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Abstract

Bergamot whole-fruit powder was analyzed for total polyphenols, flavonoids, flavonols and
ascorbic acid content and tested for in vitro and ex vivo antioxidant activity. The flavonoids profile
was further characterized viaHPLC-DAD-MSMS and the most abundant flavonoids were
guantified. The antimicrobial activity against potentially pathogenic bacteria and the effect on
beneficial gut bacteria were determined. Lastly, we evaluated the effects of bergamot extract on
endothelial aterations in LPS-stimulated human microvascular endothelial cells (HMEC-1). Our
data demonstrated that bergamot powder possessesin vitro and ex vivo antioxidant activity, shows a
selective inhibition against pathogenic strains and growth stimulation effects on some beneficial
gut bacteria. Moreover, it protects HMEC-1 from LPS-induced activation and dysfunction and
reduces the resulting endoplasmic reticulum stress. The relationship between isolated flavonoids
and the protective effects arediscussed. In conclusion, bergamot whole-fruit powder possesses

beneficial health effects that makes it a potentially useful material for the nutraceutical industry.

Keywords: bergamot fruit, endothelial activation and dysfunction, LPS, HMEC-1, MIC, probiotics.

Chemical compounds studied in this article:

Brutieridin; Hesperetin 7-(2"-al pha-rhamnosyl-6"-(3""-hydroxy-3""-methyl glutaryl)-beta-glucoside)
(PubChem CID: 10148556)

Melitidin (PubChem CID: 101485562)
Naringin; Naringenin 7-Rhamnoglucoside) (PubChem CID: 25075)
Neoeriocitrin; Eriodictyol 7-neohesperidoside (PubChem CID: 114627)

Neohesperidin; Hesperetin 7-neohesperidoside (PubChem CID: 232990)
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1. Introduction

Clinica and epidemiological evidence suggests an inverse association between the
consumption of a polyphenolic rich diet and the risk of many chronic diseases (Pandey & Rizvi,
2009; Wang et al., 2014) as well as with the prevention and delay of age-related disease (Everitt et
al., 2006). Besides, an improved endothelial function has been observed in both healthy people and
patients with cardiovascular disease after an acute and chronic intake of rich polyphenol sources
(Grassi, Lippi, Necozione, Desideri & Ferri, 2005; Schmitt & Dirsch, 2009). Among polyphenols,
flavonoids exert important biological actions, including antioxidant, anti-inflammatory, anticancer,
antiviral and anti-mutagenic activity (Mandalari et al., 2007; Kumar & Pandey, 2013; Y ogendra
Kumar, Tirpude, Maheshwari, Bansal & Misra, 2013). It has been recently reported (Tresserra-
Rimbau et al., 2016) that a high flavonol intake correlates with a reduced risk of diabetes. Other
polyphenols, such as catechins, provide beneficial effects on metabolic syndromes, cardiovascular
and neurodegenerative diseases (Shirakami, Sakai, Kochi, Seishima & Shimizu, 2016). Besides, a
recent study gave new insights in polyphenols bioavailability and in their structure-function activity
(Sarkar, Mazumder, Saha & Bandyopadhyay, 2016).

Citrus fruits are rich in antioxidants including phenolic compounds such as flavanones which
are negatively correlated with the risk of coronary heart and degenerative diseases (Barros, Ferreira
& Genovese, 2012). Among these, Citrus bergamia Risso & Poiteau, commonly named bergamot,
is a hybrid plant of sour lemon and orange, belonging to the Rutaceae family, growing in restricted
areas due to peculiar soil and climate requirements. Italy is the main world producer of bergamat,
which is cultivated in a very small coastal strip in Southern Italy, in the Reggio Calabria province
(Risitano et a., 2014). Herein, its peel is used to extract a valuable essential oil widely employed in
pharmaceutical, cosmetic, and food industries (Mandalari et al., 2006; Pernice et al., 2009), whereas
its juice, obtained from the endocarp of the fruit, is not usually consumed as a beverage due to its
bitter taste (Gattuso et a., 2006; Pernice et al., 2009). During bergamot oil extraction about 50-65%

of ped, as well as mesocarp and juice, remains as primary by-product, and, because of its
3
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fermentability, it has to be treated before being discarded (Mandalari et al., 2006; Mandalari et al.,
2007; Trombetta et a., 2010; Barros et d., 2012).

Recently, bergamot derivatives have raised a great interest, because of their beneficial effects
on human health (Trombetta et al., 2010; Graziano et al., 2012; Celiaet a., 2013; Delle Monache et
al., 2013; Kang et al., 2013; Russo et al., 2013; Cosentino et al., 2014; Risitano et a., 2014). The
majority of these studies, as recently reviewed by Mannucci et al. (2017), focused on bergamot
essential oil and juice while a few others investigated the composition and the activity of peel
extracts (Mandalari et al., 2006; Trombetta et a., 2010; Graziano et al., 2012). It has been recently
reported that bergamot juice can reduce plasma lipids in humans (Toth et a., 2016); besides, the
bergamot-pol yphenolic fraction can lead to substantial reduction of liver steatosis in patients with
metabolic syndrome (Gliozzi, Maiuolo, Oppedisano & Mollace, 2016). Conversely, data on the
biological effects of bergamot whole-fruit are not described in literature.

The protective effects of bergamot fruit are mainly related to its flavonoid content which
exert anticancer, antimicrobial, antioxidant, and anti-inflammatory activities (Celia et al., 2013;
Delle Monache et ., 2013; Risitano et al., 2014). Due to the inhibition of cancer cell proliferation,
the bergamot flavonoid fraction has been considered as an anti-cancer drug (Visalli et a., 2016).

Regarding the antimicrobial activity of dietary polyphenols, it is mainly related to the
polyphenol structure, the dosage assayed (Hervet-Hernandez, Pintado, Rotger & Gofii, 2009) and it
also depends on the tested strain. Some authors have described activity only against Gram-negative
bacteria (Mandalari et a., 2007), whereas others also against Gram-positive strains (Fisher &
Philips, 2006). The majority of dietary polyphenols is not absorbed in the small intestine and can
interact with the colonic microbiota (Duefias et al., 2015). The bioavailability of polyphenols and
their interactions with the gut microbiota have been described by several authors (Marotti et al.,
2011; Cardona, Andrés-Lacueva, Tulipani, Tinahones & Queipo-Ortuiio, 2013; Di Gioia et a.,
2014b; Marin, Miguélez, Villar & Lombo, 2015), showing that polyphenols and their metabolites

may modulate the microbiota composition exerting antimicrobial activities against gut pathogenic
4
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bacteria and stimulating the beneficial ones. However, to the best of our knowledge, the effects of
bergamot whole-fruit on selected gut beneficial bacteriais not available in literature.

The consumption of citrus fruits has been associated to a lower risk of acute coronary events
and stroke (Morand et al., 2011). Furthermore, much of the activity of citrus flavonoids appears to
impact on blood and microvascular endothelia cells (Benavente-Garcia & Castillo, 2008;
Trombetta et al., 2010). Recently, it has been reported that the flavonoid-rich fraction of the
bergamot juice decreases the intestinal ischemialreperfusion injury development by a mechanism
involving both NF-«B and MAP kinases pathways (Impellizzeri et a., 2016). Moreover, the anti-
inflammatory properties of bergamot extracts in several experimental models have been extensively
described by Ferlazzo et al. (2016a). Among these, a recent research demonstrates that bergamot
juice inhibited the nuclear translocation of NF-kB in HepG2 cells, thus preventing its activation
(Ferlazzo et al., 2016b).

Recent evidence suggests that the endoplasmic reticulum (ER) stress is involved in the
induction of inflammatory response and contributes to the pathogenesis of several chronic
inflammatory diseases (Hotamidligil, 2010; Gotoh, Endo & Oike, 2011; Kolattukudy & Niu, 2012).
Increasing evidence suggests an extensive crosstalk between the inflammatory pathway and the ER
stress response (Zhang & Kaufman, 2008). The effects of Citrus fruit on the ER stress has not been
studied yet.

Thus, based on the growing findings concerning the biologica activity of bergamot
derivatives, the am of this study was to characterize and evaluate the antioxidant capacity and the
antimicrobial activity of an extract of C. bergamia powder obtained from lyophilized whole-fruits.
Moreover, for the first time we evaluated the protective effect of this bergamot whole-fruit extract
in response to lipopolysaccharides (LPS)-induced endothelial activation and dysfunction and ER

stress, in human microvascular endothelial cells (HMEC-1).
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2. Materials and Methods

2.1 Chemicals and reagents

All standards and reagents were of analytical grade. Methanol, acetic acid, sodium carbonate,
sodium idrosside, metaphosphoric acid, Folin-Ciocalteu reagent, catechin hydrate, gallic acid,
quercetin dihydrate, ascorbic acid, 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid
(Trolox), potassium persulfate, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-
ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS), 2,2’-azobis (2-amidinopropane)
dihydrochloride (AAPH), fluorescein sodium salt and 2°,7’-dichlorofluorescein diacetate (DCFH-
DA) were purchased from Fuka-Sigma-Aldrich, Inc. (St. Louis, MO). Sodium nitrite and
aluminum chloride were purchased from Carlo Erba (Milan, IT), phosphate buffer saline (PBS),
ethanol and sulfuric acid were purchased from VWR (Radnor, PA), while hydrochloric acid was

purchased from Merck (Readington, NJ).

2.2 Plant material and extraction

Bergamot (Citrus bergamia Risso & Poiteau, Rutaceae) cultivar “Fantastico” fruits were
collected in January from plants growing in Reggio Calabria province (Italy) and stored at — 20°C.

The whole-fruit was lyophilized and, after that, a powder of the fruit was obtained. This
lyophilized powder was kindly supplied by Dr. Giuseppina Longo, Farmanatura Lab. (Bovalino
Superiore, Reggio Calabria, Italy). Briefly, 1g of bergamot lyophilized powder was extracted in 10
ml of 70% ethanol through an overnight incubation at room temperature. Bergamot extracts were
centrifuged 10 minutes at 2300 xg at 4°C (Jouan CR3i centrifuge, Newport Pagnell, UK) and the
supernatants were collected, filtered (0.2um VWR International PBI, Milan, IT), and kept at 4°C in

the dark until use.
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2.3 Phytochemical characterization

The total phenolic content was determined by the Folin-Ciocalteu colorimetric method
(Singleton, Ortoger & Lamuela-Ravendo, 1999) and expressed as mg of gallic acid equivalents
(GAE)/g dry weight (DW). The tota flavonoid concentration was quantified using the aluminum
chloride colorimetric method (Kim, Chun, Kim, Moon & Lee, 2003) and expressed as mg catechin
equivaent (CE)/g DW. The total flavonols were measured according to the method described by
Romani, Mancini, Tatti, and Vincieri (1996) and expressed as mg quercetin equivalent (QE)/g DW.
The ascorbic acid content was measured by the UV-HPLC method described by Odriozola-Serrano,
Aguil6-Aguayo, Soliva-Fortuny, Gimeno-Afig, and Martin-Belloso (2007), using a reverse-phase
SUPELCOSIL™ LC-18-DB (5um) stainless steel column (4.6mm x 250mm), as stationary phase,
and 0.01% sulfuric acid (pH 2.6), as mobile phase. The ascorbic acid content was expressed as mg

ascorbic acid equivalent (AAE)/100 g DW.

2.4 Instrumentation and HPLC-MS conditions

An Agilent 1200 series liquid chromatograph (Agilent Technologies, Santa Clara, CA) equipped
with an autosampler and a diode array detector was used. An Agilent 6320 lon Trap mass
spectrometer equipped with an electrospray interface was online coupled and operated in positive
and negative ionization mode using the following conditions: dry temperature, 350 °C; mass range,
m/z 90-2200 Da; dry gas flow rate, 12 L min '; nebulization pressure, 40 psi.

Samples of bergamot extracts, prepared as described in Section 2.2 (100 mg mL ™" of 70% ethanol),
were used. Separation was run on a Zorbax Eclipse XDB-C18 (4.6 x 150 mm, 5 pm particle
diameter, Agilent Technologies, Santa Clara, CA, US) column, using the following mobile phases:
(A) water/ACN/acetic acid (94:5:1, viv) and (B) ACN/water/acetic acid (95:4:1, v/viv) at a flow
rate 0.6 mL min~' with the following gradient: 0 min, 10% B; 10 min, 45% B; 15 min, 45% B; 20
min, 80% B; 25 min, 10% B. The injection volume was 10 uL. The detection wavelength was set at

280 nm and the UV-Vis spectra were acquired from 190 to 550 nm. For the quantification of the
7
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main compounds present on the bergamot extract (neoeriocitrin, naringin, neohesperidin, melitidin
and brutieridin) different linear concentrations of each standard were prepared in the range of 0.1-
0.8 mg/mL and the calibration curve of each compound was obtained plotting the peak area of the

standards against their concentration.

2.5 In vitro antioxidant activity

2.5.1 Oxygen Radical Absorbance Capacity (ORAC) Assay

The antioxidant capacity was quantified using the oxygen radical absorbance capacity
(ORAC) assay with some modifications (Gabriele et a., 2015). AAPH was used as peroxyl radical
generator and fluorescein as a probe. The fluorescence decay was evaluated at 485 nm excitation
and 514 nm emission using a Victor ™ X3 Multilabel Plate Reader (Waltham, MA, US). Trolox
was used as antioxidant standard. Results were expressed as ORAC units (umol Trolox

equivalents/100 g DW).

2.5.2 DPPH radical scavenging activity

The radical scavenging activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assay as described by Boudjou, Oomah, Zaidi, and Hosseinian (2013). The absorbance was
recorded at 517 nm and the antiradical activity (ARA) was expressed as percentage of DPPH
inhibition using the following equation: ARA = [1-(Asg/Ac)] X 100, where Asis the absorbance of the
sample and Ac is the absorbance of control. The extract concentration corresponding to 50% of

DPPH inhibition (ECsp) was measured according to Guimaraes et al. (2010).

2.5.3 ABTSradical scavenging activity
The ABTS radical scavenging activity was determined according to the method described by
Re et al. (1999). The ABTS radica cation (ABTS™) was generated by oxidation of ABTS with

potassum persulfate and reduced by hydrogen-donating antioxidants. Trolox was used as
8
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antioxidant standard and the absorbance was recorded at 734 nm. The percentage of ABTS™
inhibition was measured and plotted as a function of bergamot concentration. Results were

expressed as pumol Trolox equivalent/g DW antioxidant capacity (TEAC).

2.6 Ex vivo antioxidant activity

2.6.1 Preparation of erythrocytes

Human blood samples from healthy volunteers were collected in ethylenediaminetetraacetic
acid (EDTA)-treated tubes and centrifuged for 10 min at 2300 xg at 4°C. Plasma and buffy coat

were discarded and erythrocytes were washed twice with PBS pH 7.4.

2.6.2 Cellular antioxidant activity (CAA-RBC) assay in red blood cells

The antioxidant activity of bergamot extract was evaluated in an ex vivo erythrocytes system
as described by Frassinetti, Gabriele, Caltavuturo, Longo and Pucci (2015). Quercetin was used as
standard and the fluorescence was read at 485 nm excitation and 535 nm emission by using a
Victor™ X3 Multilabel Plate Reader (Waltham, MA, US). Each value was express according to the
Wolfe and Liu (2007) formula: CAA unit = 100-(JSA JCA) x 100, where [SA is the integrated area

of the sample curve and JCA is the integrated area of the control curve.

2.6.3 Erythrocytes oxidative hemolysis

Hemolysis of human erythrocytes was generated by thermal decomposition of AAPH in
peroxyl radicals as described by Mikstacka, Rimando, and Ignatowicz (2010). The erythrocytes
oxidative hemolysis was spectrophotometrically evaluated at 540 nm as rel eased hemoglobin in the
supernatant. Each value was expressed as hemolysis percentage with respect to control (AAPH-

treated erythrocytes).



221

21
2280

40

5242

2.7 Antimicrobial activity

2.7.1 Bacterial media

Nutrient Broth (NB), Nutrient Agar (NA), Mueller Hinton Broth (MHB), Mueller Hinton
Agar (MHA), de Man Rogosa Sharpe (MRS) medium, Mc Farland standard 0.5 were purchased

from Oxoid (Basingstone, UK).

2.7.2 Bacterial strains and growth conditions

The pathogenic bacteria strains used in this study were supplied from American Type Culture
Collection (ATCC). The antimicrobial activity of bergamot extract was tested on three Gram
negative bacteria, specifically Escherichia coli (ATCC 25922), Salmonella enterica ser.
Typhimurium (ATCC 14028), and Enterobacter aerogenes (ATCC 13048), and on two Gram
positive bacteria, Enterococcus faecalis (ATCC 29212) and Staphylococcus aureus (ATCC 25923).
The above cultures were grown on NB and MHB and incubated overnight at 37°C under aerobic
conditions.

Eight strains of human origin (four bifidobacteria and four lactic acid bacteria) were also
used. Lactobacillus paracasei MB395, Lactobacillus johnsonii MB92, Lactobacillus plantarum
MB91, Bifidobacterium breve B632, Bifidobacterium pseudocatenulatum B1279, Bifidobacterium
bifidum B2009, and Bifidobacterium adolescentis MB16 were obtained from the Bolognha
University Scardovi Collection of Bifidobacteria available at the Department of Agricultura
Sciences (University of Bologna), while Lactobacillus reuteri DSM 20016 was obtained from the
German Collection of Microorganisms and Cell Cultures (DSMZ). Lactobacillus strains were
grown on MRS medium and incubated anaerobically at 37°C for 24 hours. Anaerobic conditions
were created in a capped jar using an anaerobic atmosphere generation system (Anaerocult A,
Merck, Darmstadt, Germany). Bifidobacteriun strains were cultivated in Tryptone, Phytone, and

Yeast extract (TPY) broth (containing tryptone, 10.0 g/L, soy peptone, 5.0 g/L, glucose, 10.0 g/L,

10
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yeast extract, 2.5 g/L, K,HPO,4, 1.5 g/L, MgCl,.6H,0, 0.5 g/L, Cystein-HCl, 0.5 g/L, Tween 80, 0.5

g/L, pH 6.5) and incubated anaerobically at 37 °C for 24 hours.

2.7.3 Inhibition assay-Minimum inhibitory concentration (MIC)

The minimal inhibitory concentration (MIC) of the bergamot extract against selected bacteria
was determined according to Delgado Adamez, Gamero Samino, Valdés Sanchez and Gonzé ez-
Gomez (2012), with some modifications. Bergamot extract was diluted in sterile water to obtain a
1000 pg/ml solution. Then dilutions were made in water from this solution to 10 pg/ml (i.e. 1000,
700, 500, 250, 125, 100, 50, and 10 pg/ml).

The tested pathogenic microorganisms were cultured in MHB at 37°C for 16 hours. After that,
the cultures were diluted to match the turbidity of 0.5 Mc Farland standard. Further dilutions in
sterile MHB were made to obtain the working suspension corresponding to about 1-5 x 10° CFU/ml.
An aiquot of 50 pl of bacteria suspensions was added to a sterile 96-well plate containing 100 pl
of MHB. Lastly, 100 pl of extract dilutions were added. A positive control (containing only
bacterial inoculum) was included on each microplate. The plates were incubated at 37°C for 24
hours in aerobic conditions. Afterwards, the optical density (O.D.) at 600 nm was detected using a
microplate reader (Eti-System fast reader Sorin Biomedica, Modena, Italy). The MIC was defined
as the lowest concentration of bergamot extract able to inhibit the microorganisms growth.

The MIC was also determined for Lactobacillus and Bifidobacterium strains previously listed.
The procedure was the same as described above for pathogenic bacteria except that the media used
were MRS broth and TPY medium for Lactobacillus and Bifidobacterium strains, respectively.

Furthermore, microplates were incubated in anaerobic conditions at 37°C for 24 hours.

11
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2.8 Human microvascular endothelial cell cultures

The HMEC-1(Human Microvascular Endothelial Cell) line was obtained from the Centre of
Disease Control (Atlanta, USA). All reagents, media and medium supplements for cell culture were
purchased from Sigma-Aldrich (St. Louis, MO).

Cells were grown in medium 199 (M199) supplemented with 10% fetal bovine serum (FBS),
1% L-glutamine, 100 units/ml penicillin, 100 pg/ml streptomycin, 10 ng/ml epiderma growth
factor (EGF), and 1 pg/ml hydrocortisone at 37°C in a humidified 5% CO, incubator. The medium
was replaced every 3 days and all treatments were carried out on confluent cultures using M199
without phenol red, containing antibiotics and EGF.

After 1 hour pre-treatment with or without 50 pg/ml of bergamot extract, HMEC-1 were
stimulated for 6 hours with or without 0.1 ng/ml of lipopolysaccharides (LPS from Escherichia coli
serotype O55:B5). Cell viability was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assay.

2.9 Quantitative Real-Time PCR

Total RNA was isolated from HMEC-1 using the RNeasy Mini Kit (Qiagen, NL) and reverse-
transcribed using the iScript™ cDNA Synthesis Kit (Bio-Rad, CA). Quantitative Real-Time PCR
was performed using the SsoFastTM EvaGreen® Supermix (Bio-Rad, CA) in the StepOnePlusTM
Rea-Time PCR System (ABI Applied Biosystems, Foster City, CA). Gene primers were designed
using Beacon Designer Software (Premier Biosoft International, USA) and were: IL-6 (forward 5'-
AAAGCAGCAAAGAGGCAC-3, reverse 5-TTCACCAGGCAAGTCTCC-3), ICAM-1
(forward 5-ACCGTGAATGTGCTCTCC-3, reverse 5-TCTTGATCTTCCGCTGGC-3), CHOP
(forward 5-GAGAGTGTTCAAGAAGGAAGTGTA-3, reverse 5-
CCCGAAGGAGAAAGGCAAT-3), ET-1 (forward 5-GCAGAAACACACAGTCACAT-3,
reverse 5-TCAGACACAAACACTCCCTTA-3), and B-actin (forward 5'-

GAGATGCGTTGTTACAGGAAG-3, reverse 5-TGGACTTGGGAGAGGACT-3), used as
12
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housekeeping. Samples were assayed in triplicate and the gene expression was calculated by the

27A4CT relative quantification method.

2.10 Cellular Reactive Oxygen Species (ROS) determination

The cellular reactive oxygen species (ROS) were detected after treatments using the 2'-7'-
dichlorodihydrofluorescein diacetate (DCFH-DA), a cell permeable dye useful to measure the redox
state of cells. After diffusion into viable cells, DCFH-DA was firstly deacetylated by cellular
esterases to a non fluorescent compound (DCFH), then oxidized by ROS activity to DCF, a highly
fluorescent compound. Fluorescence was detected at 485 nm excitation and 535 nm emission using

aVictor™ X3 Multilabel Plate Reader (Waltham, MA).

2.11 Nitrite (NO,.) determination

Nitrite levels were used as an indicator of NO production and were quantified in culture
media using the Nitrate/Nitrite Colorimetric Assay Kit (Cayman Chemical Company, Michigan,
USA). The optical density was read at 540 nm using a microplate reader (Eti-System fast reader
Sorin Biomedica, Modena, Italy). Nitrite concentrations were expressed as percentage with respect

to control.

2.12 Statigtical analysis

Statistical analysis was performed using GraphPad Prism, version 6.00 for Windows
(GraphPad software, San Diego, CA). Assays were carried out in triplicate and the results were
expressed as mean values + standard deviation (SD). Differences between samples were anayzed
by one-way analysis of variance (ANOVA) with Bonferroni’s multiple comparison test. A p-value

lower than 0.05 is considered statistically significant.
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3. Results and discussion

3.1 Bergamot phytochemical profile

Lyophilized powder of bergamot whole-fruits was analyzed by spectrophotometric methods
for total polyphenol, flavonoid and flavonol, while ascorbic acid was quantified by UV-HPLC
method. Hydroalcoholic bergamot extract contained 17.44+0.40 mg GAE/g DW of polyphenals,
16.74+0.27 mg CE/g DW of flavonoids, 3.91+0.37 mg QE/g DW of flavonols, and 66.93+0.05 mg
AAE/100 g DW of ascorbic acid. These values are smilar to those described for other citrus fruits

(Zhang et a., 2014; Barros et a., 2012).

3.2. Flavonoid analysisby HPLC-DAD-MS/MS

The flavonoid profile of the bergamot extract was characterized via HPLC-DAD-MS/MS.
Figure 1 shows the chromatogram at 280 nm of the extract with the main peaks numbered. The
identity of 12 peaks could be established by the UV and MS spectra evaluation. The m/z value of
each detected peak, its main MS/MS fragments and the corresponding tentative identification is
reported in Table 1, as well as the relative peak area. The compounds defined by peak 6, 9, 10, 15
and 16, corresponding to the flavanones neoeriocitrin (4.2+0.76 mg/g DW), naringin (7.0£1.5 mg/g
DW), neohesperidin (5.4+0.64 mg/g DW), melitidin (1.2+0.24 mg/g DW) and brutieridin (2.9+0.1
mg/g) were present in the highest amount in the extract, in good agreement with the data of
flavonoid content in bergamot juice (Gattuso et al., 2006; Micedli et al., 2007; Sommellaet al., 2013)

and peel (Mandalari et al., 2006) reported in literature.

Table 1. Flavonoid profile in bergamot fruit extract and quantification

The antioxidant and anti-inflammatory activity of neohesperidin, naringin and neoeriocitrin
from bergamot juice has been recently described (Sommella et al., 2013). Besides, it has been

suggested that the anti-inflammatory properties of hesperidin are due to its inhibition on the
14
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synthesis and activity of pro-inflammatory mediators, mainly prostaglandin E, and thromboxane A
(Benavente-Garcia & Castillo, 2008).

Moreover, the antibacterial activity of hesperidin and its aglycone hesperetin has been
recently reported (Iranshahi, Rezaee, Parhiz, Roohbakhsh & Soltani, 2015); in particular, the
hesperetin aglycon from citrus fruits showed inhibitory activity against Saphylococcus aureus and

Helicobacter pylori (Marin et a., 2015).

3.2 1n vitro and ex vivo antioxidant activities

Severa methods have been developed to evaluate the in vitro antioxidant properties of fruits
and vegetables. In this study, we investigated the in vitro antioxidant capacity and the radical
scavenging activity of hydroal coholic bergamot extract using the ORAC, the DPPH, and the ABTS
assay.

As listed in Table 2, bergamot extract showed 950+0.37 ORAC units per gram of powder,
comparable to vaues obtained from whole-lemon powder (Garcia-Salas et a., 2013), and a DPPH
inhibition activity (ECsp= 720+70 pug/ml) greater than the values reported by Trombetta et al. (2010)
for two bergamot peel extracts. Moreover, bergamot extract showed a higher percentage of ABTSe+
inhibition (89.76+0.29%, corresponding to 136.3+5 umol TE/g DW) compared to other citrus fruits

(Zhang et al., 2014).

Table 2. Antioxidant capacity and antiradical scavenging activity of hydroalcoholic bergamot

extract. Assays were carried out in triplicate and the results were expressed as mean values + SD.

ORAC DPPH ABTS
(umol TE/g DW) | (ECso=pg/ml) | (umol TE/g DW)
Bergamot extract 950+0.37 72070 136.3t5
15
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We also evaluated the antioxidant properties of bergamot extract in human erythrocytes under
oxidative condition using the CAA-RBC assay and the hemolysis test. Erythrocytes represent a
good ex vivo model system to assess the antioxidant activity of natural bioactive compounds
(Honzel et d., 2008), allowing to get a better insight of their biological radical scavenging activity.

In this study, human erythrocytes were exposed to a peroxyl radical generator, the AAPH,
after 1 hour pre-treatment with 200 pg/mL bergamot extract. As shown in Figure 2, bergamot pre-
treated erythrocytes exhibited a significantly higher cellular antioxidant activity (CAA
unit=30+0.78) compared to untreated cells (CAA=0; **p<0.01), but lower than the quercetin
(CAA=94.45+4.44) used as reference standard.

Besides, bergamot extract was tested on human erythrocytes to evauate the capability to
counteract the oxidative hemolysis induced by peroxyl radicals produced by AAPH thermal
decomposition. As shown in Figure 3, bergamot pre-treated cells exhibited a strong anti-hemolytic
effect (85% hemolysis inhibition) compared to AAPH-treated cells (***p<0.001), with a hemolysis

inhibition comparable to the highest concentration of Trolox (50uM) used as reference standard.

3.3 Bergamot extract effects on pathogenic and beneficial bacterial growth

The antimicrobia activity against selected enteric bacterial strains was measured evaluating
the O.D. at 600 nm in the presence of increasing doses of bergamot extract. The MIC values were
listed in Table 3. The antimicrobia activities were compared to standard antibiotics, specifically

gentamycin and vancomycin, used as positive control.

Table3

Bergamot extract exhibited antibacterial action against all potentially pathogenic bacteria
tested. The most sensitive Gram-negative microorganisms were E. coli ATCC 25922 and S

typhimurium ATCC 14028 showing MIC values of 500 pg/mL, whereas E. aerogenes ATCC 13048
16



398
1
399
3
4
400
6
401
8

1%)2
11
1403
13

1
b
16

1405
18

éﬁgbs

21
2407
23
2408
25

26
A3
28

2810
30

1
33
M2

35
i
38

%4
40

415
47

43
4416
45
4617
47

s
50
19

52
20
55

521
57

SP)
59

60
a423
62
63
64
65

was inhibited at 1000 pg/mL. Comparing the two Gram-positive bacteria, S. aureus ATCC 25923
was more sensitive than E. faecalis ATCC 29212 with MIC values of 500 and 700 pg/mL,
respectively. Theinhibitory effect was similar for Gram-positive and Gram-negative strains.

The antimicrobial activity of polyphenols occurring in vegetable foods has been extensively
investigated against awide range of microorganisms (Daglia, 2012).

The antimicrobial activity of bergamot extract may be particularly related to its high content
of neoeriocitrin, neohesperidin and hesperetin flavanones. This is in agreement with the results
reported by Iranshahi et a. (2015). Additionally, Mandaari et a (2007) demonstrated the
antimicrobial activity of pure bergamot flavonoids neohesperidin, hesperetin, neoeriocitrin, with
minimum inhibitory concentrations ranging from 200 to 800 pg/mL (Mandalari et al., 2007).

As shown in Table 4, bergamot extract did not exert any marked antimicrobial activity against
gut beneficial bacteria belonging to the Bifidobacterium and Lactobacillus genera. The B. breve
B632 strain was not inhibited at all; on the contrary, it was sightly stimulated by amounts higher
than 100 pg/mL. B. pseudocatenulatum B1279 growth was stimulated by concentrations lower than
250 pg/mL, whereas it was dlightly inhibited at 500 pg/mL. B. bifidum B2009 growth was not
affected up to 125 pg/mL, then a dlight decrease of growth was observed without reaching
inhibitory values. Growth of the Lactobacillus strains was not affected by the bergamot extract,
except for a slight inhibition for the L. reuteri strains at the highest concentration assayed. On the

contrary, aslight increase in cell growth was recorded for L. plantarum strains.

Table4

The selective inhibition against potential pathogenic strains is important considering that the
maintenance of a balanced gut microbiota is crucia for host health, whereas microbia imbalances
are associated with metabolic disorders and/or disease status (Di Gioia, Aloisio, Mazzola & Biavati,

20144). Besides, the presence of abundant beneficial bacteria, such as bifidobacteria and
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lactobacilli, in the gut might provide protection against incoming of enteric pathogens (Jankowska,
Laubitz, Antushevich, Zabielski & Grzesiuk, 2008; Montier et al., 2012; Symonds et a., 2012).
Indeed, beneficial bacteria are able to compete for nutrients with enteric pathogens, to strongly
adhere to the intestinal mucosa, thus preventing pathogen adhesion, and to stimulate the
development of both humoral and cellular mucosal immune system (Tremaroli & Backhed, 2012).
The reason for the different growth response of Lactobacillus and Bifidobacterium strains
with respect to the other assayed bacteria has not been specifically studied in this work. However, it
is known that severa Bibifidobacteria and Lactobacillus strains are capable of metabolizing some
functional compounds, including flavonoids, releasing the sugar moiety to which they are attached
in fruits and vegetables. The released sugar can act as additional growth substrate for the bacteria
strain and the aglycone thus obtained can be absorbed by epithelial gut cells exerting its beneficial
effects on the host. This bacterial transformation is thus essential for flavonoids absorption,
biocavailability, and functional properties (Rossi, Amaretti, Roncaglia, Leonardi & Raimondi, 2010;

Marotti et a., 2011; Jou, Tsal, Tu & Wu, 2013; Di Gioiaet a., 2014b; Marin et al., 2015).

3.4 Bergamot extract effectsin LPS-stimulated HMEC-1

Several studies have been focused on the phytochemica composition and the heathy
properties of bergamot derivatives, showing an important polyphenol content and relevant
biological effects in terms of antioxidant, anti-inflammatory, antitumor and antimicrobia activity
(Mandalari et al., 2007; Navarra, Mannucci, Delbo & Calapai, 2015). The majority of these studies
is focused on the bergamot essential oil while a few others on the bergamot juice (Trombetta et al.,
2010; Celia et a., 2013; Delle Monache et a., 2013; Kang et al., 2013; Russo et al., 2013;
Cosentino et a., 2014; Risitano et al., 2014). Anyway, athough some studies have tested the
antioxidant activity and bioactive compounds of a lyophilized pulp and ped of citrus fruits

(Mandalari et a., 2006; Barros et al., 2012), as well of a whole-lemon powder (Garcia-Salas et a.,
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2013), to the best of our knowledge specific data on the biologica effects of a powder from the
bergamot whole-fruit are not available.

Herein, the potential protective effect of a lyophilized powder got from bergamot whole-fruit
against LPS-induced endothelial activation and dysfunction was evaluated in human microvascular
endothelia cells (HMEC-1). In order to identify the optimal treatment condition and detect possible
cytotoxic effects we firstly performed a toxicity curve using 0-200 pg/mL as a range of
concentrations for bergamot extract and 0-100 ng/mL as a range for LPS treatment. Cellular
treatment effects were evaluated in terms of cell viability and assessed using the MTT assay (data
not shown). Besides, we used the lowest LPS concentration able to induce a significant IL-6 gene
induction, a pro-inflammatory cytokine. Specifically, we investigated in HMEC-1 the effects of 6
hours exposure to 0.1 ng/mL LPS, following 1 hour pre-treatment with 50 pg/mL bergamot extract.

To investigate the bergamot extract properties we assessed, by quantitative Real-Time PCR,
its probable inhibitory effect on the modulation of genes involved in inflammation, endothelial
dysfunction and ER stress.

Specificaly, we anayzed the gene expression of the pro-inflammatory cytokine IL-6
(interleukin-6), the cell surface glycoprotein ICAM-1 (intercellular adhesion molecule-1), the
endothelium-derived contracting factor ET-1 (endothelin-1), and the ER stress-responsive
transcription factor C/EBP homologous protein (CHOP), an apoptotic transcriptional factor induced
in response to ER stress.

As shown in Figures 4 A-D, exposure of HMEC-1 to 0.1 ng/mL LPS resulted in a significant
up-regulation of IL-6, ICAM-1, ET-1 and CHOP compared to unexposed control cells (***p<0.001
vs CNT). Otherwise, bergamot pre-treatment exerted a significant inhibitory effect on the LPS-
induced gene expression reducing IL-6 (*#p<0.001 vs LPS), ET-1 (“p<0.05 vs LPS) and CHOP
(**p<0.001 vs LPS) gene fold increase with overlapped values to the control levels (Figures 4A, 4C
and 4D). However, athough significantly reduced with respect to LPS-treated cells (*p<0.01 vs

LPS), ICAM-1 gene expression resulted significantly higher in bergamot pre-treated cells than
19
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control cells (*p<0.05 vs CNT) (Figure 4B). Lastly, we observed a slight but significant induction
of IL-6 and ICAM-1 gene expression in response to bergamot treatment alone (**p<0.01 vs CNT)

(Figures 4A and 4B).

3.5 Endothelial ROS production and nitric oxide (NO) bioavailability

Dysfunction of the endothelium represents an important early event in the pathogenesis of
atherosclerosis that contribute to plaque initiation and progression, but it can also contribute to the
onset of several cardiovascular diseases, including hypertension, diabetes, and coronary artery
disease (Endermann & Schiffrin, 2004). Endothelial dysfunction is a systemic process that occursin
response to chronic inflammation, ischemia and reperfusion, and other risk factors (Ramzy et a.,
2006).

It is well known that an increased ROS production and a diminished bioavailability of nitric
oxide (NO), the most important vasodilator, are frequently implicated in microvascular dysfunction
associated with inflammatory response (Kvietys & Granger, 2012). However, a normalization of
vascular function to a physiological condition is possible through the restoration of ROS and NO
balance (Kvietys & Granger, 2012).

Oxidative stress has been associated with a pro-inflammatory state of the vessel wall. Besides,
ROS are known to quench NO with the formation of peroxynitrite, a cytotoxic oxidant, which
contributes to LDL oxidation and to “uncoupling” of endothelial NO synthase (eNOS) that, when
occurs, leads to exaggerated ROS level with deleterious effects on endothelial and vascular function
(Endermann & Schiffrin, 2004).

Severa studies have shown beneficia effects of enriched-polyphenols diet on the
cardiovascular system that can strongly influence the incidence of cardiovascular diseases and get a
better prognosis (Schini-Kerth, Auger, Kim, Etienne-Selloum & Chataigneau, 2010). In particular,

both experimental and clinical studies indicated that polyphenols improve the endothelial function
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through the stimulation of NO endothelial production, which contributes to control and maintain the
vascular tone (Schini-Kerth et a., 2010).

Besides, as described by Rizza et al. (2011), the citrus flavonoid hesperetin exerted

vasculoprotective actions increasing NO production from bovine aortic endothelia cells through
eNOS activation. Moreover, clinical data on overweight healthy volunteers demonstrated that the
orange juice consumption tended to increase NO plasma concentration (Morand et al., 2011).
Recent studies also reported that bergamot flavonoids neoeriocitrin, naringin and neohesperidin
exerted protective effect against inflammatory damages by reducing pro-inflammatory mediators as
NO and iNOS. Furthermore, the anti-inflammatory effect of neohesperidin in LPS-induced
inflammation have aso been studied (Sommellaet al., 2014).

Herein, we evaluated the effect of a whole-bergamot extract on LPS-induced ROS
production using the DCFH-DA, a cell-permeable dye useful to measure the redox state of a cell.
Moreover, we investigated by a colorimetric assay whether whole-bergamot extract modulate NO
production from human microvascular endothelial cells. Our results showed a significantly higher
level of ROS following LPS exposure (*p<0.05 compared to CNT) (Figure 5), which was
significantly decreased (#p<0.05 compared to LPS 0.1 ng/ml) and normalized to a baseline level in
the bergamot pre-treated cells then exposed to LPS (Figure 4). Moreover, compared to CNT,
treatment with bergamot extract alone did not induce any change in intracellular ROS production
(Figure ).

Furthermore, our results showed a significant reduction of NO bioavailability following LPS
exposure (-30.7%) with respect to untreated cells, which was reversed by bergamot pre-treatment
resulting in increased NO level (+15.3%). Differently, the highest concentration of NO was found
following bergamot extract treatment alone (+44.2%). The effect of bergamot extract on NO
production may be related to both compounds neoeriocitrin and neohesperidin.

These preliminary data suggest that pre-treatment with bergamot whole-fruit powder can

prevent and protect human microvascular endothelial cells from LPS-induced endothelial activation
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and dysfunction. This protective effect is probably linked to the high content of flavanone
constituents as neoeriocitrin and neohesperidin that exhibit also good radical scavenging and anti-

inflammatory activity.

4. Conclusions

On the whole, the results obtained in this work indicate that the bergamot extract is rich in
beneficial phytochemical compounds, possesses in vitro and ex vivo antioxidant activity, shows a
selective inhibition against potentially pathogenic strains and a growth stimulation effect on some
beneficial gut bacteria. Moreover, this extract is able to prevent and protect human microvascular
endothelia cells from LPS-induced activation and dysfunction and to reduce the level of CHOP
induced in response to ER stress. Therefore, bergamot peel and pulp, which can aso be considered
an agro-industrial by-product of the bergamot essential oil extraction, can be used to obtain a
product possessing health properties exploitable by the pharmaceutica and/or nutraceutical

industry.
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Figure captions

Figure 1. Flavonoid profile of bergamot extract analized via HPLC-DAD-MSMS: chromagram at
280nm with the main peaks numbered. NI, not identified.

1. Vicenin-2; 2: NI; 3:Lucenin-2,4’-methyl ether; 4: Rhoifolin 4’-glucoside; 5: Quercetin-3-O-
rutinoside (Rutin); 6: Eriodictyol 7-O-neohesperidoside (Neoeriocitrin); 7: NI; 8: Narirutin; 9:
Naringin; 10: Hesperetin-7-O-neohesperidoside  (Neohesperidin); 11  Apigenin  7-O-
neohesperidoside (Rhoifolin); 12:Diosmetin 7-O-neohesperidoside (Neodiosmin); 13: NI; 14: NI,
15: Mditidin; 16: Hesperetin  7-[2’’-a-rhamnosyl-6’-[3°*”’-hydroxy-3’""’-methylglutaryl]-p-

glucoside] (Brutieridin).

Figure 2. Effects of bergamot extract on the cellular antioxidant activity (CAA) in human
erythrocytes. Quercetin was used as reference standard. Assays were carried out in triplicate and the
results were expressed as mean values £ SD. * significantly different from untreated cells
(CAA=0): ** p < 0.01; *** p < 0.001. One-way ANOVA with Bonferroni’s multiple comparison

test.

Figure 3. Effects of bergamot extract on AAPH-induced oxidative hemolysisin human erythrocyte.
Trolox (10 and 50 uM) was used as reference standard. Assays were carried out in triplicate and the
results were expressed as mean values = SD. * significantly different from CNT (AAPH-treated

cells): ** p<0.01; *** p <0.001. One-way ANOVA with Bonferroni’s multiple comparison test.

Figure 4. Quantitative Real-Time PCR analysis of IL-6 (A), ICAM-1 (B), ET-1 (C) and CHOP (D)
gene expression in 6 hours LPS-exposed HMEC-1, following 1 hour pre-treatment with or without
50 pg/ml bergamot extract. Experiments were carried out in triplicate and the results were

expressed as gene expression fold increase with respect to control. = significantly different from

23



control (CNT): "p<0.05; ~'p<0.01; "~ p<0.001. * significantly different from LPS 0.1 ng/ml:

#p<0.05; #p<0.01; **p<0.001. One-way ANOV A with Bonferroni multiple comparison test.

Figure 5. Cellular ROS production (DCFH-DA assay) in 6 hours LPS-exposed HMEC-1, following
1 hour pre-treatment with or without 50 pg/ml bergamot extract. Experiments were carried out in
triplicate and the results were expressed as the DCF fluorescence level with respect to control
(CNT). One-way ANOVA with Bonferroni multiple comparison test. “significantly different from

CNT: "p<0.05; * significantly different from LPS 0.1 ng/ml: *p<0.05
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Table 1

Table 1. Tentative chemical characterization of bergamot flavonoids profile obtained viaHPLC-MS analysis.

Peak t  Area % of [M+H]+ [M-H]  Mainfragments Identification Quantification**
total peak (mg/g DW)
area

11.3 1,20 595.5 577, 559, 529, 457 Vicenin-2
114 0,71 651.3 642, 625, 561, 525, NI
489, 381, 363
12.0 0,66 625.3 607, 589, 561, 488 Lucenin-2,4’-
methyl ether
12.1 0,35 741.3 686, 596, 579, 434, Rhoifolin 4°-
311, 271 glucoside
129 0,68 301 Quercetin-3-O-
rutinoside (Rutin)
13.3 18,85 597.4 579, 561, 543, 475, Eriodictyol 7-O-
451, 433, 331, 289 neohesperidoside
(Neoeriocitrin)
143 2,10 579.4 561, 544, 525, 315, NI
273, 195
145 1,10 603.4* 585, 483, 331, 295, Narirutin
231
15.0 27,03 595.5 533, 449, 433, 287 Naringin



10 16.3 24,19 611.5 591, 575, 557, 539, Hesperetin-7-O- 5.4+0.64
489, 465, 449, 345, neohesperidoside
303 (Neohesperidin)
11 174 2,44 579.2 433, 271 Apigenin 7-O-
neohesperidoside
(Rhaifalin)
12 178 1,34 609.2 463, 301, 286 Diosmetin 7-O-
neohesperidoside
(Neodiosmin)
13 185 1,17 620.8 579, 561, 545, 440, NI
285
14 19.7 1,19 679.7 661, 548, 435, 322 NI
15 199 491 723.9 661, 622, 580 Melitidin 1.2+0.24
16 20.5 12,08 755.8 737, 719, 701, 683, Hesperetin 7-[2”’- 2.9+0.10
657, 633, 615, 491, a-rhamnosyl-6’-
473, 387, 303 [3°”’-hydroxy-
3 2999 -
methylglutaryl]-B-
glucoside]
(Brutieridin)
NI, not identified

*lon detected as[M+Na]
** Quantification has been performed for the 5 major peaks identified by HPLD-DAD (peak number 6, 9, 10, 15, 16).



Table 3

Table 3: minimal inhibitory concentration (MIC) of bergamot extract against selected enteric bacterial strains

Strains Bergamot extract concentrations (pg/ml)
0.D. 660 nm
Control 10 50 100 125 250 500 700 1000

Escherichia coli ATCC 25922 | 0.88+0.10 0.87+0.05 | 0.95+0.04 | 1.06+0.05 | 0.98+0.01 | 0.92+0.2 | ¥ 0.038+0.003 | 0.04+0.002 0.05 +£0.002
Salmonella typhimurium ATCC 14028 | 0.82+0.07 | 0.81+0.08 | 0.91+0.02 | 0.92+0.05 | 0.81+0.08 | 0.53 +0.14 $0.041 +0.004 0.04£0.01 0.05+0.01
Enterobacter aerogenes ATCC 13048 | 1.05+0.03 | 0.91+0.03 | 1.06+0.09 | 1.18+0.05 | 1.15+0.03 | 1.2+0.05 0.25+0.05 0.16 +0.05 | 10.06+0.004
Enterococcus faecalis ATCC 29212 | 0.89+0.08 | 0.95+0.01 | 0.99+0.03 | 1.08+0.5 | 1.11+0.02 | 1.06 £0.2 0.21+0.12 $0.05+£0.01 | 0.07£0.01
Staphylococcus aureus ATCC 25923 | 0.93+0.09 | 0.88+0.04 | 0.87+0.04 | 0.86+0.02 | 0.98+0.05 | 0.56+0.03 | ¥0.04+0.06 | 0.07 +0.04 0.06 £ 0.03




Table 4

Table 4: Growth of the Bifidobacterium and Lactobacillus strains tested in the presence of different amounts of bergamot extracts

Bacteria growth (O.D. 600 nm) after 24 hours of incubation

Bergamot extract concentration (ug/ml)

Strains control 10 50 100 125 250 500 700 1000
Bifidobacterium breve
o 0.65+0.00 | 0.70+0.03 | 0.68+0.02 | 0.78+0.05 | 0.79+0.03 | 0.79+0.05 | 0.76+0.05 | 0.79+0.01 | 0.68 + 0.04
Bifidobacterium
pseudocatenulatum 0.65+0.06 | 0.90+0.04 | 0.82+0.09 | 0.85+0.06 | 0.78+0.16 | 0.74+0.05 | 0.58+0.09 | 0.56+0.10 | 0.43 +0.02
B1279
ggg%‘;ba“e”“m bifidum 54001 | 0544002 | 0524003 | 0.50+0.01 | 0.51+0.02 | 0.38+0.03 | 0364009 | 0.34+0.01 | 0.35+0.03
Bifidobacterium
. 1.09+0.07 | 0.98+0.03 | 0.95+0.05 | 0.99+0.14 | 0.90+0.01 | 0.65+0.06 | 0.63+0.04 | 0.62+0.00 | 0.60 +0.09

adolescentis MB16
ﬁ;g‘;b;c’” us paracasel 0.96+0.01 | 1.03+0.01 | 1.00+0.02 | 1.01+0.01 | 1.03+0.04 | 1.00+0.02 | 0.97+0.02 | 0.99+0.01 | 0.99 +0.02
LDC;CI\ZOZboa;iZUS reuteri 0.96+0.03 | 0.76+0.02 | 0.74+0.03 | 0.77+0.01 | 0.88+0.01 | 0.86+0.03 | 0.84+0.03 | 0.83+0.02 | 0.67 +0.05
Ll\jl’ggozbac’”””"h”””” 1.14+0.08 | 1.13+0.02 | 1.11+0.03 | 1.15+0.04 | 1.14+0.01 | 1.18+0.02 | 1.14+0.04 | 1.15+0.11 | 1.14+0.04
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