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SMALL DOMAIN ESTIMATION OF BUSINESS STATISTICS USING MULTIVARIATE 

SKEW NORMAL MODELS 

Summary 

Small domain business statistics are becoming important for better planning business policies. We 

focus on the estimation of the averages of value added and labour cost in small domains. To take into 

account the positive skewness in the distribution of outcomes and the correlation between them, we 

propose a bivariate skew-normal small area model. Estimates are obtained from real survey data. The 

performance of the proposed estimator is evaluated based on both survey data and a synthetic firm 

population. Results show that the model proposed increases the estimates reliability and that the 

estimates obtained make it possible to perform detailed regional economic studies. 

Keywords: Firm sample surveys, Hierarchical Bayesian modeling, Regional economic studies, Skew-

Normal distribution 

1. Introduction and motivations

Small domain business statistics are becoming more and more important for better evaluating 

regional and sectoral firms’ competitiveness. Unfortunately, data on economic aggregates and 

indicators are rarely available at a local level and/or for firms’ categories. In fact, in this context 

estimates are usually obtained from sample survey data and then founded on design-based (direct) 

estimators that, due to small sample size, cannot provide reliable estimates for small domains (or, 

put it differently, they produce estimates with a large error). Obviously, the problem can be 

overcome by increasing survey sample size, but this solution is usually not pursued because it 

consumes time and budget resources. The Small Area Estimation (SAE) methods are devoted to 

producing reliable small area (or small domain) estimates based on the information available, by 

relying on model-based (indirect) estimators. More in detail, SAE methods use models to predict 
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estimates of interest for all the small areas, and reliable estimate for one small area is obtained by 

“borrowing strength” from sample survey data collected in other small areas. Predictors are 

auxiliary data available at a small area level and measured without (or with a small) error, such as 

administrative or census data. SAE models produce good estimates provided that good auxiliary 

variables are available and the model is correctly specified. For an up-to-date review on SAE 

methods, see Pfeffermann (2013) and Rao and Molina (2015).  

In spite of the rapid growth in SAE literature over the past ten years, the small area estimation of 

social and economic parameters has so far mostly concerned the small area estimation of poverty or 

employment indicators, whereas it has seldom been used to estimate parameters related to firm 

activity and performance. Only recently has the literature on small area estimation methods focused 

on business survey data (Chandra and Chambers, 2011; Chandra et al., 2012; Burgard et al., 2014; 

Schmid et al., 2016). The reasons for this increased interest can be found in the needs expressed by 

the National Statistical Institutes for improving official local business statistics, and by economists 

and policy makers for better monitoring enterprise performance and promoting entrepreneurship at 

a regional level.  

In this paper, we propose a model-based small area estimator of two important business aggregates: 

the averages of Value Added (VA) and Labour Cost (LC). We focus on VA and LC because they 

form the basis of some important economic competitiveness indicators that are useful for obtaining 

a mapping of firms’ performance and important drivers of the changes in living standards (OECD, 

2016): labour productivity (VA/number of employees), cost competitiveness (LC/number of 

employees), and gross profitability ((VA-LC)/revenue). Monitoring and promoting competitiveness 

growth and sharing related gains, through the creation of new technologies, investment in human 

capital and production innovation, is important to foster both growth and the reduction of inclusion 

gaps. Disparities in competitiveness and productivity arise among countries and within countries 

(OECD, 2016; Eurostat, 2016). Besides, industrial sectors differ from each other with respect to 

their competitiveness and productivity. In most countries, the economic growth in post-crisis period 
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has been much weaker than in the pre-crisis period, but this decline is of different intensity in 

different sectors, a disparity that is likely to have a negative impact on well-being and inequalities. 

A further element of competitive heterogeneity is due to firms’ size. In most countries, the gaps 

between micro, small and large firms remain relatively high. Larger firms generally show higher 

levels of productivity and competitiveness compared to small and micro firms, and this gap 

increased in the manufacturing sectors from 2008 to 2013 (OECD, 2016). 

In a situation of great heterogeneity within countries and firms’ categories, the evaluation of both 

regional competitiveness and regional and sectoral economic disparity has become more and more 

important, also in order to detect the presence of competitive regions/firms’ categories in less 

competitive countries and vice versa. One of the main aims of the Europe 2020 strategy, the plan 

for long-term recovery adopted by the European Union, is the reduction of regional disparities. In 

this context, accurate business statistics on sub-national regions and business categories could 

support regional and sectoral economic decisions.  

As already mentioned, due to insufficient sample size, National Statistical Institutes are able to 

produce estimates only to a certain level of detail. For example, Eurostat produces (gross) value 

added estimates by EU NUTS3 regions (following the Nomenclature of Territorial Units for 

Statistics, Eurostat, 2015) and NACE Rev. 2, 1 digit sectors (following the Statistical classification 

of economic activities in the European Community). The availability of geographically 

disaggregated estimates, computed by firm sector and size, could help policy makers to implement 

better-targeted and more effective policies. 

The above considerations motivate our interest in estimating economics aggregates by cross-

classifying regions, firm size classes and economic sectors. It is worth noting that small areas or 

domains of interest can be defined with others criteria with respect to those we select: the small area 

problem arises whenever statistical data are gathered from a sample survey unable to support 

reliable estimates at a disaggregated level, because the domain sample size is too small.  
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We focus on Italian manufacturing industrial sectors and we perform a real data application based 

on information collected by the Italian National Statistical Institute (ISTAT) in the small and 

medium enterprises sample survey. To evaluate the properties of the estimators through a 

simulation study, we resort to a synthetic firm population generated by data on real firms (Kolb et 

al., 2013). This study has been included in the BLUE-Enterprise and Trade Statistics (BLUE-ETS) 

project, financially supported by the European Commission. 

In specifying a small domain estimation model for business data, some particular issues that arise in 

business surveys (Cox et al., 1995; Rivière, 2002) must be taken into account. One of the most 

relevant is the fact that business data, due to the presence of a majority of small firms, are generally 

characterized by a positively skewed distribution. In addition, firm aggregates representing totals 

are generally highly related amongst themselves due to an underlying factor which is firm size. 

We propose a small domain model that deals with both these issues, by operating in the “area level” 

model framework (Rao and Molina, 2015, p. 123). Since area level models are estimated starting 

from design-based estimates, they easily incorporate information on sampling design and on non-

response adjustments. The area level model consists of i) a “sampling” model, specifying direct 

design-based estimates as measurements of an underlying area descriptive parameter, the variance 

of which is considered as known; the input for the model then consists of design-based estimates, 

called “direct estimates”, and their associated estimated variances, ii) a “linking” model, relating the 

area parameters to auxiliary information accurately known at the area level and to area specific 

random effects.  

Small area models often rely on the assumption of normality for direct estimators and area (random) 

effects, which are inadequate for asymmetric outcomes. Even in the presence of skewed data, in 

small area literature the assumption of normality at the sampling model level is often justified 

invoking the Central Limit Theorem. However, when dealing with small sample sizes, this 

assumption might be hardly sustainable. To take into account the asymmetry of data, we relax the 

normality assumption of the most popular so-called normal-normal model (Fay and Herriot, 1979) 
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by adopting a skew-normal distribution both in sampling and in linking models. The class of skew-

normal distributions proves to be quite useful in modelling real data-sets and enjoys remarkable 

properties in terms of mathematical tractability (Azzalini, 1985; Azzalini and Dalla Valle, 1996; 

Azzalini and Capitanio, 1999, 2003). In particular, the skew-normal specification offers some 

advantages with respect to other non-symmetric distributions, because it includes the normal 

distribution as a special case and allows for modelling zero and negative values. In the context of 

the area level model-based estimation and of the Bayesian framework for inference, Ferraz and 

Moura (2011) tackle the problem of skewness by assuming a skew-normal distribution at the 

sampling model level and in a univariate context. In addition, Fabrizi and Trivisano (2010), in their 

study on the use of a robust linear mixed model for small area estimation, propose the assumption 

of skewed Exponential Power distribution at the linking model level. In the frequentist framework, 

Slud and Maiti (2006) propose a small area model based on log-normality assumption at the 

sampling model level. The skew normal distribution is considered by Diallo and Rao (2014), who 

derive empirical best estimators for unit level models where a skew normal distribution is assumed 

for both area-specific effects and random errors. Furthermore, Diallo (2014) proposes a replication 

based method for estimating MSE under SN small area models.  

Furthermore, in order to take advantage of the relationship usually observed within business data, 

we propose a multivariate extension of such a skew-normal small area model, which considers the 

high correlation among direct estimators and/or the correlation among area-specific random effects. 

The multivariate specification of the small area model offers some advantages over the univariate 

one. Univariate small area models improve on the traditional estimates by “borrowing strength” 

from related small areas or relevant covariates which are available for the population. A further 

improvement in estimate reliability can be obtained in a multivariate approach by ‘borrowing 

strength’ from related dependent variables. This approach could provide better estimates, by taking 

into account the correlations between the response variables after conditioning on the auxiliary 

variables. A multivariate extension of the Fay–Herriot model is considered in Datta et al. (1991, 
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1996) where information on three- and five-person families is included in order to estimate the 

median income for four-person families for the 50 U.S. states and the District of Columbia. Fabrizi 

et al. (2008) propose a multivariate small area estimation approach to obtain reliable estimates for 

certain poverty parameters. All these studies focus on normality assumption. Only recently, some 

attention has been devoted to multivariate small area models relying on non-normal distributions. 

The multivariate beta regression with application to small area estimation is proposed by Souza and 

Moura (2012). Ferrante and Trivisano (2010) propose a multivariate small area estimation approach 

for count data based on the multivariate Poisson-log normal distribution. A multivariate logistic-

normal model is adopted by Fabrizi et al. (2011) with the aim of estimating poverty rates based on 

different thresholds. 

This paper is organized as follows. In Section 2 we provide a brief description of the multivariate 

skew normal distribution, while presenting the multivariate skew normal small area model. Section 

3 contains a description of the strategy of business outcome estimation based on the proposed small 

area model. In Section 4 we evaluate the performance of the estimators proposed with reference to 

real survey data and compare it with some competitor estimators on the basis of certain 

performance criteria. In Section 5 the properties of the estimators proposed is evaluated by carrying 

out a simulation study. Results show that the consideration of the asymmetry of data and the 

correlation between outcomes greatly increases the reliability of the estimates, and the estimator 

proposed offers good randomization properties. In Section 6 we present an example of how the 

estimates we obtained could be important in interpreting the regional and industry disparities in 

labour productivity. Section 7 offers some conclusions. 

 

2. Model and prediction strategy 

A multivariate version of the skew-normal distribution is defined in Azzalini and Dalla Valle 

(1996). Vector Y has a K-multivariate skew normal distribution (k=1,…,K), ( )λΩξ ,,KSN , with 
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vector of location parameters ξ , dispersion matrix Ω  and vector of shape parameters λ , if its 

density function can be expressed by: 

 ( ) ( ) ( )( )ξyωλΩξyλΩξy −Φ−= −1;2,,; T
Kg φ   (1) 

where ( )Ωx;Kφ  is the density of a multivariate normal distribution with zero mean, ( )Ω0,KN , 

( )⋅Φ  is the cumulative function of the univariate standard normal distribution and ( ) 21Ωω Diag= . 

For 0=kλ  the skew-normal distribution is the normal and for ∞→kλ  the skew-normal converges 

to the half-normal distribution. 

The marginal distribution of kY  is the scalar skew-normal ( )jjjSN λωξ
~

,, 2
, where 

2
1

~
jjj δδλ −=

, and vector δ  may be obtained from the parameters of the density function as follows: 

λΩ
λΩλ

δ
′+

=
1

1
 and 

11 −−= ΩωωΩ  (Frühwirth-Schnatter and Pyne, 2009). The expected value 

of the marginal distribution is: 

 ( )
π

2
ωδξY +=E . (2)  

2.1.The Multivariate Skew Normal small area model 

Based on the skew normality assumption, we propose the following small area model. Let the ˆ
ik

θ  be 

the direct estimator of the outcome parameter ik
θ  in the i -th domain (i=1,…,m), referred to the k-th 

outcome (k=1,…,K). In the sampling model the vector ˆ
iθ  of direct estimators is supposed to follow 

a multivariate skew-normal distribution: 

 ii
*
ii ,n,,ˆ Ωλθθ   ∼  ( )ii

*
iK ,,SN λΩθ  (3)  

 ikik nλλ =   (4)  

In this model, each shape parameter is set equal to a common parameter divided by the square root 

of the sample size, so that when the sample size increases, the shape parameter tends to zero and the 
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skew normal tends to the normal distribution. Gupta and Kollo (2003) give a formal justification for 

this assumption. As is customary, we assume that the elements of matrix iΩ  are known, and

substitute them with their respective estimates. 

We propose the specification of a multivariate skew-normal distribution for the linking model also. 

The assumption of normality for the small domain parameters is indeed difficult to justify, and by 

allowing a non-symmetric distribution for the random effects also, we may increase the flexibility 

of the model at the expense of an additional complexity in the model. 

Hence in the linking model: 

νν Ωλµθ ,,i
*
i   ∼  ( )νν λΩµ ,,iKSN   (5)

where the location parameters are a linear function of some auxiliary area level variables: 

.µ k
T
iki βx=  (6) 

Our parameters of interest are the expectations of the marginal distributions of ˆ
iθ  under the skew 

normal model described which, according to eq. (2), is given by: 

π

2
ii

*
ii δωθθ +=  (7) 

where ( )2

1

ii Diag Ωω =  and ii

iii

i λΩ

λΩλ

δ
'1

1

+
=  and 

11 −−=
ii ii ωΩωΩ .

Note that, as done by Ferraz and Moura (2011), to obtain a continuous transition from non-

normality to normality, in equation (5) we model the location parameter 
*
iθ  of the skew normal 

distribution of the sampling model, rather than modelling the mean of the skew normal distribution 

iθ . So that when the sample size increases, the shape parameter, ikik nλλ = , tends to zero, the 

mean iθ  tends to the location parameter 
*
iθ  (see equation (7)), and the sample distribution of ˆ

iθ

converges to the normal distribution, as must be to satisfy the Central Limit Theorem. 
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Since we assume multivariate skew normality both at the sampling and at the linking model, we 

named this model the Multivariate Skew Normal-Skew Normal model. 

2.2 Prediction strategy 

In this study, as far as estimation is concerned, we have adopted a Hierarchical Bayesian approach 

implemented by means of a Monte Carlo Markov Chain (MCMC) computational method. This 

approach to inference has a number of potential benefits for small area estimation (for an up-to-date 

review, see Rao and Molina, 2015, section 10): it makes it possible to easily manage distributional 

assumptions other than the normal one, to obtain straightforward estimates for areas with no sample 

information, to capture the uncertainty about all parameters through posterior distribution, and to 

deal with multivariate models with correlations among design-based estimators and among random 

effects.  

Under the Hierarchical Bayesian framework, we assume a quadratic loss and define 

( )ˆ |HB

i i
E data=θ θ  as the point predictor for 

i
θ  and the posterior variance ( )|

i
Var dataθ  as a 

measure of the precision of the estimator. The posterior variance, that is, the variance of the 

posterior density, describes the uncertainty of the parameter, which is a random variable in the 

Bayesian paradigm. For complex problems, the evaluation of the posterior variance requires the 

evaluation of high dimensional integrals and MCMC methods are used for this purpose. These 

methods generate samples from the posterior distribution and then use the simulated samples to 

approximate the posterior quantities of interest. To implement MCMC calculations, we use the 

OpenBugs open source software (Thomas et al., 2006; Spiegelhalter et al., 2002), widely adopted in 

the analysis of a large class of Bayesian models, particularly in the estimation of applied small area 

hierarchical models (Rao and Molina, 2015, p.339). OpenBugs has the further advantage that it can 

be easily run from R, the software we use for the simulation study.  

OpenBugs Program does not take the skew normal distribution into consideration. There are two 

possible solutions to this problem: a) hierarchically generating samples of the skew normal density 
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by using the stochastic representation (Henze, 1986; Ferraz and Moura, 2011), b) explicitly writing 

the skew normal density formula into the BUGS code, which can be done by using what is known 

as “the trick for specifying new distributions” (Spiegelhalter et al., 2002). We explored both these 

solutions and adopt the latter, since the former does not work as well from an MCMC standpoint, 

by performing with extremely slow convergence and bad mixing of chains associated with hyper-

parameters. 

 

3. The estimation of business outcomes based on the multivariate skew normal-skew 

normal small area model 

3.1. Data 

We rely on the firms’ official data collected in the small and medium enterprises (SME) sample 

survey (1-99 employees), conducted by the Italian National Statistical Institute (ISTAT). Data are 

provided to us within the framework of the BLUE-ETS project. The survey sampling design is 

stratified and strata are defined by cross-classifying NACE 4 Rev. 2, 2 digits sectors, Italian 

administrative regions (NUTS2), and firm size. A detailed description of the SME survey can be 

found in Faramondi et al. (2010). We consider the data collected in 2008, which refer to 25,925 

firms in manufacturing sectors.  

With reference to the outcomes we focus on, i.e. VA and LC, ISTAT provides reliable estimates for 

domains defined alternatively by: i) cross-classification of administrative region and economic 

activity (NACE Rev. 2, 2 digits), ii) cross-classification of size (in classes) and economic activity 

(NACE Rev. 2, 3 digits), iii) economic activity (NACE Rev. 2, 4 digits). Hence the SME survey is 

designed to provide reliable estimates for domains that are larger than those we target. The domains 

we are interested in are obtained by cross-classifying the following variables: macro-regions where 

firms are located (north-west, north-east, centre, south, islands), firm economic activity (NACE 

Rev. 2, 2 digits), firm size (four classes: fewer than 10 employees, from 10 to 19 employees, from 

20 to 49 employees, from 50 to 99 employees). We obtain 426 domains, and the number of firms in 
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each domain ranges from a minimum of 2 to a maximum of 335. The 25
th

, 50
th

, and 75
th

 percentiles 

of the domain size are respectively equal to 20, 43, and 80. Hence the number of units sampled 

from many of our domains is too low to obtain reliable direct estimates, so a small area estimation 

method is advisable. We observe that both outcomes have a distribution generally characterized by 

an extraordinary heterogeneity and positive skewness. A preliminary analysis reveals that they are 

considerably positively skewed and correlated: the Fisher skewness coefficient is approximately 

2.60 for VA and 2.15 for LC, while the coefficient of correlation between VA and LC is 0.82. 

3.2. Direct estimators and the estimation of their variance 

Direct estimates and the estimates of their standard errors form the input information for area level 

models. As the domains of interest are a collection of strata, we easily obtain direct estimates by 

using a Horvitz-Thompson estimator. ISTAT final weights are obtained by multiplying base 

sampling weights (the inverse of inclusion probabilities) by two factors adjusting for i) non-

response and ii) calibration with respect to known totals. As far as the estimation of standard errors 

of direct estimates is concerned, we are not able to replicate the ISTAT procedure due to the 

unavailability of some information, as the weighting cells used for calibration and the different 

components of final weights mentioned above, necessary to estimate the standard error of a 

calibration estimator according to the methodology described in the ISTAT manual (ISTAT, 2007).  

In order to obtain design-based variances, we test two different approximation strategies: the 

linearization method and the bootstrap technique. To implement the bootstrap we use the technique 

for finite populations proposed by Särndal et al. (1992, page 442). We decide to adopt the bootstrap 

strategy which, in addition to estimating the standard errors of direct estimates, enables us to also 

estimate the covariance between direct estimators in a simple way, which is necessary when a 

multivariate sampling model is specified. The robustness of the strategy adopted is confirmed by 

the great coherence between the estimates obtained through the two techniques (the correlation 

between estimates is 0.96).  
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In the end, estimators of sampling variances are smoothed by using the “generalised variance 

functions” method. We use a log-log function to link the estimated variances to the correspondent 

direct estimates (Wolter, 1985, Section 5). Smoothed estimates of the sampling variances are 

considered as the true sampling variance in the model. To obtain smoothed estimates of 

covariances, necessary for bivariate models, which were coherent with correspondent variances, we 

multiply the square root of the smoothed estimates of the two variances and the bootstrap estimate 

of the correspondent correlation coefficient.  

Referring to the smoothed bootstrap estimates, it appears that the first, second, and third quartiles of 

the coefficient of variation estimated for direct estimates obtained for the VA are 11%, 12% and 

14% respectively, while its maximum value is 24%. For the LC, the first, second, third quartile, and 

maximum of the coefficient of variation estimated for direct estimates are respectively 9%, 10%, 

12%, and 22%. These results further confirm the need to improve direct estimates by adopting a 

small area model approach.  

3.3 Auxiliary variables and priors 

As auxiliary variable in the linking model, we use for both outcomes the number of employees in 

small areas, data available from the ISTAT statistical archives of active enterprises (ASIA); these 

data are updated annually through a process of integration with various administrative archives, and 

provide a source of official data on the structure of firm population. The coefficient of correlations 

between the auxiliary variable and the direct estimates of value added and labor cost are 0.87 and 

0.93 respectively. 

As regards the prior specification needed to complete the Bayesian specification of the model, we 

assume non-informative priors. This reflects the lack of prior information on model parameters, 

which is the usual scenario in real Hierarchical Bayesian application on small areas and in area level 

models (Rao and Molina, 2015, section 10.2). We accordingly specify a bivariate normal 

distribution for the regression parameters of eq. (6) with dispersion matrix 
1−

B , and we specify a 
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Wishart distribution (with scale matrix given by the identity matrix 2I  and 2 degrees of freedom) 

for both 
1−

B  and the dispersion matrixes of the linking models 
1−

νΩ .  

 
1−

νΩ  ~ ( )22 ,I Wishart , β ~ ( )B,02N , 
1−

B  ~ ( )22 ,I Wishart ,  (7)  

We adopt a different approach for the shape parameter. As it has been discussed in the literature 

(Ferraz and Moura, 2011; Liseo and Loperfido, 2006), the estimation of the shape parameter poses 

some difficulties, since small differences in the shape parameters correspond to SN models not very 

different from each other. That problem can be tacked by using an informative prior for it wherever 

available. In the specific case we study, outcome variables have a positively skewed distribution, 

hence a positive shape parameter. We thus specify a normal distribution truncated at zero for it, 

with precision parameter D (which is the inverse of the variance parameter), both in the linking and 

in the sampling models:  

 kλ  ~ ( )[0, ] 0,TN D∞ ,  ( ,k VA LC= ) (8)  

Furthermore, we are interested in the possible effects caused by the choice of such priors on kλ . At 

this aim we evaluate the sensitivity of the posterior means to the choice of the dispersion parameter 

D. We set D at three different values, i.e., 0.01, 0.001 and 0.0001, and then compare the posterior 

means and the posterior standard deviations obtained using those different priors. Figure 1 

compares the posterior means through three scatter plots for the VA. It is clear from Figure 1 that 

the small area domain estimates are very stable, for the points representing the small domains 

appear aligned. Similar graphics are obtained for CL. Besides, the coefficient of variations 

calculated as the ratio between the posterior standard deviations and the posterior means do not 

show significant differences between them, as they are for the three decreasing values of D equal to 

0.0863, 0.0863, 0.0864 and 0.0762, 0.0763, 0.0762 respectively for VA and CL. Hence, we opt to 

use the most informative prior for kλ , which correspond to the smallest value considered for D 

(0.01). 
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INSERT Figure 1 Here 

Regarding the MCMC simulation, we run three parallel chains of a 250,000 length, discard the first 

100,000, and thin the chain by taking every 50
th

 sample value. The CPU time necessary to process

426 domains is about two hours. 

4. Performance evaluation of the proposed small area model

We compare the proposed bivariate skew normal-skew normal model with models where: i) the 

correlation between sampling estimators and between random effects is assumed to be zero, ii) the 

shape parameter is assumed to be equal to zero at the linking level, at the sampling level and at both 

linking and sampling levels. The joint use of these two restrictions defines the following models, 

where we denote the distribution of the linking model before and after that of the sampling model: 

the univariate normal-normal model (univN-univN), the univariate normal-skew normal model 

(univN-univSN), the univariate skew normal-normal model (univSN-univN), the univariate skew 

normal-skew normal model (univSN-univSN), and the corresponding bivariate ones (bivN-bivN, 

bivN-bivSN, bivSN-bivN, bivSN-bivSN). The comparison among univariate models makes it 

possible for us to evaluate the improvement provided by the specification of the skew normal 

distribution. The comparison between univariate and bivariate models allows us to appreciate 

whether the “borrowing strength” from the correlation between outcomes could further improve the 

performance of estimators.  

In the univariate models, multivariate priors are substituted with univariate ones. In particular, the 

Gamma prior is used for precision instead of the Wishart distribution, which is used for the inverse 

of covariance matrix.  

We use the Deviance Information Criterion (DIC) to compare model specifications in terms of the 

fit of data (Table 1) and the logarithm of the pseudo-marginal likelihood (LPML, Ibrahim et al., 

2001). The DIC measure is calculated with the posterior mean of deviance penalized by the 

effective number of parameters under the Bayesian framework (Spiegelhalter et al., 2002); it then 
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balances the fit of a model to the data with its complexity. The model with the smallest DIC should 

be the one best able to predict a replicate dataset with the same structure as the one currently 

observed. The LPML corresponds to a Bayesian leave-one-out cross-validation measure, and it 

evaluates the accuracy of prediction based on a summary statistic of the conditional predictive 

ordinate criterion (Gelfand et al., 1992). Models with larger LPML indicate a better fit of competing 

models. Table 1 reports the DIC and the LPLM results for the whole set of small area models 

estimated. 

INSERT Table 1 Here 

As expected in both the univariate and bivariate cases, the skew normal distributional assumption 

reduces the DIC value and increases the LPML value: the SAE models where the skew normal 

distribution is assumed at least at the sampling level (univSN-univSN, univN-univSN, bivSN-

bivSN, bivN-bivSN) show the best fit. The skew normal distribution does not lead to a particular 

improvement in the fit if used at the linking level only (univSN-univN, bivSN-bivN). The normal-

normal models, both in the univariate (Fay-Herriot model) and in the bivariate cases, have the worst 

performance. Furthermore, we observe that all bivariate models fit the data better than their 

correspondent univariate counterparts: consideration of the correlation, both between direct 

estimates and between random effects, greatly improves the fit. At the end, the most suitable models 

for our data set are the bivSN-bivSN and bivN-bivSN for both DIC and LPML, even though the 

two tools yield slightly different rankings of the models. 

We furthermore evaluate the performance of model-based estimates through the percentage 

Coefficient of Variation Reduction, defined for each domain as: 

 ( )100 1HB HB dir

i i i
CVR CV CV= − ,               m,...i 1=   (9)  

where 
HB

i
CV  is the coefficient of variation referred to all the Hierarchical Bayes (HB) estimators 

considered and obtained from the posterior variance. The coefficient of variation of the direct 

estimator, 
dir

i
CV , is obtained from the smoothed bootstrap variance calculated as described in 



16 

 

Section 3.2. Hence, the CVR measures the gain in efficiency provided by each model-based 

estimator compared to the direct design-based one (Table 2). Before presenting the results obtained 

for the CVR, it might be useful to give some warnings on the use of this indicator. The comparison 

between CVs of model-based and design-based estimators might be spurious and inconclusive for 

selecting among different models, mainly because the model-based CV could be design-biased even 

where the model is correct. Nevertheless, in the literature on the Hierarchical Bayesian approach the 

CVs of model-based and design-based estimators have been frequently compared (You and Zhou, 

2011; Molina et al., 2015; Rao and Molina, 2015; Fabrizi and Trivisano, 2016; Fabrizi et al., 2011). 

Therefore, we consider also of the information provided by this comparison in our application to 

sample data, jointly with the two already discussed model selection tools. In the next Section, we 

further deepen the properties of the estimators by carrying out a simulation study on a synthetic 

population. 

Focusing on the best-performing models, the bivSN-bivSN and the bivN-bivSN models, we notice 

that they also ensure a relevant gain in efficiency compared to the direct estimator. The coefficients 

of variation reduction are, for both models, more than 30% and 25%, for the VA and the LC 

respectively, on median and on average compared to the direct estimator. For 10% of the domains, 

these reductions reach up to 43% for both variables. The gain in efficiency is a bit higher for the VA 

than for the CL, because the direct estimates obtained for the VA are a little more unreliable than 

those obtained for the CL. 

INSERT Table 2 Here 

To sum up, these results highlight that: i) it is important to take into account the skewness of data, 

mainly with reference to the sampling errors; ii) “borrowing strength” also from the correlation 

between outcomes further improves the model fitting; iii) the use of a non-symmetric distribution 

for the random term does not seem essential, when non-symmetric distribution is already specified 

for the sampling error. We think this result is strictly linked to the strong explanatory power of our 

auxiliary variable (the number of employees), and the use of a non-symmetric distribution for the 
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random term could ameliorate the fit of the model in those applications where the predictive power 

of covariates is weak.  

Based on these last considerations, we analyse in greater depth the performance of both the bivSN-

bivSN and the bivN-univSN model-based estimators, through a graphic comparison. Figures 2a and 

2b depict the estimates obtained by the bivSN-bivSN and bivN-bivSN small area models versus 

direct estimates of the VA and LC averages. For both models, the points lie along the y x=  line 

and the correlations between the two sets of estimates are 0.96 and 0.99 for VA and LC 

respectively; this suggests that model-based estimates are approximately design-unbiased, even if 

there is a slight shrinkage of the model Bayesian predictor in the right-upper part of the two figures, 

let us say when the model-based prediction is more than 2,000. The points that show a large 

difference between the y  and x coordinates refer mainly to those domains belonging to the highest 

firm size class (50-99 employees), where the sample size is particularly small and the variability is 

particularly high and, consequently, direct estimates tend to be particularly unreliable. However, 

regarding the bias, an in-depth analysis will be carried out in the simulation study (Section 5). 

INSERT Figures 2a and 2b Here 

Improvement in the reliability of estimates obtained by the bivSN-bivSN and bivN-bivSN small 

area models in each domain can be visualized in Figures 3a and 3b, which shows the values of the 

coefficient of variation of model-based estimates versus the coefficient of variation of direct 

estimates. Again, for both models (and for both VA and LC) the coefficients of variation of model-

based estimates are smaller than those for direct estimates, and are markedly smaller for most of the 

domains. The only domain where the direct estimate is more reliable than the model-based estimate 

has a high sample rate (50%).  

INSERT Figures 3a and 3b Here 

To evaluate the precision gain of estimates obtained by adopting bivSN-bivSN or bivN-bivSN small 

area models instead of the most popular normal-normal model (univN-univN), we consider the 
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coefficient of variation reduction of the estimates. The two sets of estimates (bivSN-bivSN or bivN-

bivSN compared to univN-univN), corresponding to black and grey points respectively, are plotted 

against domain sample size (Figure 4a and 4b). The plots show, for both VA and LC, that both the 

bivSN-bivSN and the bivN-bivSN models generally lead to a greater gain in efficiency than the 

univN-univN model. For this last model, the coefficient of variation reduction is smaller than zero 

in some domains, thus indicating that the estimates based on the univN-univN model are less 

reliable than direct estimates. With regard to this result, by analyzing more thoroughly the relation 

between the domain sample size and the CVs of direct and univN-univN estimates, we find that the 

CV of the univN-univN estimates is higher than the CV of direct estimates in about 10% of the 

smallest domains (sample size less than 50 units) for both the outcome variables, and that the 

differences between those CVs are often very small (the percentage coefficient of variation 

reduction (eq. 9) is less than -1 in 60% and 70% of the cases for the value added and the labor cost 

respectively). This result is probably due to the estimation of the standard error of direct estimates, 

which can be very unstable when the sample size is small. 

From figures 4a and 4b it also emerges that the differences between the coefficients of variation 

reduction in the two sets of estimates decrease when the sample size increases.  

INSERT Figure 4a and 4b Here 

5. Simulation Study 

In our design-based simulation study, we take advantage of the availability of a fully synthetic data 

set, TRItalia, which was produced within the BLUE-ETS project (Kolb et al., 2013). TRItalia data 

were generated, starting from the already-mentioned ASIA archive, in order to reproduce, as closely 

as possible, the structure of the used sample regarding dependencies and similarities among 

variables. TRItalia data are treated as the real population in our simulation. We prefer to base our 

study on the TRItalia dataset, rather than use data generated under some distribution model, because 

that synthetic population may provide a more realistic view of small area estimation problems that 
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occur in real life situations. Furthermore, we prefer to use that synthetic population rather than draw 

repeated samples from the ISTAT sample considered in the previous sections, in order to work with 

a large population with a high variability of data. Lastly, the TRItalia dataset has been already used 

to evaluate and compare the performance of small area estimators: see, for example, Burgard et al. 

(2014) and Schmid et al. (2016). In the TRItalia dataset, the distributions of our target variables, 

although not identical to those observed in the real sample, are still asymmetric and correlated. 

Only a few firm characteristics are recorded in the ASIA archive, such as, for example, the sector of 

activity, the municipality where the firms are located, the number of employees, and the turnover in 

classes. Therefore, in the TRItalia dataset other important variables, such as VA and LC, are 

imputed from the ISTAT small and medium enterprise sample survey according to statistical 

models. For further details on the construction of the TRItalia dataset, see Kolb et al. (2013).  

The main purpose of our simulation experiment is to assess whether the estimator proposed offers 

good randomization properties in most of the domains and whether it meets essential requirements 

such as design consistency and asymptotic unbiasedness. Having found that the bivariate models 

work best in our case for the high correlation between the outcome variables, in this simulation we 

focus on the bivariate specifications described in Section 4. 

To reduce the problem of computational time, we limit analysis to five sectors, chosen from among 

the most relevant ones in Italy: “manufacture of food products”, “manufacture of textiles”, 

“manufacture of wearing apparel”, “manufacture of fabricated metal products, except machinery & 

equipment” and “manufacture of machinery & equipment”. That population consists of 279,501 

enterprises. Combining the selected sectors with the five macro-regions and four classes of 

employees introduced in Section 3.1, we obtain a total of 100 domains. We discard 5 domains 

because of the low number of units. We repeatedly select 1,000 stratified samples, where strata 

correspond to the domains. We repeat the simulation study by considering three different 

percentage sampling rates: 5%, 3.5%, and 2.5%. Only in the smallest domains is the sampling rate 

eventually increased upwards, in order to have at least two units per domain. The 3.5% sample is 
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selected from the 5% sample, and the 2.5% sample is selected from the 3.5% sample, for purposes 

of attenuating the effect of sampling variability on the results obtained for the three different 

sampling fractions considered. The use of different sampling rates enables us to evaluate the 

possible improvement in efficiency gains provided by the estimators proposed compared to the 

direct one, also where the number of units sampled from the domains is reduced. In this simulation 

settings, the direct estimates are particularly unreliable in certain domains. For the 2.5% sample, for 

example, the coefficient of variation of direct estimates ranges from 7.3% to 135.9% with an 

average value of 46.3% and from 6.5% to 92.6% with an average value of 33.1%, respectively for 

the VA and the CL. 

Average properties over all the domains are measured by the Average Absolute Relative Bias 

(AARB), the Average Mean Squared Error (AMSE), and the Average Relative Efficiency (AEFF), 

which compare the mean squared error of the small area estimators to that of the direct one:  
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In (10) 
HB
irθ̂  denotes the value of the small area estimate obtained under the small area model HB 

for the r.th simulated sample and the i-th domain (i=1,…m), and irest  represents the value of an 

estimator (alternatively 
HB
irθ̂  or the direct one, iθ̂ ) for the r.th simulated sample. 

Table 3 shows the percentage values of indicators in (10) obtained with reference to 
HB
irθ̂  and to iθ̂  

under the three sampling rates. 

INSERT Table 3 Here 
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These summary measures show that all the small area estimators perform significantly better than 

the direct estimator in terms of AEFF for both outcomes. Among them, the bivSN-bivSN and the 

bivN-bivSN estimators perform better than the other two for both outcomes and show very similar 

values for the measures in (10), with values slightly better for bivN-bivSN. The bivSN-bivSN and 

bivN-bivSN estimators show an AMSE which is always much lower than the direct estimator, and 

decreases as the sample rate increases. However the AMSE of the direct estimator decreases more 

than that of the small area model estimators as the sample rate increases and, consequently, the gain 

in efficiency provided by the small area model estimators decreases as the sample rate increases. 

This result holds for both outcomes. The gain in efficiency is more evident for the VA. In particular, 

for the VA the AEFF value ranges from 253 to 325% for the bivSN-bivSN, and from 269 to 333% 

for the bivN-bivSN; for the CL the AEFF ranges from 200 to 237% for the bivSN-bivSN, and from 

211 to 242% for the bivN-bivSN. 

The bias of the bivSN-bivSN and the bivN-bivSN estimators, measured by AARB, is found to be 

slightly higher for the VA than for the LC, and it decreases with the increasing sampling rate for 

both outcomes, in particular for the CL. AARB reaches its maximum values for the 2.5% sample 

(10% and 9%, respectively, for the VA and the LC). 

The other two models, bivSN-bivN and bivN-bivN, even though they also perform significantly 

better than the direct estimator in terms of AEFF, appear to be always worse than bivSN-bivSN and 

bivN-bivSN both in terms of overall gain in efficiency and bias. In fact, AARB is found to be a bit 

higher for these estimators, reaching in the 2.5% sample 14% and 12% for VA and LC respectively. 

These findings confirm those obtained for the real sample data: to consider a shape parameter for 

area random effects is found not to improve the estimates, whereas taking into account a shape 

parameter for the direct estimates, according to the domain sample size (because ikik nλλ = ),

enables a significant improvement in the performance of the small area estimator. 
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To better understand the distribution of the bias and of the accuracy of the best performing 

estimators, bivSN-bivSN and bivN-bivSN, in individual domains, we carry out a graphical analysis. 

We focus on the results obtained for the 2.5% sampling rate. We notice that in general the two 

estimators show very similar results. The relationship between the absolute relative bias and the 

domain sample size is set out in Figures 5a and 5b. The absolute relative bias is given by: 
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Figures 5a and 5b show that the absolute bias rapidly decreases as the domain-specific sample size 

becomes larger, for both outcomes. This confirms our claim that the suggested small domain model-

based estimators are design-consistent and as a consequence asymptotically design-unbiased. For 

domains with a small in , small domain estimators are biased by construction; indeed, they aim at 

reducing overall MSE using the principle of “borrowing strength” from a model assumption. This 

will markedly reduce variance at the expense of some bias inflation. Hence, a moderate bias when 

in  is small is expected. 

INSERT Figures 5a and 5b Here 

We further observe the MSE reduction provided by the bivSN-bivSN and bivN-bivSN estimators 

compared to the direct estimator in individual small domains by plotting, separately for each 

outcome, the ˆ( )HB

i
MSE θ  versus ˆ( )

i
MSE θ  (Figures 6a and 6b). The bivSN-bivSN and bivN-

bivSN estimators provide more reliable estimates than the direct estimator in almost all domains.  

INSERT Figures 6a and 6b Here 

To analyze the relation between the gain in efficiency provided by the suggested estimators with the 

domain sample size, the square root of the ratio between ˆ( )iMSE θ  and ˆ( )HB

iMSE θ  is plotted versus 

the domain sample size (Figures 7a and 7b). The gain in efficiency appears strictly linked to the 

domain sample size, reaching high values when the sample size is particularly small (less than 30). 

We notice also that for some domains the ratio is a little less than 1. For example for the VA and 
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bivSN-bivSN model it happens in 7 domains where the CV of direct estimates is particularly low 

(from a minimum value of 7.3% to a maximum value of 19.0%, and a mean value of 13.9%). 

Finally, we try to verify whether the use of our model based estimators could introduce some bias 

on those domain estimates that would be reliable when obtained from the direct estimator. To this 

purpose we focus on those domains for which we obtain the smallest CVs for direct estimates, less 

than 15% (12 domains), and we check the magnitude of the bias introduced by the bivSN-bivSN 

model in those domains. We find that, while the average Absolute Relative Bias (ARB) calculated 

for the whole set of domains is equal to 10%, it is only 4% when calculated for the 12 domains with 

smallest CVs of direct estimates. Similar results are obtained for the labour cost. Hence, we may 

expect that even when starting from direct estimates more reliable than those considered in our 

simulation, the strategy proposed would not introduce bias of worrying magnitude. 

 

6. The small area estimates of labour productivity 

This section provides a quick overview of some results obtained from the ISTAT SME sample 

survey, in order to show the potential of the analysis offered by the small area estimates obtained. 

As illustration, we consider the labour productivity (LP) of the food industry (Ateco 2002, code 10), 

a sector representing one of the most dynamic specialization models for the Italian manufacturing 

system, and a parachute for Italian manufacturing in terms of exports. The model-based estimates 

obtained from the bivSN-bivSN model applied to ISTAT sample data are highly reliable, as their 

coefficient of variation ranges from a minimum of 6% to a maximum of 8% (very similar results are 

obtained for bivN-bivSN model). 

In Figure 8, we report estimated LP for i) manufacturing industry (deep grey bar) and food industry 

(light grey bar), by macro-regions, ii) food industry by regions and firm size classes (green bars). 

As expected, the results shown in Figure 8 clearly highlight the well-known north-south 

productivity divide in Italy, since the LP for the whole manufacturing industry decreases smoothly 

from north to south. However, when estimates are obtained for a higher level of detail, the picture is 
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not so clear or interpretable through the categories of the economic analysis traditionally used to 

evaluate territorial disparities in Italy. In fact, if we consider the food industry in macro-regions, 

distinguishing also among firm size classes, heterogeneity increases.  

INSERT Figure 8 Here 

Firstly, the north-south gap in LP is less evident in food industry with respect to the whole 

manufacturing sector. In fact the difference in LP between the North-West region (where the LP is 

at its maximum) and the Islands region (minimum LP) is larger for the manufacturing industry 

(about 17%) than for the food industry (about 10%). Secondly, if we take a look at the differences 

across LP in the food industry by regions but also by size classes, we notice that, in general, larger 

firms tend to be more productive, as expected, than smaller ones. Still, some interesting 

heterogeneity aspects arise among size classes if we focus on the north-south divide. The LP in the 

South for the classes from 10 to 99 employees is close to that observed in the productive North-East 

region, and the LP in the Center for the 50-99 employees class is not far from that of the North-

West region. Besides, in general, LP for larger firms that operate in the food industry is larger than 

that observed for the whole food industry, in all the regions. Great differences arise among size 

classes within the group of firms located in the north: the LP ranges from a value of about 20 for the 

micro firms located in the North-East, to about 55 for the firms located in the North-West and in the 

larger size class considered. To sum up, the usual reading key based on the category of the north-

south divide is not so evident for the food industry. Therefore, the availability of this type of results 

poses a new challenge to economists in search of ways to explain the heterogeneity in this sector 

and to formulate adequate policies to foster firms’ productivity. 

7. Conclusions

We propose a small domain strategy based on the Skew-Normal distribution for the simultaneous 

estimation of business parameters that takes into account both the asymmetry and the correlation 

that typically characterize the target variable distributions. The results obtained from the application 
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to real data highlight how considering an adequate model in the presence of asymmetry and 

correlation may improve the fit of the data and the reliability of estimates. The simulation study 

reassures us that the estimator meets some important properties as design consistency and 

asymptotic unbiasedness. Furthermore, an example of the economic analysis that can be drawn up 

from the obtained estimates further highlights the usefulness of these results for users of business 

small domain estimates, and in general for regional and industrial economists interested in 

explaining territorial, industrial, and dimensional disparities.  

Nevertheless the strategy proposed may be further improved by taking into account of other issues 

that may be relevant when producing small domain estimates. One of the most important issues 

regards the benchmarking techniques, which may allow to reduce estimates bias, making the small 

domain estimates comparable with those obtained for larger domains. This is done by modifying the 

small area estimators to satisfy constraints. This practice may however reduce the efficiency of 

small domain estimates (Bell et al. 2013; Pfeffermann and Tiller, 2006). 

Lastly, the approach we suggest can easily be extended to the estimation of other skewed business 

statistics and to different domains, and may also be used with data collected for other European 

countries, given that the statistics on VA and on LC are provided within the framework of the EU 

Council Regulation on structural business statistics of industry and services (58/97), which 

guarantees the quality of data products and their international comparability (ISTAT, 2007). 
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Table 1. Models comparison: DIC and LPML values (ISTAT SME sample survey)  

  DIC 

  Univariate models   Bivariate models 

  VA LC tot     VA&LC 

univN-univN 1541 930 2471 
 

bivN-bivN 2152 

univSN-univN 1537 928 2465 
 

bivSN-bivN 2121 

univN-univSN 1502 923 2425 
 

bivN-bivSN 1725 

univSN-univSN 1495 917 2412 
 

bivSN-bivSN 1706 

  LPML 

  Univariate models   Bivariate models 

  VA LC tot     VA&LC 

univN-univN -799.5 -503.2 -1302.7  
bivN-bivN -1232 

univSN-univN -795.3 -497.7 -1293.0  
bivSN-bivN -1227 

univN-univSN -780.3 -466.7 -1247.0  
bivN-bivSN -976 

univSN-univSN -780.9 -470.6 -1251.5   bivSN-bivSN -1003 

 

 

Table 2. Summaries for the Coefficient of Variation Reduction (CVR) of the HB estimators versus 

the direct one (ISTAT SME sample survey). 

  CVR% 

  univariate models 

  univN-univN univSN-univN univN-univSN univSN-univSN 

Summaries VA LC VA LC VA LC VA LC 

perc. 0.10 -1.0 -1.3 -1.2 -1.0 1.1 0.6 0.8 0.3 

perc. 0.25 0.7 0.7 0.7 0.6 3.5 2.4 3.0 2.6 

Median 4.4 4.8 5.0 5.3 8.1 7.7 8.8 8.2 

Average 9.9 10.8 10.4 11.4 13.8 13.8 14.1 13.9 

perc. 0.75 13.5 17.2 16.2 16.5 19.5 18.8 19.8 19.0 

perc. 0.90 33.1 36.8 35.1 38.4 35.2 37.8 36.6 39.2 

  bivariate models 

  bivN-bivN bivSN-bivN bivN-bivSN bivSN-bivSN 

Summaries VA LC VA LC VA LC VA LC 

perc. 0.10 -0.2 -0.7 -0.4 -1.0 20.3 15.1 19.3 13.2 

perc. 0.25 1.4 0.8 1.6 0.9 26.6 21.3 25.0 19.1 

Median 6.8 6.4 5.9 5.2 32.3 27.4 30.7 25.6 

Average 11.6 11.3 10.0 9.8 33.6 29.1 32.2 27.3 

perc. 0.75 17.4 18.3 14.4 15.2 38.8 34.9 37.0 32.8 

perc. 0.90 33.4 33.4 28.2 28.5 44.9 44.1 43.4 43.5 

 

 

 

 



30 

 

 

Table 3. Summary of performance measurements based on the simulation study carried out on the 

synthetic population. 

Value Added 

2.5% sample 

 BivSN-BivSN BivN-BivSN BivSN-BivN BivN-BivN Dir 

AARB% 10.54 9.86 14.26 13.73 0.01 

AMSE 9.93 9.32 16.55 15.11 103.75 

AEFF% 324.55 333.65 250.38 262.04  

3.5% sample 

 BivSN-BivSN BivN-BivSN BivSN-BivN BivN-BivN Dir 

AARB% 10.42 9.62 13.98 12.91 0.01 

AMSE 9.86 9.11 16.00 14.15 87.81 

AEFF% 298.42 310.47 234.27 249.11  

5% sample 

 BivSN-BivSN BivN-BivSN BivSN-BivN BivN-BivN Dir 

AARB% 10.09 8.96 13.60 12.62 0.01 

AMSE 9.85 8.75 15.46 12.47 63.49 

AEFF% 252.86 269.37 202.65 225.64  

Labour Cost 

2.5% sample 

 BivSN-BivSN BivN-BivSN BivSN-BivN BivN-BivN Dir 

AARB% 8.85 8.27 12.46 11.92 0.01 

AMSE 5.66 5.41 9.18 8.64 31.79 

AEFF% 236.99 242.41 186.09 191.82  

3.5% sample 

 BivSN-BivSN BivN-BivSN BivSN-BivN BivN-BivN Dir 

AARB% 8.37 7.75 12.01 11.07 0.01 

AMSE 5.40 5.08 8.56 7.89 27.04 

AEFF% 223.77 230.71 177.73 185.12  

5% sample 

 BivSN-BivSN BivN-BivSN BivSN-BivN BivN-BivN Dir 

AARB% 7.26 6.98 11.31 10.91 0.01 

AMSE 5.17 4.68 7.87 6.79 20.85 

AEFF% 200.82 211.07 162.77 175.23  
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Figure 1: Comparison of estimates obtained from bivSN-bivSN model using different values for D 

in the prior for the shape parameters (ISTAT SME sample survey). 

 

 

Figure 2a. Direct estimates versus Model based bivSN-bivSN estimates (ISTAT SME sample 

survey). Value Added (left) and Labour Cost (right). 
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Figure 2b. Direct estimates versus Model based bivN-bivSN estimates  (ISTAT SME sample 

survey). Value Added (left) and Labour Cost (right). 

 

 

Figure 3a. Coefficient of variation (%) of model based bivSN-bivSN estimates versus coefficient of 

variation of direct estimates (ISTAT SME sample survey). Value Added (left) and Labour Cost 

(right). 
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Figure 3b. Coefficient of variation (%) of model based bivN-bivSN estimates versus coefficient of 

variation of direct estimates (ISTAT SME sample survey). Value Added (left) and Labour Cost 

(right). 

 

 

Figure 4a. Coefficient of Variation Reduction (%) of model based bivSN-bivSN estimates (black) 

and of univN-univN (grey) versus domain sample size (ISTAT SME sample survey). Value Added 

(left) and Labour Cost (right). 
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Figure 4b. Coefficient of Variation Reduction (%) of model based bivN-bivSN estimates (black) 

and of univN-univN (grey) versus domain sample size (ISTAT SME sample survey). Value Added 

(left) and Labour Cost (right). 

 
 

 

Figure 5a. Absolute relative bias of model based bivSN-bivSN estimates plotted against the domain 

sample size (results from the simulation study carried out on the synthetic population). Value 

Added (left) and Labour Cost (right). 
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Figure 5b. Absolute relative bias of model based bivN-bivSN estimates plotted against the domain 

sample size (results from the simulation study carried out on the synthetic population). Value 

Added (left) and Labour Cost (right). 

Figure 6a. Comparison between the ( )SN.SN
i

ˆMSEθ  versus ( )i
ˆMSE θ  (results from the simulation

study carried out on the synthetic population). Value Added (left) and Labour Cost (right). 
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Figure 6b. Comparison between the ( )SN.N
i

ˆMSEθ  versus ( )i
ˆMSE θ  (results from the simulation 

study carried out on the synthetic population). Value Added (left) and Labour Cost (right). 

 
 

 

Figure 7a. Comparison between the ( ) ( )SN.SN
ii

ˆMSEˆMSE θθ  versus domain sample size (results 

from the simulation study carried out on the synthetic population). Value Added (left) and Labour 

Cost (right). 
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Figure 7b. Comparison between the ( ) ( )SN.N
ii

ˆMSEˆMSE θθ  versus domain sample size (results 

from the simulation study carried out on the synthetic population). Value Added (left) and Labour 

Cost (right). 

Figure 8. Labour productivity estimates for the Food industry by region and firm size class resulting 

from bivSN-bivSN model (ISTAT SME sample survey). 
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