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Abstract: The abundant and inexpensive carbon monoxide (CO) is widely exploited as a C1 source for
the synthesis of both fine and bulk chemicals. In this context, photochemical carbonylation reactions
have emerged as a powerful tool for the sustainable synthesis of carbonyl-containing compounds
(esters, amides, ketones, etc.). This review aims at giving a general overview on visible light-promoted
carbonylation reactions in the presence of metal (Palladium, Iridium, Cobalt, Ruthenium, Copper)
and organocatalysts as well, highlighting the main features of the presented protocols and providing
useful insights on the reaction mechanisms.

Keywords: carbon monoxide; carbonylation; photochemical reactions; visible light; carbonyl-
containing compounds

1. Introduction

Carbon monoxide (CO) is largely used in the chemical industry for manufacturing
bulk chemicals (i.e., methanol, acetic acid) and fine chemicals (i.e., ibuprofen) and is fre-
quently employed as an inexpensive and readily available C1 source in a wide range of
carbonylative transformations for the synthesis of high-value-added carbonyl-containing
compounds, such as acids, esters, amides and ketones [1–6]. The carbonyl unit is ubiqui-
tous in a myriad of bioactive molecules, such as natural products, pharmaceuticals and
agrochemicals, as well as materials. It can be also manipulated and transformed into a
series of other functional groups, including amines, alcohols and olefins. In the era of
sustainability, the development of economically improved and environmentally friendly
catalytic protocols is highly recommended. In recent years, visible-light photocatalysis has
received much attention from the synthetic chemists’ community since, unlike traditional
thermal and catalytic reactions, it enables unprecedented reaction pathways, high selec-
tivities and mild reaction conditions [7–10]. The combination of carbon monoxide-based
carbonylation strategy with the advantages that come from the application of photocataly-
sis can potentially lead to a highly sustainable process [11–15]. However, the first reports
displayed problems connected with a limited generality, poor selectivity and/or efficiency,
high pressure of carbon monoxide or high energy of light irradiation [16–23]. Over the
last two decades, new and more performing catalytic systems allowed to solve in part
these issues. The present review will cover the major advances in the area of visible light-
mediated catalyzed carbonylations from 2000, with a focus on CO-based carbonylation
methodologies. Sometimes, for a better and more general overview, less recent reports
will be mentioned. The review is organized into different sections; each one is related to a
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different metal, and one section is dedicated to metal-free protocols, which include the use
of organic photocatalysts.

1.1. Visible-Light-Promoted Palladium-Catalyzed Carbonylations

The major achievements in the area of visible-light-driven photocatalysis have been
reached with palladium, thanks to its superior versatility. One of the first reports was re-
lated to the synthesis of unsymmetrical ketones, which were readily accessed by means of a
palladium-catalyzed cross-coupling reaction of iodoalkanes and 9-alkyl-9-borabicyclo[3.3.l]
nonane derivatives (9-alkyl-9-BBN) under atmospheric pressure of CO (Scheme 1) [24]. The
presence of K3PO4 was essential, while the reaction was significantly accelerated by the
irradiation of light. Alkyl halides bearing β hydrogens often lead to competitive pathways
in traditional cross-coupling reactions, such as the formation of alkenes by β–hydride
elimination. In this case, various primary, secondary and tertiary alkyl iodides afforded
unsymmetrical ketones in moderate to good yields. Different functional groups (i.e., acetal,
nitrile, carbomethoxy groups) were well tolerated on both iodoalkanes and 9-alkyl-9-BBN
under the optimized reaction conditions. Selected examples are shown in Scheme 1.
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Scheme 1. The synthesis of ketones from iodoalkanes, 9-alkyl-9-BBN derivatives and CO via a light-
accelerated Pd-catalyzed reaction. 

The reaction is supposed to proceed through a free radical mechanism at the oxida-
tive addition step [25]. Firstly, Pd(PPh3)4 likely converts to the low reactive Pd(CO)(PPh3)3 

Scheme 1. The synthesis of ketones from iodoalkanes, 9-alkyl-9-BBN derivatives and CO via a
light-accelerated Pd-catalyzed reaction.

The reaction is supposed to proceed through a free radical mechanism at the oxidative
addition step [25]. Firstly, Pd(PPh3)4 likely converts to the low reactive Pd(CO)(PPh3)3
complex I under CO atmosphere. In the presence of light irradiation, complex I undergoes
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dissociation of ligands to give the unsaturated palladium species II. The latter enables
an electron transfer to the alkyl iodide with the formation of a radical pair (Pd(I)X + R˙)
that could provide the oxidative intermediate RPdX (III). The migration of the alkyl group
to a coordinated CO molecule affords complex RCOPdX IV. Then, the base facilitates
the transfer of the R2 group from 9-R2-9-BBN to palladium providing V, which yields
the ketone and a palladium(0) species through a reductive elimination step (Scheme 1,
proposed mechanism).

Based on their previous studies [25], Miyaura and co-workers developed a palladium-
catalyzed three-component reaction between iodoalkenes, carbon monoxide and 9-alkyl-
or 9-aryl-9-BBN derivatives to obtain cyclized unsymmetrical ketones under photoirra-
diation conditions (Scheme 2) [26]. Analogously to the previously reported mechanism
(Scheme 1), the iodoalkenes provided cyclized ketones via radical cyclization, carbon
monoxide insertion and coupling with 9-R2-9-BBN derivatives. Iodoalkynes led to the
corresponding cyclized unsaturated ketones as a 1:1 mixture of E and Z isomers. Interest-
ingly, iodocycloalkenes resulted in the formation of cis-fused bicyclic alkanes starting from
trans iodides as well (Scheme 2). This, together with the predominance of 5-membered
over the 6-membered annulation mode, can further confirm the radical nature of the
reaction pathway.
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accelerated Pd-catalyzed reaction.

Palladium-catalyzed photochemical carbonylation reactions aimed at the synthesis
of ketones, α,β-unsaturated ketones, esters, lactones and carbamoylacetates have been
extensively studied by lhyong Ryu and co-workers [15,27,28]. The initial idea was to
insert carbon monoxide on an alkyliodide by homolytic cleavage of the C–I bond. The
idea has been successfully realized under irradiation and metal-free conditions (vide infra,
Section 1.6) [29].

The combination of palladium catalysis with irradiation conditions was crucial for
the carbonylation-cyclization-carbonylation sequence reported in 2002 by Ryu and co-
workers [30]. A variety of 4-alkenyl iodides were efficiently converted to the desired
ketones in the presence of alcohol, Pd(PPh3)4 (5 mol %), Et3N, DMAP (5–10 mol %) under
irradiation (500 W xenon lamp, 185–2600 nm, Pyrex) and 40 atm of CO pressure (Scheme 3).
When the transformation was performed with diethyl amine in place of alcohol, the triply
carbonylated α,δ-diketo amides were obtained as the major product. Alkyl bromides
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gave promising but lower yields if compared with the corresponding iodides. This free-
radical-based methodology complements the traditional palladium-catalyzed carbonylative
reactions that are extensively employed for aromatic and vinylic halides [31].
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Scheme 3. Pd-catalyzed/light-induced Cyclizative Carbonylation to esters and amides.

The efficiency of the reaction was improved by the presence of palladium catalysts;
however, the stereoselectivity observed with cyclic substrates was identical with those
found in palladium-free radical carbonylation sequences. The interplay of organometallic
species and radicals can be explained by the mechanism depicted in Scheme 4. As pre-
viously observed [25], the palladium(0) species can be active in the C–I bond cleavage
providing the radical pair Pd(I)I and alkyl radical I. The high pressure of carbon monoxide
favors the formation of the acyl radical II, which undergoes cyclization and further CO
insertion to IV. Then, intermediate IV can recombine with the Pd(I)I species leading to V,
which affords the desired product by reaction with an alcohol.

Catalysts 2021, 11, x FOR PEER REVIEW 4 of 34 
 

 

free-radical-based methodology complements the traditional palladium-catalyzed car-
bonylative reactions that are extensively employed for aromatic and vinylic halides [31]. 

 
Scheme 3. Pd-catalyzed/light-induced Cyclizative Carbonylation to esters and amides. 

The efficiency of the reaction was improved by the presence of palladium catalysts; 
however, the stereoselectivity observed with cyclic substrates was identical with those 
found in palladium-free radical carbonylation sequences. The interplay of organometallic 
species and radicals can be explained by the mechanism depicted in Scheme 4. As previ-
ously observed [25], the palladium(0) species can be active in the C–I bond cleavage 
providing the radical pair Pd(I)I and alkyl radical I. The high pressure of carbon monoxide 
favors the formation of the acyl radical II, which undergoes cyclization and further CO 
insertion to IV. Then, intermediate IV can recombine with the Pd(I)I species leading to V, 
which affords the desired product by reaction with an alcohol. 

 
Scheme 4. The proposed mechanism for the Pd-catalyzed/Light-induced Cyclizative Carbonylation 
to ketones and amides. 

Based on their previous report [30], Ryu and co-workers reported a general method 
for the synthesis of esters and amides [32] and, in particular, described the acceleration 
effect of light-induced atom transfer carbonylation reactions obtained in the presence of 
Pd(0) complexes and Mn2(CO)10. Therefore, for example, when 1-iodooctane was caused 
to react with CO and ethanol under photoirradiation conditions (Xenon lamp, 185–2600 
nm), ethyl nonanoate was obtained in a moderate yield of 54% even with prolonged reac-
tion time (50 h). However, the same reaction in the presence of Pd(PPh3)4 (5 mol %) af-
forded the expected ethyl ester in 87% yield after 16 h (Scheme 5a). Under similar condi-
tions, the synthesis of a precursor of the (-)-Hinokinin was efficiently achieved (Scheme 
5b). 

Scheme 4. The proposed mechanism for the Pd-catalyzed/Light-induced Cyclizative Carbonylation
to ketones and amides.

Based on their previous report [30], Ryu and co-workers reported a general method
for the synthesis of esters and amides [32] and, in particular, described the acceleration
effect of light-induced atom transfer carbonylation reactions obtained in the presence of
Pd(0) complexes and Mn2(CO)10. Therefore, for example, when 1-iodooctane was caused to
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react with CO and ethanol under photoirradiation conditions (Xenon lamp, 185–2600 nm),
ethyl nonanoate was obtained in a moderate yield of 54% even with prolonged reaction
time (50 h). However, the same reaction in the presence of Pd(PPh3)4 (5 mol %) afforded
the expected ethyl ester in 87% yield after 16 h (Scheme 5a). Under similar conditions, the
synthesis of a precursor of the (-)-Hinokinin was efficiently achieved (Scheme 5b).
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iodides to esters (a), lactones (b) and amides (c).

The atom transfer carbonylation of secondary and tertiary alkyl iodides proceeded
smoothly, affording moderate to high yields of esters in a shorter reaction time (6.5 h). In
this case, the use of Mn2(CO)10 in place of Pd(PPh3)4 was found to be even more effective.
The selective synthesis of the corresponding amides was again achieved in the presence
of Mn2(CO)10 (Scheme 5c), while a palladium(0) precursor led to mixtures of amides and
ketoamides. Later, highly functionalized linear ester and lactone derivatives were obtained
by means of four and three-component photocatalytic methodologies, respectively, under
similar reaction conditions [33].

In 2010, a three-component approach for the synthesis of alkynyl ketones was pro-
posed by the Ryu research group [34]. This new methodology, which is an alternative to the
acylation of alkynyl organometallic reagents with acid chlorides, is based on the reaction of
alkyl iodides, CO and terminal alkynes in the presence of a palladium catalyst and xenon
light, under mild reaction condition (Scheme 6).
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Scheme 6. The synthesis of alkynyl ketones via a Pd-catalyzed/light-induced three-component
cross-coupling reaction.

Remarkably, the source of light, the palladium catalyst (PdCl2(PPh3)2) and the aqueous
medium proved to be crucial for this transformation. Various substituents on the alkyl
iodide, such as chloro, methyl ester and ether (TBS) groups, were well tolerated under
standard conditions, while aryl, as well as alkyl fragments, can be efficiently employed
in the alkyne partner. Once again, this methodology, which starts from a variety of alkyl
iodides, is complementary to the transition metal-catalyzed coupling reactions, which are
mainly restricted to the use of aryl and vinyl halides [31].

Later, Ryu and co-workers reported versatile four-component coupling reactions lead-
ing to functionalized esters using α-substituted iodoalkanes, alkenes, CO and alcohols
under photoirradiation conditions (500 W xenon lamp), 45 atm of CO pressure in the pres-
ence of PdCl2(PPh3)2 (5 mol %) as catalyst (Scheme 7a) [35]. Several electron-withdrawing
groups were tolerated (EWG = COOR, CN, PhSO2) on the iodoalkane coupling partner,
and both terminal and internal alkenes gave satisfactory results. When alkenyl alcohols
were employed in place of alkene/ROH mixture, lactone derivatives were obtained via
intramolecular esterification (Scheme 7b).
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The same research group has also reported a novel synthetic method of carbamoylac-
etates from α-iodoacetate, carbon monoxide and amines under 15 W black light conditions
in the presence of PdCl2(PPh3)2 as the catalyst [36]. The methodology was restricted
to the use of α-iodo ethyl acetate, while a wide variety of amines, including primary
and secondary amines as well as aryl, heteroaryl and aliphatic amines, were employed
(Scheme 8).
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The same research group has also reported a novel synthetic method of car-
bamoylacetates from α-iodoacetate, carbon monoxide and amines under 15 W black light 
conditions in the presence of PdCl2(PPh3)2 as the catalyst [36]. The methodology was re-
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Scheme 8. Palladium-catalyzed/light-induced synthesis of carbamoyl acetates.

A mechanism based on the combined action of radical species and organometallic
intermediates was proposed (Scheme 9). The acetate radical I is initially formed through
the cleavage of the C–I bond, which can be promoted by single-electron transfer from
the photo-excited Pd complex. The subsequent coupling between I and Pd(I)I leads to
an α-pallado ester II, which undergoes aminocarbonylation to carbamoyl esters with the
regeneration of Pd(0) (Scheme 9).
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Inspired by the work of Suzuki and Miyaura [24,26], the same research group reported
a PdCl2(PPh3)2-catalyzed light-promoted synthesis of alkyl aryl ketones via carbonylative
cross-coupling reaction of alkyl iodides, CO and arylboronic acids [37]. Basic conditions
(K2CO3), 45 atm of CO and the presence of water were essential for the success of the
reaction (Scheme 10). Primary, secondary and tertiary alkyl iodides were successfully
coupled with CO and a series of substituted arylboronic acids, bearing both electron-
withdrawing and electron-donating groups. The mechanism can likely pass through the
formation of an acylpalladium complex via carbonylation of the alkyl radical I, which
is generated by the action of Pd(0) and light from the alkyl iodide (Scheme 11). The
transmetalation of an arylboronic acid with the acylpalladium intermediate III leads to the
corresponding acyl(aryl)palladium species, which undergoes reductive elimination to the
desired alkyl aryl ketone and Pd(0) (Scheme 11).
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Impressively, this protocol was also applied to the four-component coupling reaction
between ethyl iodoacetate, 1-octene, CO and phenylboronic acid to give the corresponding
functionalized ketone derivative in 62% yield under the standard optimized conditions
(Scheme 12a). The analogous cyclizative double-carbonylation reaction, where 5-iodo-1-
pentene replace the couple iodo alkyl/alkene, took place, leading to the aryl ketone with a
cyclopentanone moiety, in 57% yield (Scheme 12b).
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More recently, a similar approach was employed to synthesize aromatic β-keto esters
from α-iodoesters, CO and arylboronic acids under lower CO pressures (10 atm) [38].
Taking advantage of this strategy, Li and co-workers developed a protocol to synthesize
aryl ketones from aryl iodides and aryl boronic acids by carbonylative Suzuki–Miyaura
coupling using DMF as CO surrogate. In this case, TiO2 was found essential in the in situ
generation of CO from DMF and also in the reduction of Pd(II) to Pd(0) species, as it was
able to start the catalytic cycle [39].

A carbonylative Mizoroki–Heck reaction was also developed under palladium cataly-
sis and photo-induced conditions [40]. The reaction of alkyl iodides, CO and aryl alkenes
leading to α,β-unsaturated ketones was carried out in the presence of Pd(PPh3)4 as a
catalyst and DBU as a base under irradiation of a xenon lamp (500 W) (Scheme 13).
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In this approach, alkyl radicals (I) were formed from alkyl iodides via single-electron
transfer (SET) and underwent a sequential addition to CO and alkenes to give β-keto
radicals (III). It is proposed that DBU would abstract a proton in α to the carbonyl to form
radical anions (IV), giving α,β-unsaturated ketones via SET (Scheme 14).
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Recently, Odell and co-workers have developed a Pd(PPh3)4-catalyzed carbonylative
Suzuki–Miyaura coupling of unactivated alkyl halides with aryl boronic acids by means
of visible-light irradiation with low CO pressure (2–3 atm) at room temperature for the
synthesis of aryl alkyl ketones [41]. This methodology features the use of solid CO-source
instead of gaseous CO, readily available LED lights and a double-chamber system, one
for the CO generation and the other for the palladium-catalyzed reaction (Scheme 15).
Under the optimized conditions, various alkyl iodides and bromides reacted with CO and
differently substituted aryl boronic acids to provide the desired ketones with moderate to
good yields. The same protocol was successfully applied for the synthesis of a precursor of
melperone, an antipsychotic drug.
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Based on control experiments, the authors verified the crucial role of the visible light as
well as of the palladium catalyst. Moreover, the addition of TEMPO completely prevented
the product formation while, at the same time, the R-TEMPO adduct was detected.

A recent report by Arndtsen’s group has brought a breakthrough in the area of
palladium-catalyzed carbonylation reactions. A new palladium-catalyzed/light-induced
methodology for the synthesis of a broad array of carbonylated compounds (acid chlo-
rides, esters, amides and ketones) starting from aryl/alkyl iodides and bromides has
been reported (Scheme 16) [42]. Compared to previous protocols, this method features
high versatility, high functional group tolerance, an impressive reaction scope and mild
reaction conditions. In particular, this protocol is compatible with aldehydes, protected
amines, esters, nitriles, thioethers and heterocyclic substrates on aryl iodides and bro-
mides. The synthesis of β-amino acid derivatives was achieved with high efficiency. In
addition, electron-rich arenes and heteroarenes were successfully employed in place of
nitrogen or oxygen nucleophiles. The importance of palladium catalyst and visible light
in this radical reaction has been consistently demonstrated, and, in particular, mechanis-
tic studies revealed that light acts as two different roles in this transformation, enabling,
together with the palladium catalytic system, both the oxidative addition and reductive
elimination steps.
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Recently, the palladium-catalyzed aminocarbonylation of aliphatic and aromatic io-
dides under visible-light irradiation has been reported by Sardana and co-workers [43].
The methodology, based on the employment of COgen (9-methyl-9H-fluorene-9-carbonyl
chloride, 1 equiv) in a two-chamber system, can be extended to the synthesis of [14C]-
amides starting from the corresponding 14Cogen. Despite the moderate yields, tertiary
amides and C-14-labeled pharmaceutical products were successfully accessed.

Oxalamides represent a class of relevant compounds frequently found in bioactive
and pharmaceutical molecules [44] and used as a ligand in asymmetric catalysis [45]. Wu
and co-workers have recently developed a novel, highly sustainable visible-light-induced
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palladium-catalyzed method for the synthesis of oxalamides from amines and carbon
monoxide [46]. The versatile and green methodology relies on the use of visible light in
combination with palladium/BINAP catalysts (Scheme 17) without any oxidant or base. In
addition, the protocol features high selectivity (no urea byproducts were detected) and the
possibility to reuse the Pd complex without loss of efficiency. Notably, in some cases, the
presence of methylene blue as photosensitizer led to a significant improvement in the yield.
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Scheme 17. The general photocatalytic synthesis of oxalamides via the palladium-catalyzed dehy-
drogenative carbonylation of amines.

Based on control and EPR experiments, the authors propose that the active L2Pd(0)*
species I is first generated in situ from L2Pd(II)Cl2 in the presence of the amine under
visible-light irradiation (Scheme 18). Then, after a SET process with the amine, a nitrogen-
radical and a Pd(I)-radical species II are generated. The reaction of CO with the nitrogen
radical leads to an acyl radical, which recombines with II delivering intermediate III.
The latter undergoes a ligand exchange to provide complex IV and molecular hydro-
gen, which was detected by gas GC. The insertion of another CO molecule provides a
bis(carbamoyl)palladium intermediate V, which undergoes a reductive elimination step to
give the expected oxamide and a Pd(0) species.
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In 2016, Lei et al. disclosed a new intramolecular oxidative carbonylation of enamides
as a mild and environmentally friendly protocol for the synthesis of 1,3-oxazin-6-ones.
Oxygen was employed as a terminal oxidant, avoiding the need for stoichiometric amounts
of metal salts, such as Cu(II) salts [47]. The success of the strategy relies on the combination
of palladium and photoredox catalysis and, in particular, Pd(OAc)2 and Ru(bpy)3Cl2 were
both used in catalytic amounts together with Xantphos as phosphine ligand (Scheme 19).
The generality of the reaction was demonstrated as both electron-withdrawing and electron-
donating groups, including heteroaromatic rings (furan and thiophene), were well tolerated
under the optimized conditions. The authors suggest that the photocatalyst is exclusively
involved in the reoxidation of palladium, as described in Scheme 20. Firstly, taking advan-
tage of the amide group, a Pd catalyzed alkenyl C–H activation affords a vinylpalladium
complex I. Then, a molecule of CO coordinates and inserts, leading to the acylpalladium
intermediate II. Subsequently, DABCO enables the formation of complex III, and, finally, a
reductive elimination step delivers the oxazinone product and Pd(0) species. Re-oxidation
of palladium(0) can be exerted by the excited Ru(II)* leading to Pd(II)L, which restart a new
catalytic cycle, and Ru(I), which, in its turn, can be oxidized back to Ru(II) by molecular
oxygen. The generated superoxide anion may also oxidize the Pd(0) species by electron
transfer. The presence of KI was found to improve the efficiency of this transformation,
likely through coordination of palladium(II) species, while Ac2O was suggested to reduce
the possible formation of inactive palladium(0) species under the CO atmosphere.
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1.2. Visible-Light-Promoted Iridium-Catalyzed Carbonylations

Amides are ubiquitous in both natural and synthetic compounds, including pharma-
ceutical products. Odell and co-workers have recently developed a visible light-mediated
fac-Ir(ppy)3 catalyzed amino carbonylation of unactivated alkyl iodides under mild re-
action conditions [48]. The desired amides are produced in moderate to excellent yields
through a two-chamber system (H-tube), where the CO is released ex situ from Mo(CO)6)
(Scheme 21). Secondary and tertiary iodides can be successfully aminocarbonylated with a
wide range of amine nucleophiles, whereas primary iodides provide satisfactory results in
combination with hindered amines only. Remarkably, a dealkylative-aminocarbonylation
pathway occurs when alkyl halides react with tertiary amines. The reaction mechanism
starts with the reductive dehalogenation of an alkyl halide (R–X) to give the alkyl radical I,
followed by CO insertion with the formation of an acyl radical intermediate II. The latter is
either quenched by the starting alkyl iodide to produce an acyl iodide III or oxidized to an
acylium ion IV. The nucleophilic attack of the amine on the acyl iodide or the acylium ion
affords the final amide (Scheme 22).

A variety of acetate-containing 2,3-dihydrobenzofurans have been synthesized by
Polyzos et al. through a visible light-mediated Ir-catalyzed radical carbonylation pro-
cess under continuous flow conditions [49]. Overcoming the traditional limitations of
both Pd-catalyzed alkoxycarbonylation reactions and classical radical-free carbonyla-
tion processes in terms of regioselectivity, the pressure of CO and sustainability [50],
alkenyl-tethered arenediazonium salts underwent a versatile and stereoselective (exclu-
sive 5-exo-dig cyclization) cyclization and alkoxycarbonylation cascade to a wide range
of 2,3-dihydrobenzofuran derivatives in the presence of [Ir(dtbbpy)(ppy)2]PF6 as cata-
lyst under blue LEDs (14 W) at room temperature (Scheme 23). Electron-donating and
electron-withdrawing substituents on the arenediazonium salt moiety were nicely tolerated
under the standard conditions. Regardless of steric bulk, alkyl alcohols were successfully
employed as coupling partners to produce the desired esters in moderate to good yields.
This continuous flow methodology also features a very short reaction time (200 s), moder-
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ate CO pressures (25 atm) and a straightforward scale-up. Interestingly, the commercial
Ru(bpy)3Cl2·6H2O was found to be slightly less efficient in this transformation.
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Scheme 23. Visible light-mediated [Ir(dtbbpy)(ppy)2]PF6-catalyzed cyclizative alkoxycarbonylation
of alkenyl-tethered arenediazonium salts under continuous flow conditions.

The mechanism is supposed to start with the homolytic cleavage of the C–N bond
of the allyloxy-tethered arenediazonium salt by single-electron transfer from the photo-
catalyst in its excited state (PC*), with the generation of an aryl radical I and the oxidized
photocatalyst PC•+ (Scheme 24). An intramolecular radical alkene addition provides the
primary alkyl radical II, which, after CO insertion, gives the acyl radical III. Oxidation of
the acyl radical by the oxidized photocatalyst PC•+ results in the formation of an acylium
ion IV and the regeneration of the photocatalyst PC. Lastly, the reaction of IV with alcohol
leads to the final product.
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In 2020, Polyzos and co-workers reported an Ir-catalyzed visible-light-promoted
aminocarbonylation of alkyl and aryl halides with CO and amines under continuous flow
conditions (Scheme 25) [51]. The iridium-based photocatalyst ([Ir(ppy)2(dtbbpy)]PF6) was
used in combination with DIPEA (N,N-diisopropylethylamine) as a sacrificial reductant
and under blue LED (54 W) irradiation. A large variety of aryl halides (I, Br, Cl) and alkyl
iodides (primary, secondary and tertiary) reacted successfully with CO and an array of alkyl
and aryl amines to provide the expected amides in good to high yields. The continuous flow
system was assembled from commercially available components, featuring operational
simplicity, high applicability, improved safety and easy scalability.
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Ynones represent an important motif present in bioactive compounds and are useful
intermediates in the synthesis of heterocycles [52]. Alternative to the previously described
Ryu’s method [34], Lu and Xiao et al. have recently developed an efficient protocol for
the synthesis of ynones through a visible-light-induced photocatalytic decarboxylative
carbonylative alkynylation of carboxylic acids in the presence of carbon monoxide (CO) at
room temperature [53]. The decarboxylative alkynylation reaction was carried out using
ethynylbenziodoxolones (EBX) as the alkynylating agent, carboxylic acid, in the presence of
Ir[dF(CF3)ppy]2(dtbbpy)PF6 as a photocatalyst and Cs2CO3 as a base (Scheme 26). A range
of aliphatic carboxylic acids gave the corresponding ynones in good to excellent yields
under mild conditions but extremely high pressure of CO. Mechanistically, it is proposed
that the excited photocatalyst Ir(III)*, generated from Ir(III) under visible-light irradiation,
is able to oxidize the substrate with the formation of an alkyl radical I (Scheme 27). Then,
the latter, after CO insertion, gives rise to an acyl radical II, which undergoes radical
addition to the alkylating agent affording the radical intermediate III. The subsequent
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radical elimination reaction yields the desired ynone and the benziodoxolonyl radical IV.
Finally, radical IV is reduced to ortho-iodobenzoate by Ir(II), which, in turn, is oxidized to
Ir(III) for a new catalytic cycle.
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More recently, the same research group developed a visible-light-driven photocat-
alyzed synthesis of α,β-unsaturated ketones starting from alkyl Katritzky salts as a source
of radicals [54]. In the context of a more general reactivity, a limited number of alkyl
Katritzky salts reacted with 1,1-diphenylethylene in the presence of [Ir(4-Fppy)2(bpy)]PF6
and DABCO in MeCN under CO atmosphere and blue LEDs irradiation, leading to α,β-
unsaturated ketones (Scheme 28). In the proposed reaction mechanism, the excited pho-
tocatalyst Ir(III)* is supposed to reduced alkyl Katritzky salts through a SET process
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(Scheme 29). The generated radicals I inserts one molecule of CO with the formation of
an acyl radical II, which reacts with 1,1-diphenylethylene yielding the radical species III.
Intermediate III is then reduced by the photocatalyst Ir(IV) with the formation of the
cationic intermediate IV, which, lastly, undergoes a DABCO-mediated deprotonation step
to deliver the final ketone.
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1.3. Visible-Light-Promoted Cobalt-Catalyzed Carbonylations

Cobalt salts have been found to efficiently catalyze the carbonylation of alkenes, chloro
and bromoalkanes under UV irradiation [55–59]. The first report on visible-light-mediated
cobalt-catalyzed carbonylation reaction appeared in 2012, when Jia, Yin and colleagues,
based on their previous findings [60], developed a Co(OAc)2-catalyzed alkoxycarbonylation
of aryl bromides under visible-light irradiation and mild conditions (Scheme 30) [61]. The
use of a strong base (NaOMe) and an organic sensitizer (PhCOPh) was essential to the
reaction’s success. Aryl bromides with a chloro substituent behaved better than tolyl
bromides; however, a selectivity higher than 99% was always observed.
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Scheme 30. Visible-light-mediated cobalt-catalyzed alkoxycarbonylation of aryl bromides.

Recently, Alexanian et al. reported the visible-light-promoted aminocarbonylation of
(hetero) aryl/vinyl bromides and chlorides using an inexpensive cobalt catalyst (Co2(CO)8)
in conjunction with tetramethylpiperidine (TMP) (Scheme 31) [62].
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Scheme 31. Visible-light-mediated cobalt-catalyzed aminocarbonylation of bromo and chloroaryls.

Aryl bromides having both electron-rich and electron-deficient groups, as well as
vinyl bromides, were well tolerated. In addition, bromo heteroaryls, such as pyridines,
furans, quinolines and indoles, also performed nicely in this reaction. Aryl chlorides
with electron-deficient groups gave the expected amides in satisfactory to good yields. A
wide variety of primary and secondary aliphatic amines, including amino acids, gave the
corresponding amides in moderate to high yields. Preliminary mechanistic investigations
were consistent with the first formation of a cobaltate anion [Co(CO)4]− (I) as an active
catalyst and the subsequent generation of an electron donor–acceptor complex (EDA) II
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(Scheme 32). The intermediacy of the visible light leads to the corresponding excited species
III. Then, a single-electron transfer produces two radical species (IV), which recombines,
leading to a (hetero)aryl or vinyl cobalt species V. Finally, migratory insertion of CO affords
intermediate VI, which undergoes displacement of the amine delivering the amide and the
active catalyst.
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1.4. Visible-Light-Promoted Rutenium-Catalyzed Carbonylations

Carboxylic acids are ubiquitous in a wide range of bioactive molecules and industrially
relevant compounds and represent a versatile, functional group in organic synthesis.
Bousquet et al. have recently reported a ruthenium-catalyzed visible-light-promoted
synthesis of benzoic acids starting from aryl diazonium salts, carbon monoxide (10–50 atm)
and water under mild conditions (Scheme 33) [63]. The reaction displays a good functional
group tolerance and generality. Notably, satisfactory results were achieved directly starting
from anilines through the in situ generation of aryl diazonium salts, avoiding in this way
their isolation. The proposed reaction pathway starts with the generation of an aryl radical
(I) by SET with the excited Ru(II)* (Scheme 34). Next, the insertion of CO on the aryl radical
gives rise to an acyl radical (II), which is oxidized by the Ru(III) species to an acylium ion
III. The Ru(II) is regenerated, and the acylium ion reacts with water delivering the desired
carboxylic acid.
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1.5. Visible-Light-Promoted Copper-Catalyzed Carbonylations

To the best of our knowledge, the first and only example of copper-catalyzed photoin-
duced carbonylation reaction has been recently reported by Chen and co-workers [64] and
is aimed at the synthesis of cyano-tethered amides by aminocarbonylation of oxime esters
with amines and CO under mild conditions (Scheme 35). A number of cycloketone oxime
esters and alkyl/aryl amines were evaluated, and a high level of functional group tolerance
was found. Larger than four-membered rings, such as cyclopentanone and cyclohexanone
oxime esters, did not lead to the expected products. For this aminocarbonylation reaction,
the authors proposed a visible light-mediated Cu(I)/Cu(II)/Cu(III)-based catalytic cycle
(Scheme 36). The first step is a single-electron transfer between the photoexcited LnCu(I)–
NHPh complex (II)* or, alternatively, the ground state LnCu(I)–NHPh species (I) and the
oxime, leading to an iminyl radical III and the oxidized LnCu(II)–NHPh complex (IV).
Then, III undergoes a selective β–C–C bond cleavage to form the alkyl radical V, which
can react with Cu(II)-complex IV producing a Cu(III) organometallic species VI. The latter,
after sequential coordination and insertion of CO, leads to an acyl copper intermediate (VII
or VIII), providing the final amide by reductive elimination and regenerating the active
Cu(I) catalyst.
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1.6. Visible-Light-Promoted Metal-Free Carbonylations

The major achievements in visible-light-mediated carbonylation reactions were ob-
tained under transition-metal catalysis. The requirement of transition-metal catalysts often
in connection with organic ligands is undoubtedly expensive, and the removal of their
traces from the final products is necessary, particularly in the synthesis of pharmaceuti-
cal compounds. Metal-free photocatalytic protocols can overcome the above-mentioned
drawbacks and may represent attractive greener and more sustainable alternatives.

In 1997, the efficient conversion of alkyl iodides to the corresponding esters was
achieved under photoirradiation conditions in the absence of catalysts (Scheme 37) [29].
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The presence of hydrogens in the β position on the alkyl iodides results in the forma-
tion of positional isomers via the β-elimination pathway under conventional transition
metal-catalyzed carbonylation conditions [65]. This radical protocol allows the selective
alkoxycarbonylation at the carbon attached to the halogen, and, for this reason, a wide
range of aliphatic iodides, including tertiary ones, can be efficiently employed (Scheme 37,
selected examples). High pressure of CO (from 20 to 55 atm) and the presence of an organic
(triethylamine) or inorganic base (K2CO3, KOH) were essential to the reaction outcome.
Mechanistically, by irradiation, the homolytic cleavage of the C–I bond produces an alkyl
radical species that reacts with the carbon monoxide, providing an acyl radical intermedi-
ate. In the presence of another molecule of alkyl iodide, an acyl iodide is then generated,
and, after reaction with R2OH, the corresponding ester is produced (Scheme 37, proposed
mechanism). Remarkably, the reaction can be extended to the synthesis of amides using
amines in place of alcohols [28].
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Scheme 37. The catalyst-free synthesis of esters via radical alkoxycarbonylation of alkyl iodides
under irradiation conditions.

The first example of radical alkoxycarboxylation of aryldiazonium salts using CO gas
through visible-light-induced photoredox catalysis has been reported in 2015 by the Xiao
research group (Scheme 38) [66]. A wide variety of arylcarboxylic acid esters, bearing both
electron-donating and electron-withdrawing groups, were obtained in good to excellent
yields at room temperature. The generality of the alcohol coupling partner, including
the use of chiral alcohols, was also demonstrated. Notably, terminal alkynes, which are
known to be good acceptors in radical reactions, remained untouched. Sensitive functional
groups (such as iodo, bromo) in traditional transition metal-catalyzed alkoxycarbonylation
reactions were compatible in this process, thus allowing further synthetic manipulations.
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Remarkably, a low loading of an organic dye (fluorescein) is employed as a photocatalyst,
and a low energy visible light (16 W blue LEDs) is enough to promote the reaction. However,
high pressure of CO (80 atm) proved to be crucial for the success of the reaction.
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Scheme 38. Visible light-induced fluorescein-catalyzed alkoxycarboxylation of aryldiazonium salts.

This radical alkoxycarboxylation protocol was applicable to other radical carboxyla-
tion cascade reactions. For example, when benzenediazonium salts, bearing the allyl or the
propargyl function at the ortho position, were caused to react under standard reaction con-
ditions, the corresponding methyl 2-(2,3-dihydrobenzofuran-3-yl)acetate (Scheme 39a) and
methyl 2-(benzofuran-3-yl)acetate (Scheme 39b) were obtained in satisfactory yields. Mech-
anistic studies suggested that the reaction might proceed via carbon radical intermediates
I formed by single-electron reduction of the substrate with the fluorescein photocatalyst
in its excited state. The reactive intermediate I might be able to trap the CO molecule
delivering the benzoyl radical II, which is oxidized by the dye radical cation (Dye·+) with
concomitant restoring of the active photocatalyst. The resulting cation III could be directly
trapped by various alcohols leading to a wide range of alkyl benzoates (Scheme 40).
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Scheme 40. The proposed mechanism for the fluorescein-catalyzed visible light-induced alkoxycar-
boxylation of aryldiazonium salts.

A very similar approach was developed in the same period by Jacobi von Wangelin’s
group. Alkyl benzoates were efficiently obtained from arene diazonium salts, carbon
monoxide and alcohols under visible-light irradiation and in the presence of eosin Y as the
catalyst (Scheme 41) [67]. Under metal and base-free conditions, a variety of functional-
ities were well tolerated both on the substrates and on various functionalized additives.
Interestingly, tertiary esters, which are difficult to obtain by conventional esterification
procedures due to their steric hindrance, can also be prepared in excellent yields. More-
over, the industrially relevant intermediate, 2-ethylhexyl benzoate, has been obtained in
58% yield from PhN2BF4, 2-ethylhexanol and CO under standard conditions.
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lation of arene diazonium salts.

The mechanistic investigations, including the observation of benzoyl-TEMPO adduct,
support the sequential reduction (SET), carbonylation, and oxidation (SET) to aroylium
cations, which undergo rapid addition to alcohols (Scheme 40, Dye = Eosin Y).

From the pioneering work of Heck on palladium-catalyzed aminocarbonylation of
aryl iodides [68], several efforts have been accomplished for the synthesis of aromatic
amides [69,70] through radical carbonylative pathways as well [66,67,71]. Recently, the first
example of catalyst-free photo-induced aminocarbonylation of aryl iodides with CO and
amines has been reported by Ryu and co-workers [72]. A wide variety of amides, including
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hetero aromatic amides, has been obtained in good yields under mild reaction conditions
(Scheme 42).
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Scheme 42. Photo-induced aminocarbonylation of aryl iodides with primary and secondary amines.

The aryl radical I, generated by a photo-induced cleavage of the starting aryl io-
dide, might react with CO leading to the corresponding acyl radical II (Scheme 43). The
nucleophilic addition of an amine to the latter gives a zwitterionic radical intermediate
III. Finally, electron transfer to the aryl iodide would provide the aryl radical I and the
expected amide.
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Inspired by Xiao [66] and Wangelin [67] independent reports, the Eosin-Y-catalyzed
synthesis of indol-3-yl aryl ketones from indoles, CO and aryldiazonium salts has been
recently reported by Gu and Li (Scheme 44) [73]. This protocol features high versatility,
high functional group tolerance and mild reaction conditions except for the high pressure
of CO required (70 atm).
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Scheme 44. The photo-induced synthesis of indol-3-yl aryl ketones from indoles, CO and aryldiazo-
nium salts.

The synthesis of indol-3-yl aryl ketones was achieved also by Li, Liang and colleagues,
starting from arylsulfonyl chlorides in place of aryldiazonium salts under very similar
photocatalytic conditions (Scheme 45) [74]. Notably, the methodology demonstrated wide
applicability with both electron-rich and electron-deficient functional groups at reduced
reaction time if compared with Gu and Li’s protocol [73]. The proposed pathway starts
with the reduction of the arylsulfonyl chloride by a single-electron transfer process (SET)
to produce an aryl radical I and the Eosin radical cation [Eosin˙+] (Scheme 46). Then, the
aryl radical I reacts with CO, delivering an acyl radical II, which is oxidized to an acylium
intermediate III by the Eosin radical cation [Eosin·+]. The active photocatalytic species is
indeed regenerated while the acylium ion undergoes nucleophilic attack by the indolyl
species, leading to the final product.

It has been demonstrated that not only indoles but also (hetero)arenes might serve
as a platform to trap benzylidyneoxonium cations [75]. Under very similar reaction
conditions [67,73], a wide variety of unsymmetrical aryl and heteroaryl ketones were
successfully obtained from (hetero)arenes, CO and aryldiazonium salts in the presence of
Eosin Y and green LEDs (Scheme 47). Interestingly, the electronic nature of the diazonium
salt has little influence on the reaction, while electron-rich (hetero)arenes gave the best
results. Based on control experiments and in agreement with the previous reports [67], the
proposed mechanism is shown in Scheme 48. Under irradiation conditions, the excited
photocatalyst (Eosin Y*) is generated. Then, the electron-deficient phenyl diazonium salt is
reduced to I by Eosin Y* through a single-electron transfer (SET). The aryl radical species
I react with CO, providing the acyl radical II, which is oxidized by Eosin Y·+ to cationic
intermediate III. Finally, benzylidyneoxonium III is trapped by the arene (or heteroarene)
derivative, delivering the desired ketone.
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Recently, the first example of photocatalyzed oxidative carbonylation of organosili-
cates to unsymmetrical ketones has been reported by Fukuyama, Ollivier, Ryu, Fensterbank
and co-workers [76]. This metal-free procedure is based on the use of an inexpensive or-
ganic dye, 4CzIPN, which, in combination with the blue led, is able to catalyze the reaction
of alkyl bis(catecholato)silicates, CO (80 atm) and activated olefins to produce a wide range
of ketones (Scheme 49). Notably, primary, secondary and tertiary alkyl radicals generated
by the photocatalyzed oxidation of organosilicates underwent efficient carbonylation with
CO under standard conditions. Interestingly, 1,4-dicarbonyl compounds were efficiently
accessed through this protocol, while allyl sulfones were successfully employed as radical
acceptors in this three-component reaction.
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Scheme 49. The synthesis of unsymmetrical ketones via 4CzIPN-catalyzed radical carbonylations.

Mechanistic studies reveal that, initially, the photocatalyst is excited under visible-
light irradiation. Then, the alkyl bis(catecholato)silicate undergoes oxidation by the excited
4CzIPN* through a single-electron-transfer (SET) process, leading to the formation of the
alkyl radical species I and the reduced organocatalyst [4CzIPN]−. The alkyl radical I
reacts with CO to generate the acyl radical II, which, in turn, adds to the activated alkene
affording the radical intermediate III. Catalyst [4CzIPN]− converts III into the carbanionic
species IV by reduction (SET), and, in this way, the photocatalyst is able to restart a new
catalytic cycle. Finally, the base (KH2PO4) provides the proton for the formation of the final
product (Scheme 50).
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More recently, the same authors have developed a visible-light-driven photocat-
alyzed aminocarbonylation of alkyl bis(catecholato)silicates with amines under similar
reaction conditions [77]. In this approach, the CCl4 was used as a mediator in order to
promote the formation of acyl chloride, which is intermediate in the formation of the
corresponding amides.
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2. Conclusions

In this review, the major advances in the field of visible-light-induced catalyzed and
un-catalyzed carbon monoxide-based carbonylation reactions have been described. The
use of visible light in carbonylation chemistry has led to valuable and more sustainable
alternatives for the synthesis of carbonyl-containing compounds. Mild reaction condi-
tions, such as room temperature, are routinely applied. However, the use of low CO
pressure is less frequent, and many improvements are expected from this point of view.
The employment of greener reaction media and the application of continuous flow con-
ditions can be beneficial to this chemistry. The use of CO surrogates, so attractive in
conventional carbonylation reactions, can lead to several advantages in photocatalytic
carbonylation reactions. The research in this field should be focused on discovering more
efficient photocatalysts, possibly in combination with co-catalysts or additives, in order to
increase both turnover number and turnover frequency (TON and TOF) and to improve the
industrial attractiveness of these carbonylative methodologies. Heterogeneous systems, al-
though sometimes hardly compatible, should be considered to improve the sustainability of
these processes.

Despite the increasing number of high-impact publications in the field, this is, un-
doubtedly, an underdeveloped area, and the real potential of this highly sustainable car-
bonylation strategy still needs to be discovered. We hope that this contribution might help
other researchers in developing even more attractive visible-light-driven carbonylation
protocols in the coming years.
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