊆ Cj . These are
naturally identified with the subsets of (Cj)j , the set of j-dimensional cells of the j-
skeleton of C. Let bi(S) be the i-th Betti number of S (i.e., the rank of the homology
Hi(S,Z)), and let ti(S) be the cardinality of its torsion, ti(S) := | tor(Hi(S,Z))|.

Remark 4.2. As has been pointed out e.g. in [4], the function ti(S) is the multi-
plicity function of the arithmetic matroid defined by the matrix ∂j .

Definition 4.3 ([3, Definition 3.1]). The j-th Tutte–Krushkal–Renhardy (TKR for
short) polynomial of C is defined in [16] as

T jC(x, y) =
∑
S∈Sj

(x− 1)bj−1(S)−bj−1(C)(y − 1)bj(S).

The “modified j-th Tutte–Krushkal–Renhardy polynomial” of C is

M j
C(x, y) =

∑
S∈Sj

t2j (S)(x− 1)bj−1(S)−bj−1(C)(y − 1)bj(S).

As noted in [12, Section 5.4], T jC(1, 1) is the number of “cellular j-spanning trees”

of C (according to Definition 2.1 of [3]), while M j
C(1, 1) is an invariant introduced

by G. Kalai in [14]: the number of cellular j-spanning trees S of C, each counted
with multiplicity t2j (S). In [3, Remark 3.3] the authors ask whether the multiplicity

t2j defines an arithmetic matroid. The results established in Section 2 allow us to
give a positive answer to this question.

Theorem 4.4. Let C be a CW-complex of dimension d and, for every j = 1, . . . , d
let Mj(C) denote the cellular matroid of the j-skeleton of C (see Remark 3.8).
Then, for every j the pair (Mj(C), t2j) is an arithmetic matroid, and the modified j-

th Tutte–Krushkal–Renhardy polynomial M j
C(x, y) is the associated arithmetic Tutte

polynomial. In particular, the coefficients of M j
C(x, y) are nonnnegative.

Proof. We first notice that the pair (Mj(C), tj) is an arithmetic matroid (see Re-
mark 4.2), then apply Theorem 2.8 with m′ = m′′ = tj . �
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