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A B S T R A C T

A system of two dynamic spatial panel data model equations is developed in which output growth and the change
in the unemployment rate are interdependent. The parameters of the model are estimated by recently developed
maximum likelihood techniques for multivariate spatial econometric models, using data of twelve provinces in
the Netherlands over the period 1974–2018, covering four major economic downturns of the Dutch economy. By
using time-cumulative marginal effects derived from the impulse response function of this model, it is found that
Okun's law is dominated by the relationship that runs from output growth to unemployment. The amount of
growth that is needed to reduce unemployment by one percentage point is shown to depend on the extent to
which spillover effects to neighboring regions and output multiplier effects are accounted for.
1. Introduction

Okun's law, named after the economist Arthur Okun (1962), is one of
the basic rules of thumb of macroeconomics. It measures the trade-off
between unemployment and output. One reading of Okun's law tells
how much growth is needed to reduce unemployment by one percentage
point. Another reading measures the cost of unemployment in terms of
forgone output. Both readings and the functional form of Okun's law form
the core of this paper.

Since Okun's original publication, the existence of a trade-off between
unemployment and output growth has been studied extensively. Recent
reviews are provided by Perman et al. (2015) and Ball et al. (2017).
Studies that appeared in the last three decades can be classified into three
broad groups:

A. Studies that use data from one country. Prachowny (1993), Weber
(1995), Weber and West (1996), Moosa (1999), Cuaresma (2003),
Silvapulle et al. (2004), and Huang and Lin (2006, 2008), Valadkhani
and Smyth (2015) use U.S. data, Attfield and Silverstone (1997, 1998)
U.K. data, and S€ogner (2001) Austrian data;

B. Studies that use data from more than one country or that use regional
instead of country data. Examples of the first are Moosa (1997), Lee
(2000), Vir�en (2001), Freeman (2001), S€ogner and Stiassny (2002),
6
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Izyumov and Vahaly (2002), Perman and Tavera (2005, 2007),
Huang and Yeh (2013), Tang and Bethencourt (2017), Ibragimov and
Ibragimov (2017), Nebot et al. (2019), and Huang et al. (2020). Ex-
amples of the second are Freeman (2000), Apergis and Rezitis (2003),
Christopoulos (2004), Adanu (2005), Kosfeld and Dreger (2006),
Villaverde and Maza (2007), Kangasharju et al. (2012), Binet and
Facchini (2013) and Durech et al. (2014). The main reason for
examining data for multiple units is to test for spatial differences in
the responsiveness of output to changes in unemployment, or vice
versa. Differences among countries or regions point to institutional
differences that determine the rigidity or flexibility of national or
regional labor markets (Moosa, 1997).

C. Studies that use data frommultiple units, often regions, which control
for spatial dependence and quantify spatial spillover effects, among
which Niebuhr (2003), Basistha and Kuscevic (2017), and Palombi
et al. (2017).

One the most widely used empirical specifications takes the form

�
uit � u*it

� ¼ β
�
yit � y*it

�þ εit ; i ¼ 1;…;N; t ¼ 1;…; T (1)

where the index i refers to a country or region and the index t to a time
period, u is the actual rate of unemployment, u* the natural or the
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equilibrium rate of unemployment, y is the logarithm of actual output,
and y* of potential or equilibrium output (both measured as real gross
domestic product). The difference between the actual and the potential
value of a variable is called the cyclical component, or shorter the gap.
Okun's coefficient of output on unemployment is represented by β, the
increase/decrease in the unemployment gap (in percentage points) for
every percentage point decrease/increase in the output gap. Generally,
there are three reasons why unemployment may decrease (or increase)
more rapidly than output growth increases (or decreases) and thus why
Okun's coefficient will be negative and smaller than 1. As unemployment
increases, (i) unemployed persons may drop out of the labor force, after
which they are no longer counted in unemployment statistics, (ii)
employed persons may work shorter hours, and (iii) labor productivity
may decrease, perhaps because employers retain more workers than they
need.

Originally, Okun (1962) regressed the unemployment gap on the
output gap and then used the reciprocal of the slope of this regression to
predict the impact of unemployment on output. However, Barreto and
Howland (1993) demonstrate that this leads to an overestimation of
Okun's coefficient of unemployment on output. This is because the
reciprocal of the slope of this regression not only measures the impact of
unemployment on output, but also the expected value of the error term
given the unemployment rate, which are not independent of each other,
E (ε|u-u*)6¼0.1 Barreto and Howland (1993) find that, had Okun adopted
the model ðyit � y*itÞ ¼ β

0 ðuit � u*itÞ, the slope (β
0
) would fall to 2, instead

of the 3.2 reported in his study (Okun, 1962).2 In line with this, the
literature can be divided into studies that take the unemployment gap
(e.g. Lee, 2000; Dixon and Van Ours, 2017; Ball et al., 2017) and studies
that take the output gap (e.g. Gordon, 2010; Basu and Foley, 2013;
Guisinger et al., 2018) as the dependent variable. In this paper, we avoid
this choice by doing both, i.e., we develop a two-equations system of
Okun's law that controls for potential endogeneity of unemployment with
respect to output and vice versa. This extension is motivated by studies of
Ibragimov and Ibragimov (2017) and Huang et al. (2020), which provide
empirical evidence that the estimation of Okun's coefficient of output on
unemployment, or of unemployment on output, using ordinary least
squares (OLS) produces inconsistent estimates since the assumption of
strict exogeneity of the right-hand side variable when measured at the
same moment of time is violated in most existing studies.

The studies earlier classified in groups A and B commonly estimate
Okun's law for each country or region in the sample separately from the
others, producing a different βi for each unit i, thereby, assuming that
these countries or regions are independent of each other. This is a second
reason why Okun's coefficient estimated by OLS might be inconsistent.
According to the studies earlier classified in group C, this is because
countries or regions affect each other through spatial interaction effects.
Output interaction occurs when output in one economy affects output in
other economies. If output increases in one economy, output in other
economies might also increase due input-output relationships between
firms located in these different economies. Trade between firms due to
these input-output relationships may also encourage output growth in
neighboring economies through diffusion of knowledge, since it opens up
the possibility of cross-border learning-by-doing, as well as investment in
research and development (Helpman, 2004). The hypothesis that the
relative location of an economy, the effect of being located closer or
1 For this reason, the coefficient of regressing y on x, where y and x are two
variables, is generally not identical to the reciprocal of the coefficient of
regressing x on y.
2 The average estimate of Okun's coefficient taken from studies based on U.S.

data in which the unemployment gap is taken as the dependent variable is 2.85
(Moosa, 1997, 1999; S€ogner, 2001; Cuaresma, 2003; Silvapulle et al., 2004;
Huang and Lin, 2008). For studies that take the output gap as the dependent
variable this average estimate amounts to 1.74 (Prachowny, 1993; Attfield and
Silverstone, 1997, 1998; Freeman, 2001; Lee, 2000).

2

further away from other economies, is a determinant of economic growth
due to diffusion of knowledge has been underpinned by
economic-theoretical models (Ertur and Koch, 2007) and a vast empirical
literature (for an overview see LeGallo and Fingleton, 2014). Similarly,
regional science literature has paid considerable attention to explaining
why unemployment interactions among neighboring economies can
occur (e.g. Burridge and Gordon, 1981; Molho, 1995; Overman and Puga,
2002; Patacchini and Zenou, 2007; Halleck-Vega and Elhorst, 2016).

Interaction effects may also occur between output and unemploy-
ment, for example, because people do not necessarily live and work in the
same economy. This holds especially when estimating Okun's law at a
lower level of scale such as regions. Households may change their labor
supply decisions depending on the market conditions in the home region
compared to other regions. Any person, employed or unemployed, may
supply his labor outside his home region when the wage rate in a nearby
region is higher and this higher wage rate compensates for the greater
time and commuting costs. Migration is another adjustment mechanism.
Pissarides and Wadsworth (1989) demonstrate that unemployment en-
courages migration of unemployed workers relatively more than that of
employed workers, especially of those living in high-unemployment re-
gions to low-unemployment regions with higher prosperity levels.

There are also reasons why time lags appear in econometric models of
Okun's law. First, a household may not change its labor supply immedi-
ately in response to a change in unemployment in the own region or
elsewhere. Similarly, a firm may react with some delay to changes in
costs and the demand for its product. Second, lags can arise because of
imperfect information. Economic agents require time to gather relevant
information, and this delays the making of decisions. There are also oc-
casions when institutional factors can result in lags. Households may be
contractually obliged to supply a certain level of labor hours, even
though other conditions would indicate a reduction or increase in labor
supply.

In sum, the analysis of Okun's law requires a multivariate model with
dynamic effects in both space and time. In the spatial econometric
literature, only a few examples of multivariate models have been estab-
lished, highlighting the importance of simultaneous estimation with
spatial, temporal and spatiotemporal lags from an econometric-
theoretical perspective: Kelejian and Prucha (2004), Cohen-Cole et al.
(2013), Liu (2014), Baltagi and Deng (2015), and Yang and Lee (2017,
2019). The last two studies formalize a system of dynamic spatial panel
data equations that is able to deal with temporal, spatial and spatio-
temporal lags, with fixed effects in space and time, and to a limited extent
with different spatial weight matrices. Despite the relative scarcity of this
type of econometric-theoretical studies, empirical motivations for
multivariate dynamic spatial panel data models have been well depicted
in the literature, especially in regional science, such as Allers and Elhorst
(2011), Baltagi and Bresson (2011), de Graaff et al. (2012), and Elhorst
et al. (2021). The last study integrates multivariate dynamic spatial panel
data models and global vector autoregressive (GVAR) models, popular in
the macro-econometric literature, and shows that spillover effects
measured by the so-called indirect effects in the spatial econometric
literature and impulse responses in the GVAR literature are analytically
equivalent. The studies of Yang and Lee (2017, 2019) and Elhorst et al.
(2021) are used in this study as point of departure to develop a multi-
variate model of Okun's law with dynamic effects in both space and time
and to determine the impact of shocks to unemployment and output
growth along three channels: (i) the spatial channel covering the extent
to which a shock to one variable in a particular economy affects other
economies; (ii) the time channel focusing on the speed of shock trans-
missions; and (iii) the mutual impact of the variables on each other,
which will be used to answer the questions how much growth is needed
to reduce unemployment by one percentage point and how large the
costs of unemployment are in terms of forgone output growth.

The empirical analysis in this paper is based on a spatial panel of
unemployment and growth rates of the twelve provinces in the
Netherlands over the period 1974–2018. The spatial weight matrices are
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based on the binary contiguity principle of sharing a common border and
on the travel times between provinces, though not on the travel times
between their capitals or centroids, but on the travel times between the
municipalities located in these provinces and weighted by their popula-
tion sizes. The advantage of this setup is that it also offers the opportunity
to calculate internal travel times within provinces, an opportunity that
will be utilized to model spatial interaction effects across variables.

The paper is organized as follows. In Section 2, we provide an over-
view of that part of the literature on Okun's law that already paid
attention to multivariate systems and dynamics in space and time. This
overview is used to explain our contribution to the literature in more
detail. In Section 3, we set out the model specification, the estimation
approach, and the determination of own-variable and cross-variable
spillover effects. Data, its implementation, and results are presented in
Section 4. Finally, conclusions, discussions, limitations and options for
further research are the subject of Section 5.

2. Okun's law and the triangle between simultaneity, space and
time

Since the pioneering work of Okun, several extensions of his law have
been proposed and reviewed. However, up to now not one single study
has considered a multivariate model with dynamic effects in both space
and time, even not when analyzing Okun's law for multiple countries or
regions.

Durech et al. (2014) estimate the relationship between the output gap
(dependent variable) and the unemployment gap for Czech Republic and
Slovakia at the regional level over the period 1995–2011, treating the 22
regions in their analysis as independent entities. It is a recent but classical
example of all studies that we classified under group B in the introduction
to this paper. Huang et al. (2020) estimate the annual change in unem-
ployment by the annual change in the level of GDP (growth rate), using a
model with a homogenous slope for Okun's coefficient but with country
and time period fixed effects, for a space-time data set of up to 66
countries over the period 1960–2016. To deal with endogeneity, they
apply two-stage least square estimation with weighted annual variation
in the international oil price as exogenous instrument for economic
growth. Using a similar model based on quarterly data, Ibragimov and
Ibragimov (2017) adopt an IV estimator to instrument the growth rate for
six countries of the former USSR. Importantly, all three studies ignore
potential spatial interactions in their model and, except for Huang et al.
(2020), focus on cross-country or region comparative analyses.

Kangasharju et al. (2012) test for and find evidence in favor of
cointegration of Okun's law, using a wide set of Finnish travel-to-work
areas (74 regions) over the period 1976–2006. To control for
cross-sectional dependence in both unemployment and output, the
change at the regional level is accounted for, though only if it exceeds the
corresponding change at the national level in magnitude. Huang and Yeh
(2013) adopt an autoregressive distributed lag (ARDL) model of order (2,
1) and rewrite it as an error correction model to allow for temporal dy-
namics in the dependent variable (change in unemployment rate) and the
explanatory variable (GDP growth rate). The model is estimated for 53
countries (21 OECD and 32 non-OECD) and for 50 U.S. states. The au-
thors use the pooled mean group (PMG) estimator developed by Pesaran
et al. (1999) to end up with one long-run estimate of the impact of output
growth on unemployment for the whole sample. In sum, both studies
recognize simultaneity and control for either cross-sectional dependence
or time-series dependence, but not both.

Basistha and Kuscevic (2017) estimate a homogenous version of
Okun's law for 48 U.S. states over the period 1987–2014 with state fixed
effects but without time fixed effects. They enhance previous studies by
regressing the change in unemployment not only on the growth rate in
the own state, but also in neighboring states and even in non-neighboring
states. This study is a recent example of all studies that we classified
under group C in the introduction to this paper.
3

Probably the most complete work up to now is of Palombi et al.
(2017). They examine Okun's law for 128 British NUTS3 areas over the
period 1985–2011. The authors adopt a dynamic spatial Durbin model
with homogenous coefficients and control for spatial-specific effects, and
test whether these effects should be fixed or may be modeled as being
random. In addition, they use instrumental variables to control for
endogeneity of the right-hand side variables, which in their case is GDP
growth in the own and in neighboring areas, since the change in unem-
ployment is taken as the dependent variable. Yet they limit themselves to
a univariate model and do not control for time-period fixed (or random)
effects. The latter is remarkable since the results of the cross-sectional
dependence test of Pesaran (2015) applied to both the change in un-
employment and output growth (Palombi et al., 2017, Table 1) turn out
to take values outside the critical interval (�1.96,þ1.96) of this test. This
points to a degree of cross-sectional dependence beyond that generally
considered in spatial econometric type of studies. Time dummies are the
minimum to control for this.

In this paper a multivariate model of Okun's law with dynamic effects
in both space and time will be developed. Just as in the studies of Kan-
gasharju et al. (2012), Huang and Yeh (2013), Basistha and Kuscevic
(2017), Palombi et al. (2017), and Huang et al. (2020), the coefficients of
this model are assumed to be homogenous rather than heterogeneous.
The explanation for this is twofold. The model that will be set out in the
next section contains 13 parameters, of which 10 would be unit-specific
when allowing for heterogeneous slopes. Our data set consists of N ¼ 12
provinces in the Netherlands. This implies that the number of parameters
to be estimated in a heterogeneous model would increase to 12� 10þ
3 ¼ 123 parameters. This number would increase even further if the el-
ements of the variance-covariance to be introduced below are also
assumed to be heterogeneous (see Aquaro et al., 2021). Since we will
estimate the parameters by maximum likelihood (ML) and the
log-likelihood of a multivariate spatial econometric model cannot be
concentrated with respect to a subset of the parameters, except for the
parameters of the variance-covariance matrix (in our case 3 of the 123
parameters), maximizing the log-likelihood function including the Ja-
cobian term accounting for so many parameters is still a bridge too far at
the moment, both from a programming and a numerical viewpoint. This
might change when the estimation of multivariate spatial econometric
models becomes more common and faster algorithms become available.

3. Methodology

3.1. The econometric model

The system of dynamic spatial panel data models introduced by Yang
and Lee (2019) reads as

ztΓ ¼ ½W1z1t;…;Wmzmt �Ψ þ ½W1z1t�1;…;Wmzmt�1�Φþ
þzt�1Pþ xtΠ þ Cn þ αt � ιN þ εt; εt � ð0;ΣÞ (2)

where zt ¼ ðz1t ; z2t ;…; zmtÞ is an ðN�mÞ vector of dependent variables. In
this study, m ¼ 2 and zt ¼ ðyt � y*t ; ut � u*t Þ. Γ is an (m� m) matrix of
mutual impacts among the m dependent variables. Its diagonal elements
are normalized to one since an independent variable can only affect other
variables and not itself, which in case of m ¼ 2 implies that vecðΓÞ ¼
ð1; γ2;1; γ1;2; 1Þ

0
. Ψ is an (m� m) matrix, with vecðΨÞ ¼

ðψ1;1;ψ2;1;ψ1;2;ψ2;2Þ
0
for m ¼ 2. This matrix is used as part of the term

½W1z1t ;…;Wmzmt �Ψ to denote the impact of the spatially lagged depen-
dent variables measured at time t of both own-variable spatial lags along
the diagonal ofΨ, and of cross-variable spatial lags along the off-diagonal
of Ψ. Yang and Lee (2019) assume that each dependent variable has its
own row-normalized ðN�NÞ spatial weight matrix with zero diagonal
describing the spatial arrangement of the units in the sample. Similarly,
the term ½W1z1t�1;…;Wmzmt�1�Φ denotes the impact of the spatially
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lagged dependent variables measured at time t-1, where Φ is an (m� m)

matrix and vecðΦÞ ¼ ðφ1;1;φ2;1;φ1;2;φ2;2Þ
0
form ¼ 2. Temporal dynamics

are controlled for by the term zt�1P, where P is an (m� m) matrix of

autoregressive coefficients with vecðPÞ ¼ ðp1;1; p1;2; p2;1; p2;2Þ
0
for m ¼ 2.

The term xtΠ represents the impact of K exogenous regressors xt through

the (K� m) matrix Π with vecðΠÞ ¼ ðπ1;1;…; πK;1; π1;2;…; πK;2Þ
0
for m ¼

2. The (N� m) vector εt reflects the independently and identically
distributed idiosyncratic disturbances of the model with covariance

matrix Σ, and vecðΣÞ ¼ ðσ1;1; σ2;1; σ1;2; σ2;2Þ
0
and σ1;2 ¼ σ2;1 form¼ 2. The

off-diagonal entries of this covariance matrix allow the error terms of the
two equations to be correlated for each unit at the same moment in time.
The ðN�mÞ vector Cn represents individual fixed effects and controls for
all unit-specific, time-invariant variables in each of the m equations
whose omission could bias the parameter estimates in a typical
time-series application. Similarly, the ðN�mÞ vector αt � ιN , where αt is
an (1 �mÞ vector and ιN is an ðN�1Þ vector of ones, represents time fixed
effects and controls for all time-specific, unit-invariant variables in each
of the m equations whose omission could bias the parameter estimates in
a typical cross-sectional application.

Yang and Lee (2019) derive the conditions that need to be satisfied for
the full information maximum likelihood (FIML) estimator set out in
their paper to be identified, consistent, and asymptotically normal. First,
T needs to be sufficiently large to avoid that the initial values of the
dependent variables in all units also need to be explained, such as in
Elhorst (2010) and Parent and LeSage (2011) for single equation models.
If N=T → C, where C is a finite positive constant, or N= T → ∞, the
proposed FIML estimator needs to be bias-corrected. Details about the
mathematical expression of this bias-correction can be found in Yang and
Lee (2019, theorem 2). By contrast, if N=T → 0, the bias disappears.

Second, the weight matrices of the spatial lags should have zero di-
agonal elements, be row-normalized, and row and columns sums should
be uniformly bounded in absolute value. Row-normalization is necessary
to concentrate out the time period fixed effects. There are two techniques
to concentrate out the time fixed effects in combination with the indi-
vidual fixed effects. One is the standard demeaning procedure set out in
Baltagi (2013). For zm;t this procedure reads as zm;t ¼ zm;t � _zm;t � €zm;i þ
zm, where _zm;t ¼ 1

N

PN
i¼1

zm;it for each t ¼ 1;…;T, €zm;i ¼ 1
T

PT
t¼1

zm;it for each

i ¼ 1; …;N, and zm ¼ 1
NT

P
i

P
t
zm;it . Similar transformations need to be

carried out on zm;t lagged in space, time and space-time. The second
technique is the orthogonal Helmert transformation, part of the FIML
estimator of Yang and Lee (2019). Let JN ¼ IN � 1

NιN ι
0
N denote the

cross-sectional mean transformation matrix normally used to wipe out
the time fixed effects, and FN;N�1 the matrix of eigenvectors corre-
sponding to the N � 1 eigenvalues of JN that equal one. Then multiplying
all vectors zm;t and their counterparts lagged in space, time and
space-time on the left and right-hand side of Equation (2), yielding ~zm;t ¼
F

0
N;N�1zm;t , eliminates the time fixed effects of the model. The individual

fixed effects can subsequently be concentrated out by applying the
standard transformation JT ¼ IT � 1

TιT ι
0
T , but then to the transformed

variables ~zm;t to get ~~zm;t ¼ JT~zm;t ¼ JTF
0
N;N�1zm;t . Importantly, Lee and Yu

(2010) demonstrate that the disturbances resulting from the standard
demeaning procedure are linearly dependent over the time dimension.
The orthogonal Helmert transformation avoids this linear dependence,
but has the effect that the N � 1 vector zm:t changes into a vector ~zm;t of
length ðN � 1Þ� 1. Instead of N observations on each variable at a
particular moment in time, N � 1 observations remain available for
estimation.

The concentrated log-likelihood function of the model with both the
individual and time period fixed effects concentrated out by the
orthogonal Helmert transformation reads as
4

lnL ¼ �mðN � 1ÞT
2

lnð2πÞ þ T lnjSj � T lnjΓ�Ψj � ðN � 1ÞT
2

lnjΣj
� 1
2

XT
t¼1

e'tΣ
�1et: (3)

where S ¼ Γ0 � IN � ðΨ0 �INÞW, W ¼ diagðW1; W2; …; WmÞ, the
ððN�1Þm� 1) vector of residuals at time t are

et ¼ S*vecð~~zm;tÞ � ½ðΦ' � IN�1ÞW*þ
P' � IN�1� vecð~~zm;t�1Þ � ðIm � ~~xtÞvecðΠÞ;

(4)

S* ¼ Γ0 � IN�1 � ðΨ0 � IN�1ÞW*, W* ¼ diagðW*
1 ; W

*
2 ; …; W*

mÞ, and
W*

m ¼ F 0
N;N�1WmFN;N�1: The derivation of this concentrated log-likelihood

function is based on two properties. First, F 0
N;N�1Wmzm;t ¼ W*

mF
0
N;N�1zm;t .

Second, lnjSj � lnjΓ � Ψj ¼ lnjΓ0 � IN�1 � ðΨ0 � IN�1ÞW*j ¼ lnjS*j, as a
result of which lnjSj � lnjΓ�Ψj can be used to replace lnjS*j. Both
properties only hold when Wm is row-normalized and its diagonal ele-
ments are zero (see Yang and Lee, 2019 for details). Finally, it is to be
noted that the concentrated log-likelihood function is expressed in terms
of the transformed observations ~~zm;t , while Yang and Lee (2019, Equation
(3)) did not substitute out JN by the matrix F 0

N;N�1.
3.2. Implementation of Okun's law

To estimate a multivariate model of Okun's law with dynamic effects
in both space and time, we rewrite and adjust the setup proposed by Yang
and Lee (2019) as follows:

����IN �ψ1;2R

�ψ2;1R IN

����
����ΔytΔut

����¼
����ψ1;1Wa ψ1;2Wb

ψ2;1Wb ψ2;2Wa

����
����ΔytΔut

����þ
����φ1;1Wa φ1;2Wb

φ2;1Wb φ2;2Wa

����
����Δyt�1

Δut�1

����þ
þ
�����p1;1IN φ1;2R

φ2;1R p2;2IN

�����
����Δyt�1

Δut�1

����þ
����Cyn

Cun

����þ
����γytγut

����þ
����εytεut

����; and
����εytεut

�����iidN

0
@����00

����;
������
σ2
y IN σyuIN

σuyIN σ2
y IN

������
1
A

(5)

Below all changes with respect to Yang and Lee's original specifica-
tion are discussed one by one. First, the model does not contain any
exogenous regressors xt . Using a production function approach, Pra-
chowny (1993) has argued that Okun's law in (1) should be extended to
include variables measuring the difference between the actual and the
potential utilization rate of capital (c-c*), the difference between the
actual and the potential supply of workers (l-l*), and the difference be-
tween the actual and the potential number of working hours (h-h*).
However, this study has not only been criticized (Attfield and Silverstone,
1997), it has also failed to gain a firm foothold in later studies (see also
Perman et al., 2015; Ball et al., 2017). It has been criticized because the
levels and especially the potential values of c, l and h are extremely
difficult to measure, and because the labor supply gap and the capacity
utilization gap are highly correlated. The overall conclusion from most
studies is that the mutual relationships between output growth and un-
employment are correctly specified when it is assumed that all other
variables are either on their equilibrium paths or change pari passu with
unemployed labor (see Freeman, 2001; Christopoulos, 2004).

Despite this, Okun's law remains difficult to put into practice because
y* and u*, representing potential output and unemployment, can only be
estimated, not observed. Modern empirical work offers a number of al-
ternatives to the separation of trends and cycles in economic time series
and thus for the derivation of these two variables. Examples are linear or
quadratic trends, first differencing, or more complex methods such as the
Beveridge-Nelson method, the Harvey structural time series approach,
the Baxter-King bandpass filter and the Hodrick-Prescott (HP) filter. The
HP filter has become standard to remove cyclical trends in many studies.
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However, it has also been criticized (Freeman, 2001; S€ogner, 2001; Sil-
vapulle et al., 2004). Recently, Hamilton (2018, abstract) statistically
formalized its inadequacy from an econometric-theoretical viewpoint.
He showed that the HP filter introduces spurious dynamics “that have no
basis in the underlying data-generating process”. In addition, Halleck--
Vega and Elhorst (2016) demonstrated that two-stage modeling ap-
proaches that first filter out (part of the) time-series variation in the data
and then focus on the explanation of spatial dynamics among the filtered
variables are likely to produce biased results since serial, cyclical and
spatial dynamics are interdependent. For these reasons, we do not filter
GDP and unemployment, but take first-differences, thereby following
many previous studies, among which the overview studies of Perman
et al. (2015) and Ball et al. (2017), as well as the recent empirical study of
Palombi et al. (2017) based on regional data. In mathematical terms, if
Δ⋅it denotes the first-difference operator, Δ⋅it ¼ ð⋅it � ⋅it�1Þ, then the
output gap yt � y*t and the unemployment gap ut � u*t are approached by
Δyt and Δut . In addition, we control for business cycle effects using time
period effects. By using this approach, the impact of serial, cyclical and
spatial dynamics are analyzed simultaneously.

The second change with respect to Yang and Lee's original specifi-
cation concerns the spatial weight matrices. Yang and Lee (2019) allow
each dependent variable to have its own spatial weight matrix, compared
to Yang and Lee (2017) where all m dependent variables have only one
common spatial weight matrix. By contrast, we allow the own-variable
spatial lag of a variable and the cross-variable spatial lag of that vari-
able in another equation to be different. More specifically, given that
GDP and unemployment are both affected by GDP in neighboring units,
the own-variable spatial lag of GDP on GDP is assumed to run through the
spatial weight Wa and the cross-variable spatial lag of GDP on unem-
ployment through the spatial weight matrix Wb. A similar setup is used
with respect to unemployment.

In this study, Wa takes the form of a doubly-stochastic first-order
binary contiguity matrix, and Wb the form of a doubly-stochastic inverse
distance matrix conceptualized by the market potential. A matrix is
doubly-stochastic if both the elements in each row and in each column
sum to one. This property is needed to be able to compute spill-in and
spill-out effects, an issue to which we come back in section 3.4.3 This
setup where the spatial weight matrix is different for own and cross-
variable spatial lags also provides a solution to the identification prob-
lem that may occur in Yang and Lee's original specification when exog-
enous explanatory variables are left aside. The parameters in the model
of Okun's law are identified since the cross-variable spatial lags WbΔut in
the first equation andWbΔyt in the second equation bring in neighboring
characteristics that are unique in both equations. Whereas Δyt depends
on WaΔyt , i.e., output growth rates in neighboring units sharing a com-
mon border with the focal unit, Δut depends on WbΔyt , which also cap-
tures output growth rates in more distant units. Similarly, whereas Δut
only depends on WaΔut representing changes in unemployment rates in
neighboring units sharing a common border with the focal unit, Δyt also
depends onWbΔut capturing changes in unemployment rates observed in
more distant units.

In line with Lee (2004) and Yang and Lee (2019), a pre-condition for
obtaining consistent parameter estimates is that the diagonal elements of
the spatial weight matrix (Wa) of the own-variable spatial lags are zero
and that this matrix is row-normalized. This leaves open whether this
matrix is sparse or dense. When testing different specifications of the
spatial weight matrix against each other, however, it generally appears
that this matrix should be sparse. For example, Halleck-Vega and Elhorst
(2014, 2016) find that the first-order binary contiguity matrix gives the
best performance when explaining regional unemployment rates by
regional unemployment rates observed in surrounding regions. The
reason is that own-variable spatial lags produce global spillover effects,
i.e., even if regions are not connected to each other they might still affect
3 We thank one of the reviewers for pointing this out to us.
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each other. This can be seen by rewriting the spatial multiplier matrix as
ðI � ψWÞ�1 ¼ I þ ψW þ ðψWÞ2 þ ðψWÞ3 þ⋯ ; if region A affects B, and
B affects C, then A also affects C via the second-order term ðψWÞ2 even if
A and C are unconnected. The same applies for all the other higher-order
terms. Eventually, all regions influence each other, though nearby re-
gions more strongly than distant regions, in line with Tobler's first law of
geography. In this study, we will compare the performance of two sparse
spatial weight matrices with each other: a first and a second-order binary
contiguity matrix.

By contrast, cross-variable spatial lags do not have the property of
producing global spillovers. If two regions are unconnected according to
the spatial weight matrix, GDP in one region will not affect unemploy-
ment in the other region, and vice versa. It is unlikely that a sparse matrix
will perform well in this case. If output grows in one region, unemployed
people even living in distant regions may benefit from this. Although the
willingness to commute to a job in another region decreases with dis-
tance, there will always be people who seize this opportunity.
Conversely, people who due to unemployment have less money to spend
on goods and services will not only cause a loss of production (GDP) in
their own region, but also in neighboring and even distant regions. For
example, they might diminish their consumption of commodities pro-
duced elsewhere or not go on holiday anymore to distant regions because
of less income. Consequently, the spatial weight matrix of cross-variable
spatial lags is more likely to be dense. In line with this, we depart from an
inverse distance matrix for cross-variable spatial lags, but in contrast to
previous studies, this matrix is not simply based on the inverse of the
Euclidian distance between the capitals or centroids of all regions. Re-
searchers highlighted several problems of this approximation, especially
the ignorance of population density (Head andMayer, 2006), and several
geographical characteristics of particular areas (Dijkstra et al., 2011). For
example, it is quite unusual that the main city of coastal regions is located
in the middle of the region. For this reason, we collected data on the
population size of all municipalities within each region and all regions
across the country and in different time periods. Suppose that region A
consists of I municipalities (i ¼ 1,…,I) and region B of J municipalities (j
¼ 1,…,J), that the distance between two municipalities is dij, and that the
population size of a municipality at a particular point in time is Pit or Pjt .
Then the distance between two regions is determined as the average
distance between each pair of municipalities weighted by the population

sizes of these municipalities: dAB;t ¼ PI
i¼1

PJ
j¼1

dijPitPjt=
PI
i¼1

PJ
j¼1

PitPjt . This

approach produces a more accurate measure of the distance between two
regions, as it accounts for the distribution of the population over the
regions. To demonstrate this, we will also investigate the performance of
the model using a standard inverse distance matrix.

Importantly, this setup also offers the opportunity to determine the
internal distance within each region, i.e., by considering all pairs of
municipalities within a region and weighting the distances between
these municipalities within this region by their population sizes. In
principle, the diagonal elements of matrix Wb could be re-specified as
the inverted internal distance, such that the two cross-variable spatial
lags, WbΔyt and WbΔut , might also viewed as market potentials, the
first with respect to GDP and the second with respect unemployment.
In general, the market potential stands for the accessibility of a spe-
cific region, i.e., the sum of economic (in)activity of other regions
dependent on the distance to these regions, plus the potential of the
region itself based on its internal distance. However, since the FIML
estimator developed by Yang and Lee (2019) requires that the diag-
onal elements of the spatial weight matrices are zero, we developed
another solution. Judging by the coefficient and covariance matrices,
the system in Equation (2) contains mþ 3m2 þmðmþ1Þ=2 parameters
to be estimated when exogenous regressors xt are left aside, which
amounts to 17 for m ¼ 2, i.e., ϑ ¼ ðγ2;1;γ1;2;ψ1;1;ψ2;1;ψ1;2;ψ2;2;φ1;1;φ2;1;

φ1;2;φ2;2;p1;1;p2;1;p1;2;p2;2;σ2y ;σuy ;σ
2
uÞ. Let R denote the diagonal matrix

or order N whose elements measure the inverted internal distance



Table 1
Spatial weight matrix Wa (lower diagonal), Wb (upper diagonal) and R (diagonal). Wa and Wb are symmetric with row and column sums of one.

Elements

0.37 0.17 0.18 0.11 0.08 0.07 0.06 0.07 0.06 0.07 0.06 0.07
0.38 0.17 0.12 0.09 0.07 0.06 0.08 0.06 0.07 0.05 0.07

0.46 0.27 0.15 0.08 0.07 0.05 0.06 0.05 0.06 0.05 0.07
0.54 0.15 0.25 0.09 0.12 0.07 0.07 0.06 0.07 0.07 0.09
0 0.26 0.31 0.25 0.10 0.12 0.13 0.08 0.07 0.07 0.07
0 0.13 0 0.27 0.19 0.11 0.09 0.07 0.08 0.10 0.11
0 0 0 0.16 0.08 0.27 0.14 0.11 0.09 0.10 0.09
0 0 0 0 0.22 0.13 0.28 0.12 0.09 0.08 0.08
0 0 0 0 0.30 0 0.50 0.35 0.16 0.12 0.09
0 0 0 0 0 0.05 0.15 0.20 0.67 0.13 0.11
0 0 0 0 0 0 0 0 0.56 0.21 0.15
0 0 0 0 0 0.04 0 0 0.05 0.44 0.58
0 0 0 0 0 0.53 0 0 0 0 0.47

4 We thank the other reviewer for pointing this out to us.
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within each region. These elements are determined in the same way as
the elements of Wb. After having determined the elements of Wraw and
Rraw in raw form, the Sinkhorn-Knopp algorithm developed by Knight
(2008) is used to get the corresponding doubly-stochastic matrix Wb

(this approach is also used to get WaÞ. To this end, two diagonal
matrices S1 and S2 are determined such that Wb ¼ S1WrawS2. Starting
from these two matrices, we next construct R ¼ S1RrawS2 to get an R
matrix whose elements are scaled in the same way as those of Wb. To
clarify the spatial weight matrices, their numerical values are reported
in Table 1. Since the matrices Wa and Wb are symmetric, we only
report the lower-diagonal elements of the first and the upper-diagonal
elements of the second matrix. The reported numbers show that the
matrix Wa is sparse. When excluding the zero diagonal, 87 of the
remaining 132 elements turn out to be zero. Conversely, Wb is dense.
None of its off-diagonal elements are zero. The row and columns of
both matrices sum up to one. The matrix R only has non-zero diagonal
elements, reflecting the inverse internal distance within each of the
twelve regions. These elements are larger than the off-diagonal ele-
ments of Wb since interregional distances are generally greater than
intraregional distances.

When employing the standard demeaning procedure set out in Baltagi
(2013), denoted by D below, the log-likelihood function of Eq. (5) with
both the individual and time-period fixed effects concentrated out takes
the form

lnL ¼ �mNT
2

lnð2πÞ þ T lnjSDj � NT
2

lnjΣj � 1
2

XT
t¼1

e'tΣ
�1et; (6)

where the ðNm � 1) vector of residuals at time t is et ¼ SDvecðΔyt ;ΔutÞ�
SDΦPvecðΔyt�1;Δut�1Þ,

SD ¼
���� IN �ψ1;2R

�ψ2;1R IN

�����
����ψ1;1Wa ψ1;2Wb

ψ2;1Wb ψ2;2Wa

���� and

SDΦP ¼
����φ1;1Wa φ1;2Wb

φ2;1Wb φ2;2Wa

����þ
����� p1;1IN φ1;2R

φ2;1R p2;2IN

�����:
This implies that the parameters ðγ2;1; γ1;2Þ and ðp2;1; p1;2Þ do not have

to be estimated anymore, and thus that this number reduces to 13.
However, the objection to this approach is that the disturbances will be
linearly dependent over the time dimension and might bias the param-
eter estimates. Lee and Yu (2010) analyzed these biases for a single
equation approach. They find that especially the bias in the spatial
autoregressive parameter of the spatially lagged dependent variable may
grow large if N is small. To be able to employ the orthogonal Helmert
transformation instead and to avoid this linear dependence over the time
dimension that occurs when reducing the numbers of parameters to be
estimated, we need to impose the restriction���� IN �ψ1;2R
�ψ2;1R IN

����¼Γ� IN : (7)
6

This restriction is necessary since the property that F 0
N;N�1Rzm;t ¼

R*
mF

0
N;N�1zm;t does not hold for a diagonal matrix.4 This reduction of R to

the matrix Γ of order (m� m) is possible by scaling the ψ parameters by
the average inverted internal distance (R) over all regions in the sample.
The φ parameters that are part of the matrix P are scaled in the same way.
The objection to imposing this restriction is that it might also bias the
parameters, but at least it gives the opportunity to apply the orthogonal
Helmert transformation, denoted byH below, advocated by Yang and Lee
(2019). The log-likelihood function of Equation (5) with both the indi-
vidual and time-period fixed effects concentrated out then takes the form

lnL ¼ �mðN � 1ÞT
2

lnð2πÞ þ T lnjSH j � T lnjΓ�Ψj � ðN � 1ÞT
2

lnjΣj

� 1
2

XT
t¼1

e'tΣ
�1et: (8)

where the ððN�1Þm�1Þ vector of residuals at time t is et ¼ S*HvecðΔ~~yt ;
Δ~~utÞ� S*HΦPvecðΔ~~yt�1;Δ~~ut�1Þ,

SH ¼
���� 1 �ψ1;2R
�ψ2;1R 1

����� IN �
����ψ1;1Wa ψ1;2Wb

ψ2;1Wb ψ2;2Wa

����;
S*H ¼

���� 1 �ψ1;2R
�ψ2;1R 1

����� IN�1 �
�����ψ1;1W

*
a ψ1;2W

*
b

ψ2;1W
*
b ψ2;2W

*
a

�����; and

S*HΦP ¼
�����φ1;1W

*
a φ1;2W

*
b

φ2;1W
*
b φ2;2W

*
a

�����þ
���� p1;1 φ1;2R
φ2;1R p2;2

����� IN�1:

3.3. Monte Carlo simulation

To estimate the parameters of Equation (5) by the FIML estimator of
Yang and Lee (2019) based on the formulas set out in their paper
(including the appendix of their paper), we developed a computer pro-
gram, written in Matlab. To evaluate this estimator and computer pro-
gram, we also carried out a simple Monte Carlo (MC) simulation
experiment, withm ¼ 2,N ¼ 12, and T ¼ 20;40. This experiment is also
meant to test whether the small sample properties of Yang and Lee's FIML
estimator remain intact, despite the changes made in the setup of their
model, discussed in section 3.2. The bias corrections set out in Yang and
Lee (2019) are left aside since we only consider values of T larger than N.
Finally, it offers the opportunity to test whether the simpler standard
demeaning procedure to concentrate out the time fixed effects is an
acceptable alternative to the orthogonal Helmert transformation. The
error terms are randomly generated from a normal distribution with zero
mean and variance-covariance matrix Σ, where vechðΣÞ ¼ ð1:2; 0:4;1:3Þ:
The individual and time period fixed effect Cn and αt � ιN are generated
by uniformly distributed random variables on the interval [0,1].



Table 2
Results Monte Carlo simulations based on N ¼ 12, T ¼ 20,40, 500 replications, and two demeaning procedures.

Parameter True Orthogonal Helmert transformation Standard demeaning

T ¼ 20 T ¼ 40 T ¼ 20 T ¼ 40

Bias MCse Bias MCse Bias MCse Bias MCse

ψ1;1 0.100 �0.036 0.015 �0.022 0.006 0.009 0.008 0.010 0.004
ψ2;1 �0.150 �0.054 1.262 �0.025 0.593 0.013 0.201 0.000 0.084
ψ1;2 �0.050 0.085 0.824 0.021 0.375 0.017 0.133 0.007 0.071
ψ2;2 0.200 �0.042 0.016 �0.026 0.007 0.014 0.007 0.009 0.004
φ1;1 0.200 0.011 0.017 �0.004 0.007 0.016 0.013 0.003 0.006
φ2;1 �0.200 0.053 0.122 0.025 0.069 0.019 0.058 0.009 0.031
φ1;2 �0.100 �0.013 0.099 �0.006 0.050 0.002 0.049 �0.007 0.025
φ2;2 0.200 �0.015 0.014 �0.013 0.006 �0.004 0.012 0.007 0.007
p1;1 0.150 0.064 0.007 0.030 0.002 0.061 0.005 0.028 0.002
p2;2 �0.300 0.033 0.005 0.017 0.003 0.036 0.004 0.019 0.002
σ21 1.200 �0.009 0.058 0.000 0.025 0.166 0.016 0.127 0.008
σ1;2 0.400 0.020 0.040 0.018 0.018 0.051 0.017 0.039 0.013
σ22 1.300 0.007 0.076 �0.004 0.035 0.179 0.017 0.148 0.008
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The results of the MC simulation are recorded in Table 2. For each
parameter of ϑ, we report its true value, bias and standard error. The

latter is obtained as the square root of Eðbϑ2Þ� ½EðbϑÞ�2, where Eðbϑ2Þ is the
empirical mean over all replications of the squared estimated parameter

vector and ½EðbϑÞ�2 is the empirical mean over all replications squared.
The magnitude of the biases and MC standard errors when applying

the orthogonal Helmert transformation (left panel) decrease when
increasing T, in line with Yang and Lee (2019) econometric-theoretical
finding that no bias correction is necessary when N=T → 0. The same
applies to the standard demeaning procedure (right panel). The orthog-
onal Helmert transformation produces smaller biases in the σ parameters,
comparable biases in the p parameters, but larger biases in the ψ and φ
parameters than the standard demeaning approach. The standard errors
(MCse) of the standard demeaning approach are also smaller. There are
two explanations for this result. First and most importantly, T is large
relative to N. Second, the standard demeaning approach benefits from
the fact that in our particular empirical setting the full matrix R of
inverted internal distances within regions can be utilized, whereas the
orthogonal Helmert transformation needs to impose the restriction
specified in Equation (7).

3.4. Own-variable and cross-variable spillovers

After having estimated the parameters of the spatial econometric
multivariate model of Okun's law, either by the standard demeaning
approach or by the orthogonal Helmert transformation, it is tempting to
consider to parameter estimates of ψ1;2, φ1;2 and p1;1 to analyze the
impact of a change in unemployment on GDP growth, and conversely, to
consider ψ2;1, φ2;1 and p2;2 to analyze the impact of a change in GDP
growth on unemployment. However, the problem is that these parame-
ters do not represent the marginal effects of these changes in a multi-
variate dynamic spatial panel data model. Instead, one should derive the
marginal effects from the reduced form of the model. The determination
of marginal effects within a system of dynamic spatial panel data models
is not considered in Yang and Lee (2019), but in LeSage and Chih (2016)
for a single equationmodel and in Elhorst et al. (2021) for a simultaneous
equation model. LeSage and Chih (2016, p.4) further recommend using a
doubly-stochastic weight matrices when comparing the marginal effects
of different units of observation rather than when averaging these effects
over all units in the sample. This is the reason why we adopted
doubly-stochastic weight matrices when estimating the parameters of the
model.

The short-term (time horizon h ¼ 0) marginal effects of the system in
Equation (5) take the form
7

6 ∂Δyt
∂εΔy;t;s

∂Δyt
∂εΔu;t;s 7 �

ε
�
2

664 ∂Δut
∂εΔy;t;s

∂Δut
∂εΔu;t;s

3
775 ¼ G�1

0
Δy;t;s

εΔu;t;s
;

where G0 ¼
�
IN � ψ1;1Wa �ψ1;2R� ψ1;2Wb

�ψ2;1R� ψ2;1Wb IN � ψ2;2Wa

� (9)

where εΔy;t;s and εΔu;t;s are both N � 1 vectors reflecting the unit where a
change takes place, i.e., the shock s that occurs in unit i at time t. One can
shock GDP growth first in unit 1, then in unit 2, and so forth to unitN, and
then shock the unemployment rate first in unit 1, then in unit 2, and so
forth to unitN. This results in 2N different outcomes for each shock (read:
each change) with respect to GDP growth in the own and each of the
other units, as well as unemployment in the own and each of the other
units. Generally, the size of a shock is set to one standard deviation of the
error term (based on the estimates of σ2y and σ2u), but in this case it is more
obvious to work with GDP growth shocks of 1 percentage point and
unemployment rate shocks of 1 percentage point.

The point-in-time (h > 0) marginal effects of the system are

2
6664
∂Δytþh

∂εΔy;t;s
∂Δytþh

∂εΔu;t;s
∂Δutþh

∂εΔy;t;s
∂Δutþh

∂εΔu;t;s

3
7775 ¼ G�1

0 G1

2
6664
∂Δytþh�1

∂εΔy;t;s
∂Δytþh�1

∂εΔu;t;s
∂Δutþh�1

∂εΔy;t;s
∂Δutþh�1

∂εΔu;t;s

3
7775;

where G1 ¼
�
p1;1IN þ φ1;1Wa φ1;2Wb þ φ1;2R
φ2;1Wb þ φ2;1R p2;2IN þ φ2;2Wa

� (10)

Finally, the time-cumulative marginal effects (ME) are the sum of the
point-in-time marginal effects over the time horizon ~h at which the point-
in-time marginal effects have (almost) converged to zero after a shock.

X~h

h¼0

2
6664
∂Δytþh

∂εΔy;t;s
∂Δytþh

∂εΔu;t;s
∂Δutþh

∂εΔy;t;s
∂Δutþh

∂εΔu;t;s

3
7775¼

�
MEΔyΔy MEΔyΔu

MEΔuΔy MEΔuΔu

�
(11)

This 2N � 2N matrix of marginal effects can be partitioned into four
N � N matrices. The submatrix MEΔyΔy measures the change in GDP
growth rates in all N units due to a GDP growth rate shock in one of these
units. Similarly, MEΔuΔu measures the change in unemployment in all N
units due to an unemployment shock in one of these units. Following
LeSage and Pace (2009), each diagonal element of these two submatrices
represents a direct effect, i.e., the extent to which a unit is affected by the
shock in that unit itself, and every off-diagonal element an indirect effect,



5 Halleck-Vega and Elhorst (2016) show that regional unemployment rates in
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i.e., to extent to which other units are affected by the shock in that unit.
Elhorst (2014) labels these indirect effects as spatial spillover effects.
LeSage and Chih (2016) argue that these spillover effects can also be split
into spill-in and spill-out effects. When reading the off-diagonal elements
by row, each spillover effect represents the vulnerability of a unit to a
GDP growth or unemployment shock in another unit, i.e., the extent to
which it spills in. When reading the off-diagonal elements by column,
each spillover effect represents the impact a GDP growth or unemploy-
ment shock in one unit has on another unit, i.e., the extent to which it
spills out. This distinction might be relevant since it is possible that some
units have a large impact on other units, but are hardly sensitive to what
happens in other units, and vice versa.

The submatrixMEΔyΔu measures the change in GDP growth rates in all
N units due to an unemployment shock in one of these units, and the
submatrix MEΔuΔy measures the change in unemployment in all N units
due to a GDP growth rate shock in one of these units. In line with the two
readings of Okun's law, the first matrix can be used to answer the ques-
tion how much growth is needed to reduce unemployment by one per-
centage point, and the second matrix to answer the question what the
cost of unemployment is in terms of forgone output. In contrast to the two
submatrices MEΔyΔy and MEΔuΔu, the diagonal elements of MEΔyΔu and
MEΔuΔy do not represent direct effects but cross-variable spillover effects,
i.e., the marginal effect of changing one variable on the other variable in
the same unit. In line with this, we will make a distinction in the next
section between cross-variable spillover effects that occur in the own and
in other units. In addition, we will make a distinction between neigh-
boring and non-neighboring units when presenting the own-variable and
cross-variable spillover effects. This distinction is based on the first-order
binary contiguity matrix used in the estimations, the units with which
each unit shares a common border and the remaining units with which it
does not share a common border.

Elhorst et al. (2021) show that the marginal effects set out above are
equivalent to impulse responses used in the global vector autoregressive
(GVAR) literature, and direct and indirect (and related to that spill-in and
spill-out) effects in the spatial econometric literature. They also show
that direct and indirect effects in a multivariate model, and especially
cross-variable spillovers, have not yet been considered in the spatial
econometric literature, but that a generalization of these effects from one
to multiple dependent variables is straightforward since both formal-
izations are mathematically equivalent. This study is among the first to
determine these cross-variable spillovers in an empirical setting. The
results will be used to answer the questions related to two basic readings
of Okun's law.

4. Local Okun's law for the Netherlands

Annual data on unemployment and GDP for the 12 provinces in the
Netherlands are collected from the Dutch Central Bureau of Statistics
(CBS) over the period 1974–2018 (data of the year 1973 is also used but
only to determine lagged values of the variables in the model). To
determine the generalized inverse distance matrixWb, we used data of all
municipalities in the Netherlands and travel distances among them in
1970, 1980, 1990, 2001 and 2012, i.e., spatial lags constructed in the
period up to and including 1979 are based on figures of 1970, up to and
including 1989 on figures of 1980, and so on.

The average growth rate calculated over all provinces and all years
amounts to 1.95% with a standard deviation of 2.79%. The average
change in the unemployment rate is 0.03% with a standard deviation of
1.03%. The ratio between these two standard deviations shows that
fluctuations in output growth rates are almost twice as large as fluctua-
tions in unemployment changes over this period, both measured at the
regional level. Fig. 1 shows the development of the correlation coefficient
between the output growth rate and the change in the unemployment
rate of the twelve provinces in each year over time. As expected, this
correlation coefficient is mainly negative. The reason to also investigate
8

the time-cumulative marginal effects is because the response to major
downturns of the Dutch economy may also have medium-term rather
than just immediate effects, among which the first and the second oil
crises in 1973 and 1979, the early 1990s and 2000-01 recessions, and the
financial crisis in 2008 and eurozone crisis that started at the end of
2009. Fig. 2 graphs the development of the national unemployment rate
over the period 1974–2018.5 This graph shows that the national unem-
ployment rate reached its peak of 10.5% in 1983 after the two oil crises
that occurred in the 1970s. Especially since then the question of how
much growth is needed to reduce unemployment by one percentage point
became topical. By analyzing the period 1974–2018, we can answer this
question based on four major downturns that affected the Dutch Econ-
omy, one in every decade. In line with the overview study of Perman
et al. (2015), we assume Okun's law to be stable over time, which ac-
cording to the overview study of Ball et al. (2017) appears to be a good
approximation of reality (p.1424). Also note that we would end up with
too little observations to estimate the parameters of Okun's law accu-
rately for separate time periods (see Table 2).

Table 3 reports the estimation results of Okun's law based on these
data, the first-order doubly-stochastic binary contiguity matrix and the
doubly-stochastic time-varying inverse distance matrix based on travel
times, and in view of the results of our Monte Carlo simulation experi-
ment when applying the standard demeaning approach. Table 4 contains
the different marginal effects based on these estimation results, using the
formulas set out in the previous section. The system is dynamically stable
since the largest eigenvalue of the matrix G�1

0 G1 used in Equation (10) to
calculate how each shock evolves over time is smaller than one: 0.208
(see Table 3). The half-life of a shock turns out to be 1.372 years
(Table 3), which implies that each shock has largely died out over a
period of 4 years. For this reason, a period of 4 years is used in Table 4 to
compute the time-cumulative marginal effects. Even though the co-
efficients of the system are homogeneous, the direct effects, own-variable
and cross-variable spillover effects are unit-specific and thus heteroge-
neous. For this reason, Table 3 not only reports the mean of each mar-
ginal effect, but in parentheses also the smallest and the largest marginal
effects that have been found among the twelve provinces. When replac-
ing one of the spatial weight matrices by another one, such as a second-
order binary contiguity matrix, a standard inverse distance matrix be-
tween the capitals of each province or a time-invariant travel time ma-
trix, or by adopting row-normalized rather than doubly-stochastic
matrices, the McElroy (1977) R2 of the system falls, indicating that the
two adopted spatial weight matrices give the best performance.

The direct effect of a local output shock (ΔY) of 1% in the own region
appears to be 1.614%. This figure is greater than one due to multiplier
effects. If output of some firms or industries in the own region increases,
other firms and industries in this region also benefit due to input-output
relationships with these firms or industries. By contrast, other regions see
their output growth decline by approximately 0.06%, which points to the
existence of competitive effects between regions. Note that we hardly
find any difference between neighboring and non-neighboring regions
and between spill-in and spill-out effects. Since the Netherlands has 12
provinces, a local output shock of 1% in one of them thus causes a loss of
output of approximately 11*0.06¼ 0.66% elsewhere. This finding makes
clear that output growth is not an isolated phenomenon; for two-fifths
(0.66/1.614) it is at the expense of production elsewhere in the country.

The direct effect of a local unemployment shock of 1% appears to be
0.345%. This figure is smaller than one because part of the people who
become unemployed are able to find another job within one year. The
unemployment spillover effects (spill-in and spill-out and between
neighboring and non-neighboring regions) appear to be negative and
small (<-0.020).
the Netherlands follow a similar pattern.



Fig. 1. The correlation coefficient between the output growth rate and the change in the unemployment rate of the twelve provinces over time (1974–2018).

Fig. 2. The development of the national unemployment rate over time.
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The average cross-variable spill-in and spill-out effects of a local
output shock (ΔY) of 1% in a particular region on the unemployment rate
(ΔU) in the own, neighboring and non-neighboring regions differs
widely. It turns out be �0.400% on average in the own region, �0.047
(both spill-in and spill-out) in neighboring regions, and 0.010 (both spill-
in and spill-out) in non-neighboring regions. The intervals with the
smallest and largest effects that have been found also point to hetero-
geneity. More specifically, the spillover effect in the own region ranges
from �0.286 to �0.501%, in neighboring regions from �0.025 to
�0.081, and in non-neighboring regions from 0.003 to 0.018%. This
implies that the question of how much growth is needed to reduce un-
employment by one percentage point is difficult to answer in general by
one single number. If a local output shock of 1% reduces the local un-
employment rate by �0.400%, a naive answer would be that approxi-
mately 2.5% (1/0.400) growth is needed. However, this number ignores
the fact that the local output shock also causes unemployment to change
in neighboring and non-neighboring regions. An important issue here is
whether local politicians care about cross-border spillover effects, espe-
cially if it concerns more distant regions. If they do care about their direct
neighbors, that is, if they account for unemployment spillovers in
neighboring regions, approximately 1.74% (1/(0.400 þ 3.7*0.047))
growth is needed, where the number of 3.7 reflects the average number
of neighbors of each single region. This reduction for growth needed
demonstrates that policy coordination among adjacent regions is
9

important. Another issue is that this number excludes the multiplier ef-
fect of 0.614% on output growth in the region itself, and of �0.06% with
respect to neighboring regions. When these multiplier effects are also
included, the ratio between output growth and the fall in unemployment
changes into 2.43% ((1.614–3.7*0.06)/(0.400 þ 3.7*0.047)), which is
close to the naive number of 2.5%. When performing this calculation for
each single region, taking into account the exact number of neighbors of
each region, these percentages range from 2.06% for the province of
Limburg to 3.12% for the province in Groningen. It should be noted that
these two extremes concern two regions both located at the periphery of
the country, the first in the southeast and the second in the northeast. It
indicates that the output growth needed to reduce unemployment by 1%
can vary by approximately 1 percentage point, even if two regions
initially appear to be identical.

The average cross-variable spillover effects of a local unemployment
shock (ΔU) of 1% in a particular region on the output growth rate in the
own, neighboring and non-neighboring regions turn out to be relatively
small. The cost of local unemployment in terms of forgone output appears
to be approximately 0.11% in the own region and in neighboring regions,
and negligible in non-neighboring regions. The conclusion must be that
Okun's law in the Netherlands is dominated by the relationship that runs
from output growth to unemployment, i.e., the relationship specified in
Equation (1). This finding is also reflected by the R2 of the unemployment
rate equation, which is much higher than that of the output equation:



Table 3
Estimation Results of Okun's law for the Netherlands (N ¼ 12, T ¼ 45).

Parameter Estimate t-value

ψ1;1 0.028 0.06
ψ2;1 0.299 4.11
ψ1;2 �2.389 �6.24
ψ2;2 0.140 0.63
φ1;1 0.107 0.40
φ2;1 �0.099 �0.12
φ1;2 1.061 0.73
φ2;2 0.036 0.36
p1;1 0.067 1.62
p2;2 �0.313 �0.47
σ21 1.863 31.41
σ1;2 �0.283 �1.53
σ22 0.561 4.78

Largest eigenvalue 0.208
Half-life (years) 1.372
R2 output eq. 0.359
R2 unemployment eq. 0.862
R2 system 0.810

R2 system Wa replaced by 2nd–order binary contiguity matrix 0.755
R2 system Wb replaced by inverse distance matrix 0.639
R2 system Wb replaced by time-invariant matrix 0.807
R2 system Wa and Wb both row-normalized 0.770

Table 4
Mean, smallest and largest regional-specific cumulative (4-year horizon) mar-
ginal effects of local output (ΔY) and local unemployment (ΔU) shock of 1% at
the regional level.

Marginal effect Local output
shock of 1%

Local unemployment
shock of 1%

Direct effect own region 1.614 (1.349/1.810) 0.345 (0.297/0.384)

Spill-in ΔY
Own region - (direct effect) 0.114 (0.081/0.145)**
Neighboring regions �0.062 (�0.021/-0.075) 0.110 (0.006/0.020)
Non-neighboring regions �0.064 (�0.056/-0.071) �0.002 (�0.001/-0.004)

Spill-in ΔU
Own region �0.400 (�0.286/-0.501)* - (direct effect)
Neighboring regions �0.047 (�0.025/-0.081) �0.006 (�0.000/-0.015)
Non-neighboring regions 0.010 (0.003/0.018) �0.014 (�0.012/-0.015)

Spill-out ΔY
Own region - (direct effect) 0.114 (�0.081/0.145)**
Neighboring regions �0.057 (�0.002/-0.095) 0.012 (0.006/0.018)
Non-neighboring regions �0.066 (�0.043/-0.091) �0.002 (0.000/-0.004)

Spill-out ΔU
Own region �0.400 (�0.286/-0.501)* - (direct effect)
Neighboring regions �0.047 (�0.034/-0.073) �0.009 (0.004/-0.017)
Non-neighboring regions 0.010 (0.003/0.015) �0.014 (�0.009/-0.019)

Notes: Smallest and largest effects across the twelve provinces in parentheses, *
Spill-in ΔU own region ¼ Spill-out ΔU own region, ** Spill-in ΔY own region ¼
Spill-out ΔY own region.
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0.862 versus 0.359 (Table 3). This finding further indicates that the work
of Palombi et at. (2017), who limited themselves to a univariate model in
which the change in the rate of unemployment each year is explained by
the GDP growth rate for 128 British NUTS3 areas over the period
1985–2011, is consistent with our study in terms of methodology (esti-
mated equation) but not in terms of outcome. In Section 4.2 of their
paper, they find Okun's law coefficient to be�0.2798, which implies that
3.57% output growth (1/0.2798) is needed to reduce the unemployment
rate by 1 percentage point. For the Netherlands over the period
1974–2018, we find that, on average, 2.4% output growth is needed
when spillover effects to neighboring regions and output multiplier ef-
fects are accounted for, and this percentage ranges between 2.1 and
3.1%.
10
One potential limitation is that spillover effects of Dutch border re-
gions with neighboring regions in Germany or Belgium are not included,
known as the boundary value problem, potentially leading to an omitted
variable bias.6 This problem received considerable attention in the
spatial statistics literature, though mainly in the 1980s (e.g. Griffith,
1983a, 1983b, 1985; Haining, 1990), and relatively little attention in the
spatial econometric literature. One notable exception is Kelejian and
Prucha (2010), who propose to estimate the parameters of the model on
the interior units of observation in the study area, and to use observations
located at the border of the study area to determine spatially lagged
values of the variables in the model. Another relevant study is of Halleck
Vega and Elhorst (2014), who estimated three dynamic spatial panel data
model equations separately from each other, one explaining the unem-
ployment rate, one the labor force participation rate and one the
employment growth rate, and compared the performance of ten different
specifications of the spatial weight matrices, using data of 112 regions
across eight EU countries over the period 1986–2010. Among these
spatial weight matrices both binary contiguity matrices covering neigh-
boring regions across national borders and binary contiguity matrices
limited to linkages within countries only are considered. Their argument
in favor of the first matrix is that increased integration among EU
member states might make national boundaries less relevant, and in
favor of the second that it is still realistic to assume that there are barriers
(social, political, cultural, etc.) between neighboring countries. Their
main finding is that the first-order binary contiguity matrix limited to
within country neighbors gives the best performance for the unemploy-
ment rate and the participation rate equations, and that higher order
matrices covering neighboring regions across national borders give the
best performance for the employment growth equation. This finding in
relation to our observation that the unemployment rate equation is
dominating Okun's law in the Netherlands indicates that any bias due to
the boundary value problem is likely to be small. Nevertheless, it is
worthwhile to investigate this issue further in future research.

5. Conclusion

A system of two dynamic spatial panel data model equations is
developed. Output growth in the first equation is taken to depend on
output growth in the previous time period, output growth in neighboring
units in the same and the previous time period, and the change in the
unemployment rate in the same and in neighboring units in the same and
the previous time period. Similarly, the change in the unemployment rate
in the second equation is taken to depend on the change in the unem-
ployment rate in the previous time period, the change in the unem-
ployment rate in neighboring units in the same and the previous time
period, and output growth in the same and in neighboring units in the
same and the previous time period. Whereas most previous studies esti-
mate only one of these two equations, we adopt this two-equations sys-
tem of Okun's law to control for potential endogeneity of unemployment
with respect to output and vice versa. The parameters of this model are
estimated by maximum likelihood techniques for multivariate spatial
econometric models, using data of twelve provinces in the Netherlands
over the period 1983–2018, capturing four major economic downturns of
the Dutch economy. Data and Matlab routines developed for this purpose
will be made available. The coefficients of this model are assumed to be
homogeneous rather than heterogeneous across these provinces, because
maximizing the log-likelihood function in these cases is still a bridge too
far at the moment, both from a programming and a numerical viewpoint.
On the other hand, even though the coefficients of the system are ho-
mogeneous, the direct effects, own-variable and cross-variable spillover
effects derived from this system of equations are unit-specific and thus
heterogeneous.

The main results of this study are the following. First, Okun's law is
This problem is less relevant for the UK since it is surrounded by sea.
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dominated by the relationship that runs from output growth to unem-
ployment; the cost of local unemployment in terms of forgone output
appears to be relatively small. Second, output growth in a particular re-
gion is not an isolated phenomenon; for two-fifths it is at the expense of
production elsewhere in the country. Third, policy coordination among
adjacent regions is important due to spillover effects; a local output shock
of 1% reduces the unemployment rate in the own region by 0.40% and in
each adjacent region by 0.05%. In addition, it causes a multiplier effect of
0.6% on output growth in the region itself, and of �0.06% in adjacent
regions. Fourth, the answer to the question of how much growth is
needed to reduce unemployment by 1% depends on the extent to which
neighboring regions and these output multiplier effects are included or
not. We find that, on average, 2.4% output growth is needed when
spillover effects to neighboring regions and output multiplier effects are
accounted for, and this percentage ranges between 2.1 and 3.1%.

Important topics for further research are the (non-)stability of Okun's
law over time due to structural breaks, the existence of a potential
omitted variable bias due to the boundary value problem, and the esti-
mation of a similar multivariate system with unit-specific coefficients.
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