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Endowment redistribution and Pareto

improvements in GEI economies

C. Mendolicchio, IAB T. Pietra∗, DSE, Università di Bologna

June 25, 2016

Abstract

With incomplete markets and numeraire assets, there are open sets of
economies such that their equilibrium allocations can be improved upon by
a reallocation of period zero endowments. This strengthens the classical
results on constrained Pareto inefficiency of equilibria in GEI.

Keywords: GEI, constrained Pareto optimality.

1 Introduction

In the absence of completeness of financial markets, equilibrium allocations are
typically Pareto inefficient. In fact, the set of equilibrium allocations itself may
be Pareto ranked, completely, as in the Hart (1975) example, or partially, as
in Pietra (2004) and Salto and Pietra (2013).1 In economies with real assets,
however, Pareto ranking of equilibria is the exception, and it becomes important
to formulate an appropriate efficiency criterion. The canonical definition of con-
strained Pareto optimality (CPO) has been introduced by Stiglitz (1982) and
developed by Geanakoplos and Polemarchakis (1986) and Citanna, Kajii and
Villanacci (1998). It rests on the idea that the minimal efficiency requirement
that an equilibrium allocation should satisfy is that it cannot be improved upon
by a reallocation of asset holdings, and by the adjustment of prices required to
restore the equilibrium in the commodity markets. Adopting the convenient fic-
tion of a benevolent planner, this notion of CPO endows her with fairly limited
instruments and, most important, it allows her to affect directly the intertem-
poral allocation of individual incomes using only the opportunities offered by
the set of available assets. The possibility of improving upon the equilibrium
allocation using portfolio reallocations rests on the welfare effects of the induced
changes in equilibrium prices.

∗The second author acknowledges the financial support of the Italian MIUR, PRIN 2011.
1These last two papers deal with economies with nominal asset and, therefore, indeter-

minate equilibria. Under appropriate restrictions, generically each equilibrium allocation is
Pareto inferior to some other equilibrium allocation.
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Different notions of constrained efficiency can be developed, in much the
same spirit, by choosing other policy instruments. Herings and Polemarchakis
(2004) show that, under suitable regularity conditions, price regulation can at-
tain a Pareto improvement over fix-price equilibria. Citanna, Polemarchakis
and Tirelli (2006) show that taxation of asset trades may also induce Pareto
improvements.
Here, we consider an alternative notion, which allows the planner to reallo-

cate incomes just in the initial trading period, letting the agents choose their
individually optimal portfolios and consumption bundles at the new equilibrium
prices. Our notion shares the same basic idea behind the canonical Geanako-
plos and Polemarchakis’s criterion: the planner chooses the value of a policy
instrument, allows people to choose their optimal behavior, and adjusts prices
to restore market clearing. Evidently, to use period 0 endowment realloca-
tions as policy tools is fully coherent with the absence of some assets.2 In GEI
models, the market failure is due to the distorted intertemporal allocation of
incomes. Hence, it could appear harder to implement a Pareto improvement
just by reallocating time 0 endowments. However, we show that there are open
sets of economies such that this can be obtained, so that their equilibria are not
CPO according to our criterion. Clearly, a key role is played by the choice of
the specific vector of lump-sum taxes. Thus, the policy intervention cannot be
anonymous (see Kajii (1994)).
There are several motivations for this paper. Its core issue - "can we improve

upon a GEI equilibrium allocation by reallocating just period 0 endowments?"
- has been around for a long time. It looks interesting to settle it. Our answer is
only partially positive. We show that, first, given any specification of an econ-
omy in terms of numeraire asset structure and preferences, there are open sets of
endowments such that the associated equilibria are CPO. Therefore, endowment
reallocations are not generically sufficient to guarantee the possibility to attain
some Pareto improvement. Secondly, we construct sets of economies where an
appropriate period 0 endowment reallocation induces a Pareto improvement.
These sets are open in the space of the economies. The same results hold even
if we restrict the analysis to time-separable, or VNM, utility functions.
We believe that this second result is of interest for at least two additional

reasons. First, this is, in a limited, but important, way, a counterexample to the
claim that you need at least H independent policy instruments to implement
H policy aims. As pointed out by Citanna et al. (1998), this viewpoint goes
back to Tinbergen (1956). In our set up, there are H policy aims (the changes
in the equilibrium utility of H agents) and (H − 1) independent instruments.
Still, by properly exploiting the welfare effects of the induced price changes, we
can attain a Pareto improvement for some open set of economies. Of course, the
real issue is how we define a "policy aim." It is certainly true that, in general,
at least H independent policy instruments are required to attain each specific
vector of utility improvements, du ≡ (du1, ..., duH), so that this cannot be ob-

2 It is essential that the income transfers take place just in period zero. Otherwise, we
would implicitly allow the planner to manufacture personalized assets, so that she could
actually attain full Pareto optimality.
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tained by reallocating endowments at time zero. However, if you just aim to
implement any du > 0, less than H policy tools may be enough. The point
is that the result established in Geanakoplos and Polemarchakis (1986) and in
Citanna et al (1998) is much stronger than what is strictly required. Their
CPO criterion simply requires that, by some policy intervention, we can attain
some positive vector of changes in the equilibrium level of the utility of each
agent. However, they provide conditions such that one can attain each positive
vector. Not surprisingly, a stronger result requires stronger restrictions on the
class of economies and of policy profiles than the ones minimally required. It
must be stressed that our first result mentioned above implies that no generic
constrained inefficiency result is possible if we just allow for endowment reallo-
cations. Therefore, from this point of view, there is a compelling motivation for
the adoption of a different, and, in a sense, larger, set of policy instruments as
in Geanakoplos and Polemarchakis (1986) and in Citanna et al (1998).
Secondly, the kind of policy intervention considered in Geanakoplos and

Polemarchakis (1986) could somehow be read as suggesting that the inefficiency
associated with market incompleteness dictates Pareto improving measures re-
lated to interventions in the working of the financial markets - in their frame-
work, to impose a portfolio to each agent - or, more generally, to intertemporal
policies. Our result shows that efficiency can be improved using just time 0
lump-sum taxes.
The next section briefly presents the model. Section 3 formalizes our notion

of constrained Pareto optimality and establishes our main results. Some final
remarks follow.

2 The Model

We consider a standard GEI model with numeraire assets. There is a finite set
of agents (h = 1, ...,H) and a finite set of commodities (c = 1, ..., C) at each of
(S + 1) spots, s = 0, ..., S. A consumption plan is xh ≡

(
x0h, x

1
h, ..., x

S
h

)
∈

R
(S+1)C
+ , a portfolio is bh ≡

(
b1h, ..., b

J
h

)
∈ R

J
+. Commodity prices are p ≡(

p0, p1, ..., pS
)
∈ R

(S+1)C
++ , asset prices are q ≡

(
q1, ..., qJ

)
∈ R

J . As usual,
we normalize to 1 the price of good 1 in each spot. Asset trade takes place at
spot 0.3 Asset payoffs are defined in terms of the numeraire commodity and
described by a (S × J) matrix R of full rank

R =



r11 r1J

...
. . .

...
rS1 rSJ


 .

3A standard interpretation is that there are two periods and uncertainty on tomorrow state
of the world. In view of the structure of some of the examples below, it is better to think of it
as a multiperiod model, with or without uncertainty. The essential feature is that asset trade
takes place just at time 0.
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Finally, uh (xh) is agent h’s utility function, satisfying the standard assump-
tions for the differential analysis of equilibria: for each h, uh (xh) is C2, strictly
monotone, differentiably strictly quasi-concave in xh, and satisfies the bound-
ary conditions: the closure of the set {xh : uh(xh) ≥ uh(xh)} is contained in
R
(S+1)C
++ , for each xh ≫ 0.
Consumers’ behavior is described by the optimal solution to the problem:

Given (p, q), choose

(xh, bh) ∈ argmaxuh (xh) subject to

p0
(
x0h − ω0h

)
≡ p0z0h = −qbh, (U)

ps (xsh − ωsh) ≡ pszsh = r
sbh, for each s > 0,

where ωh ≡
(
ω0h, ω

1
h, ..., ω

S
h

)
∈ R(S+1)C++ is the initial endowment vector.

Given R, an economy is a profile {..., (uh(.), ωh) , ...} ∈ E where the space
of endowments is endowed with the standard topology, and the one of utility
functions with the C2 compact-open topology, E with the product topology.
Let λh ∈ RS+1

++ be the vector of Lagrange multipliers associated with the op-
timal solution to optimization problem (U). We do not impose that preferences
can be described by a Von Neumann-Morgenstern utility function. However,
our main results hold as well for this more restricted class of economies.

Definition 1 An equilibrium is a price vector (p, q), with associated allocation
and portfolio profiles

{(
x1, b1

)
, ...,

(
xH , bH

)}
, such that:

a. for each h,
(
zh, bh

)
solves problem (U) given (p, q),

b.
∑

h zh = 0 and
∑

h bh = 0.

3 Constrained suboptimality of equilibria

Let’s briefly discuss the standard approach to the analysis of constrained sub-
optimality in GEI economies. Consider the system of eqs.

Ξ(p, q, ξ) = [Φ(.), (..., uh(.)− uh, ...)],

where Φ(.) = 0 defines the equilibrium, while ξ is some vector of policy instru-
ments, for instance a vector describing the reallocation of portfolios or endow-
ments. The key step in the classical proofs of constrained suboptimality is to
show that D(p,q,ξ)Ξ(.) has, generically, full rank at each solution. This can be
done using as equilibrium map the system of aggregate excess demand func-
tions Φ(.), as in Geanakoplos and Polemarchakis (1986), or the entire system of
equilibrium conditions (individual and aggregate), as in Citanna et al. (1998).4

Anyhow, the basic idea is the same: add to the equilibrium conditions the sys-
tem of equations [..., uh(.)− uh, ...] and show that the map so obtained has a

4There are other differences between the two papers. In particular, in the second, the
authors consider the welfare effect of a policy profile defined in terms of both portfolio reallo-
cation and period 0 endowment reallocation. This is irrelevant for the purposes of the current
discussion.
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full rank derivative. This implies that, by choosing appropriately the policy
vector ξ, it is possible to implement every possible local variation of the equi-
librium level of the utility of each agent. If equilibria are locally determined,
this approach necessarily requires that the number of degrees of freedom in the
selection of the policy vector is at least as large as the number of agents, H.
Hence, it cannot be applied to study the possibility of Pareto improvements
obtained by a reallocation of period 0 endowments, since this policy instrument
has, in an essential way, dimension (H − 1).
However, what really matters is if it is possible to improve upon the equi-

librium allocations, not the attainability of every possible Pareto improvement.
From this perspective, the key issue is if the matrixD(p,q,ξ)Ξ(.) spans some non-
trivial vector [0, (..., duh, ...)] ≥ 0, not if it spans all vectors with this structure.
Evidently, by adopting this weaker condition, we could be able to weaken the
restriction on the minimal rank of D(p,q,ξ)Ξ(.). In fact, as we will see, one of the
robust examples provided below can also be seen as an example of an economy
with just one asset, so that the dimension of the policy profile "portfolio real-
location" is smaller than H. The unique equilibrium is not CPO, according to
the Geanakoplos and Polemarchakis (1986) criterion.
Here, however, we will focus on the possibility of Pareto improvements ob-

tainable through the reallocation of the initial endowments of good 1 in period
zero. Thus, our policy vector is a profile t ≡ [t1, ..., tH ] ∈ RH with

∑
h th = 0.

Clearly, its dimension is (H − 1).5 We now make precise our efficiency crite-
rion. Let (p(t), q(t)) be the equilibrium prices associated with the vector t of
endowments reallocation. Also, let Vh (p(t), q(t), th) ≡ uh (xh(p(t), q(t), th)) be
the associated maximal value of the utility.

Definition 2 An equilibrium (p, q) is ω−Constrained Pareto Optimal (ω−CPO)
if there is no profile t ∈ RH with

∑
h th = 0 such that, at one associated equi-

librium (p(t), q(t)), Vh (p(t), q(t), th) ≥ Vh (p, q, th = 0) for each h, with at least
one strict inequality.

We start establishing the negative part of our result: given any profile of
utility functions, and any payoff matrix, there is an open set of economies,
parameterized by endowment profiles, such that all equilibria are ω−CPO (but
not necessarily CPO according to the Geanakoplos and Polemarchakis (1986)
criterion). The argument is straightforward. Still, it may be worthwhile to
elaborate a little on its logic before getting into the details.
To begin, for completeness, we report a standard result, i.e., the generaliza-

tion of Roy’ s identity to financial economies.

Lemma 3 Let Vh(p, q, th) be the indirect utility function associated with opti-

5We consider rellocations of good 1 endowments. Evidently, nothing would change by
allowing for reallocation of the endowments of the other period 0 commodities.
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mization problem (U), and given a vector of endowment transfers th. Then,

∂Vh
∂psc

= −λsh(p, q, th)zsch (p, q, th), for each sc,

∂Vh
∂qj

= −λ0h(p, q, th)bjh(p, q, th), for each j,

∂Vh
∂th

= λ0h(p, q, th).

Proof. In Appendix.

The effect of a change in portfolios and of the induced price changes on
the utility of agent h can be decomposed into two parts: the direct effect of
dbh on the indirect utility function, and the second order effect, due to the

induced price changes. Let
[−−→
∂G
∂t
x
]
be the directional derivative of any function

G(.) in the direction [x] . By individual optimization, for each consumer, the
direct impact on the utility of a marginal portfolio readjustment is nil. Hence,
just the second order effects of the portfolios reallocation matter. Using Roy’s

identity, they can be written as ∂Vh(.)
∂psc

[−−−−→
∂psc

∂b
db

]
= −λsh(.)zsch (.)

[−−−−→
∂psc

∂b
db

]
, and

∂Vh(.)
∂qj

[−−−→
∂qj

∂b
db

]
= −λ0h(.)bjh(.)

[−−−→
∂qj

∂b
db

]
. To establish lack of CPO, it suffices to

show that the span of the collection of these directional derivatives with respect
to prices contains at least one strictly positive vector.
With our notion of ω−CPO, the first order effect is not trivial. Indeed, it is

∂Vh(.)
∂th

th = λ
0
h(.)th 
= 0 and, evidently, there must be at least one agent h with

∂Vh(.)
∂th

th < 0. To obtain a Pareto improvement, the second order effects must
have the right sign and, additionally, they must be sufficiently large, so that they
can compensate the, possibly negative, first order effects for each agent. Given

the formulas for
(
∂Vh(.)
∂psc

, ∂Vh(.)
∂qj

, ∂Vh(.)
∂th

)
reported above, this can happen only

if, at the initial equilibrium, the normalized vector of Lagrange multipliers are
sufficiently different across agents, if net trades are sufficiently far away from 0,
and/or if the directional derivatives of equilibrium prices are sufficiently large.
Intuitively, this rules out the possibility to Pareto improve upon the equilibria
of economies with initial endowments close to a PO allocation. Therefore, there
are open sets of economies with ω−CPO equilibria. This argument is formalized
in Proposition 4. Its proof is in Appendix.

Proposition 4 Given R, for each utility profile {..., uh, ...}, there is an open
set of endowments such that each equilibrium allocation is ω−CPO.

Given our aim, this is a negative result: lack of ω−CPO cannot be a generic
property. The "size" of the set of economies with ω−CPO equilibria is still an
open issue.
The main motivation for this paper is Prop. 7, showing that there are also

open sets of economies with non ω−CPO equilibria. We establish it by providing
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two parametric examples, and then showing that the same result holds for some
open set of economies. We are not claiming that a similar result holds for
some set of endowment profiles given any specification of (u,R). It is fairly
obvious that this cannot be true, for instance, for economies with identical,
homothetic preferences.6 Given the asset payoffs, our result holds for some
open set of economies in the space defined by endowments and utilities. It is
still an open issue if, given any (u,R) in some generic set, it holds for some
appropriately chosen open set of endowments. We will come back to this issue
in the conclusions.
The basic intuition for the possibility of a Pareto improvement can be most

easily seen in an economy with just one asset, as in both examples: an en-
dowment redistribution affects equilibrium prices for assets and commodities.
Necessarily, within each spot, if some agent is made better off by the price
change, some other agent must be made worst off, since market clear. However,
due to market incompleteness, for each agent, these changes in spot utilities are
aggregated over spots using a distinct vector of normalized Lagrange multipliers.
Therefore, the total utility change due to the prices changes may be positive
for each agent, as it is in fact true in Example 5. In addition, we need to take
into account the direct effect of time 0 transfers. Clearly, to provide an example
of an economy with ω−CP inefficient equilibria, we need to balance carefully
the three different effects. At the same time, we need to maintain a structure
simple enough, so that the computational burden is not too heavy. In both our
examples, we fix the class of economies and the endowment vectors. We then
fix appropriately a price vector and an allocation and choose the values of some
parameters of the utility functions in such a way that the assigned price and
allocation hold as an equilibrium. As we will see, this leaves us with enough
degrees of freedom to be able to pick these parameters so that the equilibrium
is not ω−CPO.We consider three-period economies with one numeraire asset.
Both examples are highly non generic. Still, all the equilibrium variables are,
locally, continuous functions of the parameters, so that, as we will see, the main
result is robust to open perturbations. The first example, in the text, considers
an economy with three agents, three spots and two consumption goods at each
one of the future spots. The second (in Appendix) presents an economy with two
agents, three periods and two goods just at one future spot. The two economies
share many features. However, the first example requires computations which
are somewhat more transparent, while the second shows that lack of CPO can
hold even in two-agent economies.

Example 5 An economy with a unique, non ω −CPO equilibrium.

There are three periods and just one asset, inside money, paying one unit of
the numeraire commodity at each future spot. To avoid unnecessary notation,
we assume that there is just one commodity at time 0. This entails no loss
of generality. Agents are endowed with strictly concave, time-separable utility

6Since equilibrium prices are invariant with respect to the reallocation of spot income, our
argument is bound to fail, as, in fact, does the one of Geanakoplos and Polemarchakis (1986).
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functions:

uh(.) = αh lnx
0
h + βh ln v

1
h

(
x11h , x

12
h

)
+ (1− αh − βh) ln v2h

(
x21h , x

22
h

)
.

There are three agents, with

v11
(
xs11 , x

s2
1

)
=

[
(xs11 )

−2 + k3(xs21 )
−2
]− 1

2 , for s = 1, 2,

v12
(
x112 , x

12
2

)
=

[
k3(x112 )

−2 + (x122 )
−2
]− 1

2 , v22
(
x212 , x

22
2

)
=
[
(x212 )

−2 + k3(x222 )
−2
]−1

2 ,

v13
(
x113 , x

12
3

)
=

[
(x113 )

−2 + k3(x123 )
−2
]− 1

2 , v23
(
x213 , x

22
3

)
=
[
k3(x213 )

−2 + (x223 )
−2
]−1

2 .

Endowments are ω1 = (14, (2, 0) , (2, 0)) , ω2 = (0, (4, 20) , (14, 0)) , and ω3 =
(0, (14, 0) , (4, 20)) . We will argue later on that our choice of a boundary endow-
ment profile has no substantial effect on the results, which also hold for strictly
positive endowment vectors.
In this example, we fix k = 1

3 to simplify the computations. However, it is con-
venient to study some properties of this economy for an arbitrary value of the
parameter k, because they will become handy in Example A1 in Appendix.
Set p0 = p11 = p21 = 1. Given any b1 and each vector p, agent 1’s associate spot
s indirect utility functions are

V s
1

(
ps, b1

)
≡
(
2 + b1

)


(

ps2
1
3

ps2
1
3 + kps2

)−2
+ k3

(
k

ps2
1
3 + kps2

)−2


− 1
2

≡
(
2 + b1

)
gs1(p

s).

The results for agents 2 and 3 are similar. A key property follows from our
selection of the utility functions: spot commodity prices affect the choice of the
optimal portfolio only because they determine the value of the spot endowments.7

Fix b ≡
(
b1, b2, b3

)
= (8,−4,−4). Given b, at each spot, the equilibrium is

obtained solving the market clearing condition for good 1, i.e.,

Z
s1
(ps, b) ≡ 10ps2

1
3

kps2 + ps2
1
3

+
10ps2

1
3

kps2 + ps2
1
3

+
(20ps2)kps2

1
3

ps2 + kps2
1
3

− 20 = 0.

A convenient feature of this spot economy is that, for the given ω and b, ps2 = 1,
for each s, is an equilibrium for each k > 0. For k ≥ 1

3 , it is the only equilibrium;
for k < 1

3 , there are three equilibria, see Figure 1.8

FIGURE 1 GOES HERE

At the equilibrium ps2 = 1, the derivative of the excess demand function is

∂Z
s1
(ps, b)

∂ps2
|ps2=1 =

(
20

3

3k2 − k
(k + 1) (k + 1)

)
,

7Hence, and due to the log utility functions, the functions gs
h
(ps) are irrelevant for the

optimal portfolio choice.
8The spot 1 and 2 subeconomies are based on an example of a CES economy with multiple

equilibria proposed by D. Blair.
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which is zero at k = 1
3 , given the portfolio b. Hence, the direct effect of changes

in spot equilibrium prices on the aggregate excess demand is zero.9

Given k = 1
3 , b and

(
p12, p22

)
= (1, 1) , the excess demands for good 2 at spot 1

and 2 are

zs21 =

[
10

4
,
10

4

]
, zs22 =

[
−20
4
,
10

4

]
, zs23 =

[
10

4
,−20

4

]
.

Let t be the endowment reallocation, with t1 ≡ τ > 0 and t2 ≡ t3 ≡ −τ
2 .

Consider now the portfolio optimization problems of the three agents. Using the
previous observation, we can write them as

max
b1
V1(.) = α1 ln (14− qb1 + τ) + β1 ln (2 + b1) + (1− α1 − β1) ln (2 + b1) +G1(p12, p22),

max
b2
V2(.) = α2 ln

(
−qb2 −

τ

2

)
+ β2 ln

(
20p12 + 4 + b2

)
+ (1− α2 − β2) ln (14 + b2) +G2(p12, p22),

max
b3
V3(.) = α3 ln

(
−qb3 −

τ

2

)
+ β3 ln (14 + b3) + (1− α3 − β3) ln

(
20p22 + 4 + b3

)
+G3(p

12, p22).

It is easy to check that, at
(
p12, p22, q

)
= (1,1, 1) and t = (0, 0, 0),

(
b1, b2, b3

)
=

(8,−4,−4) are the optimal portfolios if and only if

α1 =
3

8
, β2 = (2− 7α2) , and β3 = (6α3 − 1) .

This, and the positivity constraints on the parameters of the utility functions,
imply that, for h = 1, 2, αh ∈

(
1
6 ,

2
7

)
.

Using these properties, and applying the implicit function thm. to the FOCs of
the three optimization problems, we obtain

∂bh
∂p12

∂bh
∂p22

∂bh
∂q

∂bh
∂τ

h = 1 : 0 0 −70
8

5
8

h = 2 : 280α2−80
84α2−4

0 0 25α2
4−84α2

h = 3 : 0 280α3−80
84α3−4

. 0 25α3
4−84α3

The simple structure of these derivatives follows from our specific choice of the
endowments and of the value of k.

We can now compute the values of
[
∂p12

∂τ
, ∂p

22

∂τ
, ∂q
∂τ

]
. Define the equilibrium map

Φ(p, q, τ) ≡
[ ∑

h bh(.),
∑

h z
11
h (.),

∑
h z

21
h (.)

]
= 0.

9Given portfolios, and for k = 1

3
, the spot equilibrium price ps2 = 1 is critical. For the

entire intertemporal economy, the equilibrium associated with ps2 = 1 may, or may not, be
critical, because changes in commodity prices affect the optimal porfolios and, consequently,
the aggregate excess demand for the commodities. As we will show, in this example, the
intertemporal equilibrium is, in fact, regular.
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By the implicit function theorem,

[
∂p12

∂τ
,
∂p22

∂τ
,
∂q

∂τ

]T
= −

[
D(p,q)Φ(.)

]−1
DτΦ(.).

As shown in Appendix, because of the particular - trichotomous - structure of
our economy,

[
∂p12

∂τ
,
∂p22

∂τ
,
∂q

∂τ

]T
= −

[
∂b2
∂τ
∂b2
∂p12

,
∂b3
∂τ
∂b3
∂p22

,
∂b1
∂τ
∂b1
∂q

]
.

Using the previous results, this implies

[
∂p12

∂τ
,
∂p22

∂τ
,
∂q

∂τ

]T
=

[
5α2

56α2 − 16
,

5α3
56α3 − 16

,
1

14

]
.

Consider now the effect of a period 0 endowment reallocation on the equilibrium
utilities:

∂V1
∂τ

= λ01 + λ
0
1

(
−b1

) ∂q
∂τ
+ λ11

(
−z121

) ∂p12
∂τ

+ λ21
(
−z221

) ∂p22
∂τ

,

∂Vh
∂τ

= −λ
0
h

2
+ λ0h

(
−bh

) ∂q
∂τ
+ λ1h

(
−z12h

) ∂p12
∂τ

+ λ2h
(
−z22h

) ∂p22
∂τ

, for h > 1.

Using λ1 =
(
3
48 ,

β1
10 ,

5
8−β1
10

)
, λ2 =

(
α2
4 ,

β2
20 ,

1−α2−β2
10

)
and λ3 =

(
α3
4 ,

β3
10 ,

1−α3−β3
20

)
,

and the values of the excess demands computed above, we obtain

∂V1
∂τ

=
3

112
− β1
4

(
5α2

56α2 − 16

)
−

5
8 − β1
4

(
5α3

56α3 − 16

)
,

∂V2
∂τ

= − 3

56
α2 −

5

32
α2 −

6α2 − 1
4

(
5α3

56α3 − 16

)
,

∂V3
∂τ

= − 3

56
α3 −

5

32
α3 −

6α3 − 1
4

(
5α2

56α2 − 16

)
.

For h = 2, 3, αh <
2
7 , so that (56αh − 16) < 0. Since α1 =

3
8 , it must be β1 <

5
8 .

Hence, ∂V1
∂τ

is strictly positive and monotonically increasing in (α2, α3) . Sim-

ilarly, ∂V2
∂τ

is monotonically increasing in α3 and divergent for α3 → 2
7 (while

∂V3
∂τ

has the same properties with respect to α2). It follows that, for α2 and α3
close to 2

7 ,
(
..., ∂Vh

∂τ
, ...
)
>> 0. This is shown in Figure 2, which reports the val-

ues of ∂V1
∂τ

(the thick curve) and ∂V2
∂τ

= ∂V3
∂τ

(the thin one) for a range of values
of α2 = α3 ∈

(
1
6 ,

2
7

)
. Evidently, for α2 = α3 sufficiently large, each equilibrium

is not ω −CPO.
Our choice of the collection of endowments and utility functions is very spe-
cific, to simplify as much as possible the computations and to guarantee unique-
ness. However, the substantive results just depend on the fact that the inequality

10



(
..., ∂Vh

∂τ
, ...
)
>> 0 is satisfied for some τ sufficiently small.

We conclude showing that the inefficiency result is robust to perturbations of the
parameters, and that the (intertemporal) equilibrium is unique. Pick α2 = α3 =
1
4 , β2 =

1
4 and β3 =

1
4 . Then, at

(
p12, p22, q

)
= (1,1, 1),

(
...,
∂Vh
∂τ
, ...

)
=

(
223

1792
,
23

896
,
23

896

)
>> 0.

Moreover, by direct computation, the equilibrium map Φ(p, q, τ = 0) satisfies
detD(p,q)Φ(.) = − 875

1156 
= 0. Hence, such an equilibrium is regular. By continu-
ity, the same properties are satisfied for each economy in some relatively open
neighborhood of the given economy. In particular, they are also satisfied for
some open set of economies with ω ∈ R5++. In Appendix, we also show that the
intertemporal equilibrium

(
p12, p22, q

)
= (1,1, 1) is the unique equilibrium of the

economy described above. Its regularity implies that there is some (relatively)
open neighborhood of economies with a unique equilibrium, that, as we have al-
ready shown, is not ω−CPO.

FIGURE 2 GOES HERE

In the example, we have chosen k so that the spot equilibria are critical. This
simplifies a lot the computations, but nothing of relevance rests on it. We also
propose another example, in Appendix, with two agents, obtaining a similar
result. Some of the spot utility functions are CES as in Example 5.

Remark 6 Example 5 can also be used to show that a pure portfolio reallocation
of a single asset can be sufficient to guarantee a Pareto improvement: Figure 3
presents the values of the derivatives of the indirect utility functions of the three
agents for an arbitrarily given change the portfolios which happens to be iden-
tical to the one induced by the endowment reallocation. Here, V ∗h (p(b), q(b), bh)
captures the impact of the price change due to a reallocation of the portfolios.
We just consider the effects of the changes in spot commodity prices in the future
periods. There is an open range of values of the parameters such that the utility
of each agent is increasing. Once again, the dimension of the policy profile is
(H − 1), but we can Pareto improve upon the equilibrium allocation.

FIGURE 3 GOES HERE

We can now state our second result in a somewhat more general form, show-
ing that some of the features of the examples are not essential: they just allow
for computational feasibility.

Proposition 7 There are open set of economies E◦ ⊂ E with equilibria which
are not ω−CPO. This also holds if we restrict the class of economies to time-
separable utility functions or to VNM utility functions.

11



Proof. The first two results are established by Example 5 above. Since the
equilibrium of the economy constructed in the example is regular and the payoff
matrix has full rank, small changes of the parameters will not break down the
results, so that it holds for an open set of economies. Evidently, this holds both
if we consider the general space of economies, and if we restrict the analysis to
economies with time-separable preferences, because preferences in Example 5
are in fact time-separable.
Therefore, we just need to argue that a similar result holds for VNM utility

functions, since preferences in the example are not VNM. The easiest way to
proceed is to consider a three-period economy, with a realization of uncertainty
only at period 2. Consider an economy as the one described in Example A1.
Add a second state in period 2. Endowments and preferences in the two states,
each having probability 1

2 , are identical. It is easy to check that this new,
sunspot-like, economy has the same market clearing conditions as the economy
with three periods and no uncertainty analyzed in Example A1. It is also easy to
check that, by the same argument reported in Appendix, for this VNM economy,
there is a Pareto improving endowment reallocation. Using a, by now, standard
argument, one can show that, modulo some arbitrarily small perturbation of
the parameters, the regular equilibrium of the economy of Example A1 induces
a regular equilibrium in the associated economy with (trivial) uncertainty in
period 2. To conclude, perturb period 2 endowments in different directions
in the two states, introducing intrinsic uncertainty. Regularity of the initial
equilibrium guarantees that, provided that the perturbations are sufficiently
small, ω−CP suboptimality is preserved at the corresponding equilibrium for
all the economies in some sufficiently small, but open, neighborhood of the
economy we started with.

4 Conclusion

We have considered the canonical GEI model with numeraire assets, and we have
shown that there are open sets of economies such that their equilibria can be
improved upon by an appropriate reallocation of period zero initial endowments.
We have also shown that, for each economy defined in terms of utility functions
and asset payoffs, there are open sets of endowments such that it is impossible
to attain any Pareto improvement by pure period zero endowment reallocation.
Hence, our result is weaker than the generic one obtainable when the policy
profile is the portfolio of each agent, as in Geanakoplos and Polemarchakis
(1996) and Citanna et al. (1998). Still, we believe that it settles an open issue
in the literature on constrained inefficiency in GEI and that it contributes to a
better understanding of this phenomenon.
It remains an open issue under which general conditions existence of an

open set of endowments with ω−CP suboptimal equilibria generically holds in
the space of the economies defined by asset structure and preferences. Our
analysis shows that the key ingredients are the matrix Λ with typical element

[−λshzsch ] (or
[
−λ0hbjh

]
), and the matrices D(p,q)Φ(.) and DtΦ(.). Generically in

12



(u,ω)−space, Λ has full row rank H. This essentially requires some degree of
heterogeneity across agents. Next, we need that there is some vector t such

that
[
Λh
[
D(p,q)Φ(.)

]−1
DtΦ(.)t

]
th > 0 for each h such that th < 0, i.e., the

second order effect must increase the utility of the agents with th < 0. Finally,
we need that these second order effects are sufficiently strong, so that they can
overcome the (possibly) negative first order effects. This may be guaranteed if
we are sufficiently close to a critical equilibrium. This motivates our conjecture:
provided that an economy (defined by utilities and asset structure), has a crit-
ical equilibrium, then, with sufficient heterogeneity, there is some open set of
endowments such that at least one equilibrium is not ω −CPO.10

5 Appendix

Proof of Lemma 3. Consider any commodity sc. Then,

∂Vh
∂psc

=
∑

sc

∂uh
∂xsch

∂xsch
∂psc

=
∑

s

λsh
∑

c

psc
∂xsch
∂psc

= −λshzsch +
∑

j

[
−λ0hqj

∂bjh
∂psc

+
∑

s

λshr
sj ∂b

j
h

∂psc

]
= −λshzsch

The last two equalities are obtained taking the derivative of the budget con-
straint in spot s,

∑

c

psc
∂xsch
∂psc

=
∑

j

rsj
∂bjh
∂psc

, if s 
= s,

∑

c

psc
∂xsch
∂psc

= −zsch +
∑

j

rsj
∂bjh
∂psc

, if s = s,

and taking into account the noarbitrage conditions.
Similarly,

∂Vh

∂qj
=

∑

sc

∂uh
∂xsch

∂xsch
∂qj

=
∑

s

λsh
∑

c

psc
∂xsch
∂qj

= −λ0hbjh +
∑

j

[
−λ0hqj

∂bjh
∂qj

+
∑

s

λshr
sj ∂b

j
h

∂qj

]

= −λ0hbjh.

Finally, ∂Vh
∂th

= λ0h is obvious. �

Proof of Proposition 4. Given (u,R), pick a Pareto optimal endow-
ment profile, ω. By a standard argument, the equilibrium is locally unique and

10This conjecture should remind of Safra (1981), concerning the transfer paradox.
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regular. Moreover, for each agent, excess demand and portfolio are identically
zero, while, for each t̂,

1

λ
0

h

[−−−→
∂Vh
∂t
t̂

]
= t̂h −

∑

j

bh

[−−→
∂qj

∂t
t̂

]
−
∑

sc

λ
s

h

λ
0

h

zsch

[−−−→
∂psc

∂t
t̂

]
= t̂h.

Since the original equilibrium is regular, the vector

[
...,

[−−→
∂qj

∂t
t̂

]
, ...,

[−−−→
∂psc

∂t
t̂

]
, ...

]

is uniformly bounded above for each (t, ω) ∈ S × V (ω), any sufficiently small
open neighborhood of (0, ω) .
We break the argument into two parts and we start considering "small"

vectors t. Let S be the set of possible profiles {t1, ..., tH} , with
∑

h th = 0 and
||t|| sufficiently small. Given ω, assume that, for each open neighborhood Bn(ω)
there is an endowment profile, ωn ∈ Bn(ω), such that the unique associated
equilibrium allocation, x (ωn) , is not ω−CPO. Then, there is a profile tn ∈
S such that the associated (unique) equilibrium x (ωn, tn) Pareto dominates

x (ωn, t = 0) . Bear in mind that, for tn sufficiently small, this implies

[−−−→
∂Vh
∂tn
tn
]
≥

0.
Define accordingly the sequence {(ωn, tn)}n=∞n=1 . Evidently, for each n, t

n 
=
0. Pick any subsequence, without loss of generality the sequence itself, such that,
for each n, the same agent, say agent 1, has tn1 ≤ tnh for each h. Clearly, for each
n, it must be tn1 < 0, and, by construction,

[
tn

|tn1 |

]
⊂ [−1,H − 1]H , for each n,

so that the sequence is bounded. Finally, along this sequence,

1

λ
0n

1 |tn1 |

[−−−−→
∂V1
∂tn

tn

]
=

tn1
|tn1 |


1−

∑

j

b
n

1

[
∂qjn

∂tn1

]
−
∑

sc

λ
sn

1

λ
0n

1

zscn1

[
∂pscn

∂tn1

]


−
∑

h>1

tnh
|tn1 |


∑

j

b
n

1

[
∂qjn

∂tnh

]
+
∑

sc

λ
sn

1

λ
0n

1

zscn1

[
∂pscn

∂tnh

]
 .

Since
(
b
n

1 , z
scn
1

)
→ 0, while, locally,

(
∂qjn

∂tn
h

, ∂p
scn

∂tn
h

)
can be taken to be uniformly

bounded for each h, it must be

lim
n→∞

1

λ
0n

1 |tn1 |

[−−−−→
∂V1
∂tn

tn

]
= lim

n→∞

tn1
|tn1 |

= −1.

By continuity, this contradicts the initial claim that, for each n,

[−−−→
∂Vh
∂tn
tn
]
≥ 0

for each h.

We now consider arbitrary vectors t. By contradiction, assume that there is
no open neighborhood of ω, B (ω) , such that the (unique) equilibrium associated
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with ω ∈ B (ω) is ω−CPO. We proceed as above. The only difference is that, in
view of the previous result, we can consider only sequences {ωn}n=∞n=1 ⊂ B(ω),
ωn → ω, such that the associated sequence {tn}n=∞n=1 satisfies tn → t 
= 0.
Let {y(ωn, tn)}n=∞n=1 be the sequence of the equilibrium allocations with, for

each n, yh(ω
n, tn) �h xh(ω

n, t = 0), for each h, and yh(ω
n, tn) ≻h xh(ω

n, t = 0),
for some h. Given that {y(ωn, tn)}n=∞n=1 is a sequence of feasible allocations (and
ωv → ω), it lies in some compact set, so that, without loss of generality, we can
assume that y(ωn, tn) → y. Since ω is Pareto optimal, it cannot be yh �h ω,
for each h. Otherwise, there would be a feasible allocation (φy + (1− φ)ω) ,
φ ∈ (0, 1) , such that (φyh + (1− φ)xh(ω)) ≻h ωh, for each h, contradicting PO
of ω. Then, regularity of equilibria and continuity of preferences imply that, for
sufficiently small neighborhoods of y and ω, Bε (y) and Bε (ω) , there are no
feasible allocations ỹ ∈ Bε (y) , x̃ ∈ Bε (ω) such that ỹh �h x̃h for each h. This
contradicts our original claim.
Hence, for all the economies in some open neighborhood of ω, each equilib-

rium is ω−CPO. �

Example 5: a. Computation of
[
∂p12

∂τ
, ∂p

22

∂τ
, ∂q
∂τ

]
.

Because of the endowment profile, ∂FOC1
∂p12

= ∂FOC1
∂p22

= 0, ∂FOC2
∂q

= ∂FOC2
∂p22

=

0, and ∂FOC3
∂q

= ∂FOC3
∂p12

= 0. Hence,

D(p12,p22,q,τ)Φ(p, q, τ) =




∂b2
∂p12

∂b3
∂p22

∂b1
∂q

∑
h
∂bh
∂τ

∂x112
∂b2

∂b2
∂p12

+ ∂Z
11

∂p12
0 ∂x111

∂b1

∂b1
∂q

∑
h
∂x11h
∂bh

∂bh
∂τ

0
∂x123
∂b3

∂b3
∂p22

+ ∂Z
21

∂p22
∂x211
∂b1

∂b1
∂q

∑
h

∂x21h
∂bh

∂bh
∂τ



,

where ∂Z
s1

∂ps2
is computed for a given portfolio b, ∂Z

s1

∂ps2
|p=1 =

[
20
3

3k2−k
(k+1)(k+1)

]
.

Evidently,

∂xs11
∂b1

|ps2=1 =
1

k + 1
,

[
∂x112
∂b2

|p12=1,
∂x212
∂b2

|p22=1
]
=

[
k

k + 1
,
1

1 + k

]
, and

[
∂x113
∂b3

|p12=1,
∂x213
∂b3

|p22=1
]
=

[
1

k + 1
,
k

1 + k

]

Set k = 1
3 , so that

∂Z
s1

∂ps2
= 0. Then, we can write

D(p,q,τ)Φ(p, q, τ) =




1 1 1

k
1+k

1
k+1

1
k+1

1
k+1

k
1+k

1
k+1







∂b2
∂p12

0 0 ∂b2
∂τ

0 ∂b3
∂p22

0 ∂b3
∂τ

0 0 ∂b1
∂q

∂b1
∂τ


 .
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Therefore, by the implicit function theorem,



∂p12

∂τ
∂p22

∂τ
∂q
∂τ


 = −



1/ ∂b2

∂p12
0 0

0 1/ ∂b3
∂p22

0

0 0 1/∂b1
∂q







∂b2
∂τ
∂b3
∂τ
∂b1
∂τ




= −
[

∂b2
∂τ
∂b2
∂p12

,
∂b3
∂τ
∂b3
∂p22

,
∂b1
∂τ
∂b1
∂q

]T
.

b. Global uniqueness of the intertemporal equilibrium.

Fix α2 = α3 =
1
4 , β2 =

1
4 and β3 =

1
4 . To simplify notation, let

3
√
p12 ≡ φ1

and 3
√
p22 ≡ φ2. The equilibrium map is

∑

h

bh(φ1, φ2, q) =
35

4q
− 3
4
− 10 +

∑

s=1,2

(
1

2

√
225φ6s + 20φ

3
s + 44−

15

2
φ3s

)
= 0,

∑

h

z11h (φ1, φ2, q) =

(
3 (16 + b1(.) + b3(.))φ1

φ31 + 3φ1
+

(
4 + 20φ31 + b2(.)

)
φ1

3φ31 + φ
1
3
1

− 20
)
= 0,

∑

h

z21h (φ1, φ2, q) =

(
3 (16 + b1(.) + b2(.))φ2

φ32 + 3φ2
+

(
4 + 20φ32 + b3(.)

)
φ2

3φ32 + φ
1
3
2

− 20
)
= 0.

Since (b2(.), b3(.)) do not depend upon q, for any given pair (φ1, φ2), while
b1(.) just depends upon q, we can always find q solving the first eq. Hence, we can
exploit market clearing on the asset market to replace (b1(.) + b3(.)) with −b2(.)
in the second eq. (and (b1(.) + b2(.)) with −b3(.) in the third). Now, the second
and third eqs. are independent and can be solved and analyzed separately.
Consider, for instance, the last eq. (by symmetry the same argument holds for
the second) and replace b2(.) with its explicit formula. Then, the eq. reduces to

F (φ1) ≡
N(φ1)

D(φ1)
≡
15φ21 − 15φ1 − 20φ31 +

√
225φ61 + 20φ

3
1 + 44 + 3

3φ41 + 10φ
2
1 + 3

= 0

At each equilibrium, dF
dφ1

=
∂N(φ1)
∂φ1

D(φ1)
. At φ1 = 1,

dF
dφ1

= −60
17 . Evidently, if at each

possible equilibrium dF
dφ1

< 0, then the equilibrium must be unique. By direct

computation, at each equilibrium,

sign
dF

dφ1
= sign

(
2φ21 + 45φ

5
1 −

(
4φ21 + 1− 2φ1

)√
225φ61 + 20φ

3
1 + 44

)
.

Simple computations show that, for each φ1 > 0,

2φ21 + 45φ
5
1 −

(
4φ21 + 1− 2φ1

)√
225φ61 + 20φ

3
1 + 44 < 0.

Hence, the equilibrium is globally unique. �
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Example A1: There is just one commodity at time 0 and at time 2.
This entails no essential loss of generality. Preferences of agent 1 and 2 at spot
1 are as in the previous example. The utility functions are

uh(.) = αh lnx
0
h + βh ln v

1
h

(
x11h , x

12
h

)
+ (1− αh − βh) lnx2h.

Endowments are ω1 = (10, (6, 0) , 0) , and ω2 = (0, (4, 10) , 10) . As in Example
5, the boundary nature of the endowment profile does not imply any substantive
loss of generality.
Essentially as above, and omitting the redundant superscript for the price of
commodity 2 at spot 1,

x11 =

((
6 + b1

)
p
1
3

kp+ p
1
3

,

(
6 + b1

)
k

kp+ p
1
3

)
, x12 =

((
10p+ 4 + b2

)
kp

1
3

kp
1
3 + p

,
10p+ 4 + b2

kp
1
3 + p

)
.

and

V 11
(
p, b1

)
≡
(
6 + b1

)


(

p
1
3

kp+ p
1
3

)−2
+ k3

(
kp−

1
3

kp+ p
1
3

)−2

− 1
2

≡
(
6 + b1

)
g11(p).

The result for agents 2 is similar. For the given ω and b, p = 1 is an equilibrium
for each k > 0. The derivative of the excess demand function depends upon k.

It is given by ∂Z
11

∂p
|p=1 =

(
10
3

3k2−k
(k+1)(k+1)

)
.

Evidently,

D(p,q,t)Φ(p, q, t) =




∂b2
∂p

∂b1
∂q

∑
h
∂bh
∂t

∂x112
∂b2

∂b2
∂p
+ ∂Z

11

∂p

∂x111
∂b1

∂b1
∂q

∑
h
∂x11h
∂bh

∂bh
∂t


 ,

and we can rewrite the two blocks as

D(p,q)Φ(p, q) =




1 1

∂x112
∂b2

+
∂Z11

∂p
∂b2
∂p

∂x111
∂b1







∂b2
∂p

0

0 ∂b1
∂q




DtΦ(p, q) =




1 1

∂x111
∂b1

∂x112
∂b2






∂b1
∂t

∂b2
∂t




Let det ≡
[
∂x111
∂b1

− ∂x112
∂b2

−
∂Ẑ11

∂p
|p=1

∂b2
∂p

]
=

[
1−k
1+k −

∂Ẑ11

∂p
|p=1

∂b2
∂p

]
. Then,




1 1

∂x112
∂b2

+
∂Z11

∂p
∂b2
∂p

∂x111
∂b1



−1

=
1

det




1
1+k −1

−
(

k
1+k +

∂Z11

∂p
∂b2
∂p

)
1


 ,
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and [
∂p

∂t
,
∂q

∂t

]T
= −D(p,q)Φ(.)−1DtΦ(.)

=
−1
det




1
∂b2
∂p

0

0 1
∂b1
∂q


×




1
1+k −1

−
(

k
1+k +

∂Z11

∂p
∂b2
∂p

)
1



[

1 1
1
1+k

k
1+k

][
∂b1
∂t
∂b2
∂t

]

=




1−k
1+k

∂b2
∂t
∂b2
∂p[

∂Ẑ11

∂p
|p=1

∂b2
∂p

+ k−1
1+k

] , −
∂b1
∂t
∂b1
∂q

−

∂Ẑ11

∂p
|p=1

∂b1
∂q

∂b2
∂t
∂b2
∂p[

∂Ẑ11

∂p
|p=1

∂b2
∂p

+ k−1
1+k

]




T

To conclude, we need to compute
(
∂b1
∂q
, ∂b1
∂t

)
and

(
∂b2
∂p
, ∂b2
∂t

)
using the implicit

function thm. applied to the first order conditions of the portfolio optimization
problem. First, observe that optimality of

(
b1, b2

)
= (4,−4) at (p, q) = (1, 1)

and the nonnegativity constraint on the values of (αh, βh, 1− αh − βh) require
that β1 (α1) =

(
5
3 − 25

9 α1
)
and α1 ∈

(
3
8 ,

3
5

)
, while β2 (α2) =

(
5
2 − 25

4 α2
)
and

α2 ∈
(
2
7 ,

2
5

)
.

Consider a negative transfer for agent 1. By direct computation, at t = 0,
p = q = 1, b1 = −b2 = 4, and using β (α) , δ (γ) :

∂FOC1
∂t

= −20
3
α1,

∂FOC1
∂q

= −200
3
α1,

∂FOC1
∂q

= 0,
∂FOC1
∂b1

= 6− 80
3
α1,

∂FOC2
∂t

= 15α2,
∂FOC2
∂q

= 0,
∂FOC2
∂p

= (150α2 − 60) ,
∂FOC2
∂b2

= (4− 35α2) ,

so that

∂b1
∂t

=
10α1

9− 40α1
,
∂b1
∂q

=
100α1
9− 40α1

,
∂b1
∂p

= 0

and
∂b2
∂t

=
−15α2
4− 35α2

,
∂b2
∂q

= 0,
∂b2
∂p

= −150α2 − 60
4− 35α2

.

Since λ1 =
(
α1
6 ,

β1
10 ,

1−α1−β1
4

)
and λ2 =

(
α2
4 ,

β2
10 ,

1−α2−β2
6

)
, while z121 =

(
10k
1+k

)
,

and z122 =
(
− 10k
1+k

)
, replacing (β1, β2) with (β1 (α1) , β2 (α2)) , we obtain

∂V1
∂t

=

(
−1− 4∂q

∂t

)
α1
6
−
(
5

3
− 25
9
α1

)(
k

1 + k

)
∂p

∂t
,

∂V2
∂t

=

(
1 + 4

∂q

∂t

)
α2
4
+

(
5

2
− 25
4
α2

)(
k

1 + k

)
∂p

∂t
.
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Set α1 =
38
100 and α2 =

39
100 . Then,

∂q

∂t
=

1

190

[
40k + 51k2 − 171
570k2 − 193k + 9

]
,

∂p

∂t
= −351

10

[
(k + 1) (k − 1)
570k2 − 193k + 9

]
,

and (q, p) = (1, 1) is a critical equilibrium for k =
(
193
1140 ± 1

1140

√
16 729

)
. The

rates of change of the indirect utilities are

∂V1
∂t

=

(
−1− 4

190

(
40k + 51k2 − 171
570k2 − 193k + 9

))
38

600
+
3861

180

(
k

1 + k

)(
(k + 1) (k − 1)
570k2 − 193k + 9

)

∂V2
∂t

=

(
1 +

4

190

(
40k + 51k2 − 171
570k2 − 193k + 9

))
39

400
− 351
160

(
k

1 + k

)(
(k + 1) (k − 1)
570k2 − 193k + 9

)

Figure 4 shows their values11 for k ∈
(
7
100 ,

27
100

)
, an interval contained in one of

the connected components of the equilibrium manifold, defined with respect to
k. For values of k in this range, the equilibrium with (p, q) = (1, 1) is clearly
not ω−CPO, since it can be improved upon by a small reallocation of period 0
endowment with t1 < 0.
An argument similar to the one used for Example 5 shows that a similar

result holds for a, relatively, open set of economies.

FIGURE 4 GOES HERE
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Figure 2: Values of ∂V1
∂τ
,∂V2
∂τ

and ∂V3
∂τ

as functions of α2 = α3
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Figure 3: ∂Vh
∂b

due to changes in commodity prices
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Figure 4: ∂V1
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