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Abstract

Objectives

To exploit the features of digital PCR for implementing SARS-CoV-2 observational studies

by reliably including the viral load factor expressed as copies/μL.

Methods

A small cohort of 51 Covid-19 positive samples was assessed by both RT-qPCR and digital

PCR assays. A linear regression model was built using a training subset, and its accuracy was

assessed in the remaining evaluation subset. The model was then used to convert the stored

cycle threshold values of a large dataset of 6208 diagnostic samples into copies/μL of SARS-

CoV-2. The calculated viral load was used for a single cohort retrospective study. Finally, the

cohort was randomly divided into a training set (n = 3095) and an evaluation set (n = 3113) to

establish a logistic regression model for predicting case-fatality and to assess its accuracy.

Results

The model for converting the Ct values into copies/μL was suitably accurate. The calculated

viral load over time in the cohort of Covid-19 positive samples showed very low viral loads

during the summer inter-epidemic waves in Italy. The calculated viral load along with gender

and age allowed building a predictive model of case-fatality probability which showed high

specificity (99.0%) and low sensitivity (21.7%) at the optimal threshold which varied by modi-

fying the threshold (i.e. 75% sensitivity and 83.7% specificity). Alternative models including

categorised cVL or raw cycle thresholds obtained by the same diagnostic method also gave

the same performance.

Conclusion

The modelling of the cycle threshold values using digital PCR had the potential of fostering

studies addressing issues regarding Sars-CoV-2; furthermore, it may allow setting up
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predictive tools capable of early identifying those patients at high risk of case-fatality already

at diagnosis, irrespective of the diagnostic RT-qPCR platform in use. Depending upon the

epidemiological situation, public health authority policies/aims, the resources available and

the thresholds used, adequate sensitivity could be achieved with acceptable low specificity.

Introduction

A year after severe acute respiratory system coronavirus 2 (SARS-CoV-2) was declared to be a

pandemic [1], many aspects of the infection still remain undefined. In particular, the role of

viral loads (VLs) in infectivity and case-fatality rates is still poorly clarified and scarcely used to

implement public health measures [2–9].

Since the beginning, it has been clear that VLs have varied greatly among patients over the

course of disease, and that infectivity was associated with higher VLs [5, 8]. With respect to

SARS, however, high VLs may also be evident in the pre-symptomatic phase, and the peak of

viral shedding was observed early in the course of the disease [2, 7, 9]. Furthermore, the role of

the VL in the respiratory tract in predicting mortality is also not well-known, although it was

evident that higher VLs were associated with higher case-fatality ratios. One of the main hin-

drances to assessing VLs lies in the inherent difficulty of absolutely quantifying SARS-CoV-2.

In fact, reverse transcription quantitative polymerase chain reaction (RT-qPCR) could provide

absolute quantification by using labour-demanding daily calibration procedures which, in

turn, require not readily available reference materials [10]. Diagnostic laboratories worldwide

have been buried by an impressive demand for diagnostics and have hardly been able to face

any additional investigational activity. As a result, the majority of the studies regarding VLs

have evaluated the cycle threshold (Ct), automatically calculated by thermal cyclers, as a rough

quantitative estimate of VL [4–7, 9, 11–16].

Digital PCR (dPCR) is a straightforward evolution of PCR with some obvious advantages

over standard qPCR assays. Specifically, dPCR allows for the absolute quantitation of nucleic

acid samples without the need for a calibration curve, thanks to compartmentalization by par-

titioning of the target nucleic acid in thousands of small volume vessels [17]. Thanks to these

features, dPCR is inherently more sensitive, specific and precise than standard qPCR, and is

specifically reliable for VL absolute quantification [18, 19]. In the face of its many advantages

over RT-qPCR, dPCR has still been limited by much higher costs for analysis and a longer

turnaround time (TAT), which restricts its application as ancillary or complementary to RT-

qPCR. In fact, to date, many studies have demonstrated the superiority of dPCR when com-

pared to RT-qPCR in terms of diagnostic performance [20–31]. However, studies relying on

dPCR have not been based on consistent case numbers and the VLs were quantified in only

relatively small cohorts. To date, dPCR has been utilised for investigating SARS-CoV-2 for VL

quantification in regard to infectivity [2], and disease course monitoring [32, 33], and as a tool

for assessing the circulating RNAaemia as an outcome predictor [34–38], as a diagnostic tool

for specifically reducing the false negative results for discharging convalescent patients [27, 30,

39], when inhibition was likely as in examining crude sample lysates or samples without RNA

purification [21, 35, 40], or wastewater [41], for analysing contaminated surfaces [39] or for

preparing standard material for RT-qPCR or cell cultures [42–45]. Moreover, the overwhelm-

ing demand for diagnostic testing and the very low TAT required during the epidemic “waves”

were scarcely suited to the majority of dPCR platforms. As a result, the vast majority of Covid-
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19 cases, being evaluated with only RT-qPCR or dPCR were generally characterised by rela-

tively low consistency cohorts of cases and had a limited impact on SARS-CoV-2 knowledge.

To overcome this drawback, this study attempted to model the relationship between the Ct

and genome absolute quantification for calculating the VL expressed as copies/μL; this was car-

ried out using the stored Ct value retrieved from the medical records of a public centralised

diagnostic laboratory intensely involved in diagnosing SARS-CoV-2. The aim was to test the

hypothesis that a model built on a small subset of data could be advantageously harnessed to

infer the VL in a large cohort. To that aim, the calculated VLs (cVLs) were then investigated in

relationship to chronological fluctuations and differences between age groups, or were used to

investigate its predictive power for the outcome.

Materials & methods

Ethics statement

The study was conducted according to the guidelines of the Declaration of Helsinki, and

approved by the Institutional Review Board of AUSL Romagna under the protocol code

“COVdPCR of 07/02/2020. The study has been performed using exclusively anonymized, left-

over samples deriving from the routine diagnostic procedures therefore the Ethical approval

or informed consent is not required. The anonymization was achieved by using the current

procedure (AVR-PPC P09, rev.2) checked by the local Ethical Board.

Experimental layout

The present study was composed of three steps:

1. The first step was aimed at defining a function to convert the Ct values obtained using diag-

nostic RT-qPCR to absolute quantification as genome copies/μL carried out using dPCR

and to assess the respective error. This task was achieved using a linear regression model

built using a small cohort of 51 samples.

2. After defining the regression function and its accuracy, the equation was used to calculate

the VL in a very large cohort of 6208 Covid-19 cases. The cVLs were investigated in an

observational study with a cross-sectional retrospective design.

3. Finally, the medical data, including cVL, was used to build a straightforward predictive

model, and its accuracy was calculated in a single cohort retrospective study and compared

with a model including the raw Ct value.

Samples

Digital PCR has been demonstrated to be suitable for the retrospective evaluation of universal

transport medium (UTM)-stored SARS-CoV-2 positive samples [31]. On this basis, 51 RNA

samples conserved at -80˚C in UTM (Copan, Copan Italia SpA) were selected from all the

diagnostic samples examined at the “Great Romagna Hub Laboratory Pievesestina” (AVR

Centro Servizi Laboratorio Unico Pievesestina, Cesena) during the Covid-19 pandemic. All

the samples had been collected using nasopharyngeal or oropharyngeal swabs (Copan), imme-

diately transferred into tubes containing 3 mL of UTM and transported to the diagnostic labo-

ratory for SARS-CoV-2 testing using one of many different RNA purification platforms and

RT-qPCR assays (S1 File). The results were expressed as positive or negative together with the

Ct values of the respective targets; some anamnestic, epidemiological and clinical data were

retrieved from the Laboratory database. The case-fatality information was recovered from the
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Death Registries of the Public Health Departments of the local medical services of Romagna.

The samples were retrieved from the repository, the RNA was purified and re-assessed using

both RT-qPCR and dPCR. In addition, the samples were divided into two sets; the first set of

13 samples (training set) was used to create the regression model while the second set of 38

samples (evaluation set) was used to validate the model. Regardless of the method originally

used, the cohort of 51 samples was composed by stratifying the samples into high (� 20 Ct),

medium (> 20� 25 Ct) and low (> 25 Ct) VL categories using the recorded Ct.

RNA purification, RT-qPCR and dPCR

The samples were collected using oro and nasopharyngeal swabs immediately placed in UTM

(Copan, Copan Italia SpA). The RNA was purified from UTM, and used for RT-PCR and

dPCR assays. The detailed protocols are reported in S1 File.

Statistical analysis and modelling

The analytical performances of the dPCR assay were established in terms of analytical sensitiv-

ity, precision and linearity, and were expressed as Limit of Detection (LOD) and Coefficient of

Variation % (CV%) across technical replicates carried out over different days, and as a linear

coefficient of correlation R2, respectively. The analytical performances were evaluated using

Analyse-it software (Analyse-it Software, UK). (S1 File).

Fifty-one samples positive at Sars-CoV-2 RT-qPCR were retrieved from the repository and

divided into two sets: a training set composed of 13 samples and an evaluation set composed

of 38 samples. The training set samples were analysed in triplicate with dPCR, and the findings

were included in building the model. After that, the 38 samples of the evaluation set were also

assessed in single using dPCR, and the results were used to validate the linear regression

model. The dPCR results, expressed in terms of log10 copies/μL of cDNA, were entered as

dependent variables and the Ct values as predictors using STATA v12 software. The software

allowed calculating both the fitting of the model as a Pseudo R-squared value and its signifi-

cance beyond the terms of the linear regression function Y = aX + b where Y is the log10 cop-

ies/μL, X is the Ct measured in the RT-qPCR, a is the coefficient of X as defined by the model

and b the constant (Table 1).

The 38 samples of the evaluation set were used to test the model. To that end, the predictor

formula was used to calculate the absolute counts using the Ct of each sample of the evaluation

group. All the samples in the evaluation group were then assayed once using dPCR, and the

results were compared with those obtained using the predictor formula. The accuracy of the

Table 1. Linear regression model including copies/μL as a dependant variable and cycle threshold (Ct) as a predictor factor.

y = ax+b
y = LOG10 (copies/μL)

x = Cycle threshold

a = Cycle threshold coefficient

b = constant

coefficient Robust SE n R-squared Root MSE

Log copies 38 .900 .454

Ct -.307 .018

constant 10.55 .431

log10AbsQuant = −.307[Ct]+10.55

SE: Standard Error; MSE: Mean error sum of squares. R-squared is an indicator of reliability of the model. Root MSE is an indicator of accuracy of the model.

https://doi.org/10.1371/journal.pone.0260884.t001
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prediction was calculated as the Median Absolute Deviation (MAD) of the percentage error

(PE) calculated using the formula PE = Absolute value (measured − calculated/measured) x

100. The formula was used to calculate the VL in a cohort of 6208 cases. The cVL as well as the

raw Ct and other medical data including gender, age, presence of signs and symptoms, ward/

unit of origin, administrative origin, turnaround-time (urgency), date of sampling, type of

sampling (oro or nasopharyngeal swabs) were also entered into a logistic regression model to

investigate their role as a predictor of case-fatality (outcome alive or dead). In particular, age

and cVL were evaluated either as continuous variables or as factors after categorisation accord-

ing to the following: age (< 6 years-old,�6 and< 18;�18 and< 30;�30 and< 50;�50

and< 70;�70); cVL (<1 copies/μL;�1 and< 101;�101 and< 102;�102 and< 103;�103

and< 104;�104 and < 105;�105 and< 106;�106) which were entered into the model as fac-

tors. Covid-19 case fatality was retrieved from the death registries of the local Public Health

Departments. Collinear variables were excluded. The best model was built by entering the pre-

dictors in a stepwise approach following the criteria of the significant contribution to the fit-

ting of the model in terms of Pseudo-R squared. Alternative models including either

categorized cVL, continuous cVL or raw Ct values were also built for comparison purposes.

To that end, the entire cohort was randomly divided into two sets (50% randomly selected

samples): a model set (n = 3095), used to build predictive logistic regression models which

were built using the fewest predictors achieving the best Pseudo R-squares, and an evaluation

set (n = 3113) used to evaluate models’ accuracy. The coefficients and constants of the models

were included in predicting equations which calculated the probability of death (S1 File). The

diagnostic performances of the models selected were evaluated using receiver operating char-

acteristic (ROC) curve analysis, and optimal thresholds were obtained using the Youden J

parameter. The predicted outcomes of the different models were utilised to calculate the

respective sensitivity, specificity, positive and negative likelihood ratios, positive and negative

predictive values, and overall accuracy. The latter statistical analyses were carried out using

Analyse-it software (Analyse-it Software, Ltd, UK).

The cVLs from the end of February 2020 until October 2020 were reported using descrip-

tive statistics.

For statistical purposes, the samples positive only at a target different from the N gene were

considered positive with 0 copies/μL.

Results

The original Ct values were compared with the Cts of the retested values to exclude the possi-

bility of a degradation of the samples. No evidence of degradation was observed since the Cts

were not statistically different between the retested values and the original test values

(p = 0.74) (Fig 1). However, in terms of absolute value, a mean difference in the Ct of 1.6 and

1.9 was observed between all the samples (regardless of the primary assay) and only the See-

gene samples (comparison restricted to samples initially assayed with the Seegene assay),

respectively. The difference was not statistically significant (p = 0.45). This finding was not

dependent on the original test used (Fig 1).

The dPCR assay performed adequately under the conditions described herein, achieving an

LOD of 1.19 copies/μL (Fig 2).

Using a serial dilution experiment, the dPCR linearity was restricted to samples below

2.3 x104 copies/μL. Hence, in building the linear regression model, an adequate dynamic range

was obtained by diluting those samples below the 22 Ct threshold 1:10 (Fig 3).

Finally, precision as a measure of inter-assay repeatability over the entire dynamic range

achieved an average CV of 15.3% and a median CV of 4.3%: (S1 File).
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The absolute quantification obtained by dPCR was regressed on the Ct values, and a linear

regression function was derived. The model achieved good reliability and accuracy (Table 1).

The regression equation allowed calculating the absolute quantity of viral genome expressed

as copies/μL in the evaluation set. Notably, in the evaluation set, the R2 value was also 0.918

assessing a good linear correlation between the predicted and measured copies/μL values

(Fig 4).

In absolute terms, the error in predicting the cVL expressed as MAD of the PE was 53.0%.

The error was uniformly distributed into high, medium and low VL categories, although, to

some extent, the latter showed higher errors. The complete comparison of measured versus

calculated absolute copies/μL in evaluating the set counts are reported in detail in (S1 File).

The linear regression equation was used to calculate the cVL in a cohort of 6208 Covid-19

positive cases diagnosed in the period from 24 February to 30 September 2020 using the All-

plex Seegene assay, and the cVL was recorded in the database. There is no unanimous consen-

sus on how to interpret very low VL. In the present study, those cases with only one of the

three positive target genes different from the N gene, which was that targeted by dPCR, was

considered positive with 0 copies/μL [46]. The characteristics of the cohort are reported in

Table 2.

The cVL differed greatly from 0 to more than 5x106 copies/μL. The majority of cases

showed less than 1 copy/μL (Fig 5).

Fig 1. Scatter plot A) and Residual plot B) of the original and repeated Ct values. Colour codes indicate the original

testing method.

https://doi.org/10.1371/journal.pone.0260884.g001
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By plotting the positive results over time, it could be observed that, in addition to the abso-

lute number of positives, the cVL differed over time, being markedly lower during the sum-

mertime. The 90th and 95th percentiles of VL tended be very low during this period (Fig 5A).

Furthermore, a rapid increase in VL in terms of higher percentiles, could be observed begin-

ning in mid-August and peaking in September. This anticipated the exponential upwards

rapid incidence increase of the epidemic curve observed in the same geographical area one

month later (Fig 6B).

The cVLs were also examined after stratifying the cohort according to age group. Higher

VLs, i.e. those which account for the majority of the transmission risk roughly estimated at

1500 copies/ μL by converting the reported Ct beyond which it is not possible to infect cell cul-

tures using diagnostic samples [26], were observed primarily in the elderly followed by the

youngest age group (Fig 7).

Finally, logistic regression models were used to investigate the effect of the sets of predictors

considered in this study, including cVL, categorised cVL and raw Ct to predict the case-fatality

outcome and to evaluate their accuracy.

Of all the possible models considered, the best one reached an adjusted R-square of 0.34

(p<0.01) and included categorised cVL, age and gender. A high cVL was associated with

increased case-fatality odds. In particular, a cVL > 103 copies/μL was significantly associated

with increased mortality rates and a cVL > 1x106 was associated with an Odds-ratio of 9.24

(CI 2.36–36.26; p<0.001) (Table 3). Age (odds-ratio 1.11; CI 1.10–1.12; p<0.001), and male

Fig 2. Precision profile analysis of variance for assessing the analytical sensitivity of a digital PCR assay using α
and β values of 5% for Limit of Blank (LoB) and Limit of Detection (LOD), respectively.

https://doi.org/10.1371/journal.pone.0260884.g002
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gender (odds-ratio 1.51; CI 1.14–2.00; p<0.001) were also significantly associated with

increased case-fatality odds.

The diagnostic performances of the models, including cVL, categorised cVL and raw Ct,

were substantially equal having areas under the curve (AUCs) of 0.889, 0.888 and 0.889,

respectively; no statistically significant differences were found at pair comparisons. At the opti-

mal threshold, all models achieved very high specificity and low sensitivity. Being substantially

equivalent, additional analyses were carried out using the model, including the cVL parameter.

The optimal threshold was found to be 57.1% of the probability of death. Using this setting,

the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, positive predictive

value and negative predictive value were 21.7%, 99.0%, 5.70, 0.43, 67.0% and 93.0%, respec-

tively (Fig 8).

In the evaluation set with a prior probability of case-fatality of 8.74%, the model identified

59 deaths out of 272. The false positive death predictions were 29 with a positive predictive

probability of 67%. By fixing the sensitivity threshold at 75.0%, the predictive threshold was

found at 2.66%. Using this threshold, a specificity of 83.7% was achieved and the model identi-

fied 204/272 case-fatalities; however, 464 false positive predictions occurred with a positive

predictive power of 31% (Fig 9). Complete findings of the logistic predictive models are

reported in S1 File. Both models performed almost identically regarding predictions (Fig 9).

Fig 3. Linearity fitting of the linear logistic model establishing the relationship between the cycle threshold values

and the actual viral loads. A) Linearity fitting plot including the individual plot of replicates (of the same colour) and

the fitting line of linearity with the respective confidence bands and individual bands at the 99% level. B) Standardised

residual plot: there are only two replicates of two different samples outside the 2 standard deviations.

https://doi.org/10.1371/journal.pone.0260884.g003
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Discussion

In this study, a method of quantifying the VL by modelling the relationship between the dPCR

and RT-qPCR results was established. To the best of the Authors’ knowledge, this is the first

study of this kind, although, while this paper was under review, another study was published

suggesting the same approach for underpinning the investigations regarding Sars-CoV-2 biol-

ogy [19]. The Authors further extended the approach by challenging the regression model in

an evaluation set of data. The median of difference between the calculated and the measured

VL was 53.0%. Since a 100% efficient PCR doubles the target every cycle, the 53.0% mean aver-

age error corresponds to a Ct value of less than 0.5. As the cVL spanned over 6 orders of mag-

nitude from 0 to more than 5 million genomes/μL, the reported error could be considered

almost negligible. Therefore, the model was used to calculate the VL in a cohort of 6208 cases

diagnosed with Covid-19 having a known specified error.

Many studies have investigated VL in Covid-19 patients. Regrettably, the majority of them

used an RT-qPCR assay originally intended as a qualitative, not a quantitative, assay; as a mat-

ter of fact, the Ct values of the diagnostic RT-qPCR in large cohorts of cases were used either

as a rough estimate of the amount of virus as such or, in a minority of cases, were converted

Fig 4. A) Scatter plot and B) Residual plot of the findings achieved by the linear regression model in the

evaluation set. VL log: Log of the Viral Load value expressed as copies/μL; cVL log: Log of the calculated Viral Load.

https://doi.org/10.1371/journal.pone.0260884.g004
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into log10 copies/mL using an RT-qPCR calibration curve carried out once [47, 48]. However,

in these studies, no detailed methods of Ct conversion were reported nor were the measured

errors provided. A plethora of factors can affect the accuracy of absolute quantification by RT-

qPCR using calibration curves. These concerns have recently been addressed together with

Table 2. Characteristics of the cohort of SARS-CoV-2 positive cases (n = 6208).

Age (median (IQR) 55 (38–74)

Age categories (years) n (%)

< 6 55 (0.9)

� 6 < 18 298 (4.8)

� 18 < 30 728 (11.7)

� 30 < 50 1478 (23.8)

� 50 < 70 1755 (28.3)

� 70 1894 (30.5)

Gender N (%)

female 3155 (50.8)

male 3053 (49.2)

Viral load (copies/μL) n (%)

<1 2722 (43.8)

� 1 < 101 957 (15.4)

� 101 < 102 719 (11.6)

� 102 < 103 619 (10.0)

� 103 < 104 522 (8.4)

� 104 < 105 430 (6.9)

� 105 < 106 197 (3.2)

� 106 42 (0.7)

Turnaround time (days) N (%)

0 922 (14.1)

1 4535 (73.9)

2 708 (11.4)

� 3 43 (0.7)

Swabs n (%)

nasopharyngeal 5982 (96.4)

oropharyngeal 226 (3.6)

Ward/unit

Hospital ward 1289 (20.8%)

Emergency ward 755 (12.2%)

Covid Drive-through 890 (14.3%)

Preventive medicine unit 3101 (50.0%)

Intensive care unit 161 (2.6%)

Others 12 (0.2%)

Presence of signs/symptoms n (%)

no 2315 (37.3)

yes 2210 (35.6)

Not known 1670 (26.9)

Outcome n (%)

Deceased 583 (9.4)

IQR: Interquartile range.

https://doi.org/10.1371/journal.pone.0260884.t002
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strategies for improving absolute quantification [49, 50]. One of the greatest concerns is that

the efficiency of RT-qPCR may vary, biasing the accuracy and, specifically, the reproducibility

of the calibration curves which, in turn, propagates the error. For the above-mentioned rea-

sons, a direct comparison with the study herein reported could not be made, and the findings

of these studies should be regarded as an error prone approximate estimation of the VL.

Although hampered by the above-mentioned drawbacks, such studies established or not an

association between VL and case-fatality; however, even in the former case, they did not pro-

vide a model for precisely quantifying the risk [4, 48, 51–54]. On the other hand, many fewer

studies have quantified VL as copies/volume (of reaction or of sample) using dPCR. Remark-

ably, as indirect evidence of robustness and reliability of the calculated approach method, the

measured copies/reaction in convalescent patients would be very similar, if calculated using

the model here described from the high Ct values obtained in RT-qPCR [23]. Overall, the cVL

range inferred with the regression model matches that directly measured from nasopharyngeal

swabs in other studies [32]. However, to the best of the Authors’ knowledge, no studies have

quantified VL using diagnostic swabs and correlated it to outcome. Many advantages of the

mathematical approach herein described are highlighted as 1) findings which can be compared

between studies, 2) findings which can be included in a metanalysis or 3) different diagnostic

RT-qPCR results which can be expressed in terms of Ct within the same laboratory and can be

included in the same dataset which allows increasing the possibility of addressing the question

of Sars-CoV-2 biology [19]. This latter advantage it is noteworthy since it has the potential to

allow comparing the VL obtained using different RT-qPCR platforms in the same laboratory

or even in different laboratories worldwide, provided that the linear regression equation was

defined using the respective Ct data.

Overall, nearly half of the cases had less than 1 copy/μL. This quantity is very close to the

detection limit of RT-qPCR. It is beyond the Authors’ aims to investigate whether these were

false positives in technical terms or true positive, carrying however only free nucleic acid and

no viral particles. Moreover, the majority of studies which used viral isolation in cell cultures

to estimate the infectivity identified in 24 Ct, the threshold beyond which the likelihood of

Fig 5. Pie chart reporting the percentage of each viral load category in the cohort of 6208 Covid-19 cases.

Calculated viral loads are expressed as Log10copies/μL.

https://doi.org/10.1371/journal.pone.0260884.g005
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isolating SARS-CoV-2 from nasopharyngeal swabs drops abruptly, and in 30–33 Ct beyond

which it is not possible to isolate the virus [26, 55, 56]. In terms of cVL according with our

regression model, it could be roughly estimated that approximately 1500copies/μL represented

the limit beyond which infectivity drops and 20 copies/μL the limit beyond which it is almost

impossible to isolate the virus. These data are in agreement with those reported in a small case

series including the absolute quantification of VL using RT-qPCR [57]. This study established

a limit of 106 copies/mL (corresponding to 103/μL in the present study) for successfully achiev-

ing virus isolation. In the present cohort, fewer than 18% (17.4%) of the samples had a

cVL > 1500 copies/μL and only 37.2% had a cVL > 20 copies/μL (Fig 5). The VL may also

depend on the different times of diagnosis. Unfortunately, this represents an inherent limita-

tion of the present study due to its retrospective nature.

With regard to the fluctuation of the VL, Clementi et al. (2020) reported low VLs during

the summer period in Italy after the first epidemic wave had hit the country in the previous

spring. Lower VLs were associated with fewer Covid-19 cases. The present study confirmed

and extended these observations. After the first public health measures were eased in mid-

May, the incidence continued to decline, reaching its lowest rate at the end of July 2020; simi-

larly, the active cases also remained at very low levels until the end of September 2020 when an

exponential rise in active cases was observed. Interestingly, this study confirmed that almost all

Fig 6. Graph reporting the viral loads (VLs) over time (March 2020 to October 2020) in Italy. A) histograms of the

90th and 95th percentiles of calculated VL on a monthly basis. B) Scatter plots of calculated VL (pale grey dots and

lines) over the same timescale of fluctuations of active cases (black solid line) expressed as the last daily change

(difference with respect to the day before) in active cases (Italian National Ministry of Health).

https://doi.org/10.1371/journal.pone.0260884.g006
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the cases diagnosed during the summertime had very low VLs. This evidence was corroborated

by the 95th and 99th percentiles of VL data which were below the likely threshold of infectivity

in May and June, and started to moderately rise in July and peaked in August. The peak of

cases with high VLs was followed one month later by the exponential rise in incidence and

active cases. This finding would suggest that an increase in VL should be considered as an

early predictor of worsening epidemiologic parameters useful for tightening public health

measures while minimising the economic impact of the restrictions [58–62].

The VL data were also applied to age groups to more specifically investigate the role of

childhood in SARS-CoV-2 transmission. Although children are relatively spared by the severe

forms of Covid-19, their possible role in transmission should be considered when

Fig 7. Histograms characterising infectivity A) percentage of cases above the likely infectivity threshold

(calculated viral load of 1500 copies/μL) divided by age category and B) 75th, 90th and 95th percentile values of

viral load divided by age category.

https://doi.org/10.1371/journal.pone.0260884.g007
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implementing radical measures, such as school closure [3]. The authors found that, in addition

to the elderly, preschool children (0–6-years old) had the highest VL in both the higher percen-

tiles and in the percentage of cases above the aforementioned threshold of infectivity (Fig 7).

Conversely, school children >6-years old and< 18-years old) were those with the lowest VLs.

To the best of the Authors’ knowledge, the largest cohort study to date has showed a moderate

trend to higher VLs with increasing age categories [63, 64]. However, it should be emphasised

that, in this study, the percentiles above the threshold considered as the limit of infectivity

were almost similar among all age categories. This latter parameter is likely more representa-

tive of the weight of each age category as a transmitter.

Strong evidence exists that the absolute quantification of circulating VL is an independent

and strong predictor of fatality [34–38]. However, this approach requires invasive blood sam-

pling which is carried out solely in hospital settings with prognostic aims while its diagnostic

value is limited. Herein, the power of cVL, and some other simple and readily available signal-

ment data at the moment of Covid-19 testing were evaluated. The regression model found cVL

to be an independent predictor of case-fatality after correcting for gender and age. In particu-

lar, a VL above the threshold of 106 copies/μL was strongly associated with negative outcomes.

Similar findings have also been reported by others [48]; however, in the present study, the

odds ratios were additionally refined using different levels of cVL, making the VL readily inter-

pretable. The other negative independent predictors found were male gender and older age.

These predictors were almost invariably found in all the studies and meta-analyses carried out

in hospital settings [48, 65–67], with or without considering VLs. When the model including

the three predictors was used to predict the outcome in the evaluation set of cases, it was nota-

bly able to specifically detect those cases having a high probability of survival. For instance,

using the optimal threshold, the model identified 3024 out of 3113 subjects who were predicted

to survive the Sars-CoV-3 infection with a probability of 93% (negative predictive value). Of

the 89 predicted deaths, eventually 59 died; hence, the model showed a 66.3% positive predic-

tive value. Conversely, if adequate sensitivity was requested by the model, for instance 75%

Table 3. A three parameter (age, gender and cVL) logistic regression model to predict case-fatality. The statisti-

cally significant (P<0.01) parameters are evidenced in bold.

Number of observations = 3095

LR chi2 = 698.84

Probability > chi2 = 0.0000

Pseudo R2 = 0.346

Odds Ratio SE p 95% Confidence Interval

Viral load (copies/μL)

<1

� 1 < 101 1.10 .23 .962 .65 1.58

� 101 < 102 1.30 .30 .261 .82 2.05

� 102 < 103 2.30 .52 .000 1.47 3.58

� 103 < 104 2.63 .65 .000 1.62 4.27

� 104 < 105 2.23 .57 .002 1.35 3.69

� 105 < 106 4.70 1.53 .000 2.49 8.89

� 106 9.24 6.45 .001 2.36 36.26

Age 1.11 .007 .000 1.10 1.12

Male gender 1.51 .219 .005 1.14 2.00

SE = Standard Error; LR = logistic regression.

https://doi.org/10.1371/journal.pone.0260884.t003
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sensitivity, the model allowed identifying 204 out of 272 case-fatalities although 465 false posi-

tive cases were also found.

This evidence may have relevant implications in terms of public health since this tool could

give public health institutions the opportunity of classifying those patients at risk of death

already at the moment of diagnosis so as to efficiently allocate finite health resources by

Fig 8. Diagnostic performance of the model including the predictors age, gender and calculated viral load. A)

Receiver operating characteristic curve of the model showing an area under the curve of 0.889. B) Scatter plot showing

the survivors (blue) and the deceased (red) along with the predicted probability of death calculated by the model. C)

the Youden plot highlighting the optimal threshold and the threshold at a fixed sensitivity value of 75%. TPF: True

positive fractions (sensitivity). FPF: False positive fractions.

https://doi.org/10.1371/journal.pone.0260884.g008
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focusing medical monitoring on those high-risk patients at an early stage, at a very low addi-

tional cost. Furthermore, the threshold may be set at different levels based upon specific aims

and guidelines in order to focus the public health resources on those Covid-19 cases at risk of

developing severe disease.

There are many reviews and meta-analyses which have investigated the risk factors associ-

ated with death outcome. However, the majority of them examined different cohorts of

patients variably selected, i.e., those hospitalised, those having the presence of specific comor-

bidities, those coming from specific wards and those presenting specific markers. All these

Fig 9. Mosaic plot of models including either calculated viral load or raw cycle threshold to classify patients at risk of death.

Both models performed almost identically. A) Using optimal thresholds, both models showed very high specificity but low sensitivity.

Conversely B) at the fixed threshold of 75%, of sensitivity the specificity dropped to approximately 84%. Within the mosaic boxes, the

number of subjects from the 3113 of the evaluation set are indicated.

https://doi.org/10.1371/journal.pone.0260884.g009
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studies were suitable for stratifying patients within specific settings, implementing in an evi-

dence-based manner, the resource allocations. It should be noted that this was the first study

aimed at addressing the role of VL as an independent variable in a cohort of diagnosed cases

from the Diagnostic Laboratory. This evidence could be important for the early stratification

of cases, thus focusing medical surveillance on patients at a high risk of developing severe

forms of Covid-19 and on efficiently allocating resources. Interestingly, this result could be

attained computationally by simply including the signalment and anamnestic data already

available at the moment of diagnosis along with the cVL data. Unfortunately, data regarding

the presence or absence of signs and symptoms were very incompletely represented in the

database; therefore, they could not be included in the model. It is very likely that this informa-

tion would have allowed better stratifying the sample. Public health laboratories should be

aware of this and improve the exchange of information between all the players engaged in the

network of diagnosing and curing Covid-19.
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