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Abstract: The international seafood trade is based on food safety, quality, sustainability, and trace-
ability. Mussels are bio-accumulative sessile organisms that need regular control to guarantee their
safe consumption. However, no well-established and validated methods exist to trace mussel origin,
even if several attempts have been made over the years. Recently, an inorganic multi-elemental fin-
gerprint coupled to multivariate statistics has increasingly been applied in food quality control. The
mussel shell can be an excellent reservoir of foreign inorganic chemical species, allowing recording
long-term environmental changes. The present work investigates the multi-elemental composition of
mussel shells, including Al, Cu, Cr, Zn, Mn, Cd, Co, U, Ba, Ni, Pb, Mg, Sr, and Ca, determined by
inductively-coupled plasma mass-spectrometry in Mytilus galloprovincialis collected along the Central
Adriatic Coast (Marche Region, Italy) at 25 different sampling sites (18 farms and 7 natural banks)
located in seven areas. The experimental data, coupled with chemometric approaches (principal
components analysis and linear discriminant analysis), were used to create a statistical model able to
discriminate samples as a function of their production site. The LDA model is suitable for achieving
a correct assignment of >90% of individuals sampled to their respective harvesting locations and for
being applied to counteract fraud.

Keywords: Mytilus galloprovincialis; trace metals; ICP-MS; mussel; traceability; chemometrics;
geographic origin

1. Introduction

Fish products are a valuable source of nutrients for humans. Global consumption of
seafood increased steadily from 1961 to 2017, at an annual rate of 3.1%, and aquaculture
became a fundamental source of fish production, contributing up to 46% of the total fish
market. Among marine animal organisms, bivalve mollusks represent an inexpensive
source of protein, characterized by high biological value, and also providing essential
minerals, trace metals, and vitamins [1]. Mussels, as a result of their filter-feeding habit
and sessile lifestyle, tend to accumulate substances from the surrounding environment;
hence, they may be considered as natural “devices” enabling pollution biomonitoring [2].

The international seafood trade requires food safety, quality, sustainability, and trace-
ability standards. As a result of mussel’s bio-accumulative ability, regular control is
necessary to guarantee their safe consumption [3] in compliance with Regulations (EC)
852/2004, 853/2004, and 854/2004 of the European Parliament [4–7].
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Mussel bioaccumulation of metals, persistent organic contaminants, and biological
contaminants is also a very useful marker of environmental pollution, reflecting, in some
cases, the impact of anthropogenic activities on ecosystems [8–11].

Both the shells and tissues accumulate inorganic contaminants and may be used as
indicators; however, several studies have stated that only the shells provide a historical
memory of metal content throughout the organism lifetime, which is also preserved after
the organism’s death [9,10]

The mussel shell is a complex organic/inorganic system consisting of two calcified
valves coated by an outer organic layer, the periostracum, which supports the initial
nucleation for the calcareous shell growth. The shell accumulation of trace metals starts
from the cells of a mussel region, the mantle, which secretes the periostracum. A layer
of calcium carbonate is laid down on it. As the mollusk grows, the epithelial cells in the
inner cavity of the mantle gather calcium and bicarbonate ions from the water, enabling
shell building. Other metals, like Mg, Mn, Zn, Pb, and Cu, can substitute the Ca2+ and
be incorporated in the crystals. Almost any metal present in the environment can be
taken up, actively metabolized by the organism, and incorporated into the carbonaceous
structure [8,12].

The composition of mussel tissues depends not only on the geographical origin, but
also on weight, dimensions, and spatial-environmental distribution [13–15].

Several studies have shown that shells and soft tissues have different levels of inor-
ganic element bioaccumulation because, although the shell may incorporate much fewer
metals than the soft tissues, their metabolization is lower, enabling element sequestra-
tion [16]. The shell chemical composition is strongly influenced by external variables,
such as water temperature, salinity, pH, dissolved oxygen, sea currents, and coastal pol-
lution, which can influence the growth rate, the calcium carbonate crystallization, and
the possible inclusion of trace elements in the shell structure. The shell can be an excel-
lent reservoir for the accumulation of foreign inorganic chemical species, allowing even
long-term environmental changes to be recorded [2,17,18].

Given all the above statements, the present study aimed to exploit the mussel’s inor-
ganic composition to trace their geographic origin. Therefore, mussel contaminant moni-
toring, paired with their inorganic fingerprints, may help in the safety tracing of mussels.

An analytical method enabling the analysis of a large set of inorganic elements in
mussel shells was optimized by inductively-coupled plasma mass-spectrometry (ICP-MS),
and the most relevant elements to be used for a possible geographical origin identification
were selected. The elements were analyzed in several mussel shells, and the obtained
results were processed by chemometric tools like principal component analysis (PCA)
and linear discriminant analysis (LDA). The goal was to create a statistical model able
to identify the sample’s geographic origin by means of the inorganic and trace element
composition of their shells. To the best of our knowledge, this is the first work dealing with
the geographic traceability of Mytilus galloprovincialis collected in the Adriatic Sea.

2. Results and Discussion

Many papers have analyzed trace elements in the soft tissue and byssus of mussels to
define temporal and spatial variation [19–21]. Recently, some studies have also focused on
shell inorganic composition, because it provides a stable, long-term, site-specific marker of
elements, which is strongly influenced by the environment. This specific fingerprint may
be useful for geographical-origin traceability [17,18,22,23].

2.1. Analytical Method

Mussels shell pre-treatment and acid digestion needed to be optimized to obtain
mineralized solutions free from interferences.

Experiments were performed in triplicate to optimize the best pre-treatment time
(2, 4, 6, and 10 days) by H2O2 (30%) soaking. After 2, 4, and 6 days, not all the organic
material and periostracum seemed to be exhaustively removed from the shell surfaces.
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Only after 10 days were the valves perfectly clean and easily crunchable, yielding a fine
homogenous powder.

Microwave sample digestion experiments were performed to obtain a clear miner-
alized solution. Initially, shell samples were digested using nitric and hydrofluoric acid
(according to the EPA Method 3052, [24]), but a solid precipitate appeared in the solution
(probably the low soluble CaF2 salt). Other acidic mineralization mixtures were tested
without satisfactory results, especially regarding calibration linearity and repeatability. The
best conditions were those obtained following EPA Method 3051A [25].

With the optimized conditions, the presented method showed good linearity (de-
termination coefficients R2 > 0.990) and low response factor variability (accepted ±20%).
Good trueness and precision were reached in reference material analysis (CRM recovery:
73–129%, only Al = 63%; RSD (%): 3–24%, only Al = 30%).

2.2. Chemometrics

Input data are organized in datasets (matrices), whose rows correspond to sample
replicates (objects), while the columns correspond to the measured variables. Each column
corresponds to a metal concentration (overall data matrix is available as supplementary
material S1).

A Pearson correlation matrix for the farmed shells, reported in Table 1, describes the
associations between variables. Calcium was highly and directly correlated to Ni (0.79).
There were other significant correlations, positive between Co and Cu (0.56) and negative
between Mg and Ca (−0.50), and between Mg and Ba (−0.62). Such correlations may
indicate the coexistence of Ca and Ni in mussels; perhaps these metals may be taken up
using an analogous mechanism by the organism. Mg, instead, seems to compete with Ca
as the structural material of the mussel shell.

Table 1. Pearson correlation matrix for metals in farmed mussel shells.

Al Cu Cr Zn Mn Cd Co U Ba Ni Pb Mg Sr Ca

Al 1.00 0.19 −0.06 −0.01 −0.04 −0.08 0.11 −0.13 −0.01 0.15 0.05 −0.08 0.13 0.04
Cu 1.00 0.08 0.18 0.31 −0.01 0.56 0.01 −0.12 −0.31 0.09 0.36 0.05 −0.32
Cr 1.00 −0.05 −0.03 0.07 0.01 −0.07 0.08 0.04 −0.18 −0.1 −0.07 0.05
Zn 1.00 0.41 −0.17 −0.12 0.06 −0.21 −0.36 −0.11 0.35 −0.24 −0.28
Mn 1.00 −0.00 0.14 −0.00 −0.08 −0.18 0.41 0.45 −0.03 −0.17
Cd 1.00 0.04 0.01 0.14 −0.25 0.00 0.09 −0.26 −0.14
Co 1.00 −0.17 −0.08 −0.40 0.18 0.30 0.34 −0.52
U 1.00 0.37 0.23 −0.14 −0.03 0.02 0.21
Ba 1.00 0.31 0.05 −0.18 0.30 0.10
Ni 1.00 0.17 −0.62 0.1 0.79
Pb 1.00 −0.14 0.14 0.08
Mg 1.00 0.01 −0.50
Sr 1.00 −0.08
Ca 1.00

The correlation matrix in Table 2 shows the correlations and anti-correlation between
elements in the shells collected from natural banks.

The strongest anti-correlation was between Sr and Ni (−0.80). The correlations and
anti-correlations between Zn and U (0.60), Ca and Co (−0.60), Mn and Al (0.57), Ca and
Ni (0.56), Co and Mg (0.52), Cd and U (0.51), and Cd and Ba (0.50) were significant but
less strong.

2.2.1. Principal Component Analysis

A PCA model was computed for the matrix containing data from farmed mussel shells
(153 rows × 14 columns). The first two PCs explain 36.9% of the total variance. Figure 1a
shows the scores plot in the plane PC1 vs PC2. Figure 1b shows the loadings in the same
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space of the first two PCs. In the scores plot, letters identify the sampling sites and colors
the sampling areas.

Table 2. Pearson correlation matrix for metals in shells belonging to mussels from natural banks.

Al Cu Cr Zn Mn Cd Co U Ba Ni Pb Mg Sr Ca

Al 1.00 0.05 −0.01 0.15 0.57 0.29 −0.07 0.29 0.44 −0.10 0.18 0.10 0.15 0.03
Cu 1.00 −0.06 −0.00 −0.18 −0.09 0.06 −0.03 −0.27 −0.01 0.08 0.14 −0.14 −0.12
Cr 1.00 −0.00 0.17 0.16 0.21 0.20 0.18 −0.18 −0.22 −0.09 0.20 −0.16
Zn 1.00 −0.12 0.42 −0.17 0.60 0.48 0.16 −0.29 −0.28 −0.22 0.44
Mn 1.00 0.21 0.16 0.11 0.50 −0.07 0.28 0.07 0.31 −0.20
Cd 1.00 −0.05 0.51 0.50 −0.01 −0.26 −0.33 0.19 0.09
Co 1.00 −0.06 0.11 −0.30 −0.05 0.52 0.31 −0.60
U 1.00 0.45 0.33 −0.33 −0.09 −0.33 0.35
Ba 1.00 0.10 −0.13 −0.09 0.17 0.15
Ni 1.00 −0.08 0.11 −0.80 0.56
Pb 1.00 0.19 −0.02 −0.10
Mg 1.00 −0.10 −0.11
Sr 1.00 −0.49
Ca 1.00
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Figure 1. (a) Scores plot of farmed shell samples. Letters indicate the sampling sites and colors the sampling areas;
(b) Loadings plot of the variables in the space of the first two PCs.

The influence of the different parameters can be evaluated from both the scores plot
and the loadings plot. Except for three objects (three replicates of the same samples) in
sampling sites “T” and “M”, both characterized by high levels of Sr and Ba, Figure 1a
shows a good grouping of the sampling sites. Shells characterized by high levels of Ni
and Ca are located to the right side of the graph; samples with high levels of Mg, Cu, Co,
Mn, and Zn are located to the left side of the graph. However, it can also be observed that
sampling sites close to each other are often placed on the opposite sides of the scores plot,
as for “E” and “D”, both close to the city of Fano.
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The factors affecting the grouping are unknown and could be related to the different
water depths, or the different locations of the production plants with regards to the coast,
including the relative position with respect to a river mouth, which may strongly influence
the inorganic element water loading.

Another PCA model was created for the dataset containing mussels from natural
banks (63 objects × 14 variables).

For the natural bank shells, Figure 2a shows the distribution of the objects and
Figure 2b the distribution of the variables in the space PC1 vs. PC2. The first two PCs
explain 43.9% of the total variance.
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In this case, samples from the same production site are not always well grouped.
This is particularly true for the samples coming from the Pesaro area (red samples in
Figure 3a), where no clear grouping is highlighted. This could probably be the result of
mussels growing on natural cliffs, which makes their shell’s inorganic composition more
inhomogeneous, within the same sampling site, rather than what happens in controlled
farming, which leads to greater homogeneity.

2.2.2. Linear Discriminant Analysis

A classification method (LDA) was applied to the data in order to further highlight
the eventual clusters that emerged from the PCA.

Farms and Natural Banks

The first analysis was applied to all samples (dataset with 216 objects × 14 variables),
and considering the mussel origin (farmed or natural banks) as an a priori category. The
LDA model showed an encouraging NER of 93.5%, with only three farmed objects misclas-
sified as natural and 11 natural objects misclassified as farmed (5 from sampling point “V”
and 6 from “Y”). The LDA model gave a 98.0% correct assignment for farmed, and 82.5%
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for natural growing mussels. Table 3 shows the confusion matrix, sensitivity, specificity,
and NER for such an LDA model.
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Figure 3. (a) Farmed shells discrimination plot. LDA is calculated using the sampling site as a priori
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(b) LDA–loading plot for the farmed shells.

Table 3. Confusion matrix, sensitivity (Sn), and specificity (Sp), and NER values for the a priori
classes: shells from farms (F) and natural banks (NB).

Predicted (CV)

Actual F NB Sn Sp

F 150 3 0.980 0.932
NB 11 52 0.825 0.945

NER 0.935

Next, data were divided into “farmed” and “natural” samples, in order to check,
by LDA, if a stronger discrimination than that observed by PCA was present between
sampling sites.

Farmed Samples

A LDA model was calculated for the farmed samples (dataset with 153 objects× 14 vari-
ables). The sampling sites were considered the a priori category. The classification method
applied to this dataset gave an overall NER of 94.1%: only nine samples out of 153 were
misclassified, assigning them to different sampling sites. As shown in the discriminant plot
in Figure 3a, two samples collected in “B” sampling sites were misclassified as “C”, one
sample from “F” as “E”, one sample from “H” as “R”, two samples from “M” as “G”, two
samples from “P” as “Q”, and one sample from “R” as “I”.
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Figure 3b shows the corresponding LDA-loadings plot, from which it can be seen that
the most important variables for the discrimination were Co, Sr, Ni, Mn, and Zn, those
furthest from the origin.

The values of sensitivity and specificity (Table 4), which were always higher than
66.7% (one misclassified sample may weigh for 10–20% if a class carries 9 or 6 samples),
confirmed the good performance of the classification model.

Table 4. Farmed site LDA, sensitivities (Sn), and specificities (Sp) of the model.

Sampling Site A B C D E F G H I

Sn 1.00 0.778 1.00 1.00 1.00 0.889 1.00 0.833 1.00
Sp 1.00 1.00 0.818 1.00 0.900 1.00 0.750 0.833 1.00

Sampling Site L M N O P Q R S T

Sn 1.00 0.667 1.00 1.00 0.778 1.00 0.889 1.00 1.00
Sp 1.00 1.00 1.00 1.00 1.00 0.818 0.889 1.00 1.00

Samples from Natural Banks

A LDA model was created from the dataset of natural bank mussel shells (dataset
with 63 objects × 14 variables). Similarly, in this case, the a priori category was given to the
sampling sites.

Figure 4 and Table 5 describe the quality of the classification model. The NER reached
the value of 98.4%: only one sample out of 63 was wrongly assigned to another class (an
object belonging to the “V” site was assigned to “Y”). The discriminant plot in Figure 4a
confirms the good discrimination between all classes, with only a slight overlap between
“K” and “U” classes (but without misclassification of samples between them). The LDA–
loadings plot in Figure 4b shows that Co, Ni, Mg, and Sr are the most important variables
for such a discrimination.

All Samples

A further LDA model was computed on the entire dataset, with both farmed and
natural samples (dataset with 216 objects × 14 variables). The aim was to evaluate if the
sampling sites could be discriminated, regardless of their production method (farmed or
natural banks). Thus, in this case, the a priori categories were also the sampling sites. The
LDA NER was again very good: 93.5%. Only 14 objects out of 216 were misclassified.
Moreover, only three objects from the natural bank samples were misclassified into farmed
shells, and only one object from the farmed shells was misclassified as a natural bank
samples. The sensitivity and specificity (Table 6) for all 25 classes were higher than 62.5%.
The discriminant plot in Figure 5a shows, besides the good discrimination of class “Z”,
several overlaps between classes, thus, particularly in this case, it is important to evaluate
the numerical results of LDA (Table 6) to assess the model performance. The LDA–loadings
plot in Figure 5b shows that the most important variables for discrimination are Co, Ni,
and Zn.

Table 5. Natural bank sites LDA, sensitivities (Sn), and specificities (Sp) of the model.

Sampling Site K U V W X Y Z

Sn 1.00 1.00 0.889 1.00 1.00 1.00 1.00
Sp 1.00 1.00 1.00 1.00 1.00 0.900 1.00
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Table 6. Overall sampling site LDA, sensitivities (Sn), and specificities (Sp) of the model.

Sampling Site A B C D E F G H I

Sn 1.00 0.889 1.00 1.00 1.00 0.889 0.833 0.833 1.00
Sp 1.00 0.889 0.900 1.00 0.900 1.00 0.625 1.00 1.00

Sampling Site K L M N O P Q R

Sn 1.00 1.00 0.667 1.00 1.00 0.778 1.00 1.00
Sp 1.00 1.00 1.00 1.00 1.00 0.875 0.818 0.900

Sampling Site S T U V W X Y Z

Sn 1.00 1.00 1.00 0.778 0.889 0.778 0.889 1.00
Sp 1.00 1.00 1.00 1.00 0.800 0.875 0.889 1.00
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As described above, the implemented statistical model enabled a good classification
performance, with a high percentage of correct assignment and efficient discrimination
of farmed samples from wild ones. Mussels from natural banks, indeed, grow in an
environment significantly different from farmed ones, thus also strongly influencing the
aspect and composition of shells. First, the lifetime scale of natural mussels is usually
longer and less standardized than farmed mussels, enabling the shells to grow thicker and
more robust. Moreover, mussels from natural banks, being closer to the coast and having a
larger nutrient availability, share their growing habitat with several other organisms, which
also colonize their shells, unavoidably influencing their composition.

In Table 7 we compare our results with the ones obtained in other studies, based on
ICP and dealing with the geographic traceability of bivalves by analyzing the mineral
composition of their shells. In the table are reported: the species analyzed, the sampling
sites and areas, the elements detected, the statistical methods applied, and the models
correct assignment score (%). It emerged that the model developed in the present work had
a good assignment performance (LDA: 98.4% for NB mussels, 94.1% for farmed mussels),
and better than most of the other studies reported in Table 7. Comparable, and even
slightly better, were the results obtained by M. Bennion et al. (2019) [18], even if the latter,
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to achieve a 100% correct assignment, needed to combine statistical modeling with the
chemical composition of three structures (clean shell, foot, and periostracum) instead of
analyzing only the clean shell, as we did.

Table 7. Literature review: bivalves trace element fingerprint (species, geographical areas, elements, statistical models,
assignment rate).

Matrix Species

Areas
(Site)

(Analysed
Elements)

Statistical Model *
Correct

Assignment Rate
(%)

Reference

shells,
foot,

periostracum
Mytilus edulis

Ireland coast
(4)

(As, Cd, Cu, Fe,
Mn, Ni, Pb, Sr, Zn )

Random forest
analysis

67.5 –
periostracum 100
− shells + foot +

periostracum

M. Bennion et al.,
2019 [18]

shells Amblema plicata,
Quadrula quadrula

North American
river

(5)
(Mn, Fe, Co, Ni,

Cu, Zn, As, Cd, Se)

ANOVA
PCA

W. A. Wilson et al.,
2018 [2]

shells Cerastoderma edule

Portuguese
Atlantic Coastline

(8)
(Mg/Ca, Mn/Ca,

Sr/Ca, Ba/Ca)

MANOVA
LDA 90 F. Ricardo et al.,

2017 [17]

shells Cerastoderma edule

Estuarine system
Ria de Aveiro,

Portugal
(5)

(Ba/Ca, Mg/Ca,
Mn/Ca, Pb/Ca,

Sr/Ca)

ANOSIM
ANOVA
SIMPER

CAP

92 F. Ricardo et al.,
2015 [22]

shells (juveniles
and adults) Mytilus edulis

Gulf of Maine,
USA
(7)

(Ba/Ca, Cu/Ca,
Pb/Ca, La/Ca,
Sr/Ca, Mg/Ca,

Zn/Ca)

LDA
ANOVA

68.4−juvenile
mussels

57.3−adult
mussels

C. J. B. Sorte et al.,
2013 [23]

shells Mytilus gallop.

Central Adriatic
Sea Coast

(Marche Region)
(25: 18 farmed,

7 natural banks)
(Al, Cu, Cr, Zn,

Mn, Cd, Co, U, Ba,
Ni, Pb, Mg, Sr, Ca)

PCA
LDA

98.4−natural
banks mussels
94.1−farmed

mussels

This paper

* ANOVA = Analysis of variance, MANOVA = Multivariate analysis of variance, ANOSIM = Analysis of similarity, SIMPER = Similarity
percentages, CAP = Canonical analysis of principal coordinates.

3. Materials and Methods
3.1. Samples and Datasets

Mussels samples belonging to the Mytilus galloprovincialis species were harvested from
25 sites (18 farms and 7 natural banks) along the Marche region coast (central Italy), in the
Adriatic Sea, in the framework of a regional surveillance plan. Natural banks are cliffs
where mussels grow naturally, while farms are off-shore breeding sites, located roughly
two nautical miles away from the coast. Figure 6 shows the geographical distribution of the
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sampling sites, and Table 8 summarizes the sampling periods and the number of samples
for each site. European regulations request periodical monitoring of mollusk production
areas, analyzing marine biotoxins, and microbiological and chemical contaminants [4–6].
The samples described here were selected from those of commercial size (>4 cm). Shell
samples were taken between June and October 2018, and each site was generally sampled 3
times, for a total of 72 samples. Each one of the 72 samples was analyzed in triplicate, and
14 elements (Al, Cu, Cr, Zn, Mn, Cd, Co, U, Ba, Ni, Pb, Mg, Sr, Ca) were determined by ICP-
MS, selecting those recognized from the bibliography as the most interesting to characterize
geographical origin [22]. The results (72 samples × 3 replicates) were used to create a
dataset whose columns were the concentration of the 14 elements (variables) and whose
rows were the analysis replicates; therefore, the dimensions of the datasets were: 216 × 14
for the whole data, 153 × 14 for the farmed dataset (153 rows = 51 samples × 3 replicates,
14 variables), and 63 × 14 for the natural bank dataset (63 rows = 21 samples × 3 replicates,
14 variables).
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Table 8. Sampling areas, sites, and period.

Sampling Area Sampling Site
Sampling Period

Total Number of Samples
1 2 3

Farmed

Pesaro
A July July July 3
B June July October 3
C July October October 3

Fano
D July July August 3
E July August September 3

Senigallia
F July August October 3
G July August 2
H August October 2

Ancona
I July July August 3
L July July September 3

Civitanova
M July July 2
O July July August 3
N July July July 3

Fermo
P July July August 3
R July July August 3
Q July July August 3

San Benedetto
del Tronto

S July August August 3
T July August August 3

Natural Banks

Ancona

U July July August 3
V July July August 3
Z July July August 3
W July July August 3

Pesaro
K July July August 3
Y July July August 3
X July July August 3

Total 72

3.2. Experimental
3.2.1. Reagents, Standards, and Certified Reference Materials

The reagents used in sample digestion were Nitric acid (HNO3, 65%, Suprapur®), Hy-
drogen Peroxide (H2O2, 30% v/v, Super-pure, p.a., reag. ISO, reag. Ph. Eur.), Hydrofluoric
acid (HF, 40%, AnalaR NORMAPUR®), and Hydrochloric acid (HCl, 37%, Super-pure® RS).

Rhodium (Rh) and Lutetium (Lu) pure standard at 1000 µg mL−1 were used to prepare
the Internal Standard Solution (Rh: 0.2 mg L−1 and Lu: 0.1 mg L−1 in 1%v/v HNO3).

Matrix match calibration curves were prepared using Multi-Element Calibration
Standard 3 (Al, As, Ba, Be, Bi, Cd, Ca, Cs, Cr, Co, Cu, Ga, In, Fe, Pb, Li, Mg, Mn, Ni, K, Rb,
Se, Ag, Na, Sr, Tl, U, V, Zn: 10 µg mL−1; Perkin Elmer). Quality control spiked samples
were prepared using Multi-Element Calibration Standard 3 (10 µg mL−1; Perkin Elmer), a
solution of Ca, Mg (5000 mg L−1; CPAchemLDT), and mono-element stock solutions for
Al (1000 mg L−1; CPAchemLDT), Ni, Mn, Zn (1000 µg mL−1; Perkin Elmer). All solutions
were prepared in 5%v/v HNO3.

The rinse solution was 5%v/v HNO3. Milli-Q water grade was produced by a Millipore
purification system (Bedford, MA, USA).

Certified reference material was included in the analytical batches in order to assess
the precision and trueness (accuracy) of the method: Dolt 5, fish liver (NRC: National
Research Council Canada).
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3.2.2. Sample Pretreatment and Preparation

The mussel samples were mechanically opened, the soft tissues removed, and the
shells rinsed with water. To analyze a sufficiently homogeneous and representative quantity
of sample, 4 valves were submitted to pre-treatment by immersion in H2O2 30% solution for
10 days [22]. The dried shell was then homogenized to obtain a powder. Microwave sample
digestion was accomplished following the Environmental Protection Agency procedure
3051A: 0.25 g of homogenized shells was treated with 9 mL HNO3 67–69% and 1 mL
of HCl 37% in a high-pressure microwave system (Milestone-Ethos1-HPR1000), using a
temperature/pressure programming procedure [25].

The thus obtained digested solution was diluted with ultrapure water, and adjusted
to a final volume corresponding to 50 ± 1.0 g in polypropylene vessels. Further dilutions
were performed according to the elements to be analyzed.

3.2.3. Instrumental Analysis

The analyses of Al, Ba, Cd, Ca, Co, Cr, Cu, Mg, Mn, Ni, Pb, Zn, Sr, and U were
performed by ICP-MS, on an ELAN DRC II (Perkin Elmer) equipped with an ASX-520
autosampler (Perkin Elmer). The sample was introduced by a peristaltic pump, a Meinhard
quartz concentric nebulizer, and a cyclonic quartz spray chamber. The internal standard
solution was automatically delivered through a mixing block. Argon (purity 99.999%) was
used as the plasma torch, nebulizer, and auxiliary gas, while ammonia (purity 99.99%) was
the reaction gas in DRC mode. The ICP-MS parameters were (Table 9):

Table 9. Optimized ICP-MS acquisition method.

ICP-MS PARAMETERS

Plasma gas (L/min) 15 Sweeps/reading 20
AUX gas (L/min) 0.8 ÷ 1.5 Readings/replicate 1

RF power (W) 1300 Replicates 3

Nebulizer gas (L/min) 0.75 ÷ 1.04 Scan mode Peak
hopping

Rpa 0 Dwell time (ms) 100
Sample uptake (mL/min) 0.96 Dwell time Pb, Cd, U (ms) 200

m/z Internal
Standard

Acquisition
Mode RPq

Cell Gas:
NH3

(mL/min)

Ba 138

103Rh

Std mode 0.25 0

Cd 111
Co 59
Ni 60
Pb 206 + 207 + 208 175Lu
Sr 88 103RhU 238

Al 27

103Rh DRC

0.75 0.5
Mg 24 0.45 0.7
Ca 44 0.5 0.5
Cr 52 0.35 0.5
Mn 55 0.35 0.5
Cu 63 0.75 0.45
Zn 68 0.75 0.45

The calibration curves used for quantification were matrix-matched from 0.1 µg L−1

to 500 µg L−1, choosing for each element the most appropriate range.
Each calibration curve was created on at least 3 points other than the matrix sample.

The best fit curve was obtained by interpolating the response factors (counts sec−1 ele-
ment/counts sec−1 internal standard) and the respective concentrations, and using the
least-squares algorithm.
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The method performances were assessed by evaluating linearity, precision (repeatabil-
ity), trueness, and quantification limits (LOQ). The last figure of merit was calculated based
on signal-to-noise ratio, using the criterion 6σ [26]. The experimental values for LOQ were:
0.002 mg/kg for Cd, Pb, U; 0.020 mg/kg for Ba, Co, Cr; 0.040 mg/kg for Cu; 0.20 mg/kg
for Mn, Ni, Sr; 0.50 mg/kg for Al, and Zn; 20 mg/kg for Ca, Mg.

3.2.4. Quality Assurance/Quality Control

The laboratory background contamination level was monitored by analyzing reagent
blank samples; accuracy was assessed by batch certified reference material (CRM Dolt5)
and spiked sample analysis.

The shell matrix was shown to be highly inhomogeneous, therefore batch-to-batch
repeatability checking was necessary, and all the samples were analyzed in triplicate in
order to have robust results.

3.3. Chemometrics

Pearson correlation matrix was calculated to evaluate correlation or anti-correlation
between variables (metals concentration). A direct correlation takes place when the correla-
tion index is positive, otherwise, the variables are anti-correlated [27]. When the correlation
index between two variables is less than |0.3|, the two variables are considered weakly
correlated. The correlation is considered strong when the correlation index is >|0.7|. When
the index is between |0.3| and |0.7| the correlation is considered significant. This choice
was empirically made by the authors, according to an already published method [28].

Principal components analysis is a well-known chemometric technique used for
the exploratory analysis of a data structure [29]. It consists of projecting the data into
a subspace whose axes are called principal components (PCs). The PCs are obtained
from a linear combination of the original variables and contain a decreasing amount of
information, when moving from the first to the last PC [30]. The most important PCA
outputs are the scores and the loadings plots, which show respectively the objects (rows of
the dataset) and the variables (columns of the dataset) in the PC space, and allow studying
the relationships between them. These graphical models are used to verify whether
the objects form any clusters, which would be an indication of possible discrimination
power in the variables, and whether the clusters agree with the eventual assignment of
samples to a priori categories. When PCA shows clustering, it makes sense to go on
attempting the creation of multivariate classification models, in a mathematical and not
only graphical form.

Linear discriminant analysis (LDA) is a classification approach based on the max-
imization of the ratio of the between-class variance to the within-class variance in the
dataset, thereby pursuing the maximal discrimination between known sample classes [31].
It assumes that all variables have a Gaussian distribution and are statistically independent.
A first validation of the model is carried out by cross-validation (CV) [32]. While PCA is an
unsupervised method that allows defining a representation of the data in an orthogonal
space without any hypothesis about the belonging of the objects to a given class, LDA is a
supervised method that, starting from a priori known classes, aims to create a classification
model based on a certain number of independent variables.

Several parameters can be used for the quality estimation of the classification mod-
els [33]. All indexes can be derived from the confusion matrix, which is a square matrix
with dimensions G × G, where G is the number of a priori classes. The diagonal elements
ngg represent the correctly classified objects, while the off-diagonal elements represent the
objects erroneously classified.

The non-error rate (NER) is a measure of the quality of a classification model: it
represents the percentage of correctly assigned objects. The NER is defined as follows
(Equation (1)):

NER =
∑G

g=1 ngg

n
(1)
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where n is the total number of objects. It is also called accuracy, or classification rate.
The sensitivity (Sng) describes the model’s ability to recognize objects belonging to

the g-th class and is defined as (Equation (2)):

Sng =
ngg

ng
(2)

where ng is the number of objects belonging a priori to the g-th class.
The specificity (Spg) is the ability of the g-th class to reject the objects of all other classes

and is defined as (Equation (3)):

Spg =
ngg

n′g
(3)

in which ng’ is the total number of objects assigned to the g-th class [27].
NER, sensitivity, and specificity can assume values between 0 (no class discrimination)

and 1 (perfect class discrimination) [34].
Person’s correlation matrices and the PCA were calculated by the software CAT [35],

based on the R environment (R Core Team, Vienna, Austria). LDA was performed using
the R software.

4. Conclusions

A method enabling the simultaneous ICP-MS analysis of 14 elements (Al, Cu, Cr,
Zn, Mn, Cd, Co, U, Ba, Ni, Pb, Mg, Sr, Ca) in mussel shells after microwave digestion
was developed and optimized. The method was applied to mussel shells collected in 25
sampling sites located along the central Adriatic Sea coast, and the obtained results were
processed by chemometric tools, in order to discriminate mussels as a function of their
production method and site.

Among the here applied statistical methods, LDA models were able to achieve a
high percentage (>90%) of correct assignments of the samples to a specific sampling point.
Therefore, this model could be applied as a useful tool to ensure mussel traceability,
counteract fraud, and guarantee product quality.

Moreover, this work indicates that the contents of Al, Cu, Cr, Zn, Mn, Cd, Co, U,
Ba, Ni, Pb, Mg, Sr, and Ca in the shells of Mytilus galloprovincialis have discriminating
power concerning the production method and sampling site. In particular, LDA showed a
potentially interesting discriminating power for Co, Ni, Zn, and Sr, due to the high LDA
loadings shown in all the computed models. However, to obtain a robust multivariate
screening method, further work is needed: the dataset will be implemented with a higher
number of samples for each site and for each sampling period, whose eventual influence
on results has not yet been explored.

Supplementary Materials: The following are available online. Table S1: Sample data matrix.
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