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Abstract: Enzymes, as natural and potentially long-term treatment options, have become one of the
most sought-after pharmaceutical molecules to be delivered with nanoparticles (NPs); however, their
instability during formulation often leads to underwhelming results. Various molecules, including
the Tween® polysorbate series, have demonstrated enzyme activity protection but are often used
uncontrolled without optimization. Here, poly(lactic-co-glycolic) acid (PLGA) NPs loaded with
β-glucosidase (β-Glu) solutions containing Tween® 20, 60, or 80 were compared. Mixing the enzyme
with Tween® pre-formulation had no effect on particle size or physical characteristics, but increased
the amount of enzyme loaded. More importantly, NPs made with Tween® 20:enzyme solutions
maintained significantly higher enzyme activity. Therefore, Tween® 20:enzyme solutions ranging
from 60:1 to 2419:1 mol:mol were further analyzed. Isothermal titration calorimetry analysis demon-
strated low affinity and unquantifiable binding between Tween® 20 and β-Glu. Incorporating these
solutions in NPs showed no effect on size, zeta potential, or morphology. The amount of enzyme and
Tween® 20 in the NPs was constant for all samples, but a trend towards higher activity with higher
molar rapports of Tween® 20:β-Glu was observed. Finally, a burst release from NPs in the first hour
with Tween®:β-Glu solutions was the same as free enzyme, but the enzyme remained active longer
in solution. These results highlight the importance of stabilizers during NP formulation and how
optimizing their use to stabilize an enzyme can help researchers design more efficient and effective
enzyme loaded NPs.

Keywords: polymeric nanoparticles; enzyme delivery; enzyme stabilization; Tween® stabilization;
nanomedicine

1. Introduction

Enzymes have taken the scene as promising pharmaceutical agents to treat numerous
rare and deadly diseases worldwide, including pathologies of the central nervous system
(CNS) [1–5]. Enzyme replacement therapy (ERT), which is based on the periodic administra-
tion of specific enzymes, is currently the most suitable therapy for difficult-to-treat diseases
caused by a deficit in enzymes, such as lysosomal storage disorders (LSDs) [6–9]. However,
therapeutic application of enzymes is still hampered by several obstacles that limit their
clinical benefits because these macromolecules frequently fail in crossing biological barriers
such as the blood brain barrier (BBB), and do not reach therapeutic concentrations in the
target tissues [1,4,5,10–13]. Moreover, they show immunogenicity, short half-lives in blood
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circulation, and a rapid loss of specific activity/therapeutic potential. This calls for exten-
sive research in ways to protect and prolong enzyme circulation in the blood. Moreover,
many of the diseases caused by a lack of a functional enzyme, such as β-glucosidase (β-Glu)
in Gaucher disease, require the enzyme not only to be protected, but also to be delivered to
the CNS, where the majority of the damage is done. Therefore, new therapeutic strategies
are urgently required to compensate for the deficit of enzymes in order to enable their safe
delivery and accumulation in diseased cells.

To overcome these problems, the idea of enzyme encapsulation into tailored nanopar-
ticles (NPs) represents one of the most attractive strategies. Among current advances in
developed NPs, polymer-based NPs have gained increasing attention as biocompatible,
biodegradable, targeted, and versatile platforms [14–20] for the delivery of a wide array
of therapeutic molecules ranging from small molecules [21–24], peptides [25–28], proteins
and enzymes [2,4,29–31], and genetic material [32–34]. The encapsulation of enzymes
into polymeric NPs offer several advantages compared to conventional enzyme-based
therapy, including: (i) stabilizing and protecting the enzyme; (ii) improving biological
activity; (iii) possibility of targeted delivery; (iv) controlling the enzyme release kinetics;
(v) improving therapeutic efficacy and safety [10,35,36]. In particular, Poly(D,L-lactide-
co-glycolide) (PLGA), a U.S. Food and Drug Administration (FDA)-approved polymer
that can self-assemble into NPs has been of high interest [37–39]. This is because it is
capable of encapsulating large molecules such as proteins and enzymes [40–44] and has
also been demonstrated to have the capacity to transport large cargo across the BBB by
adding targeting ligands [2,45–47]. This makes PLGA NPs a prime option to overcome
many of these barriers for ERT treatment.

Despite these numerous advantages, the formulation process exposes the enzyme
to physicochemical stresses which can alter the native conformation of the enzyme and
inhibit its biological activity. For instance, the double emulsion water-oil-water technique,
which is widely used for the encapsulation of enzymes into PLGA NPs, can cause pro-
tein unfolding and aggregation at the water/organic interface [48]. Various other stress
conditions, including the use of organic solvents, exposure to highly energetic processes
(e.g., sonication or freeze-drying), and high temperatures, frequently determine a loss
of enzymatic activity. Therefore, it is necessary to develop new strategies that avoid or
minimize the loss of enzyme activity during encapsulation into polymeric NPs [49,50].

One possible approach to prevent the loss of enzyme activity in solution or during for-
mulative steps lies in the addition of stabilizers such as sugars [50–53], emulsifiers [54,55],
and serum albumins [56–58]. Specific examples include: (1) Yun et al. used rabbit serum
albumin in PLGA NPs encapsulating superoxide dismutase showing acceptable enzyme
activity in vitro and in vivo [46]; (2) Osman et al. who tested PLGA NPs encapsulating
DNaseI with the addition of hydroxypropyl-β-cyclodextrin (shown in other literature
as an enzyme stabilizer [59]) [60]; (3) Atkins et al. that covalently linked the surfactant
alkyl-glycolic acid ethoxylate to the surface of hen egg-white lysozyme to form a single
enzyme NP with a surfactant shell which led to an up to 7-fold increase of enzyme ac-
tivity in solution [61]; however, while offering protective features, these stabilizers can
impact the physicochemical characteristics (size, morphology, and zeta potential), encapsu-
lation efficiency of the pharmaceutic, and the pharmaceutical properties (release kinetics,
biodistribution, cell uptake, etc.) of the NPs [62,63]; 4) Another work used bovine serum
albumin (BSA) and its ability to stabilize β-Glu during the formulation process [56]. BSA
significantly enhanced loading capacity from 6% to 30%, and was shown to quantifiably
directly bind to the enzyme (studied by isothermal titration calorimetry (ITC)) forming
complexes in solution. This translated to an equal stabilization of the enzyme activity
due to a BSA:β-Glu enzyme complex and a higher loading content of enzyme in the NPs.
Moreover, the direct complexation of the two affected release kinetics from the PLGA
matrix, shifting the release from an immediate burst release over 3 h (enzyme alone) to an
extended release over 6 days [56].
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The polysorbates or Tween® emulsifiers are another series of compounds that have
been studied in the literature for their ability to influence the loading of pharmaceutics in
NPs as well as for having stabilizing effects on enzymes [54,55,64]; however, there is little
evidence of how the type and amount of Tween® can affect enzyme stability in NPs. In this
regard, understanding the effect of these variables on the NP characteristics is important to
optimize the formulation strategy to increase the stability of the enzyme, and modulate its
release while maintaining high activity.

This work focused on elucidating if Tween® can have a stabilizing effect on a model
enzyme during the formulation process into safe and biodegradable NPs. To this end,
we combined β-Glu, the same model enzyme linked to the LSD Gaucher [65] used in our
previous work with the stabilizer BSA [56], with Tween® stabilizers and loaded them into
PLGA NPs. It was determined if the type and amount of Tween® (Tween® 20, 60 and 80)
in the enzyme solution affects the enzyme stability during NP formation.

The comparison of enzyme activity suggested that Tween® 20 mixed in solution with
β-Glu to form PLGA NPs led to the most promising results. Therefore, Tween® 20:enzyme
solutions at various molar ratios (ranging from 60:1 to 2419:1) were analyzed using ITC.
After formulation of the solution mixtures into polymeric NPs, full characterization of
each batch was performed to evaluate their physico-chemical characteristics, including
the analysis of size, surface charge, morphology (atomic force microscopy (AFM) and
scanning electron microscopy-field emission gun (SEM-FEG) analysis), loading capacity
and encapsulation efficiency, and enzymatic activity. In particular, the quantity of Tween®

20 and β-Glu in the PLGA NPs was measured and how it affected enzyme activity and
release. Finally, the effect of combining different stabilizers was analyzed. These studies
underline the importance of stabilizers to preserve high enzyme activity and possibly
modulate release kinetics for improved ERT.

2. Materials and Methods
2.1. Materials

PLGA (Poly(D,L-lactide-co-glycolide), RG503H, MW ∼= 11,000) was purchased from
(Evonik, Essen, Germany) and used as received. β-Glucosidase (β-Glu, MW 135 KDa),
Tween® 20, 60, 80 (100%, guaranteed less than 3% water), and poly(vinyl alcohol) (PVA,
MW 15,000), bovine serum albumin (BSA, 66 KDa, >98% pure), dichloromethane (DCM),
4-methylumbrelliferyl-β-D-glucopyranoside, and 4-methylumbelliferone (4-MU) were
purchased from Sigma-Aldrich (Milan, Italy). MilliQ water was purified by a Millipore
system (Millipore, Bedford, MA, USA). Analytical grade reagents were used for all other
purposes unless otherwise noted.

2.2. NP Formulation

Tween®:β-Glu mixtures were prepared by dissolving 5 mg of β-Glu with Tween® and
diluting to a final volume of 500 µL with MilliQ. To analyze the various Tween® s, the
molar ratio of Tween®:β-Glu was held constant at 2248:1 (corresponding to 20% v/v in
water). Tween® 20:β-Glu solutions were formed similarly using different molar rapports of
Tween® 20 to β-Glu to create solution 1–4, with solution 0 being a control of β-Glu without
Tween® 20 (Table 1).

In the case of PLGA encapsulating BSA:β-Glu or Tween® 20:BSA:β-Glu solutions,
the same procedure was followed but with the addition of 50 mg of BSA (20:1 BSA:β-Glu
molar ratio) in the first aqueous phase before the double emulsion formulation.

PLGA NPs were produced utilizing the double emulsion method (w1/o/w2) [56,66].
The preformed Tween®:β-Glu solutions (Table 1) were added to the organic polymer
solution (50 mg of PLGA in 2.5 mL of DCM) and the first emulsion (w/o) was obtained by
sonicating on ice (amplitude 54%, 80 W) for 45 s using a probe sonicator (SLPe, Branson,
Milan, Italy). The first emulsion was added to 8 mL of a 1% (w/v) PVA and sonicated on ice
(80 W for 45 s) to obtain the final w1/o/w2 emulsion.



Nanomaterials 2021, 11, 2946 4 of 20

Table 1. Tween® 20:β-Glucosidase solutions.

Tween® 20:β-Glu*
Solution n.

% v/v (Tween®

20/Water) **
Tween® 20

(µmol)
Tween® 20:β-Glu

(mol:mol)

0 0 0 0

1 0.5 2.2 60:1

2 5.0 22.4 605:1

3 10.0 44.8 1209:1

4 20.0 89.6 2419:1
* β-Glu was held constant in each solution mixture (5 mg, 37 nmol); ** Total volume of the aqueous phase (MilliQ
water and Tween® 20) was held constant at 500 µL.

All formulations were mechanically stirred (RW 20 DZM, Janke & Kunkel, IKA Lab,
Sigma Aldrich, Milan, Italy), at 1400 rpm, for 2 h at room temperature (RT) to evaporate the
organic solvent. Finally, the NPs were purified by centrifugation (Multispeed Centrifuge
PK 121, ALC, Bodanchimica, Cagliari, Italy) at 9,700 rpm for 10 min to remove the residual
PVA and enzyme from the solution. The supernatant was discarded and the NPs were
resuspended in 4 mL MilliQ water with the aid of a Vortex mixer (Velp Scientifica, Monza
Brianza, Italy) and sonication bath (30 s cycles until complete resuspension). The percent
yield was calculated by lyophilizing 0.5 mL of the resuspended NPs (LyoLab 3000, Heto,
Milan, Italy) and weighing the amount of NPs recovered. The lyophilized NPs were also
used to extract and quantify the amount of Tween® and enzyme loaded into the NPs (See
Methods 2.6–2.8). The remaining NP suspension was aliquoted in 1 mL samples and stored
at 4 ◦C.

2.3. ITC Analysis

As previously published [56], the possible interaction between Tween® 20 and β-Glu
was performed by ITC (25 ◦C), using a high-sensitivity VP-isothermal titration calorimetry
microcalorimeter (Malvern Panalytical, Malvern, UK). 50 mg of β-Glu were solubilized
in phosphate buffer saline (PBS, pH 6, 37 µM). 0.5 mM Tween® was passed on a pre-
equilibrated PD SpinTrap G-25 (GE Healthcare, Chicago, IL, USA) and the reference cell
was filled with MilliQ water. The Tween® (13% w/v) was eluted and diluted to 1 mM
with PBS and loaded into the ITC syringe. 1–2 µL of the Tween® water solution were
injected and discarded from the data at the beginning of each experiment to avoid artifacts
in the injection port during equilibration. Once stabilized, the first addition was added.
Each titration consisted of an injection of 10 µL Tween® (0.5 mM) into a 37 µM β-Glu
solution via a computer-controlled 310 µL microsyringe. A 300 s delay was incorporated
to allow for equilibration between titration injections. Titrations of Tween® 20 into PBS
or PBS into β-Glu solutions were used as controls. Integrated heat data were fitted using
a nonlinear least-squares minimization algorithm to a theoretical titration curve, using
AFFINImeter (V2.1802.5, Edificio Emprendia, Campus Vida, Campostela, Spain) through
the independent sites approach for each titration. The thermodynamic fitting parameters
consisted of ∆H (cal mol−1 change in reaction enthalpy), N (stoichiometry), and KA (M−1,
binding constant). The parameter Qdil (heat of dilution, J mol−1) was also adjusted as a
fitting parameter. The relationships ∆G = −RTlnKA (R = 8.314 J−1 mol−1 K−1, T = 298 K)
and ∆G = ∆H − T∆S were used to calculate the reaction entropy. Goodness of fit (GoF) was
used to evaluate the reliability of the obtained fits based on software provided parameters.

2.4. Size and Zeta Potential Analysis

The mean particle size (Z-Average) and polydispersity index (PDI) of all samples were
determined by photon correlation spectroscopy (PCS) analysis, using a Zetasizer Nano ZS
(Malvern, Milan, Italy; laser 4 mW He–Ne, 633 nm, laser attenuator automatic, transmission
100–0.0003%, detector avalanche photodiode, Q.E. > 50% at 633 nm, T = 25 ◦C).
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All samples were diluted before being analyzed: 10 µL of purified NPs suspension
were diluted with MilliQ water to 1 mL to arrive at a final concentration of ~0.1 mg/mL.
At least three individual NP formulations were prepared and analyzed to yield a mean for
each data set.

The zeta potential (ζ-pot) was measured using a Zetasizer Nano ZS (Malvern, Milan,
Italy) with a combination of laser doppler velocimetry and a patented phase analysis
light scattering method (M3-PALS). The same samples subjected to PCS (0.1 mg/mL)
were analyzed using DTS1070 ζ-pot cuvettes and expressed as the mean of at least three
individual NP preparations.

2.5. Microscopy Analysis

Atomic force microscopy (AFM, Park Instruments, Sunnyvale, CA, USA) was used
to evaluate the morphology of NPs formulated with Tween®:enzyme solutions. Analyses
were performed using triangular silicon tips at 25 ◦C in air and in non-contact mode.
The cantilever resonant frequencies were set at ~160 kHz. Water-diluted NPs (20 µL,
~0.01 mg/mL) were added to a small mica disk (1 cm × 1 cm), let dry for 2 min and the
excess solution was removed. The topographical images were flattened using second-order
fitting to remove sample tilt.

The same samples were also imaged by scanning electron microscopy field emission
gun (SEM-FEG). Briefly, a drop of a water-diluted suspension of the samples (about
0.01 mg/mL) was placed on a 200-mesh copper grid (TABB Laboratories Equipment, Berks,
UK), allowed to adsorb, and the suspension surplus was removed by filter paper. All grids
were analyzed using a Nova NanoSEM 450 (FEI, Hillsboro, OR, USA) electron microscope
operating at 30 kV using a SEM II detector in field-free mode.

2.6. Weight Yield

Purified NPs (0.5 mL) were freeze-dried and weighed (−60 ◦C, 1 × 10−3 mm/Hg
for 8 h; LyoLab 3000, Heto-Holten, Allerod, Denmark), and the yield% was calculated
as follows:

Yield(%) =
freeze− dried sample (mg)

PLGA (mg) + enzyme used for preparation(mg)
× 100 (1)

2.7. Quantification of β-Glu in PLGA NPs

To quantify the β-Glu encapsulated in the NPs, a volume of 0.5 mL of purified
NP suspension was freeze-dried, weighed, added with DCM (0.25 mL) and subjected to
agitation with Vortex mixing (ZX4 Advanced IR Vortex Mixer, Velp, Usmate, Italy) for 30 s to
dissolve the PLGA. Then, the enzyme was extracted using 250 µL MilliQ in which the PLGA
is insoluble. These samples were centrifuged (Spectrafuge 24D Labnet International Inc.,
Edison, NJ, USA) at 10,000 rpm for 2 min, to properly separate the aqueous from organic
phase. 50 µL of the aqueous phase containing the enzyme were injected and quantified by
reverse-phase high performance liquid chromatography (RP-HPLC) (Figure S1A).

As previously described [56] the HPLC (JASCO Europe, Cremella, Italy) was com-
prised of a Model PU-2089 Plus pump and a 50 µL sample loop (Jasco, Model 7725i)
and fitted with an AerisTM C8 analytical column (3.6 µm WIDEPORE XB-C8 200 Å, Phe-
nomenex, Bologna, Italy). The gradient consisted of a biphasic system using A [0.1% v/v
trifluoroacetic acid in MilliQ water (pH~2)] and B [0.1% v/v trifluoroacetic acid in acetoni-
trile] where B was increased from 20 to 80% over 6 min (1.2 mL/min) under isothermal
conditions at 70 ◦C (model 7971 Column Heater, Jones Chromatography, Rheinfelden,
Germany). The absorbance was monitored at 210 nm using a UV detector (Jasco UV-1575,
Carpi, Italy). The peak area was integrated, and a standard curve ranging from 20 to
1600 µg/mL (y = 40538x + 4330.9, R2 = 0.99) was used to calculate the β-Glu concentration.
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The entrapment efficiency (EE%) and the loading capacity (LC%) were calculated
as follows:

EE% =
βGlu(NPs)

βGlu(total)
× 100 (2)

LC% =
βGlu(NPs)

NP(total)
× 100 (3)

where βGlu(NPs) indicates the amount (mg) of βGlu loaded in the NPs, βGlu(total) refers
to the amount (mg) of β-Glu originally used in the formulation, and NP(total) the amount
(mg) of NPs recovered. All data were calculated using three individual formulations for
each sample type.

2.8. Quantification of Tween® in PLGA NPs

To determine the amount of Tween® 20 incorporated into or absorbed onto the NPs,
the Tween® 20 was extracted from the NPs and analyzed by HPLC-evaporative light
scattering detector (ELSD) analysis by modifying a previously published protocol [67].

A weighed amount of NPs (about 10 mg) was dissolved in 1 mL of DCM and vortexed
for 20 s to solubilize the PLGA. To extract Tween® 20, 1 mL of MilliQ water was added
to the DCM suspension and vortexed again. Samples were stirred (Multistirrer, Magnetic
Stirrer Velp Scientifica, Monza Brianza, Italy) to evaporate the DCM, and precipitate the
PLGA. The volume of the resulting suspension was adjusted to 1.5 mL with MilliQ water
and centrifuged (Spectrafuge 24D, Edison, NJ, USA) at 13,000 rpm for 3 min to pellet
the PLGA. The supernatant was then analyzed by ELSD-HPLC (20 µL injection volume)
(Figure S1B). Tween® 20 quantification was carried out on a 1260 Infinity II HPLC system
(Agilent, Milano, Italy) with a fixed flow rate of 1.2 mL/min at RT, coupled with two
detectors: (1) a UV detector (1260 variable wavelength detector (VWD)) set at λ = 210 nm;
(2) an ELSD system 1260 Infinity II (settings: evap. = 45 ◦C; neb. = 45 ◦C; gas = 1.60 SLM).
A C8 (Phenomenex®) analytical column was used, and elution was obtained using a
gradient consisting of A [MilliQ water] and B [acetonitrile]. The mobile phase gradient was
optimized as follows:

- 0–5 min: 0–0% B
- 5–10 min: 0–60% B
- 10–15 min: 60–80% B
- 15–17 min: 80–0% B

A calibration curve was obtained using the same methodology (y = 0.101x − 1.1858,
R2 = 0.9932), and linearity was achieved from 2.5 to 15 µg injected in 20 µL.

Tween® 20 content and the mol:mol ratio Tween® 20:β-Glu were calculated as follows:

Tween(r)20 Content =
mg Tween(r)20

mg NPs
× 100 (4)

molar ratio Tween(r)20 : β−Glu =
mol Tween(r)20 in the NPs

mol of enzyme in NPs
(5)

2.9. β-Glu Activity Assay

The activity of β-Glu was assessed using the substrate 4-methylumbrelliferyl-β-D-
glucopyranoside. One hundred µL containing 45 µL of NPs or supernatant, 25 µL 4×
McIlvain buffer pH 6 (0.4 M citric acid, 0.8 M monobasic phosphate), 5 µL water MilliQ, and
25 µL 4-methylumbrelliferyl-β-D-glucopyranoside (2 mg/mL) substrate were incubated
for 1 h in a 96-well plate under agitation at 170 rpm and heated to 37 ◦C. Each sample
underwent a 1:50 dilution with MilliQ water and the reaction was stopped by adding 10 µL
to 190 µL of glycine “stop buffer” solution (250 mM, pH 10.7) in a separate 96-well plate;
the enzymatic product (4-MU) was measured by a fluorimeter (Synergy HTX Multi-Mode
Reader, BioTek, Winooski, VT, USA) ex:em 365:488 nm. β-Glu activity was expressed as
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pmol of the product, 4 MU, per hour per µg of enzyme. Quantification was calculated
using an internal standard curve produced on the same 96-well plate using 0, 2, 5, 10, 20,
50, 100 µL of a known 4MU solution (5 µM) diluted in “stop buffer” (250 mM glycine, pH
10.7) to a final volume of 200 µL. Control samples included NP resuspension buffer (MilliQ
water), as well as empty NPs (NPs formulated without enzyme), Tween® solutions at the
concentrations found in the NPs, and BSA solutions equal to those present in the NPs.
These controls did not show an increased background compared to the water sample alone
and were not considered.

2.10. Enzyme Release Assay

The effect of Tween® 20 on the release profile and activity of β-Glu from the PLGA NPs
was analyzed in two different biologically relevant conditions: pH 7.4 (PBS) to simulate
systemic release and pH 4.5 (acetate buffer) to simulate the lysosomal environment. Indi-
vidual samples for each time point of PLGA NPs encapsulating β-Glu or Tween® 20:β-Glu
solutions were analyzed from 1 h to 14 days at each pH. NP suspensions (0.9 mL) were
buffered with 0.1 mL of release buffer (PBS 10× or acetate buffer 10x) in Eppendorf tubes
(final volume 1 mL in 1× concentrated buffer). Samples were incubated in a heated bath
(ISCO GTR 2000, Optolab, Concordia Sulla Secchia, Italy) at 37 ◦C under electromagnetic
stirring. At each time point (1 h, 3 h, 6 h, 24 h, 72 h, 7 days, and 14 days) corresponding
samples were centrifuged (Spectrafuge 24D centrifuge, Edison, NJ, USA) at 13,300 rpm
for 7 min in order to separate NPs as a pellet. An aliquot of the supernatant (45 µL) con-
taining the released enzyme was tested for enzyme activity. The remainder (960 µL) was
freeze-dried, re-suspended with 0.1 mL MilliQ water (with the aid of a vortex mixer) and
quantified by RP-HPLC analysis as previously described.

2.11. Statistical Analysis

Statistical analysis in all assays was performed using the Student t Test where * p < 0.05
and ** p < 0.01 as indicated in each figure. All statistical analyses (Z-Average, ζ-pot, PDI,
%EE, enzyme activity and release) were performed in triplicate on three independent
samples or NP formulation (N = 3) and the standard deviation (S.D.) from the mean of the
three separate samples is represented by a “±” or error bars.

3. Results

Tween® is a trademarked line of surfactants which have been shown in the literature
to help NP formation and stabilize enzymes [54,55,64,68–70]. Therefore, an initial study
was performed to compare the formulation of the model enzyme β-Glu mixed in solution
with the Tween® series of surfactants, which differ in their chemical structure, as their
sorbitan-derived core is esterified respectively with lauric (Tween® 20), stearic (Tween®

60), or monooleic acid (Tween® 80). The aim was to determine which variant poses the
highest potential for formulating and preserving enzyme activity in PLGA NPs. β-Glu
mixed in solution with each different Tween® in the aqueous phase before formulation
with the double emulsion method did not produce any difference in size or ζ-pot of the
NPs compared to empty PLGA NPs or those containing free β-Glu, resulting unanimously
with monodisperse particles ranging from 177 to 208 nm with low PDI < 0.2 and a negative
surface charge of the NPs ranging from −16 to −23 mV (Table 2).

The fact that the different Tween®s had little effect on the NP self-assembly process is
not surprising, given that they have previously been used in the literature for this purpose.
Further analyzing the NP characteristics, varying the type of Tween® did not affect the
%yield of the NPs; however, statistical analysis showed that while each Tween® was not
significantly different from each other (p = 0.23), even though all three showed slightly
improved %EE compared to control NPs with only β-Glu, only NPs containing Tween® 20
were significantly higher than the ones without Tween® (3.9 and 7.8 respectively, p = 0.049)
(Table 2). Similarly to the increase in %EE a higher enzyme activity was also observed. All
NPs with Tween®:β-Glu significantly outperformed the control NPs which contained β-Glu
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without Tween®. Interestingly, while the %EE was not significantly different between NPs
with the different Tweens®, the enzyme activity did show variation. Here it is important
to note that activity of β-Glu within the intact NPs was quantified to avoid using organic
solvents that could potentially damage the enzyme during extraction; however, control
samples showed that PLGA did not interfere with a direct comparison of NPs containing
enzyme with or without Tween®. In this case, the presence of Tween® 20 in the enzyme
solution led to NPs that statistically outperformed its other Tween® counterparts in terms
of preserved enzyme activity (Figure 1). These results closely resemble the protective effect
of Tween® 20 on β-Glu when disposed to the same stresses (organic solvent, sonication,
and centrifugation) without the presence of PLGA. While Tween® 20 has no effect on
the free enzyme, it stabilizes the enzyme when stressed leading to retention of ~40% of
its activity compared to only 10% for the un-stabilized enzyme under stress (Figure S2).
Because the major barrier to effective ERT is delivering a therapeutically relevant amount
of enzyme to the diseased site, the improved %EE and activity of Tween® 20 merit further
studies to better understand the correlation between Tween® 20 and enzyme stabilization
and therefore only Tween® 20 was chosen for more in depth studies.

Table 2. Effect of Tween® Type Comparison on Nanoparticle Characteristics.

Sample † Z-Average
nm ± S.D. PDI ± S.D. ζ-Pot

mV ± S.D.
Yield% ±

S.D.
LC% ±

S.D.
EE% ±

S.D.

Empty NPs 190 ± 15 0.06 ± 0.01 −20 ± 3 85.1 ± 3.1 - -

NPs β-Glu 199 ± 25 0.09 ± 0.02 −22 ± 6 82.5 ± 6.8 0.4 ± 0.1 3.9 ± 1.5

NPs_Tween®

20:β-Glu
198 ± 33 0.09 ± 0.06 −16 ± 7 75.9 ± 2.3 0.9 ± 0.1 7.8 ± 1.9 *

NPs_Tween®

60:β-Glu
177 ± 44 0.05 ± 0.04 −23 ± 7 78.2 ± 1.8 0.8 ± 0.1 5.6 ± 2.6

NPs_Tween®

80:β-Glu
208 ± 23 0.22 ± 0.03 −20 ± 4 72.7 ± 5.4 0.5 ± 0.1 5.4 ± 2.2

† the ratio of Tween®:β-Glu was held constant, mol:mol 2248:1; * statistically significant compared to NPs β-Glu, p = 0.049.

Figure 1. Activity Comparison. Activity of β-Glu mixed with Tween® 20, 60, 80 and encapsulated
into PLGA NPs. Statistical analysis was performed using the Student t test where * p < 0.05, ** p < 0.01
and N = 3 individual NP formulations for each type.
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Due to the improved features of Tween® 20:β-Glu solution mixtures in the formulation
of PLGA NPs, a more detailed study of the solution and its incorporation into the NPs
during formulation was performed. To this end, 5 different Tween®:β-Glu solutions
(Solutions 0–5) were analyzed ranging in a mol:mol ratio of 60–2419:1, where solution 0
was designated as a control with no Tween® but only β-Glu.

The total volume of all mixtures and the amount of enzyme were held constant
at 500 µL and 5 mg respectively (solution compositions are described more in detail in
Methods Section 2.2 (Table 1)). Contrary to the previously published results using BSA:β-
Glu complexes [56] that showed small nanosized structures upon complexation with a
range from ~9–60 nm, Tween®:β-Glu mixtures analyzed by PCS showed erratic results due
to the non-homogeneity of the sample, as highlighted by PDI values ranging from 0.35 to
0.80, suggesting poor or uncontrolled complexation. Here the ζ-pot reached neutral values
around 2 ± 2 mV. (Table 3).

Table 3. Characteristics of Tween® 20:β-Glucosidase Solutions.

Tween®

20:β-Glu
Solution n.

Z-Average
nm ± S.D. PDI ± S.D.

Peak 1
nm ± S.D.
(% ± S.D.)

Peak 2
nm ± S.D.
(% ± S.D.)

Peak 3
nm ± S.D.
(% ± S.D.)

ζ-Pot
mV ± S.D.

0 792 ± 27 0.65 ± 0.11 78 ± 12
(80 ± 4)

144 ± 45
(15 ± 5) - −2.21 ± 4

1 932 ± 225 0.79 ± 0.06 564 ± 200
(73 ± 11)

1185 ± 3120
(20 ± 3)

602 ± 915
(5 ± 3) 2.27 ± 3

2 636 ± 23 0.71 ± 0.09 521 ± 275
(60 ± 5)

36 ± 46
(38 ± 8)

3470 ± 2453
(2 ± 2) 2.12 ± 2

3 114 ± 60 0.35 ± 0.09 9 ± 1
(65 ± 7)

529 ± 11
(34 ± 7)

5125 ± 191
(8 ± 4) 2.13 ± 1

4 116 ± 47 0.49 ± 0.14 281 ± 470
(59 ± 8)

936 ± 935
(30 ± 9)

3218 ± 1697
(10 ± 8) 2.14 ± 1

This unquantifiable binding between Tween® 20 and β-Glu was also supported by
ITC. In this study, Tween® 20 (0.5 mM) was titrated over β-Glu (37 µM) (Figure 2). Similar
to the PCS analyses, ITC suggested a weak binding interaction with the fit of the data
indicating the presence of a single binding event with N = 0.62 ± 0.08 Ka = 6 ± 1 × 104,
∆H = 3.8 ± 0.4 kJ mol−1, ∆S = 79.9 J mol−1 K−1. The relatively low binding constant
provided a c value of 1, lower than the optimal one (c = M × KA × N), which indicated
that the conditions used could provide only a suboptimal sigmoidicity of the binding
isotherm, without a clear inflection point. In theory, the value of “c” could be improved by
increasing the enzyme and surfactant concentrations. However, this was not a possibility
in this case as doubling the Tween® 20 concentration in the titration syringe led to a high
heat of dilution for the detergent, which increased the signal-to-noise-ratio and masked
the heat of binding. For this reason, the stoichiometry of the reaction could not be reliably
derived from the fit under the conditions used. In the hypothesis of a 1:1 binding event,
the dissociation constant can be calculated as 17 ± 3 µM. The derived thermodynamic
signature shows both favorable enthalpic and entropic values, with a prevalence of the
entropic term. This is likely due to the hydrophobic nature of the interaction between the
detergent and the enzyme. Hydrophobic interactions are indeed usually entropy-driven,
as water molecules, previously organized around the hydrophobic surfaces, are released
into the bulk of the solution. It is important to note that during titration, the Tween® 20
concentration in the sample cell is lower than the critical micellar concentration (cmc),
indicating that it represents the enzyme interaction with single molecules of the detergent.
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Figure 2. Isothermal titration calorimetry analysis of Tween® 20 and β-glucosidase. (A) Raw titration
data of Tween® 20 (0.5 mM) titrated over β-Glu (37 µM) in PBS buffer, pH 6. (B) Binding isotherm of
Tween® 20 titration over β-Glu, obtained by integrating raw data for the protein titration. The blue
dots represent the experimental data and the red curve represents the fit of the data using a single set
of sites model.

The ITC data of Tween® 20:β-Glu solution mixtures suggested that the stabilizing
effect did not arrive from a strong quantifiable complexation with the enzyme β-Glu, but
from an effect during the formulation of the NPs. This also supports the almost neutral
zeta potential with large errors along with the lack of distinct nano sized self-assemblies in
solution. To better evaluate the stabilizing effect of Tween® 20 on the enzyme each solution
mixture was used to formulate β-Glu-PLGA NPs and were characterized for Z-Average,
ζ-pot, %yield, %LC and %EE (Table 4).

Table 4. Physical characterization and loading content of Tween® 20:β-Glucosidase solutions in PLGA NPs.

Z-Average
nm ± S.D. PDI ± S.D.

AFM
Diameter

nm ± S.D.

ζ-Pot
mV ± S.D.

Yield%
± S.D.

LC%
± S.D.

EE%
± S.D.

Empty NPs 190 ± 15 0.06 ± 0.01 320 ± 47 −20 ± 3 85.1 ± 3.1 - -

NPs_Solution0 199 ± 25 0.09 ± 0.02 311 ± 69 −22 ± 6 82.5 ± 6.8 0.4 ± 0.1 3.9 ± 1.5

NPs_Solution1 185 ± 24 0.08 ± 0.03 173 ± 41 −16 ± 5 72.7 ± 5.5 1.1 ± 0.0 9.7 ± 1.2

NPs_Solution2 188 ± 13 0.08 ± 0.01 142 ± 39 −16 ± 10 73.9 ± 4.3 1.0 ± 0.1 11.1 ± 1.2

NPs_Solution3 191 ± 23 0.08 ± 0.02 150 ± 26 −16 ± 7 81.8 ± 3.6 0.8 ± 0.1 8.4 ± 4.0

NPs_Solution4 198 ± 33 0.09 ± 0.06 270 ± 31 −16 ± 7 75.9 ± 2.3 0.9 ± 0.1 7.8 ± 2.5

As expected based on the initial study, varying the molar rapport of Tween® 20: β-
Glu had no significant effect on the physico-chemical characteristics of the NPs. Each
NP formulation had a comparable Z-Average, PDI, and ζ-pot (~190 nm, PDI < 0.1, and
−18 mV) as that without stabilizer. There was a slight difference in %EE among the
samples, with Solution 2 showing the highest encapsulation at 11.1%; however, the %EE
was statistically higher for NPs formulated with all of solution mixtures when compared
to the control sample without Tween® even though the differences between each mixture
were not statistically significant.

To further analyze the morphology and self-assembly of each NP, AFM and SEM-FEG
analysis were performed (Figures 3 and S3). AFM analysis demonstrated that all Tween®

20:enzyme solutions were incorporated into NPs ranging from 150 to 300 nm with some
aggregates reaching 500 nm, as seen with NPs encapsulating Solution 3. Analyzing the
images, it was seen that with the higher amount of Tween® (Solution 4) more uniform
spherical NPs were formed (Figure S1).
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Figure 3. SEM-FEG Nanoparticle images; (A) NPs PLGA:Solution0; (B) NPs PLGA:Solution1, (C) NPs
PLGA:Solution2; (D) NPs PLGA:Solution3; (E) NPs PLGA:Solution4; (F) Solution Tween® 20: β-Glu
non-formulated. Note: all formulations contain 5 mg β-Glu.

SEM-FEG analysis supported these findings where all images showed spherical NPs
ranging from 150 to 300 nm. With this microscopic method, however, the double emulsion
containing Tween® is more apparent. Increasing the amount of Tween® led to the NPs
becoming more uniform and presenting a halo around the denser core (Figure 3E). Further
supporting the ITC data, Solution 4 was analyzed in solution pre-formulation and no
self-assemblies were identifiable (Figure 3F).

To determine if these structural differences were caused directly by a variation in the
amount of Tween® 20 incorporated into the NPs, a quantification of Tween® 20 content was
performed by ELSD-HPLC, following a protocol modified from a previously published
article (Table 5) [67]. While the HPLC-ELSD technique allowed for the quantification of
the Tween® in the NPs, reverse phase columns are incompatible with the polymer PLGA,
meaning no structural information could be provided of intact NPs. Therefore, Tween®

20 was extracted from the NPs using an organic solvent, to destroy the 3D-assembly,
and an aqueous solvent was used to solubilize and quantify the Tween® to determine if
there is a correlation between the physical characteristics and the presence of Tween® 20.
Interestingly, the amount of total Tween® 20 incorporated into the NPs remained constant
independently from the Tweeen® 20:enzyme solution mixture encapsulated, despite the
increased amount of surfactant in the initial aqueous solution (~9 mg/100 mg NPs). This
is an interesting result because even over such large differences in the amount of Tween®

20 in the aqueous phase (0.5–20% v/v), there appeared to be a saturation effect where the
PLGA NPs have an incorporation limit of ~ 10% of the total mass of the NPs. This means,
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the only difference in final Tween® 20 amount can be observed in the ratio of Tween®:β-Glu
(increasing from 841:1 to 1560:1) due to the difference in %EE and final %yield.

Table 5. Quantification of Tween® 20 content in Nanoparticles formulated with solutions 1–4.

Samples Tween® 20 Content
mg Tween® 20/100 mg NPs

β-Glu Content
mg β-Glu/100 mg NPs

Tween® 20:β-Glu
mol/mol

NPs_Solution1 9.4 ± 0.3 1.1 ± 0.0 844

NPs_Solution2 9.3 ± 0.2 1.0 ± 0.1 872

NPs_Solution3 9.3 ± 0.1 0.8 ± 0.1 1233

NPs_Solution4 9.7 ± 0.6 0.9 ± 0.1 1560

While the increased amount of Tween® 20 appeared to form more homogenous NPs
according to the microscopic analysis, the constant PCS results, and amount of Tween® 20
in the NPs was directly translated to the activity in the NPs. While all Tween® 20:enzyme
solution mixtures yielded NPs with higher activity respective to those without Tween® 20,
the difference between the various mixtures was insignificant, showing only a slight trend
towards higher activity correlated to a higher amount of Tween® 20 in the initial solution,
as well as the trend towards higher Tween® 20:β-Glu molar rapports (Figure 4, Table 5).

Figure 4. Activity Comparison. Activity of Tween® 20:β-Glu solutions at different molar ratios
(Solutions 1-4) and encapsulated into PLGA NPs. Statistical analysis was performed using the
Student t test where ** p < 0.01 and N = 3 individual NP formulations of each type.

While interesting, this brings up another question as to why, even when the amount
of residual Tween® 20 remains constant (~9.5%) in the final composition of NPs, the trend
towards a higher molar rapport of Tween® 20:β-Glu also led to a trend towards higher
activity. One possible conclusion would be that the protective effect is completely ascribed
to stabilization from the stresses in solution. To study if the presence of Tween® 20 affects
the release and activity of the enzyme from the NPs, the release profile was studied at the
biologically relevant pHs of 7.4 (representing blood circulation) and 4.5 (lysosome).

Unfortunately, a detailed analysis of the release kinetics using the Peppas model
was not feasible due to the equilibrium of the release of enzyme from the NPs and the
subsequent loss of enzyme activity in the supernatant, making it unquantifiable by HPLC,
over time; therefore, we looked at each timepoint individually to measure both intact and
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active released enzyme. As previously seen in the article looking at β-Glu stabilization
with BSA [56], enzyme loaded NPs with no stabilizer not only showed maximum release
within 3 h at both pHs with a release of ~61% at pH 7.4 and 21.3% at pH 4.5 of the total
enzyme content, but showed very little enzyme activity peaking at 200 pmol 4-MU/h/µg
β-Glu. The difference in total amounts of recovered enzyme could be due to the instability
of the enzyme in solution leading to lower quantification yields (Figure 5, Grey bars). The
NPs formulated with Solution 4 showed very different results. A maximum release (62.7%
at pH 4.5 and 80% at pH 7.4) was still observed within 24 h; however, two interesting
observations were made. First, the released enzyme remained stable and measurable by
HPLC even out to between 7 and 14 days (Figure 5A,B, black bars). Secondly, and in
accordance with the first observation, the more stabilized enzyme retained activity at much
higher levels and for longer times than the enzyme encapsulated alone. This is interesting
because the results indicating low\poor complexation between Tween® 20 and enzyme still
led to stabilization in solution after being released in some way. One possible hypothesis for
this still relates back to the stabilization of the NPs during formulation. More homogenous
and constant NP formation could protect the enzyme from stresses such as solvent contact
and sonication. These stresses could negatively impact the 3-D structure of the enzyme,
leading it to be more susceptible to physical changes that lead to a loss of activity once
released in biologically relevant conditions. Another hypothesis could be the “sacrificial
lamb” effect: this would explain both the protection of the enzyme in solution under stress
during formulation, but also explain as to why when the enzyme is released (presumably
together with the incorporated Tween® 20), it is protected long term and retains its activity.

Figure 5. Quantification of the release and enzyme activity of β-glucosidase from the nanoparticles. Grey: control Solution
0 NPs (no Tween® 20). Black: Solution 4 NPs (with Tween® 20). (A) %Release of β-Glu at pH 7.4, (B) %Release of β-Glu
at pH 4.5, (C) Activity of released β-Glu at pH 7.4, (D) Activity of released β-Glu at pH 4.5. Analysis of N = 3 separate
NP formulations.

Due to the differences in interaction, loading efficiency and release profiles between
Tween® 20:enzyme solutions and BSA:enzyme complexes formulated into PLGA NPs,
it was hypothesized that these two stabilizing molecules work by different (but still un-
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defined) mechanisms. To this end it was tested to see if they could complement each
other maintaining even higher levels of enzyme activity respective as each individually.
Controls on stressed enzyme or stabilized enzyme under stress show this effect in solution
(Figure S2) and therefore, studies during NP formulation were tested. NPs encapsulating
BSA:β-Glu Complex (molar rapport 20:1), Tween® 20:β-Glu Solution 4, and a BSA:Tween®

20:β-Glu mixture solution (with the molar ratios of enzyme to BSA and Tween® 20 equal
to that of the individual formulations) were compared. NPs formulated with BSA:Enzyme,
Tween® 20:Enzyme, or BSA:Tween® 20:Enzyme solutions were purified by centrifugation
to remove any stabilizer or free enzyme in the supernatant. The intact NPs were then tested
directly for the amount of β-Glu activity present. This was then normalized to the amount
of enzyme encapsulated for each NP type based on an extraction and quantification of
the amount of enzyme present. The combination of both stabilizers showed similar sizes
(216 nm) and ζ-pot (−15 mV) as when formulated with only one of them. The %EE of
BSA:Tween®:β-Glu was increased as previously seen with the BSA:β-Glu complex but not
to the same extent (14 and 25%, respectively). Ultimately the combination of both stabilizers
together in the formulation led to retention of a statistically higher enzyme activity in the
NPs, an effect that appeared to be additive compared to NPs with the individual stabilizers
(Figure 6).

Figure 6. Combination Stabilization. Measurement of the β-Glu Activity in NPs formulated with:
BSA:Enzyme, Tween® 20:enzyme, or BSA:Tween® 20:enzyme solution.. Statistical analysis was
performed using the Student t test where, ** p < 0.01 and measured for N = 3 individual NP
formulations of each type.

4. Discussion

Hard to treat diseases are plaguing science at the moment with very few functional
cures being approved to treat them. Nanomedicine has paved the way to creating new and
improved treatments due to their ability to be targeted to certain organs, tissues, or cells,
and to encapsulate and protect a wide variety of pharmaceutical molecules. Many diseases
such as LSDs are caused by poor functioning or lack of enzymes which has led to a boom in
research for ERT; however, enzyme administration has been a major bottleneck due to their
delicate 3D structure required to maintain activity and lack of bioavailability when dosed
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in the blood [71–73]. Even with the improved prospects of encapsulating enzymes in NPs,
the formulation process is known to deteriorate the enzyme, causing a loss of activity. For
these reasons stabilizers are added to help maintain enzyme activity during encapsulation,
but how they affect the enzyme and the formulations has not been described in detail in
the literature. In fact, Tween® is often used in enzyme particle formulations or during
enzyme release assays without taking into consideration its potential stabilizing effect on
the enzyme and its activity [74–77]. In this article, we expand on previous works looking at
the complexation of BSA with β-Glu for improved activity by comparing the commercially
available Tween® series which has also been used in NP preparation.

Here polysorbates (more specifically Tween® 20) demonstrated an efficient stabilizing
effect of β-Glu in PLGA NPs. But it is very important to highlight the differences from
the recently published work of the same type regarding BSA [56]. While BSA showed a
direct interaction with the enzyme, Tween® 20 did not. This highlights how the different
stabilizers can affect an enzyme’s potential in different ways: BSA led to higher loading
content and enzyme encapsulation (LC%–%EE) and the complexation also affected enzyme
release, while Tween® 20 did not show direct interaction with the enzyme, did not increase
LC% or %EE to the same extent, and had no direct effect on the release kinetics. This
strongly suggests a difference in mechanism where BSA directly stabilizes the enzyme
during complexation prior formulation, while Tween® has a much more global effect on
the NP formation and stabilization throughout the formulative process. Characterizations
of how stabilizers help maintaining high levels of enzyme activity also include studies on
the oligomeric state of the enzyme. Even in recent years this topic is being published in the
literature with high interest and not completely understood as results show differences in
the oligomer state being dependent on numerous factors such as the stabilizer, inhibitor,
and also origins of the β-Glu. Studies looking at β-Glu derived from Aspergillus niger
demonstrate that surfactants can change the equilibrium versus the monomer increasing
its activity by 60% [78]. On the other hand, β-Glu from Spodoptera frugiperda and almond
demonstrate higher activity in the homodimer form of the enzyme [79,80]. Aim of this
study was to analyze whether Tween® had the same complexation rate of BSA, however
advanced studies including X-ray crystallography, NMR, high-res electron microscopy or
small angle neutron scattering are needed.

This difference between the two stabilizing mechanisms was further supported by the
fact that these two effects could be complementary by using both stabilizers simultaneously
to formulate enzyme loaded NPs with even more therapeutic potential. Having the
knowledge and ability to combine stabilizers to increase enzyme loading into the NPs
while maintaining its activity is key to the future of NP based ERT. While enzyme offer
the advantage of higher long-term product turnover, PLGA NPs in the literature often
demonstrate low encapsulation rates as seen in this work (0.4 mg/100 mg NPs), and the loss
of activity during formulation is one of biggest inhibiting factors for their successful use.
This 10-fold increase from 0.4 to 3.9 mg/100 mg using BSA as a stabilizer in enzyme NPs is
a notable difference. This is similar to the 8 fold increase in activity of Tween® 20:β-Glu NPs
compared to non-stabilized NPs (approximately 6000 pmol 4-MU/h/µg β-Glu compared
to 800 respectively) even without the increase in %LC. While combining the two stabilizers
did not lead to the expected 20-fold increase, it did lead to a substantially improved result
over each stabilizer by itself, which could break through the barrier of successful NP based
ERT: literature precedence suggests that even small but highly active enzyme doses can
lead to pathology corrections in vivo, paving the way for NP based therapies that ensure
the delivery of active enzyme in a more bio-compatible and therapeutic manner to.

These results compared to the BSA stabilization results introduce a very interesting
topic in the field of NP enzyme delivery: enzyme stabilization must be characterized more
completely. This is because the appropriate selection or mixture of multiple stabilizers
with different mechanisms significantly improve NP based ERT pharmaceutics in different
ways, i.e., binding, stabilizing, increasing loading efficiency, or increasing both NP and
enzyme stabilization. This seems to be an obvious statement but one that is drastically
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missing from the field in the literature. Too often, these types of stabilizers are taken for
granted and used without quantification or optimization. This stems directly from the fact
that most of these compounds are known to help stabilize the NP formulation or enzyme
in some manner but are used as general constituents and not considered as direct players.
This is highlighted by numerous citations where the presence of these stabilizers will go
undiscussed, uncharacterized/unquantified, or without demonstrating the mode in which
it affords increased enzyme activity potential for therapeutic delivery, or even more grave,
NP systems will often be tested without the proper controls lacking the stabilizer to show
its importance in the system [31,34,68–70,81].

This more in-depth characterization and quantification of stabilizers in NP systems
is important from a characterization and understanding standpoint but becomes even
more relevant when thinking about its possible biological effects. Tween® as a surfactant is
known to have potential cell membrane destabilizing effects and cell toxicity. Therefore,
when unquantified and uncontrolled, this stabilizer could have devastating effects upon
translation to clinical use [82–86]. In this study, we demonstrated that NPs formulated
with various rapports of Tween® 20:β-Glu and increasing amounts of Tween® 20 had a
constant incorporation of 9 mg Tween®/100 mg of NPs. This is critical information because
it ensures that both in vitro, where our standard NP doses arrive at a maximum of 100 µg
(9 µg Tween®) per well of cells, and for in vivo mice studies, in which we dose up to
20 mg/kg of NPs (45 µg Tween®), the amount of Tween® administered within the NPs is
lower than literature values for polysorbate toxicity; however, while this low amount is
good for evading toxicity, it is yet to be tested in vivo if this amount is enough to maintain
the enhanced BBB crossing potential of NPs with a polysorbate shell, as also described in
the literature [87,88].

5. Conclusions

The results reported in this research article, in conjunction with previous published
enzyme stabilization results, highlight the need to characterize the effects of different
additives when discussing enzyme delivery. This is because while certain combinations of
stabilizers could lead to additive effects further increasing therapeutic potential, it is not
certain if two stabilizers that have the same mode of stabilization will be complementary.
Therefore, interest in the mode of action of these stabilizers found abundantly in the
literature should not be taken for granted as is, and further studies are needed to find
potential combined systems. These new systems, that have already been demonstrated to
be able to efficiently deliver enzymes in vitro and in vivo, have the potential to offer a much
more effective therapy which a much higher acceptance rate than the current aggressive
and invasive ERT approaches to treat enzyme-based diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11112946/s1, Figure S1: HPLC Quantification. Representative Chromatograms for the
quantification of (A) β-Glucosidase and (B) Tween® 20, Figure S2: β-Glucosidase Activity Controls.
Control samples of the β-Glucosidase activity in solution or after a mock formulation process (includ-
ing organic solvents, sonication, and centrifugation) with or without the presence of each stabilizer,
Figure S3: AFM images of the different Nanoparticle preparations. (A) NPs PLGA:Solution0; (B) NPs
PLGA:Solution1; (C) NPs PLGA:Solution2; (D) NPs PLGA:Solution3; (E) NPs PLGA:Solution4. Note:
all formula-tions contain 5 mg β-Glu, Table S1: List of the abbreviations used in the main text.
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