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Abstract 
 

The general pattern of estimated volatilities of macroeconomic and financial variables is 

often broadly similar. We propose two models in which conditional volatilities feature comove- 

ment and study them using U.S. macroeconomic data. The first model specifies the conditional 

volatilities as driven by a single common unobserved factor, plus an idiosyncratic component. 

We label this model BVAR with General Factor Stochastic Volatility (BVAR-GFSV) and we 

show that the loss in terms of marginal likelihood from assuming a common factor for volatil- 

ity is moderate. The second model, which we label BVAR with Common Stochastic Volatility 

(BVAR-CSV), is a special case of the BVAR-GFSV in which the idiosyncratic component is 

eliminated and the loadings to the factor are set to 1 for all the conditional volatilities. Such 

restrictions permit a convenient Kronecker structure for the posterior variance of the VAR co- 

efficients, which in turn permits estimating the model even with large datasets. While perhaps 

misspecified, the BVAR-CSV model is strongly supported by the data when compared against 

standard homoskedastic BVARs, and it can produce relatively good point and density forecasts 

by taking advantage of the information contained in large datasets. 
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1 Introduction 

 
Several recent papers have shown that the use of large vector autoregressions (VARs) produces 

significant improvement in both forecasting and structural analysis of macroeconomic data. In 

particular, contributions such as Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and 

Marcellino (2015), Giannone, Lenza, and Primiceri (2012) and Koop (2013) all point out that a 

system of 15-20 variables performs better than smaller systems in point forecasting and structural 

analysis. All these contributions exploit a natural conjugate prior for the VAR coefficients which 

yields posterior distributions featuring a particularly convenient Kronecker structure that makes 

estimation fast. 

Carriero, Clark, and Marcellino (2015), Giannone, Lenza, and Primiceri (2012) and Koop 

(2013) also consider density forecasting, and again conclude that the use of a large information 

set is beneficial. However, the VARs considered in such studies feature homoskedastic distur- 

bances, while there is convincing evidence that instead macroeconomic fluctuations are charac- 

terized by time-varying volatilities (e.g., Clark (2011), Clark and Ravazzolo (2014), Cogley and 

Sargent (2005), D’Agostino, Gambetti and Giannone (2013), and Primiceri (2005)). To make this 

point more apparent, Figure 1 plots the estimated volatilities of 14 major US macroeconomic time- 

series, obtained using univariate AR models with stochastic volatility, and shows clear evidence of 

strong time variation in the volatilities. 

While the assumption of homoskedastic disturbances can be considered mild when the inter- 

est is limited to point forecasts, such an assumption appears to be strong for density forecasting. 

However, relaxing the assumption of homoskedasticity of the VAR disturbances poses problems if 

the dimension of the VAR is large, because the introduction of drifting volatilities leads to the loss 

of symmetry in the model, which in turn implies that estimation of the system becomes rapidly 

unmanageable. Homoskedastic VAR models are SUR models featuring the same set of regressors 

in each equation. This symmetry across equations means that homoskedastic VAR models have a 

Kronecker structure in the likelihood, and can therefore be estimated via OLS equation by equa- 
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tion. In a Bayesian setting the symmetry in the likelihood transfers to the posterior, as long as the 

prior used also features a Kronecker structure. 

Equation-specific stochastic volatility breaks this symmetry because each equation is driven 

by a different volatility. The challenge with such a model is that drawing the VAR coefficients 

from the conditional posterior involves computing a (variance) matrix with the number of rows 

and columns equal to the number of variables squared times the number of lags (plus one if a 

constant is included). The size of this matrix increases with the square of the number of variables 

in the model, making CPU time requirements highly nonlinear in the number of variables. In 

light of these challenges, the studies of VARs with stochastic volatility by Clark (2011), Clark 

and Ravazzolo (2014), Cogley and Sargent (2005), D’Agostino, Gambetti and Giannone (2013), 

and Primiceri (2005) have been limited to a handful of variables (3 to 5). In one exception, Koop 

and Korobilis (2013) propose a computational (not fully Bayesian) shortcut that allows for time- 

varying volatility (roughly speaking, using a form of exponential smoothing of volatility) in a large 

VAR, and show that their model improves the accuracy of point and density forecasts. 

In this paper we propose a (fully Bayesian and) computationally tractable way to introduce 

stochastic volatility in a large VAR. Our method is based on the observation that while of course 

different variables have different volatilities, a common pattern can be observed. For example, 

looking again at the graphs in Figure 1, it is apparent that U.S. macroeconomic variables show a 

common pattern of higher volatility in the 1970s, a marked decrease in volatility starting in the 

early 1980s — the Great Moderation — and a new increase with the onset of the financial crisis. 

This commonality is in turn reflected in the fact that most of the total variation in the volatilities 

of macro variables is well summarized by the first principal component. For example, for the 14 

variables depicted in Figure 1, the first principal component estimate explains about 70% of the 

variation in the individual volatility time series. 

We propose two models featuring comovement in the volatilities. The first model specifies 

the conditional volatilities as driven by a single common unobserved factor, plus an idiosyncratic 
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component. We label this model BVAR with General Factor Stochastic Volatility (BVAR-GFSV). 

Estimating this model using U.S. quarterly data from 1965 to 2013, we find that the loss in marginal 

likelihood from imposing a common factor on the volatilities is moderate, and that it provides eco- 

nomically sensible estimates of the time varying variance of macroeconomic variables. These find- 

ings point towards the conclusion that there is significant comovement in macroeconomic volatili- 

ties. 

While the BVAR-GFSV offers a good description of the data, it cannot easily be estimated 

when the dimension of the cross-section increases above a handful of variables. Therefore, we 

propose a second model which is nested in the BVAR-GFSV and is computationally manageable 

for large datasets such as the typical macroeconomic dataset of 15-20 variables (or even more). 

This model, which we label BVAR with Common Stochastic Volatility (BVAR-CSV), imposes 

two restrictions on the equation relating the volatilities to the common factor, namely that i) there 

is no idiosyncratic component for the conditional volatilities, and ii) all the conditional volatilities 

have a factor loading of 1, which implies that the order of magnitude of the movements in volatility 

is proportional across variables. The use of the single common factor and of these two restrictions 

allows us to exploit a Kronecker structure of the conditional posterior densities, thereby allowing 

us to handle large models. 

We show that, as gauged by the marginal likelihood, the restrictions implied by the BVAR-CSV 

are rejected when compared to the more general BVAR-GFSV specification, so that the former 

model is likely to be misspecified. However, the BVAR-CSV has the important advantage that it 

can be estimated for large datasets.  Moreover, the empirical evidence we provide is strongly in 

favor of the BVAR-CSV when it is compared against the standard homoskedastic BVAR, which 

has been used in several empirical analyses to study medium and large datasets.  A forecasting 

exercise based on real-time data confirms this finding. In both a small model and a large model, our 

proposed BVAR-CSV specification performs relatively well in both point and density forecasting. 

Our proposed volatility models treat the commonality as multiplicative.  In the BVAR-CSV 
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implementation we need both the single factor and the multiplicative structure in order to be able 

to define a prior and factor out volatility in such a way as to exploit the Kronecker structure that 

is needed to speed up the VAR computations. Prior work by Pajor (2006) considered the same 

basic model of volatility for the errors of a VAR(1) process, in just a few variables, without the 

VAR prior we incorporate to speed up computations. Osiewalski and Pajor (2009) and references 

therein have considered common volatility within GARCH-type specifications. 

Some other papers introduce the commonality in volatility as additive. For example, in an 

asset return context, Chib, Nardari, and Shephard (2002, 2006) and Jacquier, Polson and Rossi 

(1995) employ a factor structure multivariate stochastic volatility model. In a macro context, in a 

setup similar to that used in some finance research, Del Negro and Otrok (2008), Liu, Mumtaz and 

Theophilopoulou (2014), and Mumtaz and Surico (2012) develop a factor model with stochastic 

volatility. Viewed this way, the factor structure multivariate stochastic volatility model or factor 

model with stochastic volatility is somewhat different from the one proposed here: in the BVAR- 

GFSV and BVAR-CSV we have a VAR that captures cross-variable correlations in conditional 

means and captures a common factor in just volatility; in these other models, the factor captures 

both cross-variable correlations in conditional means and drives commonality in volatility. 

To establish the value of our proposed model(s), we compare volatility estimates, measures 

of in-sample fit, and forecast accuracy (both point and density) in both small and large VARs 

estimated with and without variation in the volatilities. We find that common stochastic volatility 

in general improves forecast accuracy, and we confirm the finding that the use of a large cross- 

section helps. We interpret these results as evidence that the large BVAR-CSV model efficiently 

summarizes the information in a large dataset and successfully accounts for changing volatility, 

outperforming the conventional approach that treats the volatility of each variable as constant. 

The structure of the paper is as follows. Section 2 presents the models, discusses the priors, and 

derives the posteriors (with additional details in the Appendix). Section 3 describes the MCMC im- 

plementation. Section 4 presents our US-based evidence, including full-sample volatility estimates 
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and our forecasting exercise. Section 5 summarizes the main results and concludes. 

 

 

2 Modeling comovement in volatilities 

 
2.1 BVAR with General Factor Stochastic Volatility (BVAR-GFSV) 

Let yt denote the n × 1 vector of model variables and p the number of lags. Define the 

following: Π0 = an n × 1 vector of intercepts; Π(L) = Π1 − Π2 L − ∙ ∙ ∙ − Πp L
p−1, with each Πi 

an n × n matrix, i = 1, ..., p; and A = an n × n lower triangular matrix with ones on the diagonal. 

The BVAR-GFSV model takes the form: 

 

yt     =   Π0 + Π(L)yt−1 + vt, (1) 

t   ǫt, ǫt ∼ iid N(0, I), (2) 

 
which implies a time varying variance for the disturbances: 

 

Var(vt) = Σt  = A−1Λt A
−1′. (3) 

 
Here Λt is a diagonal matrix with generic j-th element: 

λ  = f 
β j  ∙ h  , (4) 

 
so that the log-volatilities follow a linear factor model: 

 
ln λ jt = β j ln ft + ln hj,t, (5) 

 
where ft is a common factor and hj,t is the idiosyncratic component associated with the j-th variable 

in the VAR. The diagonality of the matrix Λt implies that the generic j-th element of the rescaled 

VAR disturbances ṽt = Avt is given by ṽ j,t = λ jtǫ jt. Taking logs of squares of ṽ j,t yields the 

following set of observation equations: 

 

ln ṽ2
 = β j ln ft + ln hj,t + ln ǫ2 , j = 1, . . . , n. (6) 
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The model is completed by specifying laws of motion for the unobserved states: 

 

ln hj,t    =  γ j,0 + γ j,1 ln h j,t−1 + e j,t, j = 1, . . . , n, (7) 

ln ft =  ψ ln ft−1 + ut. (8) 

 

For identification, we set β1 = 1 and assume ln ft to have zero unconditional mean. We further 

assume that the innovations to volatilities are jointly distributed as i.i.d. N(0, Φ) and independent 

among themselves, so that 

 
Var(e1,t, ..., en,t, ut) = Φ = diag(φ1, ..., φn, φn+1). (9) 

 
Equations (6)-(8) form a state-space system with unobserved states αt =(ln h1,t, ln h2,t, . . ., ln hn,t, 

ln ft)
′, which can be handled using the Kim, Shephard, and Chib (1998) sampler. 

The model described above is related to Cogley and Sargent (2005) and Primiceri (2005). 

In particular, both these papers assume that there is no factor structure in the volatilities, which 

amounts to setting β j = 0. However, Primiceri’s (2005) model is more general in that it permits 

the innovations to the volatilities to be correlated across variables, while in our specification they 

are not, and any correlation among volatilities are forced onto the common factor, a restriction that 

is standard in factor model analysis. For comparison, in our empirical analysis we will also con- 

sider a BVAR with the stochastic volatility specification of Primiceri (2005), as described below in 

Section 2.3. 

 

2.2 BVAR with Common Stochastic Volatility (BVAR-CSV) 

 
The model described in equations (1)-(9) is very general, but it cannot be easily estimated for sys- 

tems with more than a handful of variables. This happens because the posterior variance of the 

VAR’s conditional mean coefficients has dimension (np + 1)n. However, it is possible to design a 

model in which this matrix — while remaining of the same dimension — can be conveniently fac- 

torized. The way to achieve this is to impose some restrictions on the BVAR-GFSV and introduce 
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a specific prior for the VAR coefficients. 

The needed restrictions make the factor loadings β j equal to 1 for all variables and make id- 

iosyncratic components hj,t constants for all time. In this case, the constants hj  would capture 

differences in variance scales for each variable (the matrix A of the general model is defined to 

have values of 1 for all diagonal elements). We will instead, but equivalently, redefine A to have a 

non-unity diagonal, and use this matrix, denoted Ã, to capture differences in variance scales, and 

make the idiosyncratic components hj,t equal 1 for all time. As becomes clear below, this will allow 

us to replace a slightly more complicated step for sampling the rows of A from normal distributions 

with a step for sampling a constant variance matrix Σ from an inverted Wishart distribution. 

More specifically, we impose the following restrictions on equation (4): 

 
β j = 1, hj,t = 1, (10) 

 

for all t = 1, ..., T and j = 1, ..., n. This implies that the generic element of the matrix Λt is given 

by λ jt = ft, and therefore Λt = ft In. Thus, equation (2) reduces to: 

t   ǫt, ǫt ∼ iid N(0, I), (11) 

where Ã is a lower triangular matrix and ft is a scalar process. By defining Σ = Ã−1 Ã−1′, 

equation 

(3) simplifies to: 

 
Var(vt) = Σt = ftΣ. (12) 

 
The fact that the time varying variance Σt can be decomposed into the product of a time varying 

scalar and a constant scaling matrix Σ implies that the likelihood function of the VAR features a 

Kronecker structure, and therefore a posterior with a Kronecker structure can be easily obtained by 

simply choosing an appropriate conjugate prior. Under these restrictions, the state-space system 

describing the evolution of the rescaled reduced form squared errors ṽ2
 reduces to: 

 

ln ṽ2
 = ln ft + ln ǫ2 , j = 1, . . . , n, (13) 

 

ln ft = ψ ln ft−1 + ut, Var(ut) = φ, (14) 
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where ψ and φ are scalars. 

The key advantage of imposing the restrictions in (10) is that it allows us to use the BVAR- 

CSV model to estimate larger systems. While the posterior variance of the VAR coefficients is 

of course still of dimension (np + 1)n, its manipulation will involve (np + 1)3 + n3 elementary 

operations, rather than ((np + 1)n)3. To give an example, in a system of 20 variables and 4 lags, 

the manipulation of this matrix would involve 4251528000 elementary operations, but when the 

matrix has a Kronecker structure, the number of operations reduces to just 539441. Such gains 

become larger as the cross-sectional dimension or the number of lags in the VAR increases. As 

noted above, being able to estimate a model with a large dataset and rich dynamics is important, 

as there is convincing evidence that a large information set is useful in forecasting and structural 

analysis. 

Of course, the possibility of estimating a large system does not come without a cost. In par- 

ticular, the restrictions in (10) do not necessarily hold in a typical dataset of macroeconomic and 

financial variables. Restriction (10) implies that when the volatility factor ft increases/decreases, 

the order of magnitude of the increase/decrease in volatility is the same for all the variables, so for 

example the volatility of all variables will double if ft doubles. Instead, Figure 1 suggests that the 

relative amount of the increase in volatility for some variables (e.g. the federal funds rate) is larger 

than for other macroeconomics variables. Restriction (10) implies that there are no idiosyncratic 

components and the common factor ft is the only source of variation in the volatilities, which 

clearly might not be enough to fully describe the pattern of volatilities shown in Figure 1. It can 

be argued that even without idiosyncratic components, a good description could be obtained by 

adding more common factors. Such an argument is correct, and indeed we have also experimented 

with such a model. However the use of more than one factor would still encounter the same com- 

putational difficulties as having the idiosyncratic components, thereby excluding the possibility of 

using a large dataset. Also, the BVAR-CSV is very likely less misspecified than a model that as- 

sumes no time variation in volatilities, such as the standard BVAR that has been successfully used 
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for forecasting with large datasets in many recent contributions mentioned above. 

Therefore, there is a trade-off between using the more general BVAR-GFSV model and giving 

up on using the information available in a large dataset, or using a model like the BVAR-CSV, 

which may be misspecified, in order to take advantage of large information sets. Drawing on 

George Box’s statement that “all models are wrong, but some are useful,” we will provide evidence 

that the BVAR-CSV specification is useful. In particular, in our empirical application we show 

that the BVAR-CSV provides (in both small and large models) improvements in density forecasts 

against the standard homoskedastic BVAR, and (in small models) has a performance comparable 

to both the BVAR-GFSV and the BVAR with conventional stochastic volatility. 

 

2.3 BVARs with individual stochastic volatilities and constant volatility 

(BVAR-SV and BVAR) 

As noted above, for reference, we will consider estimates from a VAR with individual stochastic 

volatilities for each variable, along the lines of Cogley and Sargent (2005) and Primiceri (2005). 

The BVAR-SV model we use can be obtained by imposing on the BVAR-GFSV the restriction 

β j = 0 for all j, and by replacing (9) with: 

Var(e1,t, ..., en,t) = Φ, (15) 

where Φ is a full n × n matrix that is not restricted to be diagonal. Departing from Cogley and 

Sar- gent (2005) and Primiceri (2005), we treat the volatilities as following the autoregressive 

processes in (7), rather than random walks, which may have consequences on the estimated 

volatility paths. Clark and Ravazzolo (2014) find that AR and random walk specifications 

perform comparably in out-of-sample forecasting. 

We will also consider some results from a BVAR with constant volatility, of the form: 
 

yt = Π0 + Π(L)yt−1 + vt, vt ∼ N(0, Σ). (16) 
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For this model, we follow other work on large VARs (e.g., Banbura, Giannone, and Reichlin (2010) 

and Carriero, Kapetanios, and Marcellino (2009)) and use the Normal-inverted Wishart prior and 

posterior detailed in such studies as Kadiyala and Karlsson (1997). 

 

2.4 Priors for BVAR-CSV 

As the focus of this paper is on the use of large datasets, we focus on the description of the BVAR- 

CSV, which can be estimated with a large cross-section of data. A detailed description of the priors 

and posteriors for the BVAR-GFSV and priors for the other models can be found in the Appendix. 

The parameters of the model consist of the following: the parameters in the conditional mean 

matrices Π0 and Π(L), which we collect in a k × n (where k = 1 + np) matrix Π = (Π0, Π1, ..., 

Πp)′; the elements of Σ; and the coefficients ψ and φ appearing in the state space system (13)-

(14). The model also includes the latent states ft, t = 1, . . . , T , which we collect in the vector 

f.  We use N(a, b) to denote a normal distribution (either univariate or multivariate) with mean a 

and variance b, IW(a, b) to denote an inverse Wishart distribution with scale matrix a and degrees 

of freedom b, and IG(a, b) to denote an inverse gamma distribution with scale term a and degrees 

of freedom b. 

We specify the following priors for the parameter blocks of the model: 
 
 

vec(Π)|Σ  ∼ N(vec(μ 
Π 

), ΩΠ), (17) 

Σ  ∼ IW(ds ∙ Σ, ds), (18) 
 

ψ  ∼ N(μ 
ψ 
, Ωψ) (19) 

φ  ∼ IG(dφ ∙ φ, dφ). (20) 

 

A detailed description of the prior moments is given below; here we just emphasize that to make 

estimation with large models tractable, the prior variance for vec(Π) is specified with a factorization 

that permits a Kronecker structure. Specifically, we use a prior conditional on Σ, of the following 
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form: 

 

ΩΠ = Σ ⊗ Ω0, (21) 

where Ω0 incorporates the kind of symmetric coefficient shrinkage typical of the natural conjugate 

Normal-Wishart prior. Under the usual Minnesota-style specification of the Normal-Wishart prior 

for Ω0, the prior variance takes account of volatility (and relative volatilities of different variables) 

by using variance estimates from some training sample. Note that the use of a prior for the coef- 

ficients conditional on volatility is in line with the natural conjugate Normal-Wishart prior, but it 

does depart from the setup of Clark (2011) and Clark and Davig (2011), in which, for a VAR with 

n individual stochastic volatilities, the coefficient prior was unconditional. 

The prior used here, combined with the assumption of a single volatility factor, implies that 

the posterior distribution of the VAR coefficients, conditional on Σ and f, will have a variance 

featuring a Kronecker structure. The computations required to draw from such a distribution via 

MC sampling are of order O(n3 p3) rather than of order O(n6 p3). Further detail on how these 

assumptions yield computational improvements is given in the Appendix. 

 

2.5 Posteriors for BVAR-CSV 

 
The parameters Π, Σ, ψ, and φ have closed-form conditional posterior distributions which we 

present here. Draws from these conditionals will constitute Gibbs sampling steps in our MCMC 

algorithm. As detailed below, we will also use a Gibbs sampling to draw the volatilities, with the 

basic algorithm of Kim, Shephard, and Chib (1998). 
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−
1 X 

ft− 

) 

t t 

Π 

ψ 

 

 

The conditional posterior distributions of Π, Σ, ψ, and φ take the following forms: 

 

vec(Π)|Σ, f, y  ∼ N(vec(μ̄ Π), Ω̄ 
Π), (22) 

 
T 

 
Σ|Π, f, y  ∼ IW ds ∙ Σ + 

X 
f −1vtv

′, ds + T  , (23)  
t=1  

ψ|Π, Σ, φ, f, y  ∼ N(vec(μ̄ ψ), Ω̄ 
ψ), (24) 

 
T 

 
φ|Π, Σ, ψ, f, y  ∼ IG dφ ∙ φ + 

X 
u2, dφ + T  , (25)  

t=1  
 

where y is a nT -dimensional vector containing all the data. 

The mean and (inverse) variance of the conditional posterior normal distribution for vec(Π) in 

(22) take the following forms: 
 

(  
T 

1 
 ) 

vec(μ̄ Π)  = Ω̄ 
Π

 vec 
X 

Xty
′   Σ−1  + Ω−1vec(μ 

) 
(26) 

 
t=1 

 
t ft 

 Π 

T 
1 

 

Ω̄ 
−1 

   
−1 Ω−1 

X 
′  

Π =  Σ ⊗    0   + Xt Xt  . (27)  
t=1 t  

 

The mean and variance of the conditional posterior normal distribution for ψ in (24) are simpler, 

because ψ is just a scalar and the relevant process is conditionally homoskedastic: 

 
μ̄ ψ = Ω̄ 

ψ(φ−1
 

T X 
ft−1 ft + Ω 

μ 
ψ 

 
) (28) 

t=1 

T 

Ω̄ 
ψ =  (Ωψ + φ 

2

 −
1 

1 

. (29) 

t=1 
 

As we have already discussed, the key to the computational advantage of this model is the 

Kronecker structure of the conditional posterior variance. This Kronecker structure is obtained 

by using both a single, multiplicative volatility factor and the conditional prior described above. 

If, instead, one were to use a model in which each variable in the VAR featured an individual 

stochastic volatility factor, without imposing a factor structure, as has become common with small 

D
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VAR specifications, the expression of the variance matrix in (27) would have to be replaced with: 
 

Ω̄ −1 −1 
T X 

−1 ′ 

Π  = ΩΠ  +  

t=1 

(Σt   ⊗ Xt Xt ), (30) 

where Σt  can not be factorized as Σt   =  ftΣ.  Instead, under the restrictions (10), the matrix Σt 

simplifies to Σt  = ftΣ and the term 
PT

 (Σ−1 ⊗ Xt X
′) in (30) can be written as Σ−1 

⊗ 
PT

 

1 Xt 

X′, 
t=1 t t t=1  ft t 

which using equation (21) yields the simplified expression for Ω̄ −1 appearing in (27). 

The computations required to manipulate the matrix Ω̄ −1 are of order O(n3 p3) when using 

(27), while they are of order O(n6 p3) if one were to use (30).  In particular, to perform a draw 

from a normal having (inverse) variance (30), it is necessary to generate a nk-dimensional 

vector g of standard normal variables and: i) compute Ω̄ 
Π by inverting Ω̄ −1, ii) compute the 

Cholesky factor of Ω̄ 
Π, and iii) multiply the Cholesky factor of Ω̄ 

Π by g. Each of these three 

steps involves n3k3 elementary operations, so given that k = np + 1 the time complexity of this 

procedure is O(n6 p3), where in computer science the time complexity of an algorithm quantifies 

the amount of time taken by an algorithm to run. Instead, to perform a draw from a normal 

having variance (27), one can draw a n × k random matrix G of standard normal variables and 

then use the following formula: 
−1  

 
T 

1 
 

Πdraw = μ̄ Π + chol Ω−1 + 
X

( Xt 
X′)  

 
∙ G ∙ chol [Σ]′ , (31) 

 
t=1    

ft     
 

in which the more demanding computations are only the inversion and Cholesky decomposition 

of the matrix in the square brackets, which are both of order O(n3 p3), as further detailed in the 

Appendix. Therefore the time complexity implied by (30) is n3 times larger than that implied by 

(27), and the use of (30) becomes rapidly unmanageable as the size of the system increases. 

Under the CS V specification, the expression for the posterior mean of the coefficient matrix 

appearing in (26) can also be re-written in an equivalent form that may often be more compu- 

tationally efficient. This equivalent form is obtained by defining data vectors normalized by the 

standard deviation of volatility, to permit rewriting the VAR in terms of conditionally homoskedas- 
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tic variables.  Specifically, let ỹt   =  f −0.5yt  and X̃t   =  f −0.5 Xt  and collect these rescaled data for 
t t 

t = 1, ..., T in the full-data matrices X̃ and ỹ. Then, the posterior mean of the coefficients can be 
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−
1 

j,t j,t 

j,t 

 

 

equivalently written as 
 

μ̄ Π =  X̃ ′ X̃ + Ω−1
 
 
 

Ω−1μ 

+ X̃ ′ỹ  , (32) 

0 0 Π 

 

which can be used directly in (32) thereby further reducing the number of elementary operations 

required at every step of the MCMC sampler. 

 

2.6 Volatility 

Our treatment of volatility draws on Primiceri’s (2005) implementation of the Kim, Shephard, and 

Chib (1998) algorithm (hereafter, KSC algorithm). As indicated above, vt denotes the reduced form 

residuals of the VAR and ṽt  = Ãvt are the rescaled residuals. We further define v∗ = ln(ṽ2
 + c̄ ), 

where c̄  denotes an offset constant used in the KSC algorithm. With this notation, we can establish 

the measurement equation of a state-space system with non-Gaussian errors: 

v∗ 2 

j,t = ln ft + ln ǫ j,t. (33) 

The state equation is simply the AR process of the common factor given by (14). 

In the equations above ln ǫ2
 is not Gaussian, but ǫ j,t is a Gaussian process with unit variance, 

and with this setup we can use the mixture of normals approximation of KSC to estimate volatility 

with a Gibbs sampler, first drawing the states of the mixture and then drawing volatility conditional 

on the states. Primiceri (2005) details the steps required, which include the Kalman filter (forward) 

and a (backward) simulation smoother to draw volatility from a conditional distribution that is 

normal. In the BVAR-CSV, the key difference with respect to Primiceri’s (2005) implementation is 

that there is just one volatility process (state), rather than n processes (states). Instead, the BVAR- 

GFSV model is more general than Primiceri’s (2005) specification in this respect, as it features 

n + 1 volatility processes, although it also imposes a restriction that the idiosyncratic components 

be uncorrelated, forcing all comovement onto the common factor. We should also note that we 

depart from these previous studies in using the improved 10-state mixture approximation of Omori, 
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et al. (2007) instead of KSC’s original 7-state approximation, and we incorporate the reordering of 

Primiceri’s steps suggested in Del Negro and Primiceri (2014). 

 
 

3 Implementation 

 
3.1 Specifics on priors 

 
For our proposed BVAR-CSV model, we set the prior moments of the VAR coefficients along the 

lines of the common Minnesota prior (see, e.g., the exposition in section 3.2.1 of Karlsson (2013)), 

without cross-variable shrinkage: 

 

μ  = 0,  such that E[Π
(i j)

]   =  0 ∀ i, j, l (34) 
Π 

 
Ω  such that the entry corresponding to Π

(i j) 
= 

 

 

θ2 

l2σ2
 

f or l > 0  
. (35) 

 ε2 f or l = 0 

 

With all of the variables of our VAR models transformed for stationarity (we use growth rates of 

GDP, the price level, etc.), we set the prior mean of all the VAR coefficients to 0. The variance 

matrix Ω0 is defined to be consistent with the usual Minnesota prior variance, which is a diagonal 

matrix. 

We note that our proposed BVAR-CSV specification can also be directly applied to models in 

levels with unit root priors, with the appropriate modification of the prior means on the coefficients. 

Including priors on sums of coefficients and initial observations as in such studies as Sims and Zha 

(1998) is also possible. 

The shrinkage parameter θ measures the tightness of the prior: when θ → 0 the prior is imposed 

exactly and the data do not influence the estimates, while as θ → ∞ the prior becomes 

loose and results will approach standard GLS estimates. Clearly, the choice of the 

hyperparameter θ is key and several possibilities are available. Giannone, Lenza, and Primiceri 

(2012) provide a sampler to estimate the hyperparameters of a homoskedastic BVAR with 
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could be applied here (conditionally on the volatilities). Alternatively, the parameter θ could be 

chosen by maximizing the marginal likelihood of the model, as in Del Negro and Schorfheide 

(2004) and Carriero, Kapetanios, and Marcellino (2012). Still other studies, such as Banbura, 

Giannone, and Reichlin (2010) and Carriero, et al. (2009), have selected hyperparameters using 

alternative strategies based on past forecasting performance. As the main focus of this paper is 

on the variation in the volatilities, we simply adopt the common value (e.g., Sims and Zha 1998) 

of θ = 0.2, in consideration of the evidence in Carriero, Clark, and Marcellino (2015) that, for a 

dataset of similar type and dimension, such a strategy does not yield significant losses in forecast 

accuracy. 

The term 1/l2 determines the rate at which the prior variance decreases with increasing lag 

length. To set the scale parameters σ2 we follow common practice (see, e.g., Litterman, 1986; 

Sims and Zha, 1998) and fix them to the variance of the residuals from univariate AR(4) models, 

computed for the estimation sample. To make the prior on intercepts loose, we set ε = 1000. 

For the constant variance matrix Σ, we use a loosely informative prior based on training sample 

information. Specifically, we set the prior degrees of freedom at n + 2 and the prior mean of Σ at 

OLS estimates of the residual variance matrix obtained by fitting a VAR(1) to a training sample of 

40 observations preceding the estimation sample. 

For the slope coefficient of the log factor process (ψ) we use a prior mean of 0.9 and a standard 

deviation of 0.2. For the prior variance of the innovations to the factor process (φ) we use a 

mean of 0.01 and set the degrees of freedom to 4. Our prior for φ is similar to (although more 

generous than) the settings used in studies such as Cogley and Sargent (2005). While this prior is 

fairly informative, our estimates show the posterior to be rather different from the prior, apparently 

reflecting considerable information in the data. 
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3.2 MCMC Algorithm 

 
We estimate the BVAR-CSV model with a Gibbs sampler. As detailed in Del Negro and Primiceri 

(2014), the treatment of stochastic volatility with the mixture distribution approach of Kim, Shep- 

hard, and Chib (1998) necessitates a sampler based on two parameter blocks, for (1) time-varying 

volatility and (2) the mixture states and the set of model parameters. 

Let sT denote the states of the mixture of normals distribution used in the Kim, Shephard, and 

Chib (1998) algorithm, Θ denote the parameter block containing Π, Σ, ψ, and φ, and recall that 

y and f denote the time series of the data and log-states ln ft, respectively. We omit some details 

regarding distributions (notation, essentially) in the interest of brevity; Del Negro and Primiceri 

(2014) provide further information regarding the details of conditioning necessitated by the treat- 

ment of volatility. Note that, in the description below, in some cases conditioning on f makes it 

unnecessary to explicitly condition on ψ and φ. 

The Gibbs sampler draws in turn from the conditionals p(f |Θ, sT , y) and p(Θ, sT |f,y). 

Step 1: Draw from p(f |Θ, sT , y) relying on the state space representation described above and 

the Kalman filter and simulation smoother of Durbin and Koopman (2001). In the filtering, we set 

the mean and variance for the initial value of ln ft at 0 and 0.5, respectively. 

Step 2: Draw from p(Θ, sT |f,y) relying on the factorization p(Θ, sT |f,y) ∝ p(sT |Θ, f,y)∙ 

p(Θ|f,y), that is by (i) drawing from the marginal posterior of the model parameters p(Θ|f,y) and 

(ii) drawing from the conditional posterior of the mixture states p(sT |Θ, f,y). The marginal 

posterior p(Θ|f,y) is sampled by further breaking the parameter block into pieces and drawing 

from the distributions of each parameter piece conditional on the other parameter pieces (steps 

2a-2d below), while draws from p(sT |Θ, f,y) are obtained using steps similar to those described in 

Primiceri (2005), modified as needed in light of our common factor process (step 2e below). In 

more detail, the sub-steps used to produce draws from p(Θ, sT |f,y) are as follows. 

Step 2a: Draw the matrix of VAR coefficients Π conditional on the data, Σ, and f, using the 

conditional (normal) distribution for the posterior given in equation (22). 
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Step 2b: Draw Σ conditional on the data, Π and f, using the conditional (IW) distribution for 

the posterior given in (23). 

Step 2c: Draw ψ conditional on the data, Π, Σ, φ, and f, using the conditional (normal) distri- 

bution for the posterior given in (24). 

Step 2d: Draw φ conditional on the data, Π, Σ, ψ, and f, using the conditional (IG) distribution 

for the posterior given in (25). 

Step 2e: Draw the states of the mixture of normals distribution conditional on the data, f, and 

the parameter block Θ. 

In all cases, we obtain forecast distributions by sampling from the posterior distribution. In 

particular, for each set of draws of parameters, we: (1) simulate volatility time paths over the 

forecast interval using the AR process of log volatility; (2) draw shocks to each variable over 

the forecast interval with variances equal to the draw of Σt+h; and (3) use the VAR structure of the 

model to obtain paths of each variable. We form point forecasts as means of the draws of simulated 

forecasts and density forecasts from the simulated distribution of forecasts. Conditional on the 

model, the posterior distribution reflects uncertainty stemming from latent states, parameters, and 

shocks over the forecast interval. 

 
 

4 Empirical results 

 
4.1 Data and design of the forecast exercise 

 
In our application we focus on two datasets of 4 and 14 variables, at the quarterly frequency. 

The smaller dataset includes GDP (∆ ln), the unemployment rate, inflation in the GDP price index 

(∆ ln), and the federal funds rate. The larger dataset contains the same variables plus consumption 

expenditures (denoted PCE, ∆ ln), business fixed investment (denoted BFI, ∆ ln), residential invest- 

ment (∆ ln), industrial production (∆ ln), capacity utilization in manufacturing, payroll employment 

(∆ ln), aggregate hours worked (by production and non-supervisory workers in the private sector, 
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∆ ln), inflation in the PCE price index (∆ ln), the 10 year − 3m Treasury bond-bill yield spread, 

and real stock prices (S&P500 index/PCE price index, ∆ ln). 

For the purpose of assessing the convergence and mixing properties of our MCMC algorithm 

and model fit, we consider full-sample model estimates based on current vintage data taken from 

the FAME database of the Federal Reserve Board. All growth and inflation rates are measured as 

annualized log changes (from t − 1 to t). 

In the real-time forecast analysis, output is measured as GDP or GNP, depending on data vin- 

tage. Inflation is measured with the GDP or GNP deflator or price index. For simplicity, hereafter 

“GDP” and “GDP price index” refer to the output or price series, even though the measures are 

based on GNP and a fixed weight deflator for some of the sample. Real-time data on GDP, PCE, 

BFI, residential investment, industrial production, capacity utilization, payroll employment, ag- 

gregate hours worked, the GDP price index, and the PCE price index are taken from the Federal 

Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomists (RTDSM). In the case 

of unemployment, interest rates, and the (nominal) stock price index, for which real-time revisions 

are small to essentially non–existent, we abstract from real-time aspects of the data and use current 

vintage data. 

Our analysis of real-time forecasts uses real-time data vintages from 1985:Q1 through 2014:Q2. 

As described in Croushore and Stark (2001), the vintages of the RTDSM are dated to reflect the 

information available around the middle of each quarter. For each forecast origin t starting with 

1985:Q1, we use the real-time data vintage t containing data through t − 1 to estimate the forecast 

models and construct forecasts for periods t and beyond. The forecast evaluation period runs 

from 1985:Q1 through 2013:Q4, and the forecasting models are estimated using data starting in 

1965:Q1. We report results for forecasts at horizons of 1, 2, 4, 8, and 12 quarters ahead. 

As discussed in such sources as Croushore (2006), Romer and Romer (2000), and Sims (2002), 

evaluating the accuracy of real-time forecasts requires a difficult decision on what to take as the 

actual data in calculating forecast errors. The GDP data available today for, say, 1985, represent 
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the best available estimates of output in 1985. However, output as defined and measured today is 

quite different from output as defined and measured years ago. For example, in the mid-1990s, 

the measure of national output switched from fixed-weight GNP to chain-weighted GDP. Forecast- 

ers in 1985 could not have foreseen such changes and the potential impact on measured output. 

Accordingly, we follow studies such as Clark (2011), Faust and Wright (2009), and Romer and 

Romer (2000) and use the second available estimates of the real-time measured variables as actu- 

als in evaluating forecast accuracy. For unemployment, interest rates, and the nominal stock price 

index, the real-time data correspond to the final vintage data. 

One final implementation detail to note is that we include four lags in all of our BVARs. With 

Bayesian methods that provide shrinkage, many prior studies have used the same approach of 

setting the lag length in line with the data frequency (e.g., Banbura, Giannone, and Reichlin (2010), 

Del Negro and Schorfheide (2004), Koop (2013), and Sims (1993)). 

 

4.2 MCMC convergence and efficiency 

 
We begin with documenting the convergence properties of our MCMC algorithm for the BVAR- 

CSV model. All results in the paper are based on a sample of 10,000 retained draws, obtained by 

sampling a total of 55,000 draws, discarding the first 5,000, and retaining every 5th draw of the 

post-burn sample. 

Table 1 reports summary statistics of inefficiency factors (IF) for the posterior estimates of all 

groups of model parameters, and rejection rates of Geweke’s (1992) test for equal means (within 

the single chain of draws). A value of the IFs below 20 is generally taken as indication that the 

chain has satisfactory mixing properties. As for the convergence diagnostic (last column), within 

the sets of parameter estimates, the rejection rates should be close to the theoretical size of the test 

(assuming independence of tests, for simplicity), which we have set at 10%. As is clear from the 

figures in Table 1, our algorithm shows satisfactory mixing and convergence properties. 
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4.3 Computational comparisons 

 
As we discussed above, the BVAR-GFSV and BVAR-SV models can become unmanageable as the 

dimension of the system increases, because the posterior covariance matrix of the reduced-form 

VAR coefficients does not feature a Kronecker structure and its manipulation involves (np + 1)3n3 

operations. On the other hand, the BVAR-CSV preserves such a Kronecker structure, and the 

manipulation of the posterior covariance matrix of the reduced-form VAR coefficients involves 

only (np + 1)3 + n3 operations. These numerical differences are relatively small in a system with 4 

variables and 4 lags, but become exponentially larger as the number of variables used increases. 

Table 2 shows (in the middle column) the computational time necessary to produce 10,000 

draws from the posteriors of the BVAR, BVAR-CSV, BVAR-GFSV, and BVAR-SV models, with 

4 and 14 variables. These figures, obtained using version 8.3 of RATS on a 3.2 GHz Intel CPU, 

highlight large differences in the computational burdens of the models (and in checks with some 

related models, the speed of RATS is comparable to the speed of Matlab). For the BVAR-CSV 

model with 14 variables, producing 10,000 draws takes about 40 minutes, a modest 8 minutes more 

than it takes to produce the same number of draws from a BVAR with constant volatility. However, 

for the BVAR-SV and BVAR-GFSV models with 14 variables, it takes more than 500 minutes to 

produce 10,000 draws. In practice, the times required for estimation are even greater than these 

numbers indicate, because (as shown in unreported mixing checks) the estimation algorithms for 

the more general models have poorer mixing properties. We give in the third column the actual 

number of draws we use in producing model estimates and forecasts reported below (or would use 

if we were to try to estimate the BVAR-SV and BVAR-GFSV models with 14 variables), which we 

set in light of the mixing properties of the estimation algorithm. In particular, for the BVAR-GFSV 

and BVAR-SV models, we used (or would use were large model estimation practicable) higher 

thinning intervals and more total draws in order to achieve inefficiency factors of the retained 

chains of draws that are broadly comparable to those reported for the BVAR-CSV model. In a 

real-time forecasting exercise that involves repeatedly estimating a model (at each forecast origin), 
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a roughly estimated time requirement of more than 5000 minutes of CPU per forecast for the 

BVAR-SV model or 10,000 minutes for the BVAR-GFSV model with 14 variables rules out their 

use. 

 

4.4 Model comparisons: volatility estimates and model fit 

 
For alternative models of time-varying volatility, one key aspect of performance is the ability to 

capture time variation in volatility and any commonality that might exist. For models using 4 

variables, Figure 2 shows estimates of volatility for each variable obtained with BVAR-GFSV, 

BVAR-SV, and BVAR-CSV specifications. All three estimates display very similar contours. The 

BVAR-GFSV and BVAR-SV estimates move very closely together. The BVAR-CSV estimate also 

moves closely with these estimates, although for some variables it shows a little more movement 

(e.g., GDP growth) and other variables it shows a little less movement (e.g., federal funds rate). 

Figure 3 provides alternative estimates of the commonality in volatility. In the 4 variable case, 

the top panel of the figure shows that the BVAR-CSV estimate of common volatility is very simi- 

lar to the BVAR-GFSV estimate of common volatility; the correlation between the two estimates 

is 0.99. This implies that the additional restrictions required to use the BVAR-CSV specifica- 

tion do not much harm the model’s ability to capture a common factor in volatility that matches 

up to a more general specification. In the 14 variable case, as noted above, the BVAR-GFSV 

is computationally intractable. As a measure of the ability of the BVAR-CSV to capture com- 

monality in volatility, the bottom panel of the figure compares the common factor estimate from 

the BVAR-CSV model to the first principal component of volatilities obtained from estimates of 

AR(2) models with stochastic volatility fitted for each variable. As is standard in factor analysis in 

macroeconomics, we standardized the individual variables’ volatilities before computing the prin- 

cipal component. In this 14 variable case, the commonality in the AR-SV estimates of volatility 

appears to be strong; the principal component explains 66 percent of the overall variation. The 

common factor estimate from the BVAR-CSV estimate seems to do an effective job of capturing 
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commonality in volatilities, in the sense that it moves fairly strongly with the principal component 

from individual AR-SV estimates, with a correlation of 0.85. 

Based on these results, it seems that, at least in applications to standard macroeconomic VARs 

in US data, our GFSV and CSV specifications can effectively capture time variation in conditional 

volatilities, including the commonality in the time variation. 

Of course, in real time, reliable estimation of volatility may prove to be more challenging, in 

part because, at the end of the sample, only one-sided filtering is possible, and in part because of 

data revisions. In results omitted for brevity, we have investigated this issue by comparing time 

series of (BVAR-CSV) volatility estimates from several different real-time data vintages. These 

comparisons yielded strong commonality in the volatility estimates for each vintage and volatility 

estimates that were very similar across vintages. 

To further compare the models, we use the marginal likelihood (ML) to assess the extent to 

which the CSV restrictions of (10) harm model fit. Table 3 displays the log ML for a range of mod- 

els. In the four variable case, we consider four models: a benchmark homoskedastic BVAR, the 

BVAR-SV, the BVAR-GFSV, and the BVAR-CSV. In the 14 variable case, in light of the computa- 

tional constraints described above, we consider just a homoskedastic BVAR and the BVAR-CSV. 

For the models with time-varying volatilities, we compute the ML using both the Chib (1995) 

method and the Modified Harmonic Mean (MHM) estimator described in Geweke (2005). For 

the simple BVAR, we compute the ML using (for comparison) these same two methods and the 

analytical solution available under the conjugate prior and posterior. 

Focussing first on the 4-variables models, the BVAR-SV features the highest ML. The BVAR- 

GFSV ML is smaller by 22.4 units when using the Chib method and by 6 units when using the 

MHM. When the additional restrictions (10) are imposed on the BVAR-GFSV, yielding the BVAR- 

CSV model, the ML decreases by 51.1 and 80.6 units, depending on the ML measure used. By 

completely removing time variation in the volatilities (BVAR), the ML further drops by 151.1 or 

78.6 points, depending on the ML measure.  In the 14 variable case, the BVAR-CSV features a 

D
o

w
n

lo
ad

ed
 b

y
 [

6
5

.2
5

4
.9

6
.1

9
] 

at
 1

9
:1

6
 0

7
 M

ay
 2

0
1

5
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
24 

 

 

 

 

much higher (more than 224 log points) ML than the homoskedastic BVAR. Overall, this evidence 

indicates that, while the BVAR-SV model offers the best data fit, the BVAR-GFSV is not too far off 

from it. While the additional restrictions required for the BVAR-CSV specification reduce model 

fit, this model still offers huge gains in model fit compared to a conventional BVAR with constant 

volatility. It also offers the opportunity to include time-varying volatility in the larger VAR models 

that some research has found to be preferable to smaller models. 

 

4.5 Real-time forecast results 

 
In this subsection we assess the forecasting performance of our proposed BVAR-GFSV and BVAR- 

CSV models. As mentioned above, the evaluation sample is 1985Q1-2013Q4, we consider five 

forecast horizons, and the exercise is conducted in a real-time manner, using recursive estimation 

with real-time data vintages. In robustness results available upon request, we have also examined 

forecast accuracy for a sample of 1985Q1-2008Q2, which omits the severe portion of the Great 

Recession and the subsequent slow recovery. Results for the shorter sample are qualitatively very 

similar to those reported below for the full sample. 

To assess the accuracy of first point and then density forecasts, we consider root mean square 

errors and average log predictive scores, respectively. To provide a rough gauge of whether dif- 

ferences in accuracy are significantly different, we use Diebold and Mariano (1995) t-statistics for 

equal MSE and equal average log score, applied to the forecast of each model relative to a constant 

volatility BVAR benchmark. We compute the tests with serial correlation-robust variances, using 

a rectangular kernel, h − 1 lags, and the small-sample adjustment of Harvey, Leybourne, and New- 

bold (1997). Our use of the Diebold-Mariano test with forecasts that are, in many cases, nested is a 

deliberate choice. Monte Carlo evidence in Clark and McCracken (2011, 2014) indicates that, with 

nested models, the Diebold-Mariano test for equal MSE compared against normal critical values 

can be viewed as a somewhat conservative (conservative in the sense of tending to have size mod- 

estly below nominal size) test for equal accuracy in the finite sample. As most of the alternative 
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models can be seen as nesting the benchmark, we treat the tests as one-sided, and only reject the 

benchmark in favor of the null (i.e., we don’t consider rejections of the alternative model in favor 

of the benchmark). 

 
4.5.1 Point forecasts 

 
For the small dataset of 4 variables, Table 4 reports the RMSE of each model relative to that of the 

BVAR, and the absolute RMSE for the BVAR. Hence, entries less than 1 indicate that the indicated 

model has a lower RMSE than the BVAR. 

The results in Table 4 point to two broad findings. First, including stochastic volatility in the 

BVAR systematically improves the point forecasts, and in general the gains are statistically signif- 

icant. For example, the BVAR-SV and BVAR-GFSV improve on the RMSE of the homoskedastic 

BVAR in 19 of 20 cases, and the BVAR-CSV improves on the BVAR in 18 out of 20. Most of the 

improvements at forecast horizons of 1, 2, and 4 quarters are significant. In the 4 cases in which 

the BVAR does best (all involving the federal funds rate forecasts, at 4 or 8 quarters ahead), the 

advantage is negligible, with the relative RMSFE falling between 1.001 and 1.007. 

Second, among the models featuring variations in the volatilities, the BVAR-CSV (which is 

the most parsimonious specification) is the one providing the best forecasts overall. In particular 

the BVAR-CSV provides the best forecasts in 11 cases out of 20, while the BVAR-GFSV and the 

BVAR-SV provide the best forecasts in 4 and 5 cases, respectively. GDP growth and inflation 

provide particular examples: the BVAR-CSV model improves on the RMSE of the baseline by up 

to 11.9 percent for GDP growth and up to 23.7 percent for inflation, depending on the horizon. 

Next, we consider forecasts based on the larger dataset of 14 variables. For a dataset of this 

size, the BVAR-SV and BVAR-GFSV are intractable in practice, so results can be computed only 

for the more parsimonious BVAR-CSV specification. Results are provided in Table 5. As with the 

small dataset, the evidence shows that including stochastic volatility in the BVAR systematically 

improves the point forecasts. The BVAR-CSV outperforms the homoskedastic BVAR in 51 cases 
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t+h|t 

 
 

 

 

out of 70. This evidence is stronger at short horizons: for horizons up to one year ahead, the BVAR- 

CSV outperforms the homoskedastic BVAR in 35 cases out of 42. This is not so surprising, as in the 

long horizons the benefits implied by modeling time variation in volatilities will be attenuated since 

the volatilities follow stationary AR processes and therefore would converge to their unconditional 

means at longer horizons. At shorter horizons, the gains obtained by the BVAR-CSV can be 

large, going up to 10-14 percent. The cases in which the homoskedastic BVAR performs better 

are mostly concentrated at long horizons and for some variables (unemployment and S&P500), 

and the corresponding gains are small, the highest being 5.3 percent (forecasts of unemployment 

1-quarter ahead). 

Finally, by comparing the BVAR results in Tables 4 and 5, it is clear that the use of the larger 

dataset improves the point forecasts, a result in line with several contributions in the literature, such 

as Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and Marcellino (2015), Giannone, 

Lenza and Primiceri (2012) and Koop (2013). 

 
4.5.2 Density forecasts 

 
The RMSE, while informative and commonly used for forecast comparisons, is based on the point 

forecasts only and therefore ignores the rest of the forecast density. Of course the introduction 

of drifting volatility in a VAR makes it particularly well suited for density forecasting; for a 4- 

variable model, Clark (2011) and Clark and Ravazzolo (2014) find that adding individual stochastic 

volatilities to a VAR significantly improves density forecasts. The overall accuracy of the density 

forecasts can be measured with log predictive density scores, motivated and described in such 

sources as Geweke and Amisano (2010). At each forecast origin, we compute the log predictive 

score using the quadratic approximation of Adolfson, Linde, and Villani. (2007).1 Specifically, we 

compute the log score as: 

st(y
o

 
) = −0.5 n log(2π) + log |Vt+h|t| + yo

 − ȳ t+h|t  
′ 

V−1
 

o 
t+h 

− ȳ t+h|t    , (36) 

 
 

1In some limited checks, we obtained qualitatively similar results with some other approaches to computing the 

y 
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t+h 

 

 

where yo
 denotes the observed outcome, ȳ t+h|t denotes the posterior mean of the forecast distribu- 

 

tion, and Vt+h|t denotes the posterior variance of the forecast distribution. 

For the small dataset of 4 variables, Table 6 reports differences in log scores with respect to the 

homoskedastic BVAR, such that entries greater than 0 indicate that the model has a better average 

log score (better density forecast) than the benchmark BVAR model. In these results, adding 

stochastic volatility to a BVAR model almost always improves the density forecasts (relative to a 

constant volatility BVAR), with some exceptions for 2- and 3-year ahead forecasts. The fact that 

the relative gains stemming from modeling time variation in volatilities are more marked at shorter 

forecast horizons is reasonable, as it is at short horizons that the homoskedastic specification will 

more likely under- or over- estimate the uncertainty around the point forecasts. Instead, the models 

with changing volatility can quickly update its estimate of the current volatility in the economy. 

This very characteristic, however, can turn into a disadvantage when forecasting at long horizons. 

Indeed, if (at a given forecast origin) a sharp, sudden increase in volatility happens well into in 

the future, the homoskedastic model has an advantage in forecasting at long horizons because by 

construction the model’s predictive density is based on the unconditional variance over the sample, 

which is kept higher by periods such as the era preceding the Great Moderation that began in about 

1984. 

Looking at all forecast horizons, the BVAR-CSV fares relatively better than the BVAR-GFSV 

and the BVAR-SV, outperforming both these models in 11 out of 20 cases. At 1- and 2- quarters 

ahead, the BVAR-GFSV and the BVAR − CS V systematically produce the best density 

forecasts, outperforming the homoskedastic BVAR and the BVAR-SV. The gains at such 

horizons can be substantial, often on the order of 20-30 percent and up to 58.3 percent in 

forecasting the federal funds rate. At longer forecast horizons, the BVAR-SV is performing 

better than the other drifting volatility specifications, but it is still sometimes outperformed by the 

homoskedastic BVAR. 

We now turn our attention to results for large 14 variable dataset displayed in Table 7. As previ- 

ously indicated, for such a large dataset a real-time forecasting exercise can only be implemented 
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for the BVAR and BVAR-CSV models. The results show that the BVAR-CSV systematically im- 

proves over the homoskedastic BVAR, with gains which are often significant. The gains are in the 

range of 1-10 percent for most variables, but become very high for some variables, notably the 

federal funds rate, for which the gain against the homoskedastic specification is 33.5 percent at 1 

quarter ahead. The BVAR only rarely performs better (in just 8 cases out of 70, with the largest 

gain being 6 percent). 

Finally, by comparing the BVAR results in Tables 6 and 7, it is clear that the use of the larger 

dataset generally improves the density forecasts, a result in line with Carriero, Clark, and Mar- 

cellino (2015), Giannone, Lenza and Primiceri (2012), and Koop (2013). 

 
 

5 Conclusions 

 
In this paper we first propose, in a small model setting, to model conditional volatilities as driven 

by a combination of a single common unobserved factor and idiosyncratic components (BVAR- 

GFSV model). We provide evidence that the loss in terms of marginal likelihood from assuming a 

common factor (rather than more generally correlated volatilities) is moderate, and that the result- 

ing estimates of the volatilities are reasonable when compared to other models. We then consider 

a special case of this model in which the idiosyncratic component is eliminated and the loadings 

on the factor are set to 1 for all the conditional volatilities (BVAR-CSV model). Such restrictions 

permit a convenient Kronecker structure for the posterior variance of the VAR coefficients, which 

in turn allows one to estimate the model with large datasets. 

Of course, the possibility of estimating a large system does not come without a cost. In particu- 

lar, the restrictions discussed above do not necessarily hold in a typical dataset of macroeconomic 

and financial variables, especially so as the cross-sectional dimension grows. Therefore there is a 

trade-off between (1) using the more general BVAR-GFSV model, giving up on using the informa- 

tion available in a large dataset, and (2) using a model which may be more likely to be misspecified, 

such as the BVAR-CSV, to take advantage of large information sets. 
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In our empirical analysis, we show that, with a small model, while the BVAR-CSV specification 

does not fit the data (as measured by the marginal likelihood) as well as more general volatility 

specifications, it improves substantially on the fit of a BVAR with constant volatility. Moreover, the 

BVAR-CSV specification yields volatility estimates very similar to those obtained with the more 

general specifications. Similarly, with a large model, the BVAR-CSV specification fits the data 

much better than a conventional BVAR. We then show that the BVAR-CSV provides systematic 

improvements in real-time point and density forecasts compared to the standard homoskedastic 

BVAR when using a large dataset, while in a small dataset it has a performance at the very least 

comparable to both the BVAR-GFSV and the BVAR with correlated drifting volatilities similar to 

the specification of Primiceri (2005). 

We interpret these results as evidence that our proposed BVAR-CSV specification efficiently 

summarizes the information in a possibly large dataset while at the same time accounts for chang- 

ing volatility, which considerably improves density forecast accuracy. For these reasons this class 

of models should have a wide range of applicability for forecasting and possibly also for policy 

simulation exercises. Admittedly, however, there are likely to be limits to the size of the model for 

which our common factor specification yields benefits. The larger the model becomes the greater 

the misspecification posed by our common factor restrictions may become, such that the misspec- 

ification effects could outweigh the stochastic volatility gains. We leave to further research the 

exploration of the model size and variable sets for which this occurs. 

 

 

6 Appendix 

 
This appendix provides the following additional information: the prior and posterior for the BVAR- 

GFSV model, priors for the BVAR-SV and BVAR models, and further detail on the computational 

gains associated with the BVAR-CSV specification. 
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6.1 BVAR-GFSV priors and posteriors 

 
Drawing on the model notation given in section 2.1, let aj, j = 2, . . . , n denote row j of the matrix 

A, and collect the volatility process parameters in vectors β = (β1, ..., βn) and γ = (γ1,0, ..., γn,0, 

γ1,1, ..., γn,1, ψ) and the matrix Φ = Var(e1,t, ..., en,t, ut), whose generic element is labelled φ j. Let 

Λ denote the history of Λt from 1 to T and f and h denote the histories of the common factor and 

idiosyncratic components of volatility. 

We specify the following (independent) priors for the parameter blocks of the model: 
 
 

vec(Π)|A   ∼ N(vec(μ 
Π 

), ΩΠ), (37) 

aj ∼ N(μ 
a, j 

, Ωa, j), j = 2, . . . , n, (38) 

β   ∼ N(μ 
β 

γ   ∼ N(μ 
γ 

, Ωβ), (39) 

, Ωγ), (40) 

φ j ∼ IG(dφ ∙ φ, dφ), j = 1, . . . , n + 1. (41) 

 

The prior mean and variance of Π take the common Minnesota form (without cross-variable 

shrinkage), using the hyperparameters described for the BVAR-CSV model For the rows a j of the 

matrix A, we follow Cogley in Sargent (2005) and make the prior fairly uninformative, with prior 

means of 0 and variances of 10 for all coefficients. For the factor loadings β j, j = 1, ..., n, we use a 

prior mean of 1 and a standard deviation of 0.5. For the slope coefficients of the log factor process 

ψ we use a mean of 0.9 and a standard deviation of 0.3. For the coefficients of the idiosyncratic 

processes γ1,0, ..., γn,0, γ1,1, ..., γn,1 we use a prior mean on the slope coefficient of 0, and a prior 

mean on the intercept based on OLS estimates of residual variances in the training sample. The 

prior standard deviation is 1 for the intercept and 0.4 for the slope coefficients, with covariance of 

0. For the innovations to volatility φ1, ..., φn+1, we use a mean of 0.01 for the common factor and 

of 0.03 for the idiosyncratic components, with 4 degrees of freedom for each. 

Under these priors, the parameters Π, Σ, β, γ, and Φ have the following closed form conditional 

D
o

w
n

lo
ad

ed
 b

y
 [

6
5

.2
5

4
.9

6
.1

9
] 

at
 1

9
:1

6
 0

7
 M

ay
 2

0
1

5
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
31 

 

 

jt 

t 

j,t j,t 

j,t 

 

 

posterior distributions: 

 

vec(Π)|A, Λ, y  ∼ N(vec(μ̄ Π), Ω̄ 
Π), (42) 

a j|Π, Λ, y   ∼ N(μ̄ a, j, Ω̄ 
a, j), j = 2, . . . , n, (43) 

β|Π, A, γ, Φ, f, h, y  ∼ N(μ̄ β, Ω̄ 
β), (44) 

γ|Π, A, β, Φ, f, h, y  ∼ N(μ̄ γ, Ω̄ 
γ), (45) 

 
T 

 
φ j|Π, A, β, γ, f, f, y  ∼ IG dφ ∙ φ + 

X 
ν2 , dφ + T  , j = 1, . . . , n + 1. (46)  

t=1  
 

Expressions for μ̄ β  and μ̄ γ  are straightforward to obtain using standard results from the linear 

regression model.  For the VAR coefficients, the posterior mean and variance of the conditional 

posterior are given by: 

(  
T 

 ) 
vec(μ̄ Π)  = Ω̄ 

Π
 vec 

X 
Xty

′ AΛ−1 A′)  + 
Ω−1vec(μ ) 

(47) 

 

Ω̄ 
−1 

 
 
 

    
−1 

 

t=1 

T 
X 

t t  Π Π 

−1  ′ ′ 

Π =  ΩΠ  +  

t=1 

(AΛt   A ⊗ Xt Xt ), (48) 

 

which as discussed in Section 2.5 do not have an overall Kronecker structure. 

Draws from these conditionals will constitute Gibbs sampling steps in our MCMC algorithm. 

The algorithm is completed by drawing the unobserved states αt = (ln h1,t, ln h2,t, . . . , ln hn,t, ln 

ft)
′. In particular, following the same steps as described in Section 2.6 for the BVAR-CSV 

model, one can derive the following observation equations for the generic j-th element of ṽ2: 

 

ln(ṽ2
 + c̄ ) = β j ln ft + ln h j,t + ln ǫ2 . (49) 

 

The state-space representation is completed by adding a transition equation based on equations (7) 
 

- (8). In the equations above ln ǫ2
 is not Gaussian, but ǫ j,t is a Gaussian process with unit variance; 

 

therefore we can use the mixture of normals approximation of KSC to estimate volatility with a 

Gibbs sampler, first drawing the states of the mixture and then drawing volatility conditional on 
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6.2 BVAR-SV and BVAR priors 

For the BVAR-SV, the prior is specified similarly to the other models. For the VAR coefficients, the 

prior has the Minnesota-type structure described above. For A, the prior is mostly uninformative, 

as described above for the BVAR-GFSV specification. For the AR processes of log volatility, the 

normal prior has a mean of 0.9 for the slope and intercept set to be consistent with the log of least- 

squares estimates of residual variances in a 40 observation training sample preceding the estimation 

sample. The corresponding standard deviations are set to 0.2 and 0.5 (with zero covariance). For 

the variance-covariance matrix of innovations to log volatility, the inverse Wishart prior has a prior 

mean of 0.01 × In and n + 2 degrees of freedom. 

For the BVAR, the prior for the VAR coefficients has the Minnesota-type structure described 

above. The inverse Wishart prior for the error variance-covariance matrix has a mean equal to a 

diagonal matrix containing residual variances from AR models fit to the data sample and n + 2 

degrees of freedom. 

 

6.3 Computational gains from CSV restrictions 

 
We conclude the appendix by illustrating in more detail how the computational gains of the CSV 

specification arise. An intuitive way to obtain a draw of vec(Π) from (22) when the prior variance 

does not necessarily feature a Kronecker structure (as is the case for the BVAR-GFSV and BVAR- 

SV), is to generate a random vector g and compute: 

vec(Π)draw = vec(μ̄ Π) + chol[Ω̄ 
Π] × g (50) 

where g is an nk × 1 standard Gaussian vector process. The inversion of the nk-dimensional square 

matrix Ω̄ 

−1
 

and the computation of its Cholesky factor chol[Ω̄ 
Π] both require n3k3  elementary 

operations. Then the multiplication chol[Ω̄ 
Π] × g requires further n3k3  operations, for a total of 

3n3k3 elementary operations needed to compute a single draw of vec(Π). 
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If the model coefficients have a posterior variance with a Kronecker structure such as the one 

in (27), it is possible to dramatically reduce the number of computations. In this case, drawing a 

k × n matrix of standard normal random variables G, a draw of Π can be obtained as follows: 
−1  

 
T 

1 
 

Πdraw = μ̄ Π + chol Ω−1 + 
X

( Xt 
X′)  

 
× G × chol[Σ]′. (51) 

 
t=1    

ft     

The scheme above involves the inversion of a k-dimensional square matrix and the computation 

of two Cholesky terms of size k and n respectively, which require 2k3 + n3 elementary operations. 

Then the multiplications involve n2k + nk2 further operations, for a total of 2k3 + n3 + n2k + nk2. 

Therefore, given that k = np + 1, the time complexity implied by (50) is of order O(n6 p3), while 

that implied by (51) is of order O(n3 p3), i.e. n3 times smaller. 
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Table 1. Mixing and Convergence Statistics for BVAR-CSV Specifications 
 

parameter 

block 

# of 

parameters 

median 

IF 

mean 

IF 

min 

IF 

max 

IF 

CD rejection 

rate (%) 

4 variables       
Π 68 1.08 1.29 0.70 5.74 4.4 

Σ 10 11.77 11.02 1.55 18.67 10.0 

φ 1 6.62 6.62 6.62 6.62 0.0 

ψ 1 4.71 4.71 4.71 4.71 0.0 

Λ 196 5.42 5.46 3.27 7.55 0.0 

14 variables       

Π 798 0.95 0.96 0.42 1.84 7.6 

Σ 105 2.65 3.61 0.60 10.53 1.0 

φ 1 5.06 5.06 5.06 5.06 0.0 

ψ 1 2.99 2.99 2.99 2.99 0.0 

Λ 196 3.14 3.19 1.57 5.44 2.6 
 

Notes: 

1. All results are based on a sample of 10,000 retained draws, obtained by sampling a total of 55,000 draws, discarding the first 5,000, 

and retaining every 5th draw of the post-burn sample. 

2. For each individual parameter, the inefficiency factor is estimated as 1 + 2 
P∞ ρk , where ρk is the k-th order autocorrelation of the 

chain of retained draws. The estimates use the Newey-West kernel and a bandwidth of 4 percent of the sample of retained draws. 

3. The last column of the table provides the percentage of parameters within each block for which Geweke’s (1992) convergence 

diagnostic test rejects equal means, using a significance level of 10%. 

 

 

 
 

 
 

Table 2. CPU time requirements for different models 
 

model CPU time 

(minutes) 

10,000 draws 

actual number of 

draws used or needed 

in estimation 
BVAR, 4 variables, 4 lags 0.24 10,000 

BVAR, 14 variables, 4 lags 32.97 10,000 

BVAR-SV, 4 variables, 4 lags 4.73 105,000 

BVAR-SV, 14 variables, 4 lags 505.64 105,000 

BVAR-GFSV, 4 variables, 4 lags 6.02 205,000 

BVAR-GFSV, 14 variables, 4 lags 517.30 205,000 

BVAR-CSV, 4 variables, 4 lags 2.30 55,000 

BVAR-CSV, 14 variables, 4 lags 40.17 55,000 
Note: The reported CPU run times are medians across 10 different sets of model estimates (different MCMC 

chains), generated using version 8.3 of RATS on a 3.2 GHz Intel CPU. 
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Table 3. Marginal likelihoods, 

1965:Q1-2013:Q4 model estimates 
 

model analytical 

solution 

Chib modified 

harmonic mean 
4 variables 

BVAR -1097.5 -1097.5 -1097.6 

BVAR-SV NA -872.9 -932.4 

BVAR-GFSV NA -895.3 -938.4 

BVAR-CSV NA -946.4 -1019.0 

14 variables 

BVAR -5644.1 -5644.1 NA 

BVAR-CSV NA -5419.9 NA 

 

Table 4. Forecast RMSEs, 4-variable BVARs, 1985-2013 

(RMSEs for BVAR benchmark, RMSE ratios in all others) 
 

 

 h = 1Q h = 2Q h = 4Q h = 8Q h = 12Q 

BVAR 

GDP growth 2.622 2.872 2.883 2.545 2.312 

Unemployment 0.241 0.484 0.995 1.679 1.873 

GDP inflation 1.091 1.168 1.384 1.991 2.413 

Fed funds rate 0.485 0.843 1.451 2.483 3.105 

BVAR-SV 

GDP growth 0.930 *** 0.902 *** 0.901 ** 0.924 0.981 

Unemployment 0.990 0.971 0.951 * 0.958 0.979 

GDP inflation 0.954 *** 0.937 *** 0.891 *** 0.854 *** 0.821 *** 

Fed funds rate 0.889 *** 0.937 ** 0.977 1.001 0.988 

BVAR-GFSV 

GDP growth 0.934 *** 0.906 *** 0.908 ** 0.937 0.992 

Unemployment 0.985 0.967 * 0.951 * 0.966 0.996 

GDP inflation 0.950 *** 0.936 *** 0.889 *** 0.844 *** 0.809 *** 

Fed funds rate 0.887 *** 0.935 ** 0.980 1.007 0.999 

BVAR-CSV 

GDP growth 0.898 *** 0.881 *** 0.905 ** 0.956 1.013 

Unemployment 0.997 0.967 0.941 * 0.955 1.001 

GDP inflation 0.944 *** 0.932 *** 0.876 *** 0.815 *** 0.763 *** 

Fed funds rate 0.953 * 0.967 1.002 1.004 0.982 
 

For the forecasts from the BVARs with common stochastic volatility, entries less than 1 indicate the model has a lower RMSE than 

the benchmark. To provide a rough gauge of whether the RMSE ratios are significantly different from 1, we use the Diebold-Mariano 

t-statistic for equal MSE. Differences in accuracy that are statistically different from zero are denoted by one, two, or three asterisks, 

corresponding to significance levels of 10%, 5%, and 1%, respectively. The underlying p-values are based on t-statistics computed with 

a serial correlation-robust variance, using a rectangular kernel, h − 1 lags, and the small-sample adjustment of Harvey, Leybourne, and 

Newbold (1997). 
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Table 5. Forecast RMSEs, 14-variable BVARs, 1985-2013 

(RMSEs for BVAR benchmark, RMSE ratios in all others) 
 

 

 h = 1Q h = 2Q h = 4Q h = 8Q h = 12Q 

BVAR 

GDP growth 2.327 2.563 2.618 2.597 2.437 

Consumption 2.352 2.424 2.535 2.425 2.299 

BFI 8.346 9.076 9.764 10.032 10.245 

Res. inv. 13.958 16.382 17.019 15.370 15.016 

Ind. prod. 3.977 5.121 5.519 5.456 5.276 

Cap. util. 1.020 1.874 3.250 5.059 5.870 

Employment 0.952 1.468 1.983 2.240 2.198 

Hours 1.736 2.391 2.884 2.898 2.814 

Unemployment 0.205 0.403 0.814 1.490 1.817 

GDP inflation 1.081 1.139 1.420 1.870 2.144 

PCE inflation 1.633 1.796 1.884 2.007 2.251 

Fed funds rate 0.662 1.104 1.628 2.238 2.621 

Term spread 0.533 0.758 0.967 1.139 1.257 

S&P 500 25.872 26.537 27.495 27.554 27.353 

BVAR-CSV 

GDP growth 0.962 ** 0.969 1.022 0.990 0.981 * 

Consumption 0.985 0.988 1.012 1.035 1.014 

BFI 0.982 0.986 0.993 1.010 1.004 

Res. inv. 0.976 0.942 * 0.922 ** 0.930 ** 0.985 

Ind. prod. 0.970 ** 0.970 ** 0.994 0.980 0.972 * 

Cap. util. 0.960 *** 0.955 *** 0.974 ** 0.969 0.929 

Employment 0.963 * 0.944 ** 0.955 0.954 0.938 * 

Hours 0.986 0.959 ** 0.973 0.981 0.969 * 

Unemployment 1.053 1.022 1.003 1.006 1.014 

GDP inflation 0.974 0.952 *** 0.921 *** 0.917 ** 0.922 

PCE inflation 0.978 * 0.948 *** 0.936 *** 0.930 * 0.937 

Fed funds rate 0.861 *** 0.879 ** 0.945 ** 1.010 1.044 

Term spread 0.926 *** 0.938 ** 0.996 1.028 1.071 

S&P 500 0.999 1.012 1.002 1.003 1.009 
 

Note: See the notes to Table 4. 
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Table 6. Average log predictive scores, 4-variable BVARs, 1985-2013 

(avg. score for benchmark BVAR, differences in scores in all others) 
 

 

 h = 1Q h = 2Q h = 4Q h = 8Q h = 12Q 

BVAR 

all variables -4.911 -6.181 -7.872 -9.362 -9.638 

GDP growth -2.423 -2.501 -2.526 -2.487 -2.453 

Unemployment -0.035 -0.733 -1.701 -2.679 -2.627 

GDP inflation -1.530 -1.631 -1.811 -2.127 -2.309 

Fed funds rate -1.136 -1.533 -1.951 -2.382 -2.586 

BVAR-SV 

all variables 0.967 *** 0.831 *** 0.673 *** 0.155 -0.157 

GDP growth 0.159 *** 0.150 *** 0.127 *** 0.089 ** 0.051 *** 

Unemployment 0.215 *** 0.157 ** 0.022 -0.180 -0.453 

GDP inflation 0.061 *** 0.089 *** 0.129 *** 0.142 *** 0.187 *** 

Fed funds rate 0.547 *** 0.349 *** 0.114 -0.027 -0.060 

BVAR-GFSV 

all variables 1.006 *** 0.855 *** 0.581 ** -0.210 -0.757 

GDP growth 0.179 *** 0.176 *** 0.145 *** 0.083 0.025 

Unemployment 0.223 *** 0.143 * -0.064 -0.435 -0.921 

GDP inflation 0.061 ** 0.095 *** 0.142 *** 0.133 *** 0.175 *** 

Fed funds rate 0.583 *** 0.366 *** 0.090 -0.132 -0.236 

BVAR-CSV 

all variables 0.930 *** 0.862 *** 0.627 *** 0.045 -0.395 

GDP growth 0.203 *** 0.184 *** 0.137 *** 0.092 ** 0.007 

Unemployment 0.231 *** 0.172 * -0.015 -0.233 -0.706 

GDP inflation 0.067 ** 0.093 ** 0.150 *** 0.156 *** 0.228 *** 

Fed funds rate 0.465 *** 0.332 *** 0.089 -0.136 -0.237 
 

For the forecasts from the BVARs with common stochastic volatility, entries greater than 0 indicate the model has a better average 

log score (better density forecast) than the benchmark model. To provide a rough gauge of the statistical significance of differences 

in average log scores, we use a Diebold-Mariano t-test of equal average log scores. Differences in average scores that are statistically 

different from zero are denoted by one, two, or three asterisks, corresponding to significance levels of 10%, 5%, and 1%, respectively. 
The underlying p-values are based on t-statistics computed with a serial correlation-robust variance, using a rectangular kernel, h − 1 

lags, and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997). 
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Table 7. Average log predictive scores, 14-variable BVARs, 1985-2013 

(avg. score for benchmark BVAR, differences in scores in all others) 
 

 

 h = 1Q h = 2Q h = 4Q h = 8Q h = 12Q 

BVAR 

All variables -27.356 -29.856 -32.620 -35.172 -36.295 

GDP growth -2.351 -2.446 -2.508 -2.550 -2.543 

Consumption -2.274 -2.324 -2.384 -2.385 -2.365 

BFI -3.507 -3.644 -3.746 -3.763 -3.789 

Res. inv. -4.066 -4.228 -4.319 -4.330 -4.329 

Ind. prod. -2.859 -3.092 -3.199 -3.233 -3.228 

Cap. util. -1.480 -2.078 -2.693 -3.179 -3.290 

Employment -1.421 -1.815 -2.136 -2.254 -2.259 

Hours -2.092 -2.342 -2.526 -2.571 -2.577 

Unemployment 0.117 -0.519 -1.320 -2.161 -2.333 

GDP inflation -1.508 -1.602 -1.829 -2.096 -2.233 

PCE inflation -1.941 -2.021 -2.073 -2.173 -2.300 

Fed funds rate -1.186 -1.621 -1.999 -2.329 -2.473 

Term spread -0.796 -1.142 -1.403 -1.582 -1.668 

S&P 500 -4.680 -4.725 -4.758 -4.758 -4.744 

BVAR-CSV 

All variables 0.868 *** 0.893 *** 0.572 *** 0.183 0.099 

GDP growth 0.071 *** 0.074 *** 0.042 * 0.068 *** 0.053 *** 

Consumption 0.039 ** 0.028 * 0.023 0.012 0.014 

BFI 0.068 * 0.068 0.008 0.018 0.004 

Res. inv. 0.135 *** 0.128 *** 0.123 *** 0.094 *** 0.052 

Ind. prod. 0.077 *** 0.084 ** 0.034 0.060 *** 0.043 ** 

Cap. util. 0.094 *** 0.089 ** 0.067 * 0.073 0.066 

Employment 0.086 *** 0.099 *** 0.079 ** 0.071 ** 0.059 ** 

Hours -0.051 0.012 0.022 0.024 0.005 

Unemployment 0.142 *** 0.112 ** 0.067 0.065 -0.027 

GDP inflation 0.064 *** 0.070 *** 0.084 *** 0.093 *** 0.101 *** 

PCE inflation 0.047 0.058 * 0.046 ** 0.098 *** 0.081 ** 

Fed funds rate 0.335 *** 0.287 *** 0.156 *** 0.045 -0.005 

Term spread 0.140 *** 0.086 *** 0.009 -0.062 -0.092 

S&P 500 0.059 * 0.008 -0.001 -0.008 -0.011 
 

Note: See the notes to Table 6. 
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Figure 1: Volatility estimates (defined as standard deviations) from AR-SV models, final vintage 

data 
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BVAR-GFSV and BVAR-CSV common volatility estimates, 4 variables 

 
3.0 

 
2.5 

 
2.0 

 
1.5 

 
1.0 

 
0.5 

 
0.0 

 

1965     1970     1975     1980     1985     1990     1995     2000     2005     2010 
 

 
 
 

 
 

2.50 
BVAR-CSV common volatility vs. principal component from AR-SV, 14 variables  

3.0 

 

2.25 2.5 

 

2.00 2.0 

 

1.75 1.5 

 

1.50 1.0 

 

1.25 0.5 

 

1.00 0.0 

 

0.75 -0.5 

 

0.50 -1.0 

 

0.25 
 

1965    1970    1975    1980    1985    1990    1995    2000    2005    2010 
-1.5 

 

 
 

Figure 3: Top panel: Common volatility (defined as standard deviations) estimates from BVAR- 

GFSV and BVAR-CSV models, 4 variables, final vintage data. Bottom panel: Principal component 

of AR-SV estimates of volatility versus BVAR-CSV common volatility, 14 variables, final vintage 

data 
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