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S U M M A R Y

Background & aims
Celiac disease (CD) is an immune-mediated systemic disease, caused by ingestion of gluten in genetically

predisposed individuals. Gut microbiota dysbiosis might play a significant role in pathogenesis of chronic
enteropathies and its modulation can be used as an intervention strategy in CD as well. In this study, we
aimed to identify correlations between fecal microbiota, serum tumor necrosis factor alpha (TNF-α) and fecal
short-chain fatty acids (SCFAs) in healthy children and children with CD after administration of probiotic Bi-
fidobacterium breve BR03 and B632.
Methods

A double-blind placebo-controlled study enrolled 40 children with CD (CD) and 16 healthy children (HC).
CD children were randomly allocated into two groups, of which 20 belonged to the placebo (PL) group and 20
to the Probiotic (PR) group. The PR group received a probiotic formulation containing a mixture of 2 strains,
B. breve BR03 (DSM 16604) and B. breve B632 (DSM 24706) in 1:1 ratio for 3 months. Subsequently, for
statistical analysis, blood and fecal samples from CD children (on enrolment - T0 and after 3 months, at the
end of intervention with probiotic/placebo - T1) and HC children were used. The HC group was sampled only
once (T0).
Results

Verrucomicrobia, Parcubacteria and some yet unknown phyla of Bacteria and Archaea may be involved
in the disease, indicated by a strong correlation to TNF-α. Likewise, Proteobacteria strongly correlated with
fecal SCFAs concentration. The effect of probiotic administration has disclosed a negative correlation be-
tween Verrucomicrobia, some unknown phyla of Bacteria, Synergistetes, Euryarchaeota and some SCFAs,
turning them into an important target in microbiome restoration process. Synergistetes and Euryarchaeota
may have a role in the anti-inflammatory process in healthy human gut.
Conclusions

Our results highlight new phyla, which may have an important relation to disease-related parameters, CD
itself and health.

© 2018.
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1. Introduction

Diagnostic rates of celiac disease (CD) are rising, leading towards
an estimated global prevalence of about 1% [1]. Ingestion of wheat
and other gluten-containing cereals causes a specific damage to the
small intestinal mucosa, a typical pathology of CD, which is consid-
ered an autoimmune enteropathy [2].

The role of susceptibility genes in the pathogenesis of CD has
been described [3,4]. However, additional environmental factors are
involved, as only 2–5% of CD-related gene carriers eventually de-
velop the disease [5]. Epidemiological and clinical data suggest a role
of various environmental factors in the pathogenesis of CD, such as in-
fections, early feeding practices [6], antibiotic administration, mode of
delivery and breastfeeding [7]. In addition, alteration of gut microbiota
may also play an important role in the disease development. Whether
it is a cause or a consequence of the disease, remains unclear [8–10].
Due to inconsistent findings concerning both active and non-active
disease phase [11–15], CD still lacks a distinctive ‘microbial foot-
print’, although some bacterial species may associate with the dis-
ease [16]. Moreover, microbial metabolites such as short-chain fatty
acids (SCFAs) play an important role in trigger-response relationship
between host diet, microbiota and homeostasis in many pathological
conditions, also in CD [17,18]. However, changes in the fecal SCFAs
pattern are a reflection of complex mechanisms [19] and studies about
their relationship and effects on CD are scarce [20].

Application of probiotics in clinical practice has been frequently
used due to their immunomodulatory [21,22] and microbiota modu-
lation effects [23–26], demonstrated in several inflammatory and au-
toimmune diseases. Moreover, the effect of Bifidobacterium strains on
gut microbiota composition and their applications as probiotics in in-
fants have been reviewed [27] and their administration in one in-vivo
study [25] has revealed an impact on Firmicutes abundance, resulting
in an increase of Firmicutes/Bacteroidetes ratio. Furthermore, its im-
munomodulatory characteristics have been described in-vitro [28] and
in-vivo [29–32]. Several in-vitro studies have shown that Bifidobac-
terium strains decrease levels of pro-inflammatory cytokines, such as
interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and
interleukin 2 (IL-2) [33–36]. Moreover, a decrease in TNF-α level af-
ter administration of Bifidobacterium strains has been reported in-vivo
[30,31]. In fact, TNF-α secretion, triggered by an increased produc-
tion of IFN-γ in CD, plays an essential role in inducing damage and
inflammation of intestinal mucosa [26,37].

Our aim was to study the effects of Bifidobacterium breve BR03
and B632 administration on children with CD and to determine statis-
tically significant correlations between fecal microbiota composition
analyzed by next generation sequencing, serum TNF-α and fecal SC-
FAs levels. To our knowledge, this is the first study on correlations
between these parameters with the aim to evaluate their potential sig-
nificance in CD pathogenesis.

2. Material and methods

2.1. Study design and sample collection

The research study was a double-blind placebo-controlled inter-
vention involving 40 children with CD (CD) and 16 healthy children
(HC), who were enrolled at the Department of Pediatrics, University
Clinical Center Maribor in a period from October 2013 to June 2014.
The research was registered at https://www.clinicaltrials.gov (registra-
tion number: NCT02244047).

A selection of HC as control group was based on a clinical exam-
ination, excluding any clinical disorder or any acute and chronic ill

ness status. None of HC was on medication or antibiotic therapy for
at least one month preceding the research study. HC were children,
matching on age and gender and consuming a regular (gluten contain-
ing) diet.

All invited CD children, aged from 1 till 19 years, were previ-
ously diagnosed with positive serologic markers for CD and had pos-
itive small bowel biopsy. Their CD diagnosis were established on
ESPGHAN criteria for CD [38,39]. The children were consuming
gluten-free diet (GFD) (different time periods - half a year to 15
years). Children with acute or chronic illness and children on perma-
nent medication or antibiotics for at least one month preceding the
research study were excluded. CD children were randomly allocated
into two groups, of which 20 belonged to the placebo (PL) group and
20 to the Probiotic (PR) group. The PR group received a probiotic
formulation containing a mixture of 2 strains, B. breve BR03 (DSM
16604) and B. breve B632 (DSM 24706) in 1:1 ratio for 3 months.
Probiotic and placebo packages contained 2 g of probiotic culture or
placebo in a powder form. A daily dosage of each probiotic strain
was 109 Colony Forming Unit (CFU)/g of powder. In both groups,
cytokine analysis, analysis for CD serological markers (EMA, tTG)
and clinical examination were performed (on enrolment (T0), at the
end of intervention with probiotic/placebo (T1) and on follow up – 3
months after intervention period (T2)). A more detailed information
about probiotic administration and inclusion/exclusion criteria of par-
ticipating children has been described before [30].

Blood samples of CD children were collected 3 times (at T0, T1
and T2). The HC group was sampled only once (T0). Please refer to
the article of Klemenak et al. [30] for more details. However, for sta-
tistical analysis, samples from periods T0 and T1 were collected (see
section 2.7 Statistical analysis of NGS, SCFAs and TNF-α results).

Fecal sample of CD children were collected twice, on T0 and T1.
The HC group was sampled only once (T0). Please refer to the detailed
description of fecal collection in Primec et al. [20].

Researchers carrying out DNA extraction, molecular (NGS) and
HPLC analysis of fecal samples were blind to the children group iden-
tity (HC, PR and PL).

2.2. DNA extraction

DNA extraction from 200 mg of feces, which was preserved
at −80 °C, was accomplished with the QIAamp DNA Stool Mini Kit
(Qiagen, West Sussex, UK), according to manufacturer's instructions.
A slight modification was performed, in order to improve the bacterial
cell rupture [40]. A detailed protocol was described in Quagliariello
et al. [25].

2.3. Preparation of DNA libraries for next-generation sequencing
(NGS; Illumina MiSeq sequencing)

Samples of the following 5 groups of children were subjected to
sequencing: 20 PR group T0 and 20 PR group T1, 20 PL group T0 and
20 PL group T1 and 16 HC group T0. Libraries were prepared for am-
plification of V3 V4 region of the 16S rRNA gene, using forward
and reverse primers [41], respectively: 5′ TCGTCGGCAGCGTCA-
GATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 3′, and
5′ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC-
TACHVGGGTATCTAATCC 3′. Their approximate length was
460 bp. A detailed NGS protocol was described in Quagliariello et al.
[25].
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2.4. SCFA analysis

SCFAs were derivatized and analyzed by reverse-phase HPLC.
Acetic, propionic and butyric acid were quantified and results were
expressed in μmol/g of wet weight feces. For derivatization procedure
and HPLC analysis of SCFAs please refer to the article of Primec et al.
[20].

2.5. TNF-α detection

After centrifugation, serum samples for TNF-α detection were col-
lected and stored at −80 °C until analysis. Quantification was per-
formed using a solid-phase enzyme-labeled chemiluminescent im-
munometric assay, according to the manufacturer's instructions (Im-
mulite One, Siemens Healthcare Diagnostics). A more detailed infor-
mation about the blood sampling procedure and further TNF-α detec-
tion is described in the article of Klemenak et al. [30].

2.6. Bioinformatics and statistical analyses of NGS experiment

In bioinformatics and statistical analyses, the generated raw data
has been checked for quality levels, length and elimination of chimeric
sequences in order to obtain reliable double-stranded reads for the 16S
reference sequence database alignment at the Ribosomal Data Project
(RDP). Finally, RDP outputs were processed and further statistically
analyzed [25,42–44].

2.7. Statistical analysis of NGS, SCFAs and TNF-α results

Patients were grouped according to the treatment and disease, i.e.
probiotic group (PR; PR group T0, PR group T1), placebo group (PL;
PL group T0, PL group T1), healthy controls (HC group T0) and CD
patients (CD group T0). The CD group T0 consisted of all CD pa-
tients at T0 (PR and PL group, both T0). Results from SCFAs (i.e.
acetic, propionic, butyric acid and total SCFAs), microbial phylum
abundance and TNF-α analysis from 6 groups were statistically corre-
lated for placebo and probiotic groups at the beginning and at the end
of probiotic intervention.

Obtained data were analyzed using IBM SPSS Statistics 22.0 soft-
ware (IBM Inc., Armonk, New York). Age differences between study
groups were analyzed using non-parametric Kruskal–Wallis H test.
Correlations between two continuous variables were determined using
non-parametrical Spearman correlation after Shapiro–Wilk test of data
distribution normality. Where indicated, p value of ≤0.05 or ≤0.01 was
considered statistically significant.

3. Results and discussion

3.1. NGS analysis

DNA was extracted out of 96 fecal samples and was sequenced
using the Illumina MiSeq apparatus. Sequencing runs generated
4,348,432 joint reads with high quality pass filter with average of
46,259 sequence reads per sample with quality scores between 30 and
35. Two samples were excluded from further analysis due to low qual-
ity reads [25]. A detailed microbial profile of each group is shown in
Supplementary Tables 1a–f.

3.2. Characteristics of study groups used for statistical analysis of
correlations

Basic characteristics of children whose parameters were used for
statistical analysis of correlations are summarized in Table 1. Three
samples were excluded due to low quality reads in NGS and insuffi-
cient data.

3.3. Statistical analysis of correlations

3.3.1. Correlation values at T0 in CD patients
The CD patient group was analyzed at the enrollment day (T0).

Figure 1 shows the results of statistically significant correlation val-
ues. TNF-α had a positive correlation to Verrucomicrobia (ρ = 0.404,
p = 0.013) and a negative one to Parcubacteria (ρ = 0.396, p = 0.015).
Moreover, a strong positive association and a high statistical signif-
icance (ρ = 0.532, p = 0.001) between TNF-α and unclassified Bac-
teria group and a positive correlation (ρ = 0.396, p = 0.003) between
TNF-α and unclassified Archaea group was found, indicating that
Verrucomicrobia and some yet unknown phyla, belonging to Bac-
teria and Archaea, may be involved in an increased production of
TNF-α in CD patients, while Parcubacteria indicated a negative as-
sociation with TNF-α. Verrucomicrobia is commonly encountered in
the colonic microbiota [7], but is relatively less than 10% abundant
[45]. Parcubacteria is a largely unknown phylum, with representa-
tives found in anoxic environments [46]. Indicated correlations could
play an important role in the pathogenesis of the disease.

Proteobacteria correlated positively with acetic and propionic acid
(ρ = 0.452, p = 0.004 and ρ = 0.331, p = 0.045, respectively), which
resulted in a positive correlation between Proteobacteria and total
SCFAs (ρ = 0.380, p = 0.017). Proteobacteria is the major gut-res-
ident phylum of Gram-negative bacteria and includes a wide vari-
ety of pathogens, including members of Enterobacteriaceae family.
Furthermore, the phyla has been found characteristically increased
in duodenal and fecal microbiota of CD patients [16,26,47–50]. In-
creased values of acetic, propionic acid and total SCFAs in CD have
been suggested before [20,51–53], describing them as a consequence
of microbiota dysbiosis in the disease. Tjellström et al. [53] even
described acetic acid as a potential pro-inflammatory agent. Posi-
tive correlation data obtained in our studies indeed indicate that Pro-
teobacteria may be responsible for an increased acetic and propionic
acid production in CD. Proteobacteria, Bacteroides-Prevotella group
(Bacteroidetes) and Bifidobacterium spp. have been already described
as acetate and propionate producers [54]. In contrast, butyric acid
has been proposed to originate mostly from the metabolism of Fir-
micutes [18]. From the Archaea group, Euryarchaeota phylum also
had a positive correlation (ρ = 0.351, p = 0.029) to acetic acid. Eur-
yarchaeota phylum is the most commonly found Archaea in the hu-
man ecosystem, contributing to less than 10% of the total micro-
biota population [55]. Euryarchaeota is known to metabolize nutri-
ents and other microbial metabolites to end products such as acetate.
This results in an increase of total SCFAs concentration and energy

Table 1
Cohort used for the correlation assessment.

PR group
(n = 20) PL group (n = 19)

HC group
(n = 14) P value

Age,Years 9.15 ± 4.35 10.53 ± 5.05 10.14 ± 6.01 0.709
Sex, M/F 4/16 6/13 5/9 /
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Fig. 1. Statistically significant correlations in the CD group at T0. CD: celiac disease; T0: enrolment day; AA: acetic acid; PA: propionic acid; SCFAs: short-chain fatty acids; TNF-α:
tumor necrosis factor alpha.

harvesting [56]. Till now, the potential relationship between Eur-
yarchaeota and acetic acid has not been linked to CD.

3.3.2. Correlation values at T0 in healthy children (HC)
Figure 2 shows the results of statistically significant correlation

values in the HC group at T0. Members of the Firmicutes phylum are
mostly Gram-positive bacteria, an abundant group comprising 80%
of the intestinal microbiota [45] in healthy subjects and tend to de-
crease in number in CD patients [16]. Not surprisingly, proinflamma-
tory TNF-α had a strong negative association and a high statistical sig-
nificance (ρ = 0.660, p = 0.010) to Firmicutes and a negative correla-
tion to Euryarchaeota (ρ = 0.654, p = 0.011). Apparently, the later re-
lationship may play an important role only in the HC population, as it
was not identified in the CD group T0. Synergistetes is evidently a mi-
nority phylum in human feces with an abundance of 0.01% [57]. Re-
gardless of the low quantity, the phylum appears to be relevant for hu-
man health [58] and its negative correlation (ρ = 0.658, p = 0.011) to
TNF-α may indicate an important anti-inflammatory factor in healthy
population.

Furthermore, acetic acid had a positive correlation (ρ = 0.569,
p = 0.034) to Candidatus Saccharibacteria, a group of Bacteria still
under investigation for its potential role in human health [59].
Lentisphaerae negatively correlated (ρ = 0.556, p = 0.039 and
ρ = 0.584, p = 0.028, respectively) with butyric acid and total SCFAs.
This phylum of Bacteria is closely related to Verrucomicrobia, but its
activity and role in host microbiota still needs to be determined [58].

3.3.3. Effect of probiotics on correlation values in the PR group at T1
Significant correlations after probiotic administration are presented

in Fig. 3. No significant correlations have been found in the PR group
on the enrolment day (T0). However, several significant

correlations emerged in the same group after 3-month treatment with
the probiotic (PR group T1).

TNF-α is so far known for its important role in pro-inflamma-
tory conditions. In fact, its appearance as an inflammatory media-
tor in CD patients have been already described [37,60]. However, in
the work of Klemenak et al. (2015), the administration of both probi-
otic strains (B. breve BR03 (DSM 16604) and B. breve B632 (DSM
24706)) revealed a decrease in TNF-α in PR group after 3 months
compared to PL group. The baseline TNF-α levels in both groups
were similar to the ones in HC group. As both groups (placebo and
probiotic, respectively) had a compliance to GFD of 81% and 91%,
the researchers concluded that the reduction in TNF-α occurred be-
cause of the combination of B. breve strains and GFD. Moreover,
Quagliariello et al. (2016) reported that the 3-months probiotic ad-
ministration in PR group affected the abundance of Firmicutes phy-
lum by increasing their percentage, while keeping similar percent-
age of Bacteroidetes, thus resulting in an increase of Firmicutes/Bac-
teroidetes ratio. The ratio in CD subjects is normally lower, usually
because of lower percentage of Firmicutes or higher percentage of
Bacteroidetes. In relation to both parameters, an interesting obser-
vation has been found by evaluating the correlation results between
TNF-α and phylum Firmicutes. After 3 months of probiotic admin-
istration, TNF-α had a negative correlation (ρ = 0.468, p = 0.038) to
Firmicutes, which is in concordance with the article of Klemenak
et al. (2015) and Quagliariello et al. (2016), revealing a decrease in
TNF-α and re-establishment of the Firmicutes/Bacteroidetes ratio, re-
spectively, upon probiotic treatment. Acetic acid correlated negatively
(ρ = 0.502, p = 0.024; ρ = 0.498, p = 0.026 and ρ = 524, p = 0.018)
with Verrucomicrobia, unclassified group of Bacteria and Eur-
yarchaeota, respectively. Moreover, acetic acid had a negative strong
association and a high statistical significance to Synergistetes
(ρ = 0.587, p = 0.006). The Synergistetes phylum clearly confirmed
a negative association with
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Fig. 2. Statistically significant correlations in the HC group at T0. HC: healthy children; T0: enrolment day; AA: acetic acid; BA: butyric acid; SCFAs: short-chain fatty acids; TNF-α:
tumor necrosis factor alpha.

Fig. 3. Statistically significant correlations in the PR group at T1 as a result of probiotic administration. PR: probiotic group; T1: after 3-month treatment; AA: acetic acid; BA: butyric
acid; SCFAs: short-chain fatty acids; TNF-α: tumor necrosis factor alpha.

pro-inflammatory acetic acid, previously seen in healthy subjects and
may play an important role in anti-inflammatory process too, how-
ever in this case as a consequence of a probiotic administration. Ver-
rucomicrobia had also a negative correlation (ρ = 0.486, p = 0.030) to
butyric acid, but the later negatively correlated to unclassified Bacte

ria (ρ = 0.498, p = 0.026). SCFAs had a negative correlation to Syner-
gistetes and unclassified group of Bacteria (ρ = 0.496, p = 0.026 and
ρ = 0.517, p = 0.020, respectively). Identified correlations between the
mentioned SCFAs and phyla are largely unknown, but they may
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play a role in the microbiome restoration as a result of probiotic ad-
ministration.

3.3.4. Effect of placebo on correlation values in the PL group at T1
When comparing PL group at T0 and T1 (Figs. 4 and 5, respec-

tively), the phylum Proteobacteria and Verrucomicrobia confirmed
again its important role in CD, already observed in CD group T0. In
both PL groups (T0 and T1), Proteobacteria positively correlated to
acetic, propionic acid and total SCFAs (between ρ = 0.574, p = 0.010
and ρ = 0.505, p = 0.027). Furthermore, Verrucomicrobia had a strong
positive association and a high statistical significance to TNF-α in PL
group T0 (ρ = 0.780, p = 0.000135) and continued to positively corre-
late to TNF-α in PL group T1 (ρ = 0.495, p = 0.037). However, Par-
cubacteria again confirmed its important role in CD, while reveal-
ing a strong negative association and a high statistical significance
(ρ = 0.590, p = 0.010) to TNF-α in PL group T0. Surprisingly, no sta-
tistically significant correlation between the two parameters has been
found in PL group T1. Moreover, although not expecting any partic-
ular differences between the PL group T0 and the PL group T1, the
results in PL group after 3-month placebo treatment revealed some
new statistically significant correlations. TNF-α had a negative cor-
relation (ρ = 0.507, p = 0.032) to Bacteroidetes and a positive corre-
lation (ρ = 0.507, p = 0.032) to Deinococcus-Thermus. Furthermore,
acetic acid negatively correlated (ρ = 0.521, p = 0.022) to the group
of unclassified Bacteria. Propionic acid had a negative (ρ = 0.471,
p = 0.042) correlation to Synergistetes and butyric acid had a positive
correlation (ρ = 0.498, p = 0.030) to Proteobacteria. Microbiota com-
position is continuously changing as a result of the complex interplay
between environmental factors, such as diet, psychological factors and
the host itself. Since there has been a 3-month difference between T0
and T1, microbiota shift was likely to occur even in the PL group.

4. Conclusions

Many physiological changes related to CD have been already de-
scribed (Fig. 6). However, the complexity of the disease is puzzling
with many questions still open. Besides classically documented mi-
crobiota changes in the Firmicutes phylum, our results have shown
that additional phyla such as Verrucomicrobia, Parcubacteria and
some yet unknown phyla belonging to Bacteria and Archaea King-
dom, may also play an important role in CD-related pathology. More-
over, Proteobacteria seems to be responsible for the increase of fe-
cal SCFAs in the disease. In healthy subjects, Synergistetes and Eu-
ryarchaeota are present in a minor relative abundance in the human
gut system, but they may be additional phyla next to Firmicutes con-
tributing to anti-inflammation. Probiotic administration has clearly re-
vealed a negative relationship between Firmicutes and pro-inflamma-
tory TNF-α. Moreover, probiotic effect has exposed some new phyla,
particularly Synergistetes, which negatively correlated to acetic acid
and total SCFAs, suggesting a potential role in microbiome restora-
tion. Nevertheless, alterations of microbiota in CD subjects may not
be considered exclusively as a consequence of the disease itself, but
rather as a part of a complex relationship between many causative fac-
tors, including those of diet and psychological nature.
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Fig. 4. Statistically significant correlations in PL group at T0. PL: placebo group; T0: enrolment day; AA: acetic acid; PA: propionic acid; SCFAs: short-chain fatty acids; TNF-α:
tumor necrosis factor alpha.
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Fig. 5. Statistically significant correlations in PL group at T1 as a result of placebo administration. PL: placebo group; T1: after 3-month treatment; AA: acetic acid; BA: butyric acid;
PA: propionic acid; SCFAs: short-chain fatty acids; TNF-α: tumor necrosis factor alpha.

Fig. 6. Schematic representation of the main physiological changes related to CD (shown in black). Potential alterations in microbiota related to CD are shown in red. AA: acetic acid;
PA: propionic acid; SCFAs: short-chain fatty acids; IFN-γ: interferon gamma; TNF-α: tumor necrosis factor alpha; IL-10: interleukin 10; IL-15: interleukin 15. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
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