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A re-examination of constrained Pareto

inefficiency in economies with incomplete

markets

C. Mendolicchio, Institute for Employment Research - IAB
T. Pietra,∗ DStat, Università di Bologna

January 26, 2022

Abstract

We establish that, when the number of agents is sufficiently large, but
finite, there are open sets of economies with constrained Pareto ineffi-
cient equilibria and provide a simple sufficient condition for constrained
inefficiency. We also show that there are open sets of economies with
constrained efficient equilibria. Hence, for these economies, neither con-
strained efficiency, nor its lack, are generic properties. However, con-
strained inefficiency is a pervasive feature: for each economy with pref-
erences satisfying a mild restriction, there are open sets of endowments
such that their equilibrium allocations are constrained inefficient.

Keywords: GEI, constrained Pareto efficiency, numeraire assets, pecu-
niary externalities
JEL classification: D51, D52

1 Introduction

With incomplete financial markets, equilibrium allocations are typically Pareto
inefficient.1 The interesting question is if they satisfy weaker notions of opti-
mality, defined taking into account the restrictions that market incompleteness
imposes upon the set of feasible allocations. The canonical criterion of con-
strained Pareto optimality, or efficiency, was introduced by Stiglitz (1982) and
Geanakoplos and Polemarchakis (1986), and further developed by Citanna et al.

∗This author acknowledges the financial support of MIUR - PRIN 2015. We thank par-
ticipants to AMASES 2017 Conference for helpful comments. Comments by an anonymous
referee and an associate editor have also been extremely helpful.

1The set of equilibrium allocation itself may be Pareto ranked, completely, as in the Hart
(1975) example, or partially, as in Pietra (2004) and Salto and Pietra (2013), which considers
economies with nominal assets and real indeterminacy.
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(1998).2 The key idea is that, as a minimal efficiency requirement, an allocation
should not allow for Pareto improvements attainable by rearranging portfolios
and letting commodity prices adjust to restore market clearing for all the com-
modities. Portfolio reallocations can allow for a Pareto improvement due to the
welfare effects of the induced changes in equilibrium prices.

In this, and in a companion, paper, we extend the analysis of constrained ef-
ficiency in GEI models in two directions. In Mendolicchio and Pietra (2016), we
have studied the attainability of a Pareto superior allocation via an appropriate
redistribution of the time-zero endowments. Here, we focus instead on the feasi-
bility of Pareto improvements via portfolio reallocation, adopting the canonical
criterion of constrained efficiency. In Geanakoplos and Polemarchakis (1986),
constrained inefficiency is established for economies where the number of agents,
H, is smaller than the number of normalized commodity prices, (S+1)(C − 1).
We extend their analysis to economies where the number of agents is finite,
but this upper bound fails. The logic of the results in the literature implies
that, no matter what the - finite - number of agents is, there are open sets of
economies with constrained inefficient equilibria. Think, for instance, of replica
economies: If the equilibrium is constrained inefficient with one agent per type,
the same equilibrium is also constrained inefficient for each number of replicas,
and for each economy sufficiently close. Therefore, there are always open sets
of economies with constrained inefficient equilibria, provided that there is - in
a proper sense - not that much of heterogeneity across agents.

Apart from economies which can be seen as - approximate - replicas, in the
literature there are no general results on the constrained optimality properties
of economies with finitely many agents, if portfolio adjustments are the only
policy tool. Citanna et al. (1998) have established generic constrained ineffi-
ciency independently of the number of agents. However, they allow for both
portfolio and (for at least two agents) period zero endowment reallocations.
Their result is certainly important, but it exploits both the direct welfare ef-
fects of the endowment redistribution and the pecuniary externalities generated
by endowment and portfolio reallocations. We think that it is interesting to
consider in detail the case when the possibility of a Pareto improvement rests
only upon the welfare effects of the induced price changes, which is the purpose
of this paper. The previous work on this issue has made clear that, with many
agents, there is no way to implement each conceivable Pareto improvement,
since the classical (i.e., Geanakoplos and Polemarchakis (1986), and Citanna et
al. (1998)) approach cannot be applied. However, this does not rule out the
possibility that some Pareto improvements could be obtained, generically. In
this paper, we show that this is not true: When the number of agents is large,
but finite, there are always open sets of economies with a unique constrained
efficient equilibrium. Additionally, we show that, with finitely many agents,3

2See also Nagata (2005) and Tirelli (2008). For a recent analysis of constrained Pareto
efficiency in growth models, see Davila et al. (2012).

3The restriction to a finite number of agents is essential. In large economies, our proof
does not apply. More important, as reported in Citanna et al. (1998), unpublished papers
by Mas-Colell (1987) and Kajii (1992) have shown that equilibria are constrained efficient in
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there are also open sets of economies with - possibly unique - constrained in-
efficient equilibria. They include open sets of economies far away from replica
economies.

While our results establish opposite constrained optimality properties for
different sets of economies, the basic logic of the argument is similar and it
can be sketched more clearly focussing on the economies with a constrained
inefficient equilibrium.

Our inefficiency results hold for all profiles of utility functions satisfying, at
the equilibrium, a mild condition, but without any lower bound on the degree
of heterogeneity. They can be summarized as follows: consider an economy
with a finite, but large, number of agents. Pick any equilibrium. Fix the
equilibrium prices and allocation. Consider the set of economies with the same
total resources and characterized by endowment profiles such that the prices
and allocation we started with are also an equilibrium given the new endowment
profile. Under some technical conditions - generically satisfied at an equilibrium
-, there is a relatively open neighborhood of endowments in the given set such
that the equilibrium we started with is constrained inefficient. Generic regularity
of equilibria guarantees that there is, actually, an open set of economies with
constrained inefficient equilibria. Since, generically, the fiber associated with a
no-trade equilibrium contains economies with constrained inefficient equilibria,
this is a common phenomenon in GEI, independently of the number of agents.

Our technique of proof heavily exploits the special properties of the economies
with a no-trade equilibrium. At these equilibria, the impact of changes in prices
on the agents’ value functions are necessarily nil. By appropriately changing
endowments, we can construct economies with the same equilibrium prices and
allocation, but such that there are directions of price changes entailing an in-
crease of the maximum level of utility for each agent. Under generic conditions,
with many agents, each equilibrium price perturbation can be attained by ad-
justing appropriately - and exogenously - the agents’ portfolios. We build on this
intuition to formally establish the existence of constrained inefficient equilibria
for some open sets of economies.

The same basic idea is also behind the opposite - in terms of constrained ef-
ficiency - result. Starting, again, with an economy with a no-trade equilibrium,
we can perturb initial endowments in other, different, directions, in such a way
that, at the equilibrium of the economy so constructed, there are no price adjust-
ments improving the maximum utility of each agent. These equilibria are, then,
locally constrained efficient. To guarantee that they are so globally, i.e. when
we allow for arbitrarily large, feasible portfolio reallocations, we need to restrict
the analysis to open sets of economies with the property that Pareto superior
equilibria cannot be bounded away from the actual equilibria. Economies with
homothetic, agent-invariant utility functions do have this property. We estab-
lish constrained optimality of equilibria for some open sets of economies which
are close to this set of economies. We show that, somewhat surprisingly, each
open neighborhood of an economy with identical, homothetic preferences and a

large economies with well-dispersed agents.
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no-trade equilibrium contains open sets of economies with constrained efficient
equilibria, and also open sets of economies with constrained inefficient ones.

Contrary to most of the previous work on this topic, we study the optimality
properties of equilibria using an approach based on the characterization of the
constrained efficient allocations as solutions to a well-defined optimization prob-
lem built upon the agents’ indirect utility functions.4 Using the terminology of
Citanna et al. (1998), we follow an optimization approach, while both they and
Geanakoplos and Polemarchakis (1986) adopted a submersion approach. We
believe that it is interesting to fully and explicitly pursue our approach too, also
because, for certain purposes, it is somewhat more transparent, interpretation-
wise. For instance, to study constrained inefficient equilibria, we consider the
open set of economies such that the first order conditions of a well-defined op-
timization problem are necessary for a maximum. We show that, for these
economies, the FOCs can be violated at the equilibrium, so that their alloca-
tions are not constrained efficient. When the number of agents is "small" (lower
than the number of non-numeraire commodities), this happens for a generic set
of economies, so that we, basically, provide an alternative proof of Geanakoplos
and Polemarchakis (1986). When there are finitely many agents, this happens
for an open, but definitely not dense, set. We also provide a simple sufficient
condition for the lack of constrained optimality of equilibria: for a generic set of
economies, equilibria are constrained inefficient when the, properly discounted,
present value of the vector of net trades in the numeraire commodities is strictly
positive for each agent. This condition is easy to check, once an equilibrium is
given. Its weakness is that it is based on both "observables" (the net trades),
and "non-observables" (the normalized vectors of Lagrange multipliers that we
need to discount). While it is possible that more appealing sufficient conditions
could be found, they must all share this shortcoming.

To extend the analysis of constrained efficiency in GEI to economies with an
arbitrary number of agents is important. Since we are dealing with competitive
economies, any upper bound on their number is a very strong restriction. When
we get rid of it, the constrained inefficiency results become weaker. However,
they are still interesting for several reasons. First, we establish that constrained
inefficiency, while non generic, is a pervasive phenomenon and that it may hold
for any degree of heterogeneity across agents. Secondly, our sufficient condition
for lack of constrained optimality is easy to check, once an equilibrium is given.
Third, our results make transparent that the same equilibrium allocation, given
preferences, may, or may not, be constrained efficient depending upon the en-
dowment vector. Indeed, for each equilibrium, there is a polyhedron of initial
endowments such that the given price and allocation is an equilibrium. The
same allocation may be constrained inefficient for some initial endowments in
this set, and constrained efficient for others.

The next section presents the model and establishes the, fairly standard,
properties of equilibria to be exploited later on. In Section 3, we make precise

4Our approach is somewhat in the same vein of Stiglitz (1982). The optimization approach
has also been previously adopted in - unpublished - work by Kajii (1992).
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the notion of constrained efficiency and prove our main results. Two para-
metric examples should help to clarify the constrained optimality properties of
equilibria for economies with "almost" identical and homothetic preferences.

2 The Model

Consider a standard two-periods GEI model with numeraire assets. There is a
finite set of agents (h = 1, ...,H), and a finite set of commodities (c = 1, ..., C) at
each spot, denoted by s = 0, ..., S. s = 0 is today, s > 0 is a state of the world

in the next period. A consumption plan is xh ≡
(
x0h, x

1
h, ..., x

S
h

)
∈ R

(S+1)C
+ , a

portfolio is bh ≡
(
b1h, ..., b

J
h

)
∈ RJ . Commodity prices are p ≡

(
p0, p1, ..., pS

)
∈

R
(S+1)C
++ , asset prices are q ≡

(
q1, ..., qJ

)
∈ R

J . As usual, we normalize the
price of good 1 at each spot. Asset payoffs are defined in terms of the numeraire
commodities and described by a full rank, (S×J) matrix R with rows in general
position,

R ≡



r11 r1J

...
. . .

...
rS1 rSJ


 .

Y (q) ≡
[
−qT , RT

]T
is the ((S + 1)× J) assets’ price-payoffs matrix.

Finally, uh (xh) is agent h’s utility function, satisfying the standard assump-
tions for the differential analysis of equilibria:

Assumption U: For each h, uh (xh) is strictly monotone, C
3,5 differen-

tiably strictly quasi-concave in xh, and satisfies the boundary conditions: for
each xh ≫ 0, the closure of the set {xh : uh(xh) ≥ uh(xh)} is contained in

R
(S+1)C
++ .

Let ωh ≡
(
ω0h, ω

1
h, ..., ω

S
h

)
∈ R

(S+1)C
++ be the initial endowment vector. Define

ps (xsh − ω
s
h) ≡ p

sζsh for each s and set pζh ≡
[
p0ζ0h, ..., p

SζSh

]
∈ RS+1.

Consumers’ behavior is described as the optimal solution to the problem:
Given (p, q),

choose (xh, bh) ∈ argmaxuh (xh) subject to pζh = Y (q)bh. (U)

Let λh ∈ R
S+1
++ be the vector of Lagrange multipliers associated with the optimal

solution to problem (U), Vh (p, q) be agent h′s indirect utility function, and

Ṽh(p, q, b̃h) be the b̃h−conditional indirect utility function, which associates the
maximum attainable level of utility with prices (p, q) and an exogenously given

portfolio b̃h.
We will use "∼" to denote functions and variables referred to the b̃−conditional

economy, and the superscript "T" to denote column vectors. Finally, our no-
tation will specify that the demand functions depend upon (ω, u) just when
required to avoid possible misunderstandings.

5We need the utility functions to be C3 because, in a proof, we use the second order
derivatives with respect to prices.
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Definition 1 An equilibrium is a price vector (p, q) with associated allocation
and portfolio profile

{
..., (xh, bh), ...

}
such that:

a. for each h, (xh, bh) solves problem (U) given (p, q),
b.
∑

h ζh = 0 and
∑

h bh = 0.

Given an equilibrium (p, q), and a portfolio b̃ with
∑

h b̃h = 0, a b̃−conditional
equilibrium is a price vector (p̃, q) with allocation x̃ such that:

c. for each h, x̃h solves problem (U) given (p̃, q) and b̃h,

d.
∑

h ζ̃h = 0.

As standard, when testing for the existence of a Pareto superior b̃−conditional
equilibrium, we keep fixed asset prices at their equilibrium level and, of course,
we just consider feasible portfolio reallocations.

We parameterize the set of economies in terms of endowments and utility

functions, and we identify the space of economies with E ≡ R
(S+1)CH
++ × U . An

economy is (ω, u) ∈ E, where R
(S+1)CH
++ is endowed with the standard topology,

U with the C3, compact-open topology, and E with the product topology. It
is well-known that this is a metric space. Since our results necessarily require
perturbations of the utility functions, a set of economies is generic if and only
if it is an open and dense subset of E, as usual.

By the appropriate version of Walras’ law, we can ignore the market clearing
conditions for commodity 1 at each spot. Hence, an equilibrium is defined as
a zero of the system of the remaining ((S + 1) (C − 1) + J) market clearing
equations. Let Φ(p, q) = 0 be the equilibrium map so obtained.

From now on, excess demand functions for commodities must always be in-
terpreted as (S + 1) (C − 1) vectors, and they are denoted by zh ∈ R

(S+1)(C−1).
Similarly, we will use zsh ∈ R

(C−1), for each s. Hence, unless otherwise specified,
we will ignore the excess demand for the numeraire commodities.

For future reference, we need to consider only regular economies whose equi-
libria satisfy some additional properties. Prop. 2 states them and shows that
this set of economies is generic.

Let D
b̃h
z̃h(p, q, b̃h) be the ((S + 1) (C − 1)× J) matrix describing the deriv-

atives of agent h’s consumption of non-numeraire commodities with respect to
her - exogenously given - portfolio.

Proposition 2 If S > J, there is an open and dense set ER ⊂ E, such that, for
each (ω, u) ∈ ER :
i. there is a finite number of equilibria and each equilibrium (p, q) is strongly reg-
ular,6 i.e., rank

[
D(p,q)Φ(p, q)|(p,q)

]
= (S + 1) (C−1)+J and rank

[
Dp̃

∑
h z̃h(.)|(p,q)

]
=

(S + 1) (C − 1) at b̃h = bh(p, q), for each h,
ii. at each equilibrium, the rows of the matrix Y (q) are in general position,
iii. at each equilibrium, if (H − 1)J ≥ (S + 1)(C − 1), the matrix

[
...,
[
D

b̃h
z̃h(p, q, b̃h)−Db̃1

z̃1(p, q, b̃1)
]T
, ...

]

6Our definition is slightly different from the one adopted in Geanakoplos and Polemarchakis
(1986), because here strong regularity encompasses the usual notion of regularity.
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has full row rank at b̃h = bh(p, q), for each h,
iv. let H ≥ (C − 1). Then, at each equilibrium, the (S + 1) (C − 1)×H dimen-
sional matrix

Λ(λ, z) ≡

[ [
1

λ
0
1

∇p̃Ṽ1
]T

· · ·
[
1

λ
0
1

∇p̃ṼH
]T ]

=




−z021 · · · −z02H
...

. . .
...

−
λ
S

1

λ
0
1

zSC1 · · · −
λ
S

H

λ
0
H

zSCH




has maximal rank, min {(S + 1)(C − 1),H}.

The proof is in Appendix. Property iii. rules out economies with identi-
cal, homothetic preferences. Property iv. rules out, among others, economies
with no-trade equilibria and, when H ≤ (S + 1)(C − 1), with Pareto optimal
equilibrium allocations. Property iii. only depends upon the specification of
the equilibrium prices and the commodity allocation, i.e., upon the levels of
income in the various states, while it does not depend directly upon (ω, b) .
To be more explicit: consider two profiles ω′ and ω” such that, at some asso-
ciated vectors b′ and b”, the same profile (x, (p, q)) is an equilibrium, so that
psωs′

h +r
sb′h = p

sωs
′′

h +r
sb

′′

h in each state s > 0 (and p
0ω0′h −qb

′
h = p

sωs
′′

h −qb
′′

h).
Then, the matrices in iii., evaluated at the two equilibria, are identical, because
they just depend upon the income effects, computed at the equilibrium alloca-
tion, and upon the asset payoffs. This will play a crucial role later on, since

iii. implies that, by choosing an appropriate portfolio perturbation
−→
db, we can

obtain each possible commodity price adjustment at the conditional equilibrium.
Given (ω,u) , the set of equilibrium prices and consumption allocations is

Eu (ω) ≡ {(x, (p, q)) | ((x, b) , (p, q)) is an equilibrium of (ω, u) for some b} .

Let

ΩNoT (u) ≡
{
ω ∈ R

(S+1)CH
++ | ((x = ω, (p, q)) ∈ Eu (ω) for some (p, q)

}

be the set of endowments such that (ω, u) has a no-trade (NoT ) equilibrium.
ΩNoT (u) always includes the set of Pareto optimal endowment profiles and, of
course, it also includes many other vectors ω, when markets are incomplete.
Finally, given u, ω ∈ ΩNoT (u) and each no-trade equilibrium price vector
(p (ω,u) , q (ω, u)), let

E−1u (ω, (p (ω, u) , q (ω, u))) ≡
{
ω ∈ R

(S+1)CH
++ | (x = ω, (p (ω, u) , q (ω, u))) ∈ Eu (ω)

}

be the set of endowments supporting (x = ω, (p (ω, u) , q (ω, u))) as an equilib-

rium, for some b̃. It is defined by the system of linear equations and inequalities

for each h : p0(ω,u)ω0h = p
0(ω,u)ω0h − q(ω, u)̃bh,

ps(ω,u)ωs
h = ps(ω, u)ωs

h + r
sb̃h, for each s > 0,

∑

h

ωh =
∑

h

ωh, ω >> 0.
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In our set-up, E−1u (ω, (p (ω, u) , q (ω,u))) is the counterpart of the set of en-
dowments lying on the tangent to the indifference curves through any Pareto
optimal allocation in the Edgeworth box.7 For each endowment profile in this
subspace, (p(ω,u), q(ω, u)) is an equilibrium with ω−invariant allocation and
Lagrange multipliers over the set E−1u (ω, (p (ω, u) , q (ω, u))).

Using this construction, for given u and total endowments, we can parame-
terize equilibria looking just at the no-trade equilibria and, then, associating
with each ω ∈ ΩNoT (u) the set E−1u (ω, (p (ω, u) , q (ω,u))) . This will be very
handy for the proof of some of our results.

To study the set of economies with constrained inefficient equilibria, we
will restrict the analysis to no-trade equilibria satisfying properties i.-iii. of
Prop. 2 (clearly, iv. cannot be satisfied at these equilibria). Prop. 2 does not
directly apply to this set of economies, since the set of economies with a no-trade
equilibrium is close and nowhere dense. However, similar results hold. Define

ENoT ≡
{
(ω, u) |ω ∈ ΩNoT (u)

}
,

the set of economies with at least one no-trade equilibrium.

Corollary 3 There is a relatively open and dense subset of ENoT , ENoTR, such
that, for each (ω, u) ∈ ENoTR, there is an equilibrium satisfying (i.-iii.) of Prop.
2.

The proof is in Appendix.

3 Equilibria and Constrained Pareto Efficiency

In the discussion of constrained inefficiency in GEI, the standard approach is to
show that, given an equilibrium, generically there is a portfolio profile entailing
a Pareto improvement. The argument is presented in Geanakoplos and Pole-
marchakis (1986) and further developed in Citanna et al. (1998). It is based on
showing that, given the system of eqs.

Ξ(p̃, q, b̃) = [Φ(p̃, q, b̃), (..., uh(xh(p̃, q, b̃))− ûh, ...)] = 0,

where b̃ is the portfolio profile and û the equilibrium profile of the attained
utilities, D(p̃,̃b)Ξ(.) has, generically, full rank ((S+1)(C− 1)+H) at each equi-

librium. This immediately implies that, for each ã ∈ RH , and in particular for
ã >> 0, we can find a b̃, with associated (p̃, q) , such that both Φ(p̃, q, b̃) = 0

and uh(xh(p̃, q, b̃)) − ûh = ãh > 0, for each h. This is called the submersion
approach. Different systems of eqs. Φ(.) can be selected to describe the equilib-

rium, but the basic idea is always to add to Φ(p̃, q, b̃) the system of equations
[..., uh (xh)− ûh, ...] , and to show that the map so obtained has a full rank

7The idea of using no-trade equilibria to parameterize the space of the economies goes
back to Balasko (1988). See also Siconolfi and Villanacci (1991) for an application in GEI
economies.
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derivative. When this condition holds, each conceivable Pareto improvement is
attainable via an appropriate choice of the portfolio profile b̃. As already men-
tioned, this is a much stronger property than the one imposed by the definition
of constrained efficiency, which just requires the attainability of at least one
vector a >> 0. Bear in mind that, for this approach to work, there must be
at least H independent policy instruments.8 Its downside is that it cannot be
directly used to study the feasibility of some Pareto improvement in economies
with arbitrarily many agents,9 our main aim.

In this paper, we do not impose any restriction - but finiteness - on the num-
ber of agents and analyze both cases: open sets of economies with constrained
efficient10 and inefficient equilibria.

Let’s start formalizing the notion of constrained efficiency.

Definition 4 An equilibrium (p, q) is constrained Pareto efficient (or optimal)

if there is no profile b̃ ≡
{
..., b̃h, ...

}
with

∑
h b̃h = 0 such that the associated

b̃−conditional equilibrium p̃ satisfies Ṽh(p̃, q, b̃h) ≥ Vh(p, q), for each h, with at
least one strict inequality.

This is the notion adopted in Geanakoplos and Polemarchakis (1986). In our

analysis, we do not impose qbh = qb̃h, for each agent h. However, this additional
constraint would have no effect on our results. Evidently, if an equilibrium is
constrained optimal with respect to each portfolio reallocation, it is also such
when the reallocation is further restricted. The analysis of the set of economies
with constrained inefficient equilibria goes through with a minor modification
of Prop. 2 iii.

We split the analysis into two parts. First, we establish that, independently
of the number of agents, there are open sets of economies with constrained
inefficient equilibria. This is essentially a reformulation, in our framework, of
the classical result and its partial (because non generic) extension to economies
with finitely many agents. We define an optimization problem characterizing
constrained efficient allocations for some open set of economies and show that,
for them, the - necessary - first order conditions of this problem cannot be
satisfied at their equilibria. This is sufficient to establish constrained inefficiency.
When H ≤ (S+1)(C−1), this set of economies is generic and this is simply the
classical result. When H > (S +1)(C − 1), the set is open, but not dense. The
key element in the proof of this second - and more relevant - result is the matrix
Λ(λ, z), defined in Prop. 2. If property iii. of Prop. 2 holds, each direction of
price adjustment can be obtained with an appropriate portfolio reallocation. If

there is a
−→
dp such that

−→
dpΛ(λ, z) >> 0, we can indeed Pareto improve upon the

equilibrium allocation readjusting portfolios. Hence, the fundamental property

8This condition is satisfied if J ≥ 2, as in Geanakoplos and Polemarchakis (1986).
9See the remark on page 89 in Geanakoplos and Polemarchakis (1986).
10Since the inefficiency result holds even with just one asset, our result can also be seen as

a counterexample to a classical claim, originally formulated by Tinberger (1956) and stressed
in Citanna et al (1998), according to which we need a profile of at least H independent policy
instruments to attain H policy objectives.
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is the span of Λ(λ, z). Since Λ(λ, z) is trivial at each no-trade equilibrium, for
each economy in ENoTR, we can select on the equilibrium fiber a - relatively -
open set of endowments such that, at their equilibria, spanΛ(λ, z)T ∩RH

++ �= ∅ :
their equilibria are constrained inefficient. Bear in mind that our analysis here
is purely local: we pick an economy and one of its equilibria, and we study
the welfare effects of local changes in the portfolio b̃. We are only considering
economies in ER. Hence, the equilibrium and the b̃−conditional equilibrium
maps locally admit a smooth selection. This suffices for our aims.

Our approach has several advantages: it may be convenient for the inter-
pretation of the results. It may also be somewhat more transparent than the
classical approach for expositional purposes. Moreover, it allows us to obtain
some new properties, strengthening the classical results on constrained ineffi-
ciency in GEI.

It is more complex to establish the existence of some open sets of economies
with a constrained efficient equilibrium, because we need to consider the entire
set of b̃−conditional equilibria. Our analysis is based on two simple ideas. First,

an exogenous feasible reallocation of portfolios,
−→
db, has first and second order di-

rect effects on the utility levels, and first and second order indirect effects due to

the adjustment of the equilibrium prices induced by
−→
db. Pick an economy (ω, u)

with identical across agents and homothetic state preferences. Clearly, equilib-

rium prices are b̃-invariant, so that the indirect effects of
−→
db are nil. Now, take

some small open neighborhood of (ω, u). For economies in this set, the second

order effects of
−→
db are non-positive. The direct ones are necessarily negative

under strict-concavity of state preferences. By continuity, we can guarantee
that they dominate the indirect ones, whose sign is not well-defined, by taking
smaller and smaller neighborhoods of (ω, u). Since the first order direct effect

of
−→
db are nil at each equilibrium, this implies that an equilibrium is constrained

inefficient only if the first order indirect effects of
−→
db are positive and sufficiently

large. This can be true only if there is some
−→
dp such that

−→
dpΛ(λ, z) >> 0. Start-

ing from an economy (ω, u) with a no-trade equilibrium, we can adjust utility
functions and endowments in such a way that, for some open set of economies
close to (but not including) (ω, u), spanΛ(λ, z)T ∩RH

++ = ∅. Therefore, locally,

equilibria are not Pareto dominated by any b̃−conditional equilibrium. The
second observation is that, in a neighborhood of any economy with identical,
homothetic preferences, just local adjustments of the portfolio can, in princi-
ple, achieve a Pareto improvement. Jointly, these two properties establish that
equilibria are constrained optimal for some open set of economies.

The details of the arguments used to establish constrained efficiency and
inefficiency for some sets of economies are obviously different. They are reported
in Section 3.1 and 3.2, respectively. Their common theme is the central role of
spanΛ(λ, z)T and the property that, starting with any no-trade equilibrium,
arbitrarily small endowment adjustments suffice to generate matrices Λ(λ, z)T

spanning completely different linear subspaces of RH .
The most interesting and novel result of this paper is the proof of the exis-
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tence of some open sets of economies with constrained optimal equilibria. How-
ever, from the expositional viewpoint, we believe that it is better to start with
the discussion of the other case, i.e., of the economies with constrained inefficient
equilibria, since the technical details are less intricate.

3.1 Economies with constrained inefficient equilibria

There are several alternative ways to characterize constrained efficient alloca-
tions as solutions to an optimization problem. For our purposes, the most
convenient approach is to look at a constrained efficient price-portfolio profile
as the optimal solution to the following collection of planning problems: Pick
any agent h. Given an equilibrium (p, q), and a profile

{
..., V h, ...

}
, for h �= h,

choose (p̃, b̃) ∈ argmax Ṽh(p̃, q, b̃h) subject to (Wh)

V h ≤ Ṽh(p̃, q, b̃h), for each h �= h, (A)

0 = Z̃(p̃, q, b̃) ≡
∑

h

z̃h(p̃, q, b̃h), (B)

0 =
∑

h

b̃h. (C)

In this first formulation of the optimization problem, both p̃ and b̃ are control
variables. The last two conditions guarantee that b̃ is feasible and that p̃ is a
b̃−conditional equilibrium. Assume that (p, q) is an equilibrium. If (p̃ = p, b̃ =
b (p, q)) is not a solution to problem

(
Wh

)
for some h, and given V h = Vh(p, q)

for h �= h, then the allocation associated with (p, q) is Pareto dominated by
the one associated with some other equilibrium conditional on some feasible
b̃. Hence, the equilibrium is constrained inefficient. Conversely, if (p̃ = p, b̃ =
b (p, q)) solves the stated optimization problem, for each h and given V h =
Vh(p, q) for h �= h, then, the equilibrium is constrained efficient. We have
established the following result:

Lemma 5 An equilibrium price system (p, q) with associated allocation and
portfolio profile

{
..., (xh, bh), ...

}
is constrained efficient if and only if, given

q and V h ≡ Vh(p, q), for each h, (p̃ = p, b̃ = b(p, q)) is an optimal solution to
problem (Wh), for each h.

In this section, we are only interested in economies with constrained ineffi-
cient equilibria. Hence, we can just focus on a specific agent, say h = 1, and
write problem (W ), instead of (Wh).

The main - potential - advantage in adopting an optimization approach
is that the issue of constrained efficiency of equilibria reduces to: under which
conditions does an equilibrium profile satisfy the FOCs for an optimal solution to
(W )? Are these FOCs sufficient? In our set-up, there are two difficulties. First,
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and most obvious, in general, optimization problem (W ) has no nice concavity
properties, so that its FOCs may not be sufficient for an optimum. This is
important when looking for economies with constrained efficient equilibria, but
irrelevant here. A more subtle problem is that the FOCs may not even be
necessary for a local maximum, when there are many agents.

Consider the constraints (A−C) of optimization problem (W ) , and get rid

of (C) by replacing b̃1 with −
∑

h>1 b̃h. Let CQ(p̃, b̃2, ..., b̃H) be this reduced

form constraint. Its derivative with respect to (p̃, b̃2, ..., b̃H) is

D(p̃,̃b2,...,̃bH)CQ(p̃, b̃2, ..., b̃H)

≡






∇p̃Ṽ2
...

∇p̃ṼH







∇
b̃2
Ṽ2 −∇b̃1

Ṽ1 · · · 0
...

. . .
...

0 · · · ∇
b̃H
ṼH −∇b̃1

Ṽ1




[
Dp̃Z̃

] [ [
D

b̃2
Z̃ −D

b̃1
Z̃
]
· · ·

[
D

b̃H
Z̃ −D

b̃1
Z̃
] ]




≡



D(p̃,̃b)Ṽ

\1

D(p̃,̃b)
̂̃
Z


 .

At each equilibrium, by construction, all the inequality constraints hold as
equalities. Hence, we need to take into account all of them. At each equilibrium,
∇

b̃h
Ṽh = 0, so that the top-right submatrix is nil. If (H − 1) ≤ (S+1)(C−1) and

(H − 1)J > (S+1)(C−1), for (ω, u) in ER, Prop. 2 iii. and iv. guarantee that
the matrix has full row rank, so that the Karush-Kuhn-Tucker (KKT) constraint
qualification condition is satisfied. Thus, the FOCs are necessary conditions.
Constrained inefficiency of equilibria follows immediately (see Proposition 6).

If (H − 1) > (S + 1)(C − 1), the KKT condition obviously fails. Other,
weaker, criteria based on rank invariance of D(p̃,̃b2,...,̃bH)CQ(.)

11 are also bound

to fail, since rankD(p̃,̃b2,...,̃bH)CQ(.) may increase when we move away from

an equilibrium. However, there are open sets of economies such that their
regular equilibria may satisfy the Mangasarian - Fromovitz (1967) constraint
qualification (MFCQ) criterion, so that the FOCs are indeed necessary for a
local maximum.

The MFCQ criterion holds, at a vector (p̃, b̃2, ..., b̃H), if D(p̃,̃b)
̂̃
Z has full

row rank and there is a vector θ ≡
(
θp̃, θb̃

)
such that

[
D(p̃,̃b)

̂̃
Z

]
θT = 0 and

[
D(p̃,̃b)Ṽ

\1
]
θT > 0, where we take into account only the agents with binding

constraints (i.e., here, all of them). In our context, given the structure of the

11See, for instance, Janin (1984).
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two sub-matrices, whenever D
b̃

̂̃
Z has full row rank, the condition reduces to the

existence of a vector θp̃ such that
[
Dp̃Ṽ

\1
]
θTp̃ > 0.

Our proof of the existence of economies with constrained inefficient equilibria
(in Lemma 7 and Proposition 8) is based on constructing, for each no-trade
equilibrium satisfying some additional restrictions to be spelled out later on,
a relatively open subset of economies with regular equilibria satisfying MFCQ,
while they cannot satisfy FOCs.

Bear in mind that we are not concerned with the existence of constrained
efficient prices and allocations. This could be established using a completely dif-
ferent argument, based on continuity and compactness of the relevant constraint
set.12

Let L(p̃, q, b̃;φ, µ, γ, η) be the Lagrangian of problem (W ). Its FOCs are

Dp̃L(.) =
∑

h

φh∇p̃Ṽh (.)
T − γDp̃Z̃(.) = 0, (a)

D
b̃h
L(.) =

[
..., φh∇b̃

j
h

Ṽh (.)
T − γ∇

b̃
j
h

Z̃(.), ...
]
= η, for each h, (b)

Dφh
L(.) = Ṽh(p̃, q, b̃h) ≥ ξh, and

0 =
[
Ṽh(p̃, q, b̃h)− ξh

]
φh, for each h > 1, φh ≥ 0, (c)

DγL(.) = −Z̃(p̃, q, b̃) = 0, (d)

DηL(.) = −
∑

h

b̃h = 0, (e)

where, with some abuse of notation, we set φ1 ≡ 1. {φ, µ, γ, η} are the vectors
of Lagrange multipliers.

We can now consider the two cases. The first is basically the one analyzed
in Geanakoplos and Polemarchakis (1986): the number of agents is smaller
than the one of the non-numeraire commodity prices: H ≤ (S + 1) (C − 1) . If
(H − 1)J ≥ (S + 1)(C − 1),13 generically, at each equilibrium KKT constraint
qualification holds and the FOCs of problem (W ) do not. Hence, equilibria are
constrained inefficient. Strictly speaking, our result is not encompassed by the
ones already established in the literature, since our lower bound on the number
of agents can be smaller than the one in Geanakoplos and Polemarchakis (1986),
H ≥ 2(C − 1). However, the substantive difference is really tiny. The result is
presented here mostly for completeness.14 Compared to the classical approach,

12Werner (1991) studies CPO allocations in GEI. Their possible non-existence is due to
changes in the rank of the payoff matrix. This issue cannot arise with numeraire assets.
13This restriction also implies that H > (C − 1), so that Prop. 2 iv. applies.
14This is also why it is not worthwhile to investigate if our approach, with some adjustment,

works, as it probably does, with a less tight lower bound on H, limiting ourselves to the
simplest case.
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our argument is completely straightforward, once one takes for granted the -
fairly standard - results of Prop. 2.

Proposition 6 Under the maintained assumptions, if H ≤ (S+1)(C − 1) and
(H−1)J ≥ (S+1)(C− 1), each equilibrium allocation is constrained inefficient
for economies in the generic set ER.

Proof. By Prop. 2 iii. and iv., the matrix D(p̃,̃b2,...,̃bH)CQ(p, b̃2, ..., b̃H) defined

above has full row rank at each equilibrium. Thus, the KKT constraint quali-
fication criterion is satisfied and the FOCs are necessary for a local maximum
of (W ). At each equilibrium, ∇

b̃h
Ṽh (.) = 0. The system of FOCs essentially

reduces to

Dp̃L(.) =
∑

h

φh∇p̃Ṽh (.)
T − γDp̃Z̃(.) = 0, (a)

D
b̃h
L(.) = −γ

[
...,
[
D

b̃h
Z̃(.)−D

b̃1
Z̃(.)

]T
, ...

]
= 0, for each h > 1. (b′)

By Prop. 2 iii., and since (H− 1)J ≥ (S+1)(C− 1), (b′) implies γ = 0. Hence,

Dp̃L(.) = 0 if and only if
∑

h φh∇p̃Ṽh (.)
T = 0. By Prop. 2 iv., this condition is

satisfied if and only if φ = 0. This contradicts the fact that φ1 = 1. Hence, the
system of - necessary - FOCs has no solution at each equilibrium of (ω, u) ∈ ER.
Therefore, equilibria are constrained inefficient.

Let’s now turn to the most interesting case: constrained inefficiency when
H > (S + 1)(C − 1), which always implies (H − 1)J ≥ (S + 1)(C − 1).

First of all, let’s stress that constrained inefficiency cannot be a generic
properties when there are finitely many agents. In fact, later on, we will show
that there are open sets of economies with a unique constrained efficient equi-
librium. However, we can still ask: first, how common are economies with
constrained inefficient equilibria? Second: can we provide simple conditions
guaranteeing lack of constrained optimality? The answer to the first question
is: quite common. Proposition 8 shows that we can associate with each no-
trade equilibrium satisfying condition iii. of Prop. 2 an open set of economies
whose equilibrium is constrained inefficient. In fact, there is a relatively open set
of economies (ω, u) , with ω ∈ E−1u (ω, p (ω, u) , q (ω, u)) , such that their equi-
librium (p (ω, u) , q (ω, u)) = (p (ω, u) , q (ω, u)) is constrained inefficient. Con-
strained inefficiency is preserved by small perturbations of (ω, u) , so that this
is an open property in the space of economies (Corollary 9). We provide a (par-
tial) answer to the second question in Proposition 11: constrained inefficiency
typically holds if, for each agent, the present value of the vector of net trades
in the numeraire commodities, computed according to her own vector of La-
grange multipliers, is strictly positive. Clearly, it would be nice to have a result
just in terms of observables (prices, consumption, or net trades, and portfolios).
This is, however, impossible: as intuitive, the normalized vector of Lagrange
multipliers necessarily plays a key role.
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Before getting into the details, it may be helpful to provide an overview of the
logic behind our key results. Let (ω

◦

, u
◦

) be an economy and ((z
◦

, λ
◦

), (p
◦

, q
◦

))
be the associated equilibrium variables. Consider the constraints of problem

(W ). If Prop. 2 iii. holds, given any vector
−→
dp, we can find a vector

−→
db solving

[
D(p̃,̃b)

̂̃
Z

]



−→
dpT

−→
dbT


 = 0.

Therefore, since, at each equilibrium,∇
b̃h
Ṽh = 0, the MFCQ criterion is satisfied

if there is a direction
−→
dp such that

−→
dpΛ\1(λ

◦

, z
◦

) >> 0, where Λ\1(λ
◦

, z
◦

) is

obtained deleting the first column of the matrix Λ(λ
◦

, z
◦

), defined in Prop. 2
iv.

Consider now the FOCs of problem (W ). At each equilibrium, they reduce

to the constraints (c − e) above and to the condition
∑

h φh∇p̃Ṽh (.)
T = 0,

i.e., Λ(λ
◦

, z
◦

)φT = 0, for some φ ≥ 0. Hence, to establish that an equilib-

rium is constrained inefficient, it suffices to show that there is
−→
dp such that

−→
dpΛ\1(λ

◦

, z
◦

) >> 0 (so that the FOCs are necessary), while there is no φ ≥ 0

such that Λ(λ
◦

, z
◦

)φT = 0 (so that the FOCs are not satisfied).

Suppose that there is some
−→
dp∗ such that

−→
dp∗Λ(λ, z) >> 0. A fortiori, this

implies
−→
dp∗Λ\1(λ

◦

, z
◦

) >> 0. By Stiemke Lemma, the existence of such a
−→
dp∗

implies that there is no φ ≥ 0 such that Λ(λ
◦

, z
◦

)φT = 0. Hence, at each equilib-
rium, both MFCQ holds and there is no solution to the FOCs: the equilibrium
cannot be constrained efficient.

Our proof builds on this intuition and it is structured in several steps. The
first result is reported in Lemma 7 and it holds modulo an arbitrarily small
perturbation of an economy. Pick a pair (ω,u) with a no-trade equilibrium. For
a (relatively) open subset of economies - parameterized by endowment profiles
- supporting the same equilibrium prices and consumption allocation of (ω, u),
−→
dpΛ(λ, z) >> 0 for some

−→
dp. This implies that MFCQ holds. Constrained

inefficiency for the given equilibrium of economies in this open set follows im-
mediately, as established in Proposition 8. If the given equilibrium is regular,
constrained inefficiency extends immediately to an open set of economies (Corol-
lary 9). If it is also unique, there is an open set of economies with a unique
constrained inefficient equilibrium (Corollary 10). Notice that we restrict the
analysis to strongly regular equilibria. Since commodity prices are a control
variable in optimization problem (W) , the need for this restriction may not be
immediately clear. In fact, we do not use it to construct economies with the
specific, required properties. However, strong regularity is essential to show that
the same properties hold at the equilibria of all the economies in some open (or
relatively open) neighborhood.

The key results of this section is Lemma 7, which shows that, given any
economy (ω, u) ∈ ENoTR, there is an open set of economies, arbitrarily close to
(ω, u), with a strongly regular equilibrium which satisfies MCFQ.
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Lemma 7 Let H > (S+1)(C−1). Pick any (ω, u) ∈ ENoTR and any relatively
open set Bε (ω, u) ⊂ ENoTR. Then, there is (ω,u′) ∈ Bε (ω, u), such that, for
each χ > 0, there is some relatively open set Vu′(ω

′) ∈ E−1u′ (ω, p (ω, u
′) , q (ω,u′)) ,

with ||ω′−ω|| < χ, such that, for each (ω, u′) ∈ Vu′(ω′), there is a strongly reg-
ular equilibrium satisfying MFCQ.

The details of the proof are in Appendix. Remember that ENoTR is the
(relatively open and dense) subset of economies with a no-trade equilibrium
satisfying (i.− iii.) of Prop. 2. Lemma 7 says that, given any generic economy
with a no-trade equilibrium, there is some, arbitrarily close, economy (ω,u′) ∈
ENoTR such that the fiber associated with its no-trade equilibrium contains an
endowment ω′ such that (ω′, u′) has a strongly regular equilibrium satisfying
the Mangasarian-Fromowitz constraint qualification criterion.

Given that H > (S + 1)(C − 1) implies (H − 1)J ≥ (S + 1)(C − 1),
iii. in Prop. 2 may hold. The intuition for the result is this: we start
with an economy (ω, u′) ∈ ER with a no-trade, Pareto inefficient equilibrium
such that the collection of Lagrange multipliers satisfies an equilibrium restric-
tion which holds generically. Next, we explicitly construct an endowment pro-
file ω′ ∈ E−1u′ (ω, p (ω,u

′) , q (ω, u′)) whose strongly regular equilibrium satisfies
MFCQ. Locally, strong regularity holds because we are restricting ourselves to
some small open neighborhood of a no-trade equilibrium. MFCQ is a restriction
on the structure of the matrix Λ(λ, z) , defined in the statement of Prop. 2. As
already mentioned, the key point here is that, at each no-trade equilibrium,
Λ(λ, 0) is trivial. Provided that the vectors λh satisfy a condition which generi-
cally holds at each Pareto inefficient equilibrium, arbitrarily small perturbations
of the vectors zh allow us to modify the span of Λ (λ, z) , and to obtain a matrix
Λ(λ, z′) such that MFCQ holds. Our first main result follows immediately from
Lemma 7.

Proposition 8 Let H > (S + 1)(C − 1) and consider the relatively open set
Vu′(ω

′) ⊂ E−1u′ (ω, p (ω, u
′) , q (ω, u′)) , constructed in Lemma 7. For each (ω, u)

∈ Vu′(ω
′), the associated equilibrium allocation is constrained inefficient.

Proof. By Lemma 7, for each (ω, u) ∈ Vu′(ω
′) MFCQ holds, so that the FOCs

of (W ) are necessary for an optimal solution. The construction in Lemma 7

implies that both
−→
dpΛ\1(λ, z) >> 0 and

−→
dpΛ(λ, z) >> 0. Hence, by Stiemke

Thm. of the alternatives there is no vector φ ≥ 0 such that Λ(λ, z)φT = 0. This
implies that the equilibrium cannot satisfy the FOCs. Given that, as shown in
Lemma 7, the equilibrium is strongly regular, there is a relatively open subset
of Vu′(ω

′) ⊂ E−1u′ (ω, p (ω, u
′) , q (ω, u′)) such that all the economies in this set

have a constrained inefficient equilibrium.
The previous result refers to a, relatively, open subset ofE−1u′ (ω, p (ω, u

′) , q (ω, u′)) .
Evidently, it is robust to arbitrarily small perturbations of (ω′, u′) , so that it is
actually an open result.

Corollary 9 Let H > (S + 1)(C − 1). Then, there is an open subset of E,
ENoCPO, such that, for each (ω, u) ∈ ENoCPO, there is a constrained inefficient
equilibrium.
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Possibly, economies in ENoCPOcould have some other, maybe constrained
efficient, equilibria. We can rule out this possibility by restricting ourselves to
economies with a unique equilibrium.

Corollary 10 Let H > (S + 1)(C − 1). Then, there is an open subset of E,
EUNoCPO, such that, for each (ω, u) ∈ EUNoCPO, the associated unique equilib-
rium allocation is constrained inefficient.

Proof. Uniqueness and regularity of the equilibrium for each (ω, u) with a
PO initial endowment imply that there is some open ball Bε (ω, u) such that,
for each (ω, u) ∈ Bε (ω, u) , the equilibrium is unique and regular. Pick any
(ω, u) ∈ Bε (ω, u) with a Pareto inefficient no-trade equilibrium and such that
Prop. 8 holds. Evidently, by the proofs of the previous results, there are
economies satisfying these properties. By construction, all these economies have
a unique, strongly regular, constrained inefficient equilibrium. This property can
be immediately extended to all (ω, u) in some open neighborhood.

Finally, we propose a simple sufficient condition for constrained suboptimal-
ity.

Proposition 11 Under the maintained assumptions, if H > (S + 1)(C − 1),
for each (ω, u) ∈ ER, each equilibrium allocation such that, for each h,

∑

s

λsh (p (ω, u) , q (ω, u)) z
s1
h (p (ω, u) , q (ω, u)) > 0,

is constrained inefficient.

The proof of the Proposition is in Appendix.
Evidently, when there are many agents, these results are non-generic. Still,

they are of some interest for at least three reasons:

1. they hold for each sufficiently large, but finite, number of agents, without
requiring the use of additional policy instruments, such as period 0 lump-
sum taxes, as in Citanna et al. (1998),

2. they illustrate how the same equilibrium prices and consumption alloca-
tion may, or may not, be constrained efficient depending upon the distri-
bution of the initial endowments,

3. they may hold even if there is just one asset. Thus, we can obtain a
Pareto improvement when the number of independent policy instruments
is smaller than the number of agents.

We conclude this section presenting a parametric example. Since H >
(S + 1) (C − 1) , Geanakoplos and Polemarchakis (1986) does not apply. How-
ever, there is a range of values of the parameters of the utility functions such
that the condition stated in Proposition 11 is satisfied, so that the equilib-
rium allocation is constrained inefficient. The example is constructed taking as
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a starting point an economy with identical and homothetic state-preferences.
This property is irrelevant for the present purposes. In fact, it makes the result
much harder to obtain. However, it is useful for a comparison with the results
in the next Section and in Example 22.

Example 12 Consider an economy with four agents, three spots, two goods in
each spot and one asset, inside money. Preferences are Cobb-Douglas:

uh(xh) =
s=2∑

s=0

αsh

((
1

2
+ θsh

)
lnxs1h +

(
1

2
− θsh

)
lnxs2h

)
,

with α0h = 1, for each h. The parameters of the utility function and the endow-
ment vectors are reported in Table 1.

Table 1 goes about here

We take as reference point the economy with all the θsh equal to zero, so that
state-preferences are invariant across consumers and homothetic. By our choice
of the endowment vector, ps2 = 1 is the equilibrium commodity price on each
spot. We have selected the coefficients

(
α01h , α

11
h , α

21
h

)
so that, at (p, q) = (1, 1, 1, 1),

bh = 0 is the optimal choice for each consumer.15

Consider the collection of economies with

θ = [θ1 = (θ, 0, 0) , θ2 = (0, θ, 0) , θ3 = (0, 0, θ) , θ4 = (0, 0, 0)] .

In Table 1, the endowment vectors depend upon θ in such a way that, if β = 0,
(p, q) is the equilibrium and there is no-trade for each θ sufficiently small,
i.e., such that the endowments are non-negative. Hence, θ provides a one-
dimensional parameterization for a subset of no-trade economies in a neighbor-
hood of the reference economy.
For each θ �= 0, state-preferences vary across consumers, so that equilibrium
prices depend upon the portfolio. Consider the collection

β1 (θ) = 10θ [(−1, 0) , (6,−6) , (0, 0)] , β2 (θ) = 10θ [(0, 0) , (−1, 1), (0, 0)] ,

β3 (θ) = 10θ [(0, 0) , (0, 0) , (−1, 1)] , β4 (θ) = 10θ [(1,−1) , (−5, 5) , (1,−1)] .

It is easy to check that, for each θ, (p, q) = (1, 1, 1, 1) is still the equilibrium
given β (θ) . However, now there is trade in commodities, but not in assets, at
the equilibrium.
By a straightforward computation, for each θ, the conditional equilibrium price
vector is

p̃ (θ) =

[(
1 +

θb̃1

10θ2 + 8θ+ 10

)
,

(
1−

θb̃2

10θ2 + 4θ + 7

)
,

(
1−

θb̃3

10θ2 + 8θ+ 11

)]
,

15To guarantee that the equilibrium allocation is no-trade, these rates must vary across
consumers. We could have obtained the same result by choosing appropriately the endowment
vectors. However, this would have made the computations more cumbersome.
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while

Λ(λ, z (θ)) =




10θ 0 0 (−10θ)

60θ
16θ−8 10θ

(
1
2 − θ

)
0 100

3 θ

0 0 10θ
(
1
3 +

2
3θ
)

−10
3 θ



.

The matrix satisfies the conditions of Prop. 8 and, clearly, there is no φ >> 0
such that Λ (λ, z (θ))φT = 0 : The first row requires φ1 = φ4. The second

60θ

16θ− 8
+ 10θ

(
1

2
− θ

)
φ3
φ1
+
100

3
θ = 0,

which holds only for φ3
φ1
= 1

φ1

(
80θ−31

−24θ+24θ2+6

)
< 0, for θ small.

On the basis of our previous results, this implies that the unique equilibrium is

constrained inefficient, for each θ sufficiently small. Indeed, for
−→
dp = [1, 1, 1] ,

−→
dpΛ(λ, z (θ)) >> 0, for each θ > 0.
Given that equilibrium prices are linear in the portfolios, it is easy to check that
a portfolio reallocation

−→
db =

[
10θ2 + 8θ + 10

θ
,−
10θ2 + 4θ+ 7

θ
,−
10θ2 + 8θ+ 11

θ

]
db

induces a change in equilibrium prices equal to
−→
dp ≡ [1, 1, 1] db.

Replace into the value functions, Ṽh(p̃(b +
−→
db), q, b + θ

−→
db, ω, u), these perturbed

portfolios and the associated equilibrium prices, p̃s2(db) = (1 + db), for each

s. By direct computation, for each h, the derivative of Ṽh(.) with respect to db,
evaluated at equilibrium, i.e., at db = 0, is strictly positive for all the sufficiently
small θ. Hence, these portfolio reallocations entail a Pareto improvement, which
implies that the equilibrium is constrained inefficient.
The result is illustrated by figures 1a and 1b, which present the changes of the
values of the Ṽh(.), for each h, with respect to the given db for θ = 1

100 and
θ = 1

1000 .
16

16Since only the signs of the changes matter, the functions are scaled to allow for a readable
presentation in a single graph.
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db

dV

Figure 1a: Utility changes as a function of db, θ = 1
100

db

dV

Figure 1b: Utility changes as a function of db, θ = 1
1000
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3.2 Economies with constrained efficient equilibria

Our next result is the core of the paper. We show that, with finitely many agents,
there are open sets of economies with constrained efficient equilibria. The argu-
ment is somewhat tricky, because we need to compare each equilibrium with the
entire set of b̃−conditional equilibria. Proposition 13 shows that equilibria are
constrained efficient for some open set of economies with equilibrium allocations
close to a no-trade one, and preferences close to be state-separable, homothetic
and identical across agents. Therefore, constrained inefficiency cannot be a
generic property of equilibria.

Proposition 13 Under the maintained assumptions, if H > (S + 1)(C − 1),
the set

ECPO ≡
{
(ω, u) ∈ ECPO|all the equilibria are constrained efficient

}

has non-empty interior, i.e., it contains some open set N(ω̂, û).

Here, we provide the road map of the argument, splitting the proof into
several intermediate results. Most of the details are in Appendix.

An equilibrium
(
(p, q) ,

(
x, b
))
fails to be constrained efficient because it is

Pareto dominated by some b̃−conditional equilibrium. We consider separately
the two possible cases: i) b̃ is bounded away from its equilibrium value b; ii)

b̃ is arbitrarily close to b. First we look at case i), ruling out this possibility
for economies arbitrarily close to one with state-preferences identical across
consumers and homothetic, so that prices are b̃-invariant.

Lemma 14 Pick an economy
(
ω
◦

, u
◦)

with u
◦

h = u
◦

1 for each h, and u
◦

h ho-
mothetic, state-separable and strictly-concave. Pick any χ > 0. Then, there is
an open set Bε

(
ω
◦

, u
◦)

such that, for the unique equilibrium of each (ω, u) ∈

Bε

(
ω
◦

, u
◦)
, there is no Pareto superior, b̃−conditional equilibrium with ||̃b −

b(p
(
ω
◦

, u
◦)
, q(ω

◦

, u
◦

);ω
◦

, u
◦

)|| > χ.

The argument (in Appendix) is straightforward, because, at
(
ω
◦

, u
◦)
, equi-

librium prices are b̃−invariant and preferences are strictly convex.
It is more tricky to rule out case ii). The underlying intuition is actually

fairly simple. Consider the local impact of a feasible portfolio perturbation
on the equilibrium levels of the utility functions in a strictly-concave economy.

Evidently, the first order - direct - effect of
−→
dbh on Ṽh(.) is zero, for each h. Its

second order - direct - effect is strictly negative, by strict concavity, if
−→
dbh �= 0.

However, we also have to take into account the impact of the adjustment of the
b̃−conditional equilibrium prices. The idea behind our proof is to focus on a
set of economies such that the - utility reducing - second order direct effects of
−→
db dominate its second order indirect effects, whose signs are not well-defined.
This happens for economies with identical, homothetic preferences (where there

is no effect of
−→
db on equilibrium prices) and for economies sufficiently close to
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them. When this is the case, a portfolio reallocation can be Pareto improving
only if the direct effects of the induced price adjustments are utility-improving
for each agent and sufficiently large. These utility changes just depend upon the
equilibrium values of the Lagrange multipliers and of the excess demands. We
will show that, moving along the equilibrium fiber, we can always find initial
endowments such that each price variation reduces the utility of at least one
agent. We will establish Prop. 13 putting together this local result and the one
in Lemma 14.

In view of the previous lemma, we know that, for economies close to the
reference economy (ω

◦

, u
◦

), each possible Pareto superior portfolio must lie in
some bounded neighborhood of the equilibrium portfolio b (ω, u). Without any
loss of generality, we will restrict the analysis to portfolios lying in the unit ball

and feasible. Let
−→
db ≡ (̃b− b (ω, u)) and define the non-empty, compact set

S ≡
{−→
db|||

−→
db|| ≤ 1

}
∩

{
−→
db|
∑

h

−→
dbh = 0

}
.

Obviously, S ⊂ R(H−1)J naturally induces the set of the feasible portfolios cen-
tered on b (ω,u) . To express this set in terms of variations simplifies the notation.

In the previous section, we only needed that rankDp̃

∑
h z̃h(.) = (S + 1) (C−

1), at the actual equilibrium prices (p, q) and at b̃ = b(p, q). Therefore, the prop-
erty of strong regularity was sufficient. Now, we need to slightly strengthen this
property, requiring that rankDp̃

∑
h z̃h(.) = (S + 1) (C−1) at the b̃−conditional

equilibrium for each b̃ such that the associated
−→
db ∈ S. For any economy

(
ω
◦

, u
◦)

satisfying the assumptions of Lemma 14, this property is trivially satisfied if the
equilibrium is strongly regular. By C2, it is also satisfied for all the economies
in some small open neighborhood of

(
ω
◦

, u
◦)
, without loss of generality, the

same open ball Bε

(
ω
◦

, u
◦)
of Lemma 14. Bear in mind that this immediately

implies that the b̃−conditional equilibrium price map is uniquely defined and
C2 on Bε

(
ω
◦

, u
◦)
× S.

In the sequel, the term strong regularity will be interpreted as regularity at

each (p̃(b+ θ
−→
db),

−→
db) defined for (θ,

−→
db) ∈ [0, 1]×S.

Let I be some compact interval in RH
++, and define the map Tµ(θ;

−→
db, ω, u),

T : [0, 1]× I × S×E −→R, where

Tµ(θ;
−→
db, ω, u) ≡

∑

h

µhṼh(p̃(b+ θ
−→
db), q, b+ θ

−→
db, ω, u),

so that Tµ(θ;
−→
db, ω, u) incorporates both the direct effect of a portfolio reallo-

cation on the - weighted - sum of the indirect utility functions and its - pos-
sible - indirect effects, via the induced price adjustments, since its argument

is p̃(b + θ
−→
db). Given that b(.) is an equilibrium portfolio,

∑
h bh(.) = 0. Given

that
−→
db ∈ S,

∑
h

−→
dbh = 0. Hence, for each θ ∈ [0, 1],

∑
h(bh (.) + θ

−→
dbh) = 0,

so that the b̃−conditional equilibrium price map p̃(.) is always well-defined on
[0, 1]× I × S×E .
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Our first preliminary result is summarized in the following Lemma. Its proof
is in Appendix.

Lemma 15 Pick any economy (ω
◦

, u
◦

) where preferences are homothetic and
separable across states and periods. State-preferences are identical across con-
sumers. Moreover, the Hessian matrix D2xhuh is negative-definite and the equi-

librium is no-trade. Pick any µ
◦

∈ RH
++. Then, there is an open set Iδ(µ

◦

) ×

Bδ

(
ω
◦

, u
◦)

such that, at the unique equilibrium of each (ω, u) ∈ Bδ

(
ω
◦

, u
◦)

and at each µ ∈ Iδ(µ
◦

), the map Tµ(θ;
−→
db, ω, u) satisfies

∂2Tµ
∂θ2

< 0 at each

(θ,
−→
db) ∈ [0, 1]× S\ {0} and

∂2Tµ
∂θ2

= 0 if and only if
−→
db = 0.

The key assumptions for Lemma 15 are the ones on preferences, together
with the - generic - strong regularity of equilibria. The Lemma does not rest
on the property that the equilibrium is no-trade. This property is, instead,
essential for the result of the next Lemma, our last preliminary step.

Lemma 16 Let H > (S + 1)(C − 1) and consider any economy (ω
◦

, u
◦

) satis-
fying the assumptions of Lemma 15. Then, for each open set Bδ(ω

◦

, u
◦

), there
is an open ball N(ω̂, û) ⊂ Bδ(ω

◦

, u
◦

) such that, for each (ω′, u′) ∈ N(ω̂, û),
Λ(λ′, z′) has maximal row rank (S + 1)(C − 1) and Λ(λ′, z′)µ′T = 0, for some
µ′ ∈ Iδ(µ

◦

), µ′ >> 0.

Remark 17 Lemma 14 and 15 do not require any restriction on the number
of agents. However, H > (S + 1)(C − 1) is essential for Lemma 16, since
we need both µ �= 0 and Λ(λ, z)µT = 0 where Λ(λ, z) has maximal rank (S +
1)(C − 1). Therefore, the argument of this section (and the possibility of open
sets of economies with constrained efficient equilibria) can hold only if H >
(S + 1)(C − 1).

Remark 18 The set N(ω̂, û) constructed in Lemma 16 may include economies
with identical, homothetic preferences, provided that there is trade at the equilib-
rium. Therefore, it cannot include the no-trade economy (ω

◦

, u
◦

). Constrained
optimality of equilibria for economies with these properties is self-evident. Given
that this class of economies is closed and nowhere dense, N(ω̂, û) must also in-
clude open sets of economies with heterogeneous, and non homothetic, prefer-
ences. In addition, it must also contain open sets of economies such that D

b̃
p̃(.)

has maximal row rank (S + 1)(C − 1), because, by Prop. 2 iii., this property is
generic. Evidently, constrained optimality of equilibria is interesting mostly for
this subset of economies in N(ω̂, û).

In Appendix, using the previous Lemma, we establish Proposition 13. Its
proof rests crucially on the construction of an open set of economies such that, at
the equilibrium, Λ(λ, z)µT = 0. The argument is symmetric to the one exploited
in the proof of Lemma 7: our starting reference economy (ω, u) is no-trade, so
that Λ(λ, z) is a trivial matrix. By adjusting properly initial endowments, we
move along the equilibrium fiber to construct an economy (ω′, u′) such that, for
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some µ′ >> 0, Λ(λ′, z′)µ′T = 0. By continuous differentiability - and because of
Lemma 14 -, this will suffice to establish constrained efficiency of the equilibria
of some open set of economies.

Remark 19 In Section 3.1, we have studied the class of economies with con-
strained inefficient equilibria starting with an economy with a no-trade equilib-
rium. Pick an economy (ω∗, u∗) ∈ B(ω

◦

, u
◦

) (the set of Lemma 15) with a
Pareto inefficient no-trade equilibrium such that the matrix of the income ef-
fects has full rank. Such an economy must exist, because the two properties are
generic and independent of the equilibrium excess demands. If we move along
the equilibrium fiber of (ω∗, u∗), we can construct an economy (ω∗∗, u∗) with the
same equilibrium which is constrained inefficient by choosing endowments such
that Λ(λ∗, z∗∗)φT = 0 has no positive solution, so that there is a price pertur-

bation which entails
−→
dpΛ(λ∗, z∗∗) >> 0, i.e., a Pareto improvement. Moving in

a different direction on the fiber, we can also construct economies (ω
′

, u∗) such
that Λ(λ∗, z

′

)µT = 0, for some µ >> 0. For such an economy, the equilibrium
can be constrained efficient. Notice that (ω∗∗, u∗) and (ω

′

, u∗) can be arbitrarily
close to (ω∗, u∗) and to (ω

◦

, u
◦

). To put it differently: we are not claiming that,
for each economy (ω

◦

, u
◦

) with identical and homothetic preferences and a no-
trade equilibrium, there is an open set Bδ(ω

◦

, u
◦

) of economies with a unique
constrained efficient equilibrium. This cannot be true, because it would con-
tradict the results in Proposition 8 and its corollaries. Our result is, instead,
that each Bδ(ω

◦

, u
◦

) contains an open neighborhood where each economy has a
unique, constrained efficient equilibrium.

Remark 20 Geanakoplos and Polemarchakis (1986) mentions that, in economies
with finitely many agents, there are open sets of economies with constrained inef-
ficient equilibria when the heterogeneity across agents is sufficiently small. Their
idea is to start with an economy with H ≤ (S + 1)(C − 1) agents and strongly
regular, constrained inefficient equilibria. Then, we look at replica economies.
Take any large number of replicas, say M . In the economy with MH agents
of H types, equilibria are still constrained inefficient. Strong regularity im-
plies that, for economies with MH different agents, but close to the replica
economy, equilibria are constrained inefficient. Their result is obviously correct
also in our, slightly different, set-up. With a sufficiently small H, lack of con-
strained optimality is a generic property. Hence, it holds even if we start with a
generic economy arbitrarily close to one with a no-trade equilibrium, and util-
ity functions arbitrarily close to be identical and homothetic. Since our result
in Prop. 13 does not impose any positive lower bound on the degree of het-
erogeneity across agents, one may wonder if these results for replica economies
are consistent with the ones in Prop. 13. They are. In Prop. 13, we con-
struct an open set of economies with constrained efficient equilibria, N(ω̂, û).
Given the space of the economies with H = TK agents, the subset of K-replica
economies with T ≤ (S+1)(C − 1) types is closed and nowhere dense. There is
no reason to expect that a small open cover of this set will intersect N(ω̂, û). In
fact, the economies close to be replica, and with constrained inefficient equilib-
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ria, are characterized by the property that there is no strictly positive solution to
Λ(λ, ω)φT = 0. The ones in N(ω̂, û) by the property that such a solution exists.
Once again, one has to remember that, at each no-trade equilibrium, there is a
collapse of the rank of Λ (λ, z) .

Remark 21 The questions discussed in the previous remarks are all related to
the key issue for our analysis: the span of the matrix Λ(λ, z) . At each no-trade
equilibrium, Λ(λ, 0) is trivial. Given the flag structure of the Grassmannian
manifold of (S + 1)(C − 1) dimensional subspaces in RH , arbitrarily small per-
turbations of the profiles of the excess demand vectors and of the Lagrange mul-
tipliers allow us to obtain matrices Λ(λ, z) with completely different spannings.

For some of them, spanΛ
(
λ, z
)T
∩RH

++ �= ∅, so that the equilibrium is definitely

constrained efficient. For others, spanΛ
(
λ, z
)T
∩ RH

+ = ∅, so that the equilib-
rium can be constrained efficient.17 Hence, given a neighborhood of an economy(
ω
◦

, u
◦)

with a no-trade equilibrium, we can construct open balls of economies
with constrained efficient equilibria and other open balls of economies where
constrained optimality fails.

This last point can be further clarified looking at the following example,
which is a variation on the structure of Example 12.

Example 22 The economy is essentially the one described in Example 12. All
the other parameters are identical, but now β11 = (0, 0). The associated matrix
is

Λ(λ, z′) =




10θ 0 0 −10θ

0 −10θ
(
θ− 1

2

)
0 −2

3θ

0 0 10
3 θ (2θ + 1) −10

3 θ



.

The vector µ =
[
1, 4
3−6θ ,

1
1+2θ , 1

]
satisfies Λ (λ, z′)µT = 0, for each small θ. We

will now argue that, for θ sufficiently small, equilibria are constrained efficient.
Given µ, consider the associated map Tµ(.) as defined above and let b̃4 ≡ −b̃1+

b̃2+ b̃3, so that we are only looking at feasible portfolio perturbations. A tedious,
but straightforward, numerical computation shows that, at θ = 0, D2

(b̃1 ,̃b2 ,̃b3)
Tµ(.)

is a strictly-concave function at b̃ = 0, since its leading minors, [D1,D2,D3]
satisfy the sign pattern [−,+,−]. Given that Tµ ∈ C

2, there is an open ball Bδ(0)

such that Tµ(.) is strictly concave at each b̃ ∈ Bδ(0)(0). Since D2
(b̃1 ,̃b2 ,̃b3)

Tµ(.)

is continuous in θ, and the equilibrium is strongly regular, its leading minors
satisfy the same pattern, at the associated equilibrium, for all θ sufficiently small
and for some open set Bδ(θ)(̃b = 0). It is easy to see that, for each sequence
θv → 0, any associated sequence δ (θv) is bounded away from 0, essentially

17Since these results are purely local, they suffice to show constrained inefficiency. They
are not sufficient to show constrained optimality, as already discussed. In addition, we need
to be sufficiently close to an economy with identical, homothetic preferences.
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Figure 1: Figure 2: Example 12 and Example 22

because δ(0) > 0. We can now make appeal to Lemma 14, which implies that, if
the equilibrium associated with θv is constrained inefficient, the sequence of the
associated Pareto superior portfolios b̃ (θv) must satisfy b̃ (θv) −→ 0. Together
these two properties imply that, for θ sufficiently small, the equilibrium is globally
constrained efficient.

The main result of the two examples is summarized in Figure 2. The set of
economies with a no-trade equilibrium is the one shadowed. The curve through
(ω

◦

, u
◦

) is a set of economies with identical, homothetic preferences. In our
parametric examples, (ω

◦

, u
◦

) is the economy with β = 0 and θ = 0 : preferences
are identical and homothetic. The equilibrium is no-trade. The economy (ω̂, û)
corresponds to the one with θ = 1

100 and β = 0. In the two examples we
select distinct vectors β, β′ and β”. In Example 12, β′ is selected to generate
an economy with a constrained inefficient equilibrium. In Example 22, β” is
chosen to guarantee constrained efficiency of the equilibrium.

4 Concluding remarks

We believe that our results settle several of the open issues concerning the gen-
eral constrained efficiency properties of equilibria in GEI. In particular, we have
shown that, when the number of agents is finitely large, typically there are open
sets of economies with constrained efficient equilibria and other open sets of
economies with constrained inefficient equilibria. Both results are established
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using an optimization problem as a building block for the analysis. This is done
explicitly in the analysis of the economies with constrained inefficient equilib-
ria (in Section 3.1), implicitly for the ones with constrained efficient equilibria
(in Section 3.2). This approach allows us to make transparent the nature of
the efficiency problem. With complete markets, or when equilibria in GEI are
constrained efficient, if there are pecuniary externalities induced by portfolio re-
allocations, they can be aggregated over the set of agents using positive weights
in such a way that they cancel out. Hence, any gain in utility for some agent
must be compensated by a loss in utility for some other agent. Thus, equilibria
are constrained efficient. In GEI economies, this happens, for instance, when
there cannot be pecuniary externalities (as in the case of identical homothetic
preferences) or when Lagrange multipliers are collinear, so that market clear-
ing immediately implies that the effects of these externalities must disappear
in the aggregate. This paper shows that there are open sets of economies with
a constrained efficient equilibrium, in addition to the well-known exceptional
examples just mentioned. In our construction, one of the technical conditions
required for the proof of constrained optimality (i.e., Λ(λ, z)µT = 0, for some
µ >> 0) is just another way to say that pecuniary externalities must cancel
out when we aggregate them with strictly positive coefficients, which can actu-
ally be interpreted as welfare weights for an appropriate "planner’s problem".
However, for other open sets of economies, portfolio-induced pecuniary exter-
nalities can lead to a Pareto improvement. They actually do so whenever the
matrix Λ(λ, z) , describing the impact on the individual utilities of the condi-
tional equilibrium price changes, has the appropriate span. When the number
of agents is sufficiently small, this happens generically. It also happens for some
open sets of economies when this number is larger than a lower bound. Both
results (constrained efficiency and inefficiency of equilibria ) are robust to utility
perturbations. The key issue, for the economies considered here, is the span of
the matrix Λ(λ, z). Since it crucially depends upon the vector of excess demand
at equilibrium, economies with the same equilibrium prices and allocations can
have completely different properties in terms of welfare depending upon the
initial endowment distribution.

5 Appendix

Proof of Proposition 2: i. is standard, see Geanakoplos and Polemar-
chakis (1986). Let ER be the generic set of economies such that i. holds.

ii. Since R is in general position, we just need to consider square submatrices[
−qT , RT

]
, where R is given by a collection of (J − 1) rows of R, without loss

of generality, rows 1, ..., J − 1. Define the map

Ξ(µ, γ) ≡
[
−
[
RTµT

]
γ0 +RT [γ1, ..., γJ−1]T

]
.
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We can take Ξ :
◦
∆

S−1

× SJ−1 → R
J , where γ ∈ SJ−1, the unit sphere in RJ ,

while µ ∈
◦
∆

S−1

, some compact manifold without boundary contained in the
unit simplex. Since R is in general position, and γ �= 0, Ξ(µ, γ) = 0 implies
that γ0 �= 0. Given that D(µ1,...,µS)Ξ(µ, γ) = −R

Tγ0, Ξ ⋔ 0. Therefore, there

is an open, dense subset of
◦

∆
S−1

such that Ξµ ⋔ 0. Then, Ξ
−1
µ (0) = ∅, because

Ξµ : S
J−1 → R

J . Iterating the procedure for all the possible collections of (J−1)
rows of R, and taking intersections, we obtain that, for a generic choice of the
vector µ of Arrow state-prices, Y (µR) is in general position.

Restrict the analysis to (ω, u) ∈ ER and, without loss of generality, assume
that, for each h, the equilibrium allocation is different at each one of the distinct
equilibria of (ω, u) . Evidently, this property is generically satisfied. Given any
(ω, u) , pick any equilibrium (p, q) such that Y (q) is not in general position and
q = µR. As we have seen, an arbitrarily small perturbation of µ suffices to
guarantee that, at the new asset prices q′ ≡ µ′R, Y (q′) is in general position.
Evidently, for µ′ sufficiently close to µ, for each h we can find a vector λ′h
close to the Lagrange multiplier at the equilibrium of the initial economy, λh,
and such that λ′hY (q

′) = 0. For each h, replace the equilibrium consumption
bundle xh with the bundle x′h, defined as follows: x

sc′
h = xsch for each sc �= 01,

x01′h = x01h + (q − q′)bh. Evidently, x
′
h is budget feasible at prices (p, q

′) . Now,
consider a locally linear perturbation of the utility function, obtained replacing
uh(.) with

u′h(xh) ≡ uh(xh) + θε (xh)
∑

s

(
λs′h p

s −
∂uh(xh)

∂xh
|xh=x′

h

)
xsh,

where θε (xh) is a smooth "bump" function taking the value 1 on the open ball of
radius ε centered on xh ≡ xh (p, q;ωh, uh) , Bε(xh), the value 0 at xh /∈ B2ε(xh).
It is easy to check that, for the new economy, (p, q′) is an equilibrium with
allocation and portfolio profile

{
...,
(
x′h, bh

)
, ...
}
. Choosing ε sufficiently small,

we can guarantee that, given any pair of equilibria of the initial economy (ω, u) ,
(p, q) and (p̂, q̂), B4ε (xh (p, q))∩B4ε (xh(p̂, q̂)) = ∅, so that we can locally perturb
uh in different directions at the distinct equilibria. Given that the number of
equilibria is finite, by iterating the procedure, given any open neighborhood of
(ω, u) , we can construct a profile

(
ω, u”

)
contained in the neighborhood and

such that, at each equilibrium (p̃, q̃), Y (q̃) is in general position. Given that,
for q′ sufficiently close to q, u′h(xh) can be made arbitrarily close to uh(xh),
this establishes density of the set (ω, u) ∈ ER satisfying ii. Its openness follows
immediately from regularity of equilibria for (ω,u) ∈ ER.

Let Egp be the generic set of economies such that i. and ii. hold.

iii. Restrict the analysis to (ω, u) ∈ Egp. At p̃ = p,

[
∂z̃sch (p̃, q, b̃h)

∂b̃jh
−
∂z̃sc1 (p̃, q, b̃1)

∂b̃j1

]
≡

[
∂zsch (p, q)

∂ms
h

−
∂zsc1 (p, q)

∂ms
1

]
rsj
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where ms
h is h’s income in state s.

Define the ((S + 1) (C − 1)× (H − 1)J)−dimensional matrix

G(p, q;ω, u) ≡




...
...

...

· · ·
[
∂zsh(p,q)
∂ms

h

− ∂zs1(p,q)
∂ms

1

]T
rsj · · ·

...
...

...


 ,

and the system of equations

Θ(p, q, α;ω, u) =




Φ(p, q;ω, u)

[G(p, q;ω, u)]T αT


 = 0

with α ∈ S(S+1)(C−1)−1, the unit sphere in R(S+1)(C−1).
Under standard technical conditions, by the transversality thm., ifΘ(p, q, α;ω, u) ⋔
0, there exists an open, dense subset of Egp, ER, such that, for each (ω, u) ∈ ER,
Θ(ω,u)(p, q, α) ⋔ 0. Since Θ(ω,u)(.) maps R

(S+1)(C−1)+J × S(S+1)(C−1)−1 into

R
(S+1)(C−1)+J×R(H−1)J and (H−1)J > (S + 1) (C − 1)−1, Θ(ω,u)(p, q, α) ⋔ 0

implies that Θ−1
(ω,u)

(0) = ∅, i.e., that, at each equilibrium, the matrix G(ω,u)(p, q)

has full row rank (S + 1)(C − 1).
Let’s now show that Θ(p, q, α;ω, u) ⋔ 0. Consider

D(ω,u)Θ(p, q, α;ω, u) =



DωΦ(p, q;ω, u) D−→

du
Φ(p, q;ω, u)

∗ D−→
du

[
[G(p, q;ω, u)]T αT

]


 .

It is straightforward to check thatDωΦ(p, q;ω, u) has full rank ((S + 1)(C − 1) + J) .

We will consider perturbations
−→
du of the utility functions which do not affect

Φ(p, q;ω, u), so that D−→
du
Φ(p, q;ω, u) = 0, while they change by 1 its deriva-

tives ∂zsch
∂ms

h

(and, accordingly, ∂zs1h
∂ms

h

), for h = 2, ...,H. Perturbations with these

properties exist (see Geanakoplos and Polemarchakis (1980)).
We need to consider two different cases:
a. there are at least J distinct states such that, for some c(s), αsc(s) �= 0.

Given ii. above, we can assume, without loss of generality, that s = 1, ..., J .
Then, for each state s = 1, ..., J , pick one commodity sc(s) such that αsc(s) �= 0.
Perturb, as described above, the utility functions of each agent h > 1, changing

by 1 the derivatives
∂z

sc(s)
h

∂ms
h
for the given collection of J commodities. Then,

D−→
du

[
[G(p, q;ω, u)]

T
αT
]
=




. . . [ [
r1
]T
α1c(1) · · ·

[
rJ
]T
αJc(J)

]

. . .


 ,
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a block diagonal matrix. Given that (ω, u) ∈ Egp, Y (q) is in general posi-
tion. Hence, the nontrivial elements are given by a full rank matrix. Hence,

D−→
du

[
[G(.)]T αT

]
has maximal rank (H − 1)J .

b. there are at most (J − 1) states, without loss of generality, as above,
s = 1, ..., J − 1, such that, for some c(s), αsc(s) �= 0. We now show that this is
impossible, for a generic set of economies. By contradiction, assume that there
is α̃ such that [G(.)]T α̃T = 0 and α̃sc �= 0 for some c in less than J states. We
can explicitly write

[G(.)]T α̃T

=




...

−
[∑

c>1

(
∂z0ch
∂m0

h

−
∂z0c1
∂m0

1

)
α̃0c
]
qj +

∑
s>0

[∑
c>1

(
∂zsch
∂ms

h
−

∂zsc1
∂ms

1

)
α̃sc
]
rsj

...




=




...

Y (q)T
[[

∂zsh
∂ms

h

− ∂zs1
∂ms

1

]T
α̃s
]T

...



.

By assumptions, for each h, there are, at most, (J − 1) non-zero coordinates of

the vector
[
...,
∑

c>1

(
∂zsch
∂ms

h

− ∂zsc1
∂ms

1

)
α̃sc, ...

]
. Since Y (q) is in general position,

this implies that [G(.)]T α̃T = 0 if and only if
[
...,
∑

c>1

(
∂zsch
∂ms

h

− ∂zsc1
∂ms

1

)
α̃sc, ...

]
=

0, for each s and h.

To conclude, we will now show that, for each s and h,
[
...,
∑

c>1

(
∂zsch
∂ms

h
−

∂zsc1
∂ms

1

)
α̃sc, ...

]
=

0 if and only if α̃s = 0. Since, by assumption, ||α̃|| = 1, this is impossible.
To establish this last step, we make appeal, once again, to the transversality

thm. applied to the following system of equations: for given s, and θ ∈ SC−2,

Ψs (p, q, α;ω, u) =




Φ(p, q;ω, u)

[
...,∇s

ms
h
zsh −∇ms

1
zs1, ...

]T
θT


 = 0.

Its derivative contains

D
(ω,

−→
du)
Ψs (p, q, α;ω, u) =



DωΦ(.) D−→

du
Φ(.)

∗ D−→
du

[[
...,∇ms

h
zsh −∇ms

1
zs1, ...

]T
θT
]


 = 0.

We apply the same type of utility perturbations as above, so that D−→
du
Φ(.) = 0.

Since θ ∈ SC−2, there is c such that θc �= 0. Perturbing, for each agent h > 1,
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∂zsch
∂ms

h

, we obtain

D−→
du

[[
...,
[
∇ms

h
zsh −∇ms

1
zs1
]T
, ...
]T
θT
]
= θcI.

Hence, Ψs ⋔ 0 at each (p, q, α;ω,u) ∈ Ψs−1(0). By transversality, for a generic
subset Es ⊂ Egp, Ψs

(ω,u) ⋔ 0. By assumption, (H − 1)J ≥ (S + 1) (C − 1)

and this implies (H − 1) > (C − 2) . Since Ψs
(ω,u) : R

(S+1)(C−1)+J × SC−2 →

R
(S+1)(C−1)+J ×R(H−1), Ψs

(ω,u) ⋔ 0 means Ψ
s−1
(ω,u) (0) = ∅.

This concludes the proof: for each s, there is an open and dense set Es ⊂ Egp

such that

[
...,
[
∇s

ms
h
zsh −∇ms

1
zs1

]T
, ...

]
has full row rank (C − 1). By taking

intersection over s, we construct a generic set ER ⊂ Egp such that, for each

economy (ω, u) ∈ ER, rank

[
...,
[
∇s

ms
h
zsh −∇ms

1
zs1

]T
, ...

]
= (C − 1) for each s.

As argued above, this implies that case (b) is impossible.
Hence, Θ(ω,u)(p, q, α) ⋔ 0, which implies that, at each equilibrium, the ma-

trix G(.) has maximal rank (S + 1)(C − 1).

iv. This also follows by an iterated application of the transversality thm.
Thus, we just outline the key steps of the proof. First, observe that

(a)18 Generically, at each equilibrium (p, q), for each h,
λsh(p,q)
λσ
h
(p,q) �=

λs
h
(p,q)

λσ
h
(p,q) for

each s �= σ, for some h. This can be established exploiting the same - locally -
linear utility perturbation exploited in ii.,

(b) This implies that, generically,
∑

h
λsh(p,q)
λσ
h
(p,q)z

s
h (p, q) �= 0, for each s �= σ,

and each σ, at each equilibrium (p, q),

(c) Generically, for each s,
[
· · · [λsh (p, q) z

s
h (p, q)]

T · · ·
]
has full row

rank (C − 1) at each equilibrium (p, q). This follows immediately from the fact

that, generically, at each equilibrium and for each s,
[
· · · [zsh (p, q)]

T · · ·
]

has full row rank, when H ≥ (C − 1).
Restrict the analysis to the set of economies such that (a, b, c) hold and look

at the two possible cases:
(I) (S +1)(C − 1) ≥ H. Given an equilibrium (p, q), consider the system of
eqs.

Λ(λ, z)µT = 0, µ ∈ SH−1.

Consider the derivative in the direction: dωsc
h = δ, for c > 1, dω

s1
h = −δ

∑
c p

sc

for each h �= h, and, for some h, dωsc
h
= −

∑
h�=h dω

sc
h . Evidently, for δ small,

this directional change
−→
dω has no effect on equilibrium prices and allocation,

while
D−→

dω

[
Λ(λ, z)µT

]
=
[
· · · Diag

(
µ1

λs1
λ01
− µh

λs
h

λ0
h

)
· · ·

]
δ.

18 (a) and (b) are also exploited as properties (2.2.) and (2.3) in Citanna et al. (1998). Here,
we impose that they hold for all pairs s, s′, instead than just for s = 0, 1.
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If there is h such that µh = 0, D−→dω
[
Λ(λ, z)µT

]
has full rank (S + 1)(C − 1).

Otherwise, µh �= 0, for each h. If rankD−→dω
[
Λ(λ, z)µT

]
< (S+1)(C−1), it must

be that, for some s = σ, µh
λσh
λ0
h

= µh
λσ
h

λ0
h

, for each h, i.e., that µh = µh
λσ
h

λ0
h

λ0h
λσ
h
, for

each h. However, Λ(λ, z)µT = 0 and µh = µh
λσ
h

λ0
h

λ0h
λσ
h

for each h is impossible,

because it violates (b). Hence, rankD−→
dω

[
Λ(λ, z)µT

]
= (S + 1)(C − 1).

(II) (S + 1)(C − 1) < H. Consider the system of eqs.

Λ(λ, z)Tϕ = 0, ϕ ∈ S(S+1)(C−1)−1.

Consider the same direction of perturbation of the endowments as in (I), with,
for instance, h = H. Dω

[
Λ(λ, z)TϕT

]
spans the directional derivative

D−→
dω

[
Λ(λ, z)TϕT

]
=


 · · · ϕsc




λs1
. . .

λsH−1
−λsH −λsH


 · · ·


 .

Suppose that, for at least two spots s and s′, there exists c(s) and c(s′) such

that ϕsc(s) �= 0 and ϕs
′c(s′) �= 0. Then, it must be αhλ

s
h = λ

s
H and αhλ

s′

h = λ
s′

H ,
for each h, which violates (a). On the other hand, ϕs′ = 0 for each s′ �= s, for
some s, is impossible in view of (c).
Then, by a routine transversality argument, applied to the system of eqs.
(Z(.),Λ(λ, z)) = 0, Λ(λ, z) has maximum rank at each equilibrium for economies
in some open, dense subset of Egp. �

Proof of Corollary 3: i. holds at each no-trade equilibrium, because,
by definition, there are no income effects. To establish ii., one can apply exactly
the same argument exploited in the proof of Prop. 2. Bear in mind that, in the
construction of the perturbed economy, since bh = 0, x01

′

h = x01h , so that the
equilibrium of the perturbed economy is no-trade.

To establish iii., pick any (ω, u) ∈ ENoT and its no-trade equilibrium. By
regularity, property iii. is open, hence ENoTR is a relatively open subset of
ENoT . To conclude, it suffices to show that it is relatively dense, too. Given any
(ω, u) ∈ ENoT and any no-trade equilibrium, we can locally apply essentially
the same argument exploited in the proof of Prop. 2, using (arbitrarily small)
locally quadratic perturbations of the utility function which have no effect on
the equilibrium price and allocation (their existence follows from Geanakoplos
and Polemarchakis (1980)). Consider as a parameter space the one of the utility
perturbations with the stated properties. The same argument used in the proof
of Prop. 2 shows that, generically in this space, [G(p, q;ω,u)]

T
αT = 0 has no

non-trivial solution. This immediately implies that, modulo some arbitrarily
small, allocation and equilibrium price-preserving, perturbation of the utility
functions, G(p, q;ω, u) has maximal rank (S + 1) (C − 1) . �
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Proof of Lemma 7: At each no-trade equilibrium, strong regularity
holds because of the absence of income effects. By continuity they also hold in
some open neighborhood of any economy with a no-trade equilibrium.

To establish the second part of the Lemma (i.e., that MFCQ is satisfied),
let’s first consider any no-trade, Pareto inefficient equilibrium.
Fact 1: Given u, consider any ω ∈ ΩNoT (u) and any open set Bε (ω, u) .

Then, there is some (ω,u′) ∈ B ε
3
(ω, u) with ω ∈ ΩNoT (u′) and such that, at

the no-trade equilibrium, the normalized vectors of Lagrange multipliers satisfy

λ
n1

1 > ... > λ
n1

H .
Proof. This property can be established exploiting a standard, locally

linear, perturbation of the utility functions and relabelling agents. �

Fact 2: Consider any (ω, u′) with ω ∈ ΩNoT (u′) and such that, at the

no-trade equilibrium, λ
n1

1 > ... > λ
n1

H . Consider any open set B ε
3
(ω, u′) . Then,

there is some (ω′, u′) ∈ B ε
3
(ω, u′) ∩ E−1u′ (ω, p (ω,u

′) , q (ω, u′)) with a regular

equilibrium such that, for some
−→
dp∗,

−→
dp∗Λ(λ, z) >> 0, where (λ, z) denotes

Lagrange multipliers and excess demand evaluated at the equilibrium.
Proof. By assumption, at the equilibrium, (p (ω, u′) , q (ω, u′)) = (p (ω, u) , q (ω, u))

and the allocation is also the same. Consider the matrix Λ(λ, z′) ≡






−1
...
0


 δ




1
H−1
...
0


 δ · · ·




1
H−1
...
0


 δ



1 + λ

n1

1 ε
...
0


 δ



−λ

n1

2

1

λn11
+ε

H−1
...
0


 δ · · ·



−λ

n1

H

1

λn11
+ε

H−1
...
0


 δ

[0] [0] · · · [0]




,

with non-zero excess demand just for commodity 2 at s = 0, 1.
Evidently, for each δ > 0 and 0 < ε < 1

λ
n1
2

− 1

λ
n1
1

,

[1, ..., 1]Λ(λ, z′) =


λn11 εδ,

1− λ
n1
2

λ
n1
1

− λ
n1

2 ε

H − 1
δ, ...,

1− λ
n1
H

λ
n1
1

− λ
n1

H ε

H − 1
δ


 >> 0.

To conclude, we need to show that there is some (ω′, u′) with ω′ ∈ E−1u′ (ω, p (ω, u
′) , q (ω, u′))

such that the given vector z′ (described above in the definition of Λ(λ, z′)) is
the associated equilibrium vector of excess demand.

Given (ω,u′) , define (ω′, u′) as follows:
1. for h = 1, ωsc′

1 = xsc1 for sc �= {01, 02, 11, 12} . ω01′1 = x011 − p02 (ω, u) δ,
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ω02′1 = x021 + δ, ω
11′
1 = x111 + p

02 (ω,u) δ
[
1

λ
n1
1

+ ε
]
, ω12′1 = x121 − δ

[
1

λ
n1
1

+ ε
]
,

2. for h > 1, ωsc′h = xsch for sc �= {01, 02, 11, 12} . ω01′h = x01h +p
02 (ω, u) δ

H−1 ,

ω02′h = x02h − δ
H−1 , ω

11′
h = x11h − p02 (ω, u) δ

[ 1

λn11
+ε

H−1

]
, ω12′h = x12h + δ

[ 1

λn11
+ε

H−1

]
, .

We now show that (x, p (ω,u) , q (ω, u)) is an equilibrium of (ω′, u′) with excess
demand zsch = 0 for sc �= {01, 02, 11, 12} , for each h, and

[
z021 , z

12
1

]
= δ

[
1,−

1 + λ
n1

1 ε

λ
n1

1

]
,

[
z02h , z

12
h

]
=

δ

H − 1

[
−1,

1 + λ
n1

1 ε

λ
n1

1

]
.

Evidently, markets clear. Moreover, given (ω′h, u
′
h) , xh is the optimal choice

at prices (p (ω, u) , q (ω, u)). To see that, it suffices to show that xh is budget
feasible for each h, because, by construction, ∇xs

h
u′h (xh) = λ

s

hp
s (ω,u) , for each

s, and λ
s

hY (q (ω, u)) = 0. Indeed, by construction,

p0 (.)ω01 = ω011 − δp
02 (.) + p02 (.)

[
ω021 + δ

]
+
∑

c>2

p0c (.)ω0c1 = p
0 (.)x01,

and

p1 (.)ω11 = ω111 + δ
1 + λ

n1

1 ε

λ
n1

1

p12 (.) + p12 (.)

[
ω121 − δ

1 + λ
n1

1 ε

λ
n1

1

]

+
∑

c>2

p1c (.)ω1c1 = p1 (.)x11.

Similarly, for h > 1. Hence, for each h, xh is the optimal consumption bun-
dle at prices (p (ω, u) , q (ω, u)) , given (ω′h, u

′
h) , so that (p (ω, u) , q (ω, u)) with

allocation x is an equilibrium of (ω′, u′) .

By construction,
−→
dp∗ = [1, ..., 1] satisfies

−→
dp∗Λ(λ, z′) >> 0.Hence,

−→
dp∗DpṼ

T
h >

0, for each h, and, a fortiori,
−→
dp∗DpṼ

T
h > 0, for each h > 1, i.e.,

−→
dp∗Λ\1(λ, z′) >>

0. �

Since, (ω′, u′) ∈ B ε
3
(ω, u′) and (ω, u′) ∈ B ε

3
(ω, u) , (ω′, u′) ∈ Bε (ω, u) , as

required.
To conclude the proof of the Lemma, by the same argument used to establish

Prop. 2 iii., we can prove that D
b̃
Ẑ has full row rank, so that

[
DpẐ,Db̃

Ẑ
]
has

full row rank. This implies that, for each
−→
dp, and specifically for

−→
dp∗, there is

−→
db such that

[
DpẐ

]−→
dp∗ +

[
D

b̃
Ẑ
]−→
db = 0. Hence, MFCQ holds. �

Proof of Proposition 11: Restrict the analysis to (ω, u) ∈ ER. The
proof is essentially identical to the one of Prop. 8. Observe that, for each s,

∑

c>1

psczsch (p, q) = r
sbh ((p, q))−z

s1
h (p, q) , and

∑

c>1

p0cz0ch (p, q) = −qbh (p, q)−z
s1
h (p, q)
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and that, by the no-arbitrage conditions, for each h:

−
∑

s

λsh (p, q)
∑

c>1

psczsch (p, q) = − [..., λsh (p, q) , ...]Y (q)bh (p, q)

+
∑

s

λsh (p, q) z
s1
h (p, q) =

∑

s

λsh (p, q) z
s1
h (p, q) .

Set
−→
dp ≡

[
p02, ..., pSC

]
∈ R

(S+1)(C−1)
++ . Then,

−→
dp
[
∇p̃Ṽ

]T
=

[
...,
∑

s

λsh (p, q) z
s1
h (p, q) , ...

]
,

and, by assumption, this is a strictly positive vector. Hence, there is no φ ∈ RH
+

such that
∑

h φh∇pṼh = 0. Therefore, the equilibrium allocation does not satisfy
the FOCs, and it must be constrained inefficient. �

Proof of Lemma 14: Uniqueness and strong regularity of the equilib-
ria of the economies in some open neighborhood of

(
ω
◦

, u
◦)
are obvious.

The proof of the Lemma is by contradiction. Let’s use an upper bar to denote
the equilibrium variables, (p (ω, u) , q (ω, u) , x (ω, u)) , and a tilda to refer to the

b̃−conditional equilibrium variables
[
p̃(̃b (ω, u) , ω, u), x̃(p̃(.), q (ω, u) , b̃ (ω, u) , ω, u), b̃ (ω, u)

]

of the same economy (ω, u) .
Pick χ > 0 and suppose that there is no open Bε

(
ω
◦

, u
◦)
with the stated

property. Then, we can construct a sequence {(ωv, uv)}∞v=1 , (ω
v, uv)→

(
ω
◦

, u
◦)

such that, for each v, there is a feasible portfolio profile b̃ (ωv, uv)with ||̃b (ωv, uv)−

b (ωv, uv) || > χ and with associated b̃ (ωv, uv)−conditional equilibrium prices,

(p̃(̃b(ωv, uv), ωv, uv), q (ωv, uv)), and allocation, x̃(p̃(.), q (.) , b̃ (.) , ωv, uv), which
is Pareto superior to the equilibrium allocation x (ωv, uv) . By strong regularity
and boundedness below of the consumption sets, all these sequences can be taken
to be convergent: b̃ (ωv, uv) → b̃∗, p̃(̃b (ωv, uv) , ωv, uv) → p̃∗, q (ωv, uv) → q∗

and x̃(p̃(.), q (.) , b̃ (.) , ωv, uv)→ x̃∗. It is easy to see that, at
(
ω
◦

, u
◦)
, (p̃∗, q) is

the equilibrium conditional on b̃∗, while x̃∗ is the allocation of
(
ω
◦

, u
◦)
at prices

(p̃∗, q) and given b̃∗, i.e., x̃∗ = x̃(p̃∗, q, b̃∗, ω
◦

, u
◦

).
Since preferences are identical and homothetic, (p̃∗, q∗) = (p

(
ω
◦

, u
◦)
, q
(
ω
◦

, u
◦)
).

By continuity, for each h,

Ṽh(p(ω
◦

, u
◦

), q(ω
◦

, u
◦

); b̃∗h, ω
◦

, u
◦

)− Vh(p(ω
◦

, u
◦

), q(ω
◦

, u
◦

);ω
◦

, u
◦

) ≥ 0.

Since, for each v, ||̃b (ωv, uv) − b (ωv, uv) || > χ, b (ωv, uv) �= b̃∗. Given that R
has full rank, this implies x̃∗ �= x

(
p
(
ω
◦

, u
◦)
, q
(
ω
◦

, u
◦)
, ω

◦

, u
◦)
≡ x

◦

.

Let xπh ≡ πx
◦

h+(1−π)x̃
∗
h. By strict-concavity, for each π ∈ (0, 1) , x

π
h ≻h x

◦

h,
for each h with x

◦

h �= x̃∗h. Given that (p̃
∗, q∗) = (p

(
ω
◦

, u
◦)
, q
(
ω
◦

, u
◦)
), xπh
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satisfies the budget constraint for each π. This contradicts the fact that x
◦

h is
the optimal choice of agent h at prices (p

(
ω
◦

, u
◦)
, q
(
ω
◦

, u
◦)
). �

Proof of Lemma 15: Local uniqueness and strong regularity in some
open neighborhood of (ω

◦

, u
◦

) are obvious.

Let’s first consider the case
−→
db ∈ ∂S, i.e., where

−→
db lies on the unit sphere

and it is feasible. Remember that, for each feasible b and each
−→
db ∈ S, b+θ

−→
db is

a feasible portfolio, for each θ ∈ [0, 1] . This implies that, given an equilibrium

portfolio b, the b̃−conditional equilibrium price map p̃(b + θ
−→
db) is well-defined

for each (θ,
−→
db) ∈ [0, 1] × S. This is true for (ω

◦

, u
◦

) and for all the economies
sufficiently close to it, by strong regularity.

Consider
(
ω
◦

, u
◦)
. Under the maintained assumptions, equilibrium prices

are b̃−invariant. Moreover, D2bh Ṽh(.) is negative-definite in b̃h ≡ bh +
−→
dbh, for

each h. Therefore, for each
−→
db ∈ ∂S, Tµ◦ (θ;

−→
db, ω

◦

, u
◦

) is strictly-concave in θ,
and

∂2Tµ◦

∂θ2
=
∑

h

µ
◦

h

−→
dbhD

2
b̃h
Ṽh(.)

−→
dbTh < 0,

for each θ and
−→
db �= 0. Hence, for each

−→
db ∈ ∂S.

Since Tµ◦ (.) is C
2, for each given (θ′,

−→
db′) ∈ [0, 1] × ∂S, there is a relatively

open set I
ν(θ′,

−→
db′)
(µ)×B

ν(θ′,
−→
db′)
(ω, u) such that, for each (µ, ω, u) ∈ I

ν(θ′,
−→
db′)
(µ)×

B
ν(θ,

−→
db)
(ω

◦

, u
◦

),
∂2T

µ
◦

∂θ2
< 0 at each (θ,

−→
db) ∈ Nγ(θ

′,
−→
db′), for some γ > 0.

The collection Nγ(θ,
−→
db) defines an open cover of the compact set [0, 1]×∂S.

Hence, there is a finite subcover Nγk(θ
k,
−→
dbk), k = 1, ...,K. The intersection

∩k=K
k=1 Iν(θk,−→dbk)(µ

◦

)×B
ν(θk,

−→
dbk)

(ω
◦

, u
◦

) ≡ Iδ(µ
◦

)×Bδ(ω
◦

, u
◦

) is open. It is also

non-empty, because (µ
◦

, ω
◦

, u
◦

) ∈ I
ν(θk,

−→
dbk)

(µ
◦

)×B
ν(θk,

−→
dbk)

(ω
◦

, u
◦

), for each k.

Hence, for each (µ, ω, u) ∈ Iδ(µ
◦

)×Bδ(ω
◦

, u
◦

), ∂2T
∂θ2

< 0, for each
−→
db ∈ ∂S and

θ ∈ [0, 1] .

Now, we extend the argument to each
−→
db ∈ S. Any

−→
db, with ||

−→
db|| < 1, and

−→
db �= 0, can be rewritten as

−→
db = η

−→
db∗ for some

−→
db∗ on the unit sphere and some

η∗ ∈ [0, 1].

Given any
−→
db ∈ S and the associated

−→
db∗ ∈ ∂S such that η∗

−→
db∗ =

−→
db, we can

write Tµ◦ (θ;
−→
db, ω

◦

, u
◦

) = Tµ◦ (θη
∗;
−→
db∗, ω

◦

, u
◦

). Clearly,

∂2Tµ◦ (θ;
−→
db, ω

◦

, u
◦

)

∂θ2
|
θ=θ̂

= η∗2
∂2Tµ◦ (θ; η

∗−→, db∗, ω
◦

, u
◦

)

∂θ2
|
θ=θ̂η∗

.

By construction,
∂2T

µ
◦ (θ;η∗,

−→
db∗,ω

◦

,u
◦

)

∂θ2
|
θ=θ̂η∗

< 0, for each (θ̂, η∗,
−→
db∗) when (µ, ω, u) ∈

Iδ(µ
◦

) × Bδ(ω
◦

, u
◦

). It follows that, for each (µ, ω, u) ∈ Iδ(µ
◦

) × Bδ(ω
◦

, u
◦

),
∂2T

µ
◦ (θ;

−→
db,ω

◦

,u
◦

)

∂θ2
|
θ=θ̂

≤ 0 for each (µ, ω, u) ∈ Iδ(µ
◦

) × Bδ(ω
◦

, u
◦

) and each
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(θ,
−→
db) ∈ S × [0, 1] . Moreover,

∂2T
µ
◦ (θ;

−→
db,ω

◦

,u
◦

)

∂θ2
|
θ=θ̂

= 0 if and only if
−→
db =

0. �

Proof of Lemma 16: For each s > 0 and c > 1, given λ
◦

, and µ
◦

,
consider the system of linear equations




−z021 · · ·
∑h=H−1

h=1 z02h
...

...
...

−λSn
◦

1 zSC1 λSn
◦

H

∑h=H−1
h=1 zSCh






µ
◦

1
...
µ
◦

H


 ≡ Λ(λ

◦

, z)



µ
◦

1
...
µ
◦

H


 = 0.

evaluated at
(
p
◦

, q
◦)
, and u

◦

. Notice that here (λ
◦

, µ
◦

) are given, while we are

selecting the vector z. At each solution ẑ of this system of eqs., Λ(λ
◦

, ẑ)µ
◦T = 0,

and, therefore, −
∑

h

µ
◦

h

[
λ
◦

hẑh
]−→
dp > 0 has no solution, while

∑

h

ẑh = 0. It is

also obvious that this system of eqs. has a solution which can be taken to be
arbitrarily close to 0. Pick any solution ẑ

i. sufficiently small,
ii. such that the square submatrix given by the first (S+1)(C− 1) columns

has full rank. Given that H > (S + 1)(C − 1), this property can hold.
We need to guarantee that, for each h and each s, the consumption vectors

ẑh obtained setting, for each s and h,

ẑs1h = −
∑

c>1

p
◦sc
h ẑsch

are the optimal solutions to the individual optimization problems, with asso-
ciated Lagrange multipliers λ̂h ≡ λ

◦

h. By construction, for each h and each
s, ∑

c

p
◦scẑsch = 0, and x̂h ≡ ẑh − ω

◦

h.

Since neither asset prices, nor Lagrange multipliers, have been affected, λ̂h(.)Y (q
◦

) =
0, for all the agents. Therefore, all we need to show is that, modulo a pertur-
bation of the utility functions

{
u
◦

1, ..., u
◦

H

}
, for each sc,

∂ûh(.)

∂xsch
|x̂h = λ̂

s

h(.)p
◦sc.

Set
ûh(xh) ≡ u

◦

h(xh) + ϕh(xh)
∑

sc

δsch x
sc
h ,

where ϕh(xh) is a smooth bump function taking the value 1 on some open ball
Bη(ω

◦

h) and the value 0 for xh /∈ B2η(ω
◦

h). For each h, the coefficient δ
sc
h is

defined by

δsch ≡ λ̂
sc

h p
◦sc −

∂u
◦

h(.)

∂xsch
|x̂h .
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We can make δh arbitrarily small choosing x̂sch arbitrarily close to x
◦sc
h , i.e.,

choosing ẑsch sufficiently close to zero. Evidently,

∂ûh(.)

∂xsch
|x̂h ≡

∂u
◦

h(.)

∂xsch
|x̂h + λ̂

s

hp
◦sc −

∂u
◦

h(.)

∂xsch
|x̂h = λ̂

s

hp
◦sc,

as required.
By construction, in the economy (ω̂, û) ≡ (ω

◦

, û) so obtained, the vector

µ̂ ≡ µ
◦

, satisfies the condition Λ(λ̂, ẑ)µ̂T =
∑

h

µ̂
[
λ̂hẑh

]
= 0.

Since the matrix Λ(λ, z) has maximal rank (S + 1) (C − 1) at (λ̂, ẑ), and the
unique equilibrium is regular, there is some open ball N(ω̂, û) ⊂ Bδ(ω

◦

, u
◦

) such
that, for each (ω”, u”) ∈ N(ω̂, û), at the unique equilibrium there is a strictly
positive solution µ” to the system Λ(λ”, z”)µT = 0. �

Proof of Proposition 13: Restrict the analysis to economies in the
open set N(ω̂, û), constructed above, starting (in Lemma 15) from an economy
(ω

◦

, u
◦

) with a no-trade, constrained Pareto optimal allocation. In view of
Lemma 14, this last property allows us to consider as potential Pareto superior
portfolios b̃ only the ones contained in the unit ball.

The proof is by contradiction. Given any (ω, u) ∈ N(ω̂, û), suppose that the

associated equilibrium is constrained inefficient. Then, there exists a b̃−conditional

equilibrium, with ||
−→
db|| ≤ 1,

−→
db �= 0, such that

Ṽh(p̃(
−→
db), q(ω, u),

−→
db, ω, u) ≥ Vh(p(ω, u), q(ω,u), ω, u), for each h,

with strict inequality for some h. Hence,

Tµ(1;
−→
db, ω, u) ≡

∑

h

µhṼh(p̃(
−→
db), q(ω, u),

−→
db, ω, u)

>
∑

h

µhVh(p(ω, u), q(ω, u), ω, u) ≡ Tµ(0;
−→
db, ω, u)

for each µ >> 0. Let’s use an upper bar to denote the equilibrium values of the
variables. Pick µ = µ such that Λ(λ, z)µT = 0.

By Lemma 15, Tµ(θ;
−→
db, ω, u) is a strictly concave function of θ ∈ [0, 1] at

(b,
−→
db, µ). Apply a second order Taylor approximation:

Tµ(1;
−→
db, ω, u) = Tµ(0;

−→
db, ω, u) +

∂Tµ(.)

∂θ
|θ=0 +

1

2

∂2Tµ(.)

∂θ2
|θ=θ′ ,

for some θ′ ∈ [0, 1] . By direct computation,

∂Tµ(θ;
−→
db, ω, u)

∂θ
|θ=0 =

∑

h

µh∇b̃h
Vh(.)

−→
dbh +

∑

h

µh∇b̃h
Vh(.)Db̃

p̃
−→
db

= 0−
∑

h

µh
[
λhzh

]
D

b̃
p̃
−→
db.
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Strict concavity implies ∂2Tµ(θ;
−→
db,ω,u)

∂θ2
|θ=θ′ < 0 for each θ

′.Hence, Tµ(1;
−→
db, ω, u) >

Tµ(0;
−→
db, ω, u) only if

−
∑

h

µh
[
λhzh

]
D

b̃
p̃
−→
db > 0.

Since, by construction,
∑

h

µh
[
λhzh

]
= 0, Tµ(1;

−→
db, ω, u) ≤ Tµ(0;

−→
db, ω, u). This

contradicts our initial assumption that the b̃−conditional equilibrium is Pareto
superior to the equilibrium. Therefore, there is no Pareto superior portfolio in
S. This concludes the proof. �
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