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1 Introduction

We know from the anthropological literature that in modern hunter-gatherers
food acquisition and food distribution are regulated by social norms (Boehm,
2012). A neat example can be found among the Ache of Paraguay who follow
a rule of thumb for hunted resources of the kind "cooperate frequently and
share fully" (Hill, 2002). Social norms of this kind can also be found among
the whale hunters in Lamalera (Alvard and Nolin, 2002), the Mbuti pygmies
(Ichikawa, 1983) the Hazda, the !Kung (Woodburn, 1982), among others.
Despite the empirical evidence on the widespread use of social norms in

primitive societies, our knowledge of their origin is still limited; according to
Kaplan and Gurven (2005), in fact, "we know virtually nothing about how
standards for appropriate behavior emerge and change in small-scale societies
without offi cial means of enforcement" (p. 96).
Binmore (2005) put forward the idea that standards of behavior evolved

to solve the equilibrium selection problem embedded in the repeated game of
life played by our ancestors. Anthropologists suggest that the relevant game
of life was large-game hunting (Boehm, 2004, 2012). The idea is that a dietary
shift towards high quality food packages started after the discovery of large-
game hunting. However, these food packages were diffi cult and dangerous to
acquire by a solitary hunter. Acknowledgement of this fact probably increased
the benefit of collective action and facilitated sharing (Kaplan and Gurven,
2005).

The present paper is an attempt to study the evolutionary origin of a so-
cial norm of the kind "cooperate frequently and share fully". Recent papers by
Troger (2002), Ellingsen and Robles (2002) and Dawid and MacLeod (2001)
provide a useful framework of analysis. They are concerned with a two risk-
neutral players, two-stage game in which a pie has first to be produced (stage
one) and then divided (stage two).1 In particular, while Troger (2002) and
Ellingsen and Robles (2002) showed that evolution supports the effi cient equi-
librium when the pie is determined by the decision of one agent only, Dawid
and MacLeod (2001) proved instead that this effi ciency result may not hold
when the pie depends on the decisions of both agents.2

This literature, however, is not totally adequate to explain the evolution-
ary origin of social norms observed in primitive societies. On one side, in fact,

1 This literature is concerned with evolutionary dynamics in scenarios characterized by
investment specificity. We say that investment is completely relation-specific when it is
only valuable to a particular trading partner. By making investor vulnerable to ex-post
exploitation, investment specificity may thus give rise to the so-called hold-up problem.
Relation-specific investment seems a minor problem for nomadic hunter-gatherers since, for
their subsistence, they are not dependent on specific other agents, nor on specific assets and
resources; see Woodburn (1982).
2 Other important contributions include Young (1993) and Hawkes (1992). The former

explains the evolution of a division norm when the pie is exogenously given; the latter
explains the evolution of a norm regulating agents’ cooperation in producing a pie, when
the division rule is exogenously given.
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Troger (2002) and Ellingsen and Robles (2002) do not give strong support
to the egalitarian surplus division3 , which is instead a distinguishing feature
of hunter-gatherers; moreover, their assumption that the pie only depends on
the decision of one agent seems quite restrictive. On the other hand, although
Dawid and MacLeod (2001) made an important step by removing this lim-
iting assumption4 , their way of shaping the distribution stage is not totally
convincing. Sure enough, when we allow both agents to strategically interact
in producing a pie, we have to specify which division protocol is adequate at
each possible division node. Dawid and MacLeod (2001) assume that a Nash
Demand Game (NDG) occurs after an asymmetric investment profile while
equal split occurs after a symmetric investment profile. They defend the equal
division assumption by appealing to Young (1993) who proved this result for
an exogenously given pie. However, since in Dawid and MacLeod (2001) the
pie to be divided is not exogenously given, the equal split assumption seems
not adequate because it sweeps off the main issue.

In this paper we consider a two-stage game in which the pie depends on
the decisions of two risk neutral agents, as in Dawid and MacLeod (2001).
However, we depart from their framework in two respects.
Firstly, we posit that in each period our game is played by two agents

belonging to two different populations, A and B, of equal size. This allows
us to apply the evolutionary framework for extensive games put forward by
Noldeke and Samuelson (1993).5 The assumption of two populations can be
easily justified in our model; it corresponds, for instance, to a situation in which
each member of the community is appointed with a portion of the communal
land for his activity.
Secondly, we posit that the bargaining game played in the second stage

is sensitive to the investment profile observed and to the degree of property
rights protection. We assume that when both agents invest in producing a
pie, they are involved in a NDG; when instead nobody invests there is no
bargaining since there is no surplus. What becomes critical is the bargaining
occurring when an asymmetric investment profile is observed, that is when
only one invests in producing a pie. Here two different scenarios are considered,
depending on whether property rights over the fruits of one’s own independent
investment are secured or not.

3 More precisely, they show that the evolved division norm virtually assignes the entire
surplus to the unique investing agent, provided that a fine grid of investment choices is
allowed.
4 Dawid and MacLeod (2008) is a further extension in which the outcome of the investment

decision is stochastic.
5 This is not the evolutionary framework considered by Dawid and MacLeod (2001) who

are basically concerned with an adaptation of Young (1993a) to an extensive form game.
Athough this extension is not problematic with one-sided investment (as in Troger 2002),
it is a bit tricky with two-sided investment since it can imply that some agents continue
to believe that all the opponents make the same investment (i.e. all choose high or low
investments) even when some bargaining outcomes (which in their model can only happen
when high-low matches occur) are observed.
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When property rights are secured, we explore the case in which the bargain-
ing stage is described by a Dictator Game (DG) in which the unique investing
agent has full control of the surplus division; in this case if a sharing occurs it
only depends on the free will of the investing agent.
When instead property rights are not secured, we explore the case in which

the bargaining stage is described by an Ultimatum Game (UG) in which the
unique investing agent proposes a division which is realized only if accepted
by the opponent. Here we have in mind a situation in which, since the fruits of
one’s own independent investment are considered communal property, people
feel entitled to a fair share of it; as a consequence, not only the unique hunting
agent cannot refuse to share with the not participant one, but he must also
share fairly, according to society’s rule. The UG captures the fact that any
violation of this standard may result into overt conflict and consequent loss of
the carcass.6

We are thus concerned with two different two-stage games, that we label
ΓDG and ΓUG, which only differ in the bargaining rule following an asymmetric
investment profile. We claim that a standard of behavior of the kind "cooperate
frequently and share fully" in use among modern hunter-gatherers probably
evolved from structures of interactions somehow amenable to one of these
two games. Of course, other alternatives could be considered and we leave to
further research to investigate the robustness of our results.

Evidence from anthropology suggests that both situations (i.e. private and
communal property over the fruits of one’s own independent production) are
indeed plausible. For instance, Hill (2002) reports that among the Ache only
the individual who has participated in attempting to acquire resources is en-
titled to bargaining over a share of those resources, thus making sharing con-
tingent upon contribution; in this case, those who do not contribute are not
entitled to a share. However, Boehm (2004) says that individuals living in
small nomadic bands often do not have the right to treat the carcasses they
have killed as private property; rather, in these cases, "the entire band is tak-
ing over what otherwise would be private property of one or more successful
hunters, and is treating it as group-wide communal property because everyone,
including those not active in procuring the carcass, will insist on sharing in
the commodity" (p. 118). Analogously, Woodburn (1982) reports that among

6 In a preliminary study we considered the case in which a NDG, rather then an UG, occurs
after an asymmetric investment profile; however we were not able to derive the stochastically
stable equilibrium due to the occurrence of several not singleton absorbing sets with complex
structure. Ellingsen and Robles (2002) also considered the case in which, in stage two, the
distribution of the surplus is determined by an ultimatum game where the player who makes
the proposal is the trading partner, i.e. the agent not responsible for the investment decision.
They have shown that in this case the stochastic stability has little cutting power because
many outcomes are stochastically stable. Our game ΓUG mainly differs from Ellingsen and
Robles (2002) in two respects. First, the player who makes the proposal is the player who
decided to invest in the first stage. Second, since the pie depends on the decisions of two
agents, both can be in a position to affect the distribution of the surplus generated by the
other. Our result for ΓUG says that, under the appropriate conditions, a unique stochastically
stable outcome exists.
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the !Kung and the Hazda, sharing is not contingent upon contribution since
"some men who are regular recipients never themselves contribute" and argues
that this distribution must be considered as "socially imposed" on the solitary
hunter, as a form of modern taxation.7 While the situation described by Hill
(2002) seems compatible with ΓDG, the evidence reported by Boehm (2004)
and Woodburn (1982) seems compatible with ΓUG.

Both games have a multiplicity of equilibria. In order to identify the evolved
social norms we use the concept of stochastic stability. We claim that a social
norm has evolved when the stochastically stable set only supports an homoge-
neous behavior for at least one population. Our main result states that when a
social norm evolves then not only we observe an homogeneous behavior along
the whole path of play but the prescribed actions are uniform across popula-
tions. We can thus claim that, in both games, norms coevolve: the investment
norm supports full cooperation in the production stage (meaning that both
agents choose to invest in producing a pie) and the bargaining norm entails
an egalitarian division of the realized surplus. Our main result says that a
social norm of the kind “cooperate frequently and share fully”evolves in both
games.
The two games differ for the in demand conditions for norms to coevolve.

In particular, we always observe a coevolution of norms in ΓDG; the intuition
behind this result is that a single investor will appropriate the entire small pie,
so that the best the other can hope for is zero (or the least feasible division).
In ΓUG instead the coevolution of social norms only occurs when investments
are complements and the cost of investment is not too high. The intuition
now is that equal sharing evolves when there are large surplus gains8 ; in this
case, in fact, the gross surplus obtained when both agents invest is so large
that dividing it equally yields to each agent more than the maximum payoff
one can hope to get when she is the only investing agent. However, when these
conditions fail a great deal of outcomes are stochastically stable so that neither
an investment norm nor a bargaining norm evolve.9

Our main results are derived under the natural assumption that full co-
operation in the production stage is effi cient; this means that the net surplus
observed when both agents choose to invest is greater than the net surplus

7 Woodburn (1982) suggests that among the Hazda and the !Kung this "right to a share"
by those not investing is responsible for the overwhelming diffi culties encountered by those
who make an effort to live by agriculture.
8 The connection between complementarity and equal sharing is also suggested, albeit

implicitly, by Boehm (2012). He maintains that team hunting is an energetically demand-
ing occupation which works best if all the members of the hunting team are adequately
nourished, a condition allowed by equal sharing.
9 It is worth observing that, although the formal conditions for a stochastically stable

outcome to exist in ΓUG coincide with those required by Dawid and MacLeod (2001), the
basic models and the evolutionary dynamics are different. In particular, while in ΓUG these
conditions support the coevolution of a norm of cooperation and a norm of division, they
only uphold a norm of investment in Dawid and MacLeod (2001).
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when only one invests. Recently Avard (2004) have suggested the hypothesis
that standards of cooperation and fair division are more likely to be observable
in societies in which "the payoffs to cooperation are high". In order to verify
Alvard’s hypothesis, in the last Section we very briefly extend our analysis to
the case in which full cooperation in the production stage is not necessarily
effi cient and we show that our results do not change.

The basic model is presented in Section 2. Section 3 describes the evolu-
tionary dynamics and gives some preliminary results. The main results are
provided in Section 4, and further insights are discussed in Section 5.

2 The model

Two risk neutral players (A and B) are engaged in a two-stage game. In stage
one both have to simultaneously decide whether to invest (action H) or not
(action L) in producing a pie. The investment cost (c) is identical for both
agents. When both choose H the gross surplus is VH ; when only one chooses
H the gross surplus is VM ; when both choose L there is no surplus. Obviously,
VH > VM > 0. At the end of stage one the produced surplus is observed and
each player can correctly estimate her opponent’s choice. In stage two they
bargain over the available surplus. If both invest, they are engaged in a Nash
Demand Game (NDG). If only one invests, the paper explores two possibilities:
either an Ultimatum Game (UG) or a Dictator Game (DG).
We denote by ΓUG (resp. ΓDG) the whole extensive game in which a NDG

occurs when both players invest and a UG (resp. DG) occurs when only one
invests. In NDG players A and B simultaneously make demands y and x,
respectively. If these demands are compatible, each receives what she claimed;
otherwise they receive nothing. Since agents are risk neutral, the payoffs are
πA = y − c and πB = x − c if y + x ≤ VH ; πA = −c and πB = −c if
y+x > VH . In UG the player who invests makes a proposal which the opponent
can either accept or reject. In DG the division continues to be advanced by
the player who invests; however her opponent now has no choice but to accept.
Let D (Vj) = {δ, 2δ, ..., Vj − δ} , j ∈ {H,M} denote the set of feasible claims.
Throughout the paper we make the following assumption:

Assumption 1 (a) VH
2 and c are divisible by δ and c > δ;

(b) the effi cient net surplus arises when both players choose H, i.e.

c < min

(
VH
2
;VH − VM

)
; (1)

(c) the maximum payoff attainable by playing H when the opponent chooses
L is not negative, i.e.

c ≤ VM − δ. (2)
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It is worth noting that, under Assumption 1, both ΓUG and ΓDG admit
a subgame perfect equilibrium which supports investment profile HH. Never-
theless, both games admit a great deal of subgame perfect equilibria some of
which are ineffi cient.

3 Evolutionary dynamics

In this Section we embed our model into the evolutionary framework put for-
ward by Noldeke and Samuelson (1993). To this end we postulate a finite
population of size N for each player, A and B. In each period, every possible
match between agents occurs meaning that each agent belonging to popula-
tion A interacts with each agent of population B, one at a time. An agent is
described by a characteristic which consists of a detailed plan of action and a
set of beliefs about the opponent’s behavior.10

Let θ be a state; this denotes a profile of characteristics of the overall
population. z (θ) denotes the probability distribution across the terminal nodes
generated by θ; lastly, Θ is the finite set of possible states.
At the end of every period each agent with probability λ observes z(θ) and

her characteristic may change. In particular the received information allows
agents to correctly update their beliefs on opponent’s choices at the observed
information sets. Given their new beliefs, they also update their action profile
by choosing a best reply11 at each information set. With probability 1 − λ
the single agent does not observe z (θ) and her characteristic does not change.
This learning mechanism engenders an (unperturbed) Markov process (Θ,P )
where P is the transition matrix on Θ.

By Ω we denote a generic limit set12 of the process; this is a minimal
subset of states such that, when the process enters, it does not exit. By ρ (Ω)
we denote the set of observable terminal nodes under Ω. Lastly by Σ we denote
the union of the limit sets of the process.
Besides being updated, agents’beliefs and actions can also change by mu-

tation. In every period, each agent has a probability ε of mutating. Mutations
are independently distributed across agents. When mutating, agent changes
her characteristic according to a probability distribution assigning positive
probability on each possible characteristic.

10 In ΓUG, a plan of action for player A must specify: (i) the type of investment; (ii) the
demand when both players choose H (the action at HH); (iii) the demand when A chooses
H and B chooses L (the action at HL); (iv) whether to accept or reject any demands made
by B, when in the first stage B chooses H and A chooses L. The same applies for player
B. In ΓDG, a plan of action for player A must specify: (i) the type of investment; (ii) the
demand when both players choose H (the action at HH); (iii) the division of the surplus
when A chooses H and B chooses L (the action at HL). Analogously for player B.
11 However, if the learning agent has already played a best reply her action does not change.
Moreover, when the best reply contains more than one action, one of these can be randomly
chosen according to a distribution with full support.
12 A set Ω ⊆ Θ is called a limit set of the process (Θ,P ) if: (a) ∀θ ∈ Ω,
Prob {θt+1 ∈ Ω | θt = θ} = 1; (b) ∀ (θ, θ′) ∈ Ω2, ∃s > 0 s.t. Prob {θt+s = θ′ | θt = θ} > 0.
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A particular type of mutation occurs when the mutants change belief
and/or action at some unreached information set under the current state θ. In
this case we assert that the state drifts.
Mutations generate a new (perturbed) Markov process (Θ,P (ε)) , which

is ergodic. It is well known that, for any fixed ε > 0, the perturbed process
has a unique invariant distribution µε. Let µ∗ = limε→0 µε denote the limit
distribution. A state θ is stochastically stable if µ∗ (θ) > 0.We denote the set of
stochastically stable states by ΣS ; this is the set of states which has a positive
probability in limit distribution. Noldeke and Samuelson (1993) proved that
the stochastically stable set is contained in the union of the limit sets of the
unperturbed process. In order to detect the stochastically stable set we first
have to characterize the limit sets of our model; this is the aim of the following
two Propositions.

Proposition 1 In ΓUG all the limit sets have one of the following structures:
(a) they contain one state only, and this is a self-confirming equilibrium of
the game; (b) they contain more than one state and all investment profiles are
observed. Moreover, only one outcome is realized for each investment profile
in which the claims exhaust the surplus.

Proof. See the Appendix

Proposition 2 In ΓDG all the limit sets contain one state only, and this is a
self-confirming equilibrium. Moreover, at least one agent chooses to invest at
every equilibrium.

Proof. See the Appendix

From now on when we speak of equilibrium we refer to self-confirming
equilibrium.13

Propositions 1 and 2 state that the considered evolutionary dynamic gives
rise to a large multiplicity of limit sets. However, this dynamic admits limit
sets in which both investment and bargaining behavior is uniform in each pop-
ulation. It is thus likely that homogeneous behavior in one or both populations
could be molded by evolution. When this happens, we say that a norm has
evolved. Accordingly, an investment norm has evolved if all agents belonging
to the same population make the same investment and the investment be-
havior is correctly anticipated. Analogously, a bargaining norm has evolved
if a pair of demands (y, x) exists at some reached information set which ex-
hausts the gross surplus and the bargaining behavior is correctly anticipated.
When the set of stochastically stable states contains only equilibria supporting
the same outcome we speak of a stochastically stable outcome rather than a
stochastically stable set.

13 According to Noldeke and Samuelson (1993) a state is a self-confirming equilibrium
if each agent’s strategy is a best response to that agent’s conjecture and if each agent’s
conjecture about opponent’s strategies matches the opponent’s choices at information sets
that are reached in the play of some matches.
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Despite the fact that Propositions 1 and 2 do not help to pin down which
behavior is more likely to become the conventional one, in the next Section
we shall show that the stochastically stable set can support only one outcome
in both games. Our remarkable result stems from direct application of Nold-
eke and Samuelson (1993) and Ellison (2000). In particular, Proposition 1 of
Noldeke and Samuelson (1993) states that if ΣS is a strict subset of Σ (i.e.
ΣS ⊂ Σ) then a Ω /∈ ΣS can not be reached from ΣS by a sequence of single-
mutation transitions. Hence, our first task (Lemma 1 and 2 below) is to detect
the smallest Σ̂ ⊂ Σ such that a sequence of a single-mutation transitions is
enough to escape from any Ω ∈ Σ \ Σ̂ and reach Σ̂. In this case when ΣS ⊂ Σ
we know that ΣS ⊂ Σ̂.

The next Lemma states our first preliminary result, which holds true for
both the extensive games considered.

Lemma 1 Consider a limit set Ω such that ρ (Ω) is not a singleton. An equi-
librium supporting one outcome only can be reached from Ω by a sequence of
single-mutation transitions.

Proof. See the Appendix.

Lemma 1 enables us to limit our attention to the equilibria supporting one
outcome only. According to the investment profile observed, we can partition
this set of equilibria into four subsets. We denote these subsets respectively as
ΣH , ΣL, ΣHL and ΣLH . Of course, ΣH includes all the equilibria supporting
the outcome {HH,VH − xHH , xHH} where xHH ∈ Dδ (VH) . The same applies
for the other subsets. The following Lemma 2 highlights that the process can
move from any equilibrium belonging to the set (ΣL ∪ΣHL ∪ΣLH) to a new
equilibrium θ ∈ ΣH through a sequence of single-mutation transitions.

Lemma 2 Consider an equilibrium θ; then:
(a) if θ ∈ ΣL an equilibrium θ′ ∈ ΣH can be reached from θ by a sequence

of single-mutation transitions provided that c+ δ < xHH < VH − c− δ;
(b) if θ ∈ ΣHL (resp. ΣLH) an equilibrium θ′ ∈ ΣH can be reached from θ

by a sequence of of single-mutation transitions provided that c + δ < xHH <
VH − c− δ.

Proof. See the Appendix.

It is worth stressing that since subset ΣL is empty in ΓDG, then only point
(b) of the previous Lemma is relevant to this game.
Lastly Lemma 3 below asserts that in ΓUG a sequence of single-mutation

transitions is enough to shift the process from any equilibrium θ ∈ ΣL to a
new equilibrium θ′ in which only one agent has invested.

Lemma 3 Consider ΓUG and an equilibrium θ ∈ ΣL; an equilibrium θ′ ∈
ΣLH ∪ΣHL can be reached from θ by a sequence of single-mutation transitions
provided that at θ′ the agent who has chosen H is better off;
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Proof. See the Appendix.

All the results so far obtained only require that c < min
(
VM ,

VH
2

)
. From

Lemma 1 we know that, when a limit set underpins a multiplicity of outcomes,
then we can reach an equilibrium sustaining only one outcome by a sequence
of single mutations. Lemma 2 tells us that if the single equilibrium outcome
does not support the effi cient investment profile, then the process can reach a
single equilibrium belonging to ΣH by a sequence of single mutations. Hence,
when ΣS ⊂ Σ, both these Lemma suggest we focus on subset ΣH .

4 Main results

Given the results so far disclosed, in this Section we limit our concern to the
set of equilibria ΣH in order to explore, for both games, the occurrence of some
norms. First and foremost we provide the characterization of the stochastically
stable set for ΓUG; we then briefly consider ΓDG. To simplify our analysis we
introduce the following mild technical assumption, which holds for both games.

Assumption 2 The population is suffi ciently large, i.e. VHN < δ.

Consider ΓUG and let xUB (resp. VH − xUA) be the share going to player B
(resp. A) such that she receives a payoff equal to VM − δ when both agents
have invested:

xUB = VM − δ + c

xUA = VH + δ − c− VM .
(3)

Since c is divisible by δ and c > δ, then xUB , x
U
A ∈ Dδ (VH) . Let14

x̂UA = max
{
x ∈ Dδ (VH)| (VH − x) N−1N − c ≥ VM − δ

}
x̂UB = min

{
x ∈ Dδ (VH)|xN−1N − c ≥ VM − δ

}
.

(4)

Under assumption 2 it follows that x̂UA = xUA − δ and x̂UB = xUB + δ. Therefore
x̂UB ≤ x̂UA if

VM ≤
VH
2
− c. (5)

When this condition holds, then we can define the following set:

ΣU
IH =

{
θ ∈ ΣH | x ∈

[
x̂UB , x̂

U
A

]}
. (6)

It is worth noticing that VH− x̂UA = x̂UB , meaning that in Σ
U
IH the lowest share

of surplus is the same for both agents. Few computations show that VH2 ∈ Σ
U
IH .

By definition when θ ∈ ΣU
IH each agent receives an equilibrium payoff not

smaller than the maximum payoff attainable when she deviates by playing L.

14 x̂UA is the largest demand agent B can make at HH such that A does not have any
incentive to change action by playing L when she knows that: (i) N − 1 agents B play H
and claim x̂UA; (ii) one agent B makes a larger demand. Analogously for x̂UB .
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Any equilibrium in ΣU
IH thus dominates all the equilibria supporting other

investment profiles. Hence even if at an equilibrium θ ∈ ΣU
IH the belief on

the outcome in high-low matches drifts, allowing some agents to expect to get
almost the whole surplus if they do not invest, this drift does not push the
process away from the basin of attraction of θ.
We can always partition the set ΣH into ΣU

IH and Σ
U
CH = ΣH�ΣU

IH where
the latter denotes the set of equilibria in which both agents choose to invest
but x /∈

[
x̂UB , x̂

U
A

]
. Obviously when condition (5) does not hold then ΣU

IH is
empty and ΣH = ΣU

CH .
The next Proposition states our main result for ΓUG. In order to derive

this Proposition, we make use of both the suffi cient condition developed by
Ellison (2000) and some of the results for the NDG proved by Young (1993).

Proposition 3 Consider ΓUG and let Assumptions 1 and 2 be satisfied. When
δ is suffi ciently small the following cases are possible:
(a) if VM ≤ VH

2 −c holds then Σs ⊆ Σ
U
IH and a stochastically stable outcome

exists. In this case all agents choose to invest and the surplus is equally split.
(b) if VM > VH

2 − c holds then no norm evolves.

Proof. See the Appendix

We now turn to the case in which a Dictator Game (instead of an Ulti-
matum Game) is played when an asymmetric investment profile is reached. In
this case we denote by xDB (resp. VH − xDA ) the share going to player B (resp.
player A) such that she receives an equilibrium payoff equal to δ when both
agents have invested:

xDB = c+ δ

xDA = VH − c− δ.
(7)

Since c and VH are divisible by δ, then xDB , x
D
A ∈ Dδ (VH) . Let

x̂DA = max
{
x ∈ Dδ (VH)| (VH − x) N−1N − c ≥ δ

}
x̂DB = min

{
x ∈ Dδ (VH)|xN−1N − c ≥ δ

}
.

(8)

By keeping in mind Assumption 2 we obtain x̂DA = xDA − δ and x̂DB = xDB + δ,
i.e.

x̂DB = c+ 2δ

x̂DA = VH − c− 2δ.
(9)

It is easy to see that x̂DB ≤ x̂DA provided:

c <
VH − 4δ

2
. (10)

When this condition holds, we can define the following set

ΣD
IH =

{
θ ∈ ΣH | x ∈

[
x̂DB , x̂

D
A

]}
. (11)
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Also for ΓDG we can always partition the set ΣH into ΣD
IH and ΣD

CH

where ΣD
CH = ΣH�ΣD

IH ; the latter denotes the set of equilibria in which
both agents choose to invest but x /∈

[
x̂DB , x̂

D
A

]
. However in this case the set

ΣD
IH is always well-defined and ΣD

CH = ΣH\ΣD
IH only supports

(
xDB , x

D
A

)
as

distributional rule. Indeed when δ is suffi ciently small Point (b) of Assumption
1 ensures that cost c is always smaller than VH/2. The following Proposition
summarizes our finding concerning ΓDG.

Proposition 4 Consider ΓDG and let Assumptions 1 and 2 be satisfied. When
δ is suffi ciently small (i.e. δ < VH−2c

4 ), then Σs ⊆ ΣD
IH and a stochastically

stable outcome always exists and it supports full investment and the egalitarian
distributional rule.

Proof. See the Appendix

Proposition 4 states an intuitive result. Indeed in ΓDG the unique stochas-
tically stable outcome is always

(
HH, VH2 ,

VH
2

)
even when condition (5) does

not hold. This implies that for whatever beliefs off the path (i.e. at HL and/or
LH) the process still sustains the outcome

(
HH, VH2 ,

VH
2

)
. In particular, sup-

pose that in period t the process is at an effi cient equilibrium θ in which the
surplus is equally split but condition (5) does not hold. Let one B agent expect
to get almost the whole surplus if she does not invest. In period t+ 1 she will
not invest. However, since at HL all A agents behave like a dictator, they will
get almost the whole surplus. Hence in period t+2 , when all B agents revise,
they all will choose to invest. Therefore the process does not leave the basin
of attraction of θ.

5 Discussion

In this Section, we provide further insights into our results. First consider ΓUG.
Borrowing from anthropological literature, we have suggested that this game
is more apt for describing the evolution of social norms when property rights
over the fruits of one’s own independent investment are not socially supported.
Proposition 3 describes the scenarios we can expect to observe over the long
run in a society of this kind15 . First, either a norm of investment and a norm of

15 Our results can be compared with Dawid and MacLeod (2001). If we put the assumptions
VL = 0 and VM−c > 0 into their model, then the formal conditions for a single stochastically
stable outcome stated in their Proposition 7 are in line with those stated in our Proposition
3. However their Proposition 7 is only concerned with the evolution of investment norms
instead of the coevolution of investment and bargaining norms. As we said, this stems from
deep differences between the two models and the evolutionary dynamics considered. In the
preliminary version of the present paper we have also studied the model in which the surplus
is equally split when both agents invest, as in Dawid and MacLeod (2001), but an Ultimatum
Game occurs when only one agent has invested. In this case Proposition 3 continues to be
true. Lastly Proposition 3 continues to hold even when in the UG the agent who makes a
proposal is not the agent who has chosen to invest, as in Ellingsen and Robles (2002).
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6

- VM

c

NN

NNHH

NN

Fig. 1 Game ΓUG. Region HH denotes the parameter configuration supporting the unique
stochastically stable outcome while region NN denotes the parameter configuration in which
no norms evolves since several stochastically stable outcomes can exist

bargaining coevolve, or no norm evolves at all. Second, when norms coevolve,
they support effi cient investment and egalitarian distribution.
According to Dawid and MacLeod (2008), investments are complements if

the marginal effect of action H when the opponent plays H is greater than
the marginal effect of action H when the opponent plays L. Since in our
model VL = 0, this condition is met when VM < 1

2VH . Sure enough, when
ΣU
IH is not empty investments are complements in the sense of Dawid and

MacLeod (2001), but investments can be complements in the sense of Dawid
and MacLeod also when ΣU

IH is not well defined. According to Proposition 3
we can thus expect norms to coevolve when investments are complements (i.e.
VM < 1

2VH) and the investment cost is suffi ciently low (c <
VH
2 − VM ); these

conditions are satisfied in region HH of Figure 1, which is drawn under the
assumption that δ is negligible. Instead, when investments are complements
but the investment cost is higher than VH

2 − VM , or when investments are
not complements (i.e. VH2 < VM ≤ VH), we do not observe any norm; this
happens in region NN of Figure 1. In this region all investment profiles and
any distributional rule can be observed in the long run.
To see this consider region NN and suppose16 that the only outcome ob-

served is
(
HH, VH2 ,

VH
2

)
. Since no high-low matches are observed, the beliefs

on bargaining outcomes in high-low matches can drift. Because of said drift,
all agents B might, for instance, deem that A will only accept a distribution
granting her almost the whole pie at LH profile even if all B are ready to
accept any proposal at HL. Sure enough the drift does not shift the process
from the equilibrium outcome

(
HH, VH2 ,

VH
2

)
. Suppose now that one agent A

16 We remind that in region NN condition (5) does not hold.
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- VM

c

HH

HHHH

HH

Fig. 2 Game ΓDG. Region HH denotes the parameter configuration supporting the unique
stochastically stable outcome

deems to capture a share VM − δ at HL. According to this new belief she
will play L in the next period. Therefore the initial equilibrium

(
HH, VH2 ,

VH
2

)
can be overturned when both populations update, once at the time, so that
the process enters the basin of attraction of (LL, 0, 0) eventually. However this
cannot be a social norm since a sequence of single mutations is enough to
move the system into the basin of attraction of another equilibrium support-
ing a single outcome with a different investment profile (see Lemma 2, point
(a), and Lemma 3). And so on and so forth.

We have also seen that ΓDG seems more appropriate for describing the
evolution of social norms when property rights over the fruits of one’s own
independent investment are socially protected. In this context, Proposition
4 ensures that norms always coevolve. This result is illustrated in Figure 2,
in which region NN of the previous Figure 1 disappears and is replaced by
region HH. Therefore, region HH now coincides with the whole parameter
space compatible with Assumption 1. Indeed, since in this case the only agent
who has invested behaves as a dictator, any drift of beliefs does not upset the
outcome

(
HH, VH2 ,

VH
2

)
even when condition (5) is not satisfied. Confidence

in the dictator’s unselfish behavior is thus always shortsighted.

In both games, when social norms emerge, they support the effi cient in-
vestment profile and the egalitarian distribution of the surplus. The fact that
the distributional norm is egalitarian is not a surprise since our model is sym-
metric. In turn this symmetry depends on the assumptions that investment
costs are identical and that the surplus accrued when only one agent invests
does not depend on the identity of the investing agent. One may then reason-
ably question whether an egalitarian norm could still be expected to emerge
when some form of heterogeneity is allowed (Baker and Swope 2005). This is
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an important point since the literature on modern hunters-gatherers suggests
that, in some cases, these societies endorse an egalitarian rule of distribution
even when differences in hunting-gathering abilities are observed (Kaplan and
Hill, 1985; Woodburn, 1982) while in some other cases they do not (Hawkes
1992). This point is developed in a companion paper.

Our results are derived under the natural assumption that full cooperation
in the production stage is effi cient. We now briefly provide some insights on its
role; this allows us to evaluate a conjecture recently advanced by Alvard (2004).
In discussing the results of some experiments in fifteen small scale societies17 ,
Alvard (2004) suggested that norms of cooperation and norms of fair division
were likely to be observed in societies in which "the payoffs to cooperation
are high". Hence by relaxing our effi ciency assumption and by comparing the
results we can test the cutting power of Alvard’s hypothesis in our settings. In
order to do this we keep all the assumptions so far made with the exception
of point (b) of Assumption 1 which is replaced by either VM − c > VH − 2c
or VM − c < VH − 2c. Under this new scenario the parameter region enlarges
by embracing the triangle on the right hand side of the previous parameter
space (see Figure 3). In this appended area all our intermediate results are
still valid. However condition (5) can no longer be satisfied; as a consequence
only point (b) of Proposition 3 holds. Therefore in ΓUG no norm evolves in
the added region due to the failure of said condition; consequently region NN
enlarges. On the other side, in ΓDG Proposition 4 continues to be true so that
the same social norms coevolve with and without the effi ciency hypothesis.

Lastly, we speculate on the role played by bargaining in the evolution of
social norms in ΓUG and in ΓDG under the effi ciency assumption. In order to
do this, we apply the evolutionary framework to a simpler model in which a
distributional norm already exists and agents only have to coordinate their
investment decisions. To this end we consider the one shot game suggested
by Hawkes (1992, payoff matrix 8). Let ΓC denote this model. The resulting
game is represented by the normal form (12) in which we assume18 (i) that for
whatever investment profile the pie is equally split19 ; (ii) that the net surplus
arising when both agents invest is the greatest one, and (iii) that the net sur-
plus accruing when only one invests is not negative. The latter two conditions
are satisfied when c < min( 12VH , VH − VM , VM ). In this strategic framework,
when there is more than one pure Nash equilibrium, the stochastically sta-
ble one coincides with the risk dominant equilibrium (Young 1993a). From an
anthropological perspective, this game is suitable to describe a situation aris-
ing when the pie to be distributed has to be produced in advance but, since

17 See Heinrich et al. (2004). An assessment of these experiments can be found in Chibnik
(2005) and in Hagen and Hammerstein (2006).
18 This game tallies with Hawkes’s game under the assumptions V = VH and sV = VM .
19 This means that the distributional rule in ΓC coincides with the unique distributional
norm which can evolve in ΓUG.
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6

- VM

c

HH

NN

NN

6

- VM

c

HH

HH

Fig. 3 Top: game ΓDG; bottom: game ΓUG. In both figures the triangle on the right hand
side denotes the parameter configuration for which investment by both agents is not effi cient.
No norms are observed in ΓUG while norms co-evolve in ΓDG

property rights cannot be enforced20 , it must always be split equally.

H L

H VH
2 − c,

VH
2 − c

VM
2 − c,

VM
2

L VM
2 ,

VM
2 − c 0, 0

(12)

Few computations show that the game has either three Nash equilibria (two
in pure strategies and one in mixed strategies) or only one pure symmetric
Nash equilibrium. When the game admits a unique Nash equilibrium, this is
investment profile HH if c < min

(
VM
2 ,

VH−VM
2

)
and investment profile LL if

c > max
(
VM
2 ,

VH−VM
2

)
. When the game admits two pure Nash equilibria, these

are HH and LL if VM2 < c < VH−VM
2 and HL and LH if VH−VM2 < c < VM

2 .

20 According to the anthropologists, this situation is compatible with societies admitting
the so-called tolerated theft (Hawkes 1992). This means that sharing also occurs when the
pie is only provided by one agent, since excluding outsiders is too costly. However, Bell
(1995) argued that tolerated theft presumes that society ensures the hunter the full right to
his or her catch, a condition that may not be granted.
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Fig. 4 Game ΓC . Parameter configuration in which effi cient investment (HH) and no
investment (LL) are stochastically stable, compared with the parameter configuration (NN)
where no investment norm evolves

When the game has two pure symmetric equilibria, the stochastic stability
selects one of them. In particular, it selects investment profile HH if VM2 < c <

min
(
VH−VM

2 , VH4
)
, while it selects investment profile LL if max

(
VM
2 ,

VH
4

)
<

c < VH−VM
2 . When instead the game has two pure asymmetric equilibria, LH

and HL, both are stochastically stable.
These results are illustrated in Figure 4, where HH (resp. LL) denotes the

region in which investment profile HH (resp. LL) is the only stochastically
stable equilibrium and where NN denotes the region in which no investment
norms emerge since both equilibria, LH and HL, are stochastically stable. In
this last game, a coordination failure arises when investment profile LL is the
only stochastically stable equilibrium. Direct comparison of Figures 1 (ΓUG)
and 4 allows us to argue that the main consequences of modeling a bargaining
stage as a game is that the region supporting the worst outcome (LL) disap-
pears while the region supporting the best outcome (HH) shrinks. Hence, the
region in which no investment and bargaining norms evolve is enlarged. This
highlights the fact that, contrary to what happens in ΓC in which an egali-
tarian distributional norm is already established, when a distribution norm is
allowed to evolve, its evolutionary process affects the evolution of the invest-
ment norm (Hackett 1993, 1994). When we do the same exercise for ΓDG, we
obtain a new game Γ ′C which differs from ΓC . This is because at the asym-
metric investment profiles, the whole surplus goes to the investing agent only.
Under the structural assumptions of the paper, it turns out that H is now a
dominant strategy and HH is the only Nash equilibrium.21 Since ΓC and Γ ′C

21 We remark that in Γ ′C any distributional norms granting a positive payoff when both
invest does not hamper the evolution of the investment norm.
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essentially differ in the degree of property protection assured, we conclude that
modeling a bargaining stage is crucial for understanding the evolution of both
investment and distribution norms in societies in which full rights of posses-
sion are not socially supported. In societies in which full rights of possession
are socially protected, this only explains which bargaining norm is brought to
bear.

A Appendix

First of all we introduce some useful notations. We denote by bse the least integer number
greater than s when s is not an integer and (s+ 1) is otherwise. Consider a state θ and
suppose that all agents observe z (θ). Consider ΓUG; for an agent i ∈ A, action L is not
preferred to action H if;

pB (θ)
(
ỹiHH (θ)− ỹiLH (θ)− c

)
+ (1− pB (θ))

(
ỹiHL (θ)− c

)
≥ 0;

analogously, action L is not preferred to action H for agents i ∈ B if

pA (θ)
(
x̃iHH (θ)− x̃iHL (θ)− c

)
+ (1− pA (θ))

(
x̃iLH (θ)− c

)
≥ 0.

Here, by pA (θ) (resp. pB (θ)) we denote the frequency of agent A (resp. B) who played H
in θ, and by ỹiHH (θ) (resp. x̃

i
HH (θ)) the expected payoffs of agent i ∈ A (resp. i ∈ B) at

the information set HH, given z (θ). Similar conditions hold for ΓDG.
From now on, by slightly abusing notation, (HH, yHH , xHH) denotes a terminal node

in which both agents have chosen H, agent A makes a demand yHH and agent B makes a
demand xHH . This applies for the other terminal nodes, too.

The following results will be used afterwards.

Lemma 4 Let xHH,1 < xHH,2 < ... < xHH,k be the demands made by B at HH for some
state θ. Then the set of best behavioral demands following HH for agents A is a subset of{
VH − xHH,l

}k
l=1

.

Proof. See Lemma A.1 in Ellingsen and Robles (2002).

Lemma 5 Consider ΓUG and let Ω be a limit set of (Θ,P ) . If (HL, yHL, xHL) ∈ ρ (Ω)
[resp. (LH, yLH , xLH) ∈ ρ (Ω)] then:

(i) xHL = VM − yHL [resp. yLH = VM − xLH ];
(ii) (HL, yHL, xHL) [resp. (LH, yLH , xLH)] is the only outcome which supports invest-

ment profile HL [resp. LH] in ρ (Ω) .

Proof. We only consider profile HL. The same holds true for LH.
Point (i). Let θ be a state such that: (a) θ ∈ Ω; (b) (HL, yHL, xHL) belongs to the

support of z (θ) and xHL 6= VM − yHL. Let us suppose that only B agents update their
characteristics: they will all accept yHL. For whatever belief on opponent’s behavior this
action is always a best reply. It is then impossible to return to the original state θ. This
contradicts the assumption that θ ∈ Ω.

Point (ii). First we show that Ω cannot include a state θ in which multiple demands are
made at HL. Subsequently, we show that Ω cannot include two different states supporting
different outcomes following HL.

Let θ be a state such that: (a) θ ∈ Ω and (b) multiple demands are made by agents A
at HL. We already know from point (i) that at θ all agents B accept all the demands made
by their opponents. Suppose only agents A revise their characteristics; then any agent A
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will make the maximum demand observed at HL. Hence, it is impossible to return to the
original state θ. This contradicts the assumption that θ ∈ Ω.

Now let θ and θ′ be two states such that: (a) both states belong to Ω and (b) HL is
observed. A single demand is made by A but yHL (θ′) > yHL (θ). Since it is impossible to
return to θ then assumption θ ∈ Ω is contradicted. �

Lemma 6 Let Ω be a limit set of (Θ,P ) . If {(HH, y, x) ; (HH, y′, x′)} ∈ ρ (Ω) and either
x 6= x′or y 6= y, then Ω is a singleton and a self-confirming equilibrium of Γ.

Proof. Consider a set Ω and let θ ∈ Ω be a state in which at least two demands have
been observed in one population (i.e. B). Suppose that at least one of these demands (x∗) is
not a best reply to z (θ). Suppose also that, after observing z (θ) , all agents who demanded
x∗ revise; as a consequence x∗ disappears. A new state θ ∈ Ω is then reached in which
profile HH is still observed. Suppose now that all A update; then, by Lemma 4, nobody will
make demand {VH − x∗}. These two demands have thus disappeared and it is impossible
to return to the original state θ. This contradicts the assumption that θ ∈ Ω. Therefore, if
multiple demands are made, each must be a best reply to z (θ) .

Now consider an agent belonging to population A who has played H in θ and suppose
this agent has the incentive to change her investment should she know z (θ). When this
agent updates, the distribution of the demands made by population A in subgame HH
differs from the original. This implies that at least one demand made by some opponents
(i.e. B) is no longer a best reply when B updates. By applying the argument made in the
paragraph above, we conclude that at least one pair of demands has disappeared and cannot
reappear. This contradicts the assumption that θ ∈ Ω .

By Lemma 5 since the set ρ (Ω) can include at most one outcome following the profile
HL or LH then state θ must be a self-confirming equilibrium. �

Proof of Proposition 1. Assume that Ω is not a singleton. We know from Lemmas 5
and 6 that, if a bargaining subgame is reached, only one of its terminal nodes is observed.
First we show that ρ (Ω) must contain one outcome for every bargaining subgame. Of course
ρ (Ω) must differ from {(HH, yHH , VH − yHH) , (LL, 0, 0)} . Suppose ρ (Ω) includes the fol-
lowing outcomes: (a) (HH, yHH , xHH) with yHH + xHH = VH ; (b) (HL, yHL, xHL) with
yHL + xHL = VM . In Ω a state θ in which both outcomes are observed must exist and it
cannot be an equilibrium. We show that from θ it is possible to reach either the basin of
attraction of one equilibrium or a state in which all bargaining nodes are observed. Suppose
some agents B update. If xHH − c > xHL then they will choose H so that, at the new state
θ′, the frequency of this action in population B will increase. Suppose now that at least one
agent A has beliefs ỹiLH leading her not to prefer H to L when all agents B play H; then,
starting from θ, it is possible to reach a state in which all investment profiles are realized.
To see this suppose yHH − ỹi

∗
LH − c < 0 but yHL − c > 0. Let pi

∗
B be:

pi
∗
B =

⌊
c− yHL(

yHH − ỹi
∗
LH − c

)⌉ .
Consider now the case in which pi

∗
B agents B have revised at θ and only agent i∗ ∈ A observes

the distribution of outcomes z(θ′). Since the specific agent i∗ ∈ A will play L, then all
investment profiles are realized afterwards. Therefore this contradicts the assumption that
ρ (Ω) = {(HH, yHH , xHH) ; (HL, yHL, xHL)}. Otherwise, by letting all agents B update
from θ it is likely to reach the basin of attraction of one equilibrium of the game supporting
the outcome (HH, yHH , xHH). If xHH − c ≤ xHL we reach the same conclusion by using
a similar argument. It is simple to see that the same conclusion holds when ρ (Ω) includes
any two different outcomes. Therefore if Ω is a not a singleton, all the bargaining nodes are
visited meaning that ρ (Ω) includes four outcomes each of which is a subgame equilibrium.

We now have to show that the payoffs must satisfy a well-defined set of constraints.
Notice that a state θ ∈ Ω in which all the investment profiles are observed must exist.
Moreover when we allow all agents to update, all agents A will choose H:

pB (θ) (yHH − yLH − c) + (1− pB (θ)) (yHL − c) > 0,
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and all agents B will choose H:

pA (θ) (xHH − xHL − c) + (1− pA (θ)) (xLH − c) > 0.

We can rewrite these conditions as

pB (θ)A1 + (1− pB (θ))A2 > 0

pA (θ)B1 + (1− pA (θ))B2 > 0.

First of all notice that all Ai and Bi can not be null since this would imply that θ is an
equilibrium and Ω a singleton. Furthermore, when - for some populations - both expressions
are either not negative or not positive, and at least one is not null, then the process can
reach a new state from θ which is a self-confirming equilibrium. Consider the case in which
both expressions are null for population A only. When B1 is strictly positive and B2 is
strictly negative all Bs prefer H if pA (θ) > p∗A where:

p∗A =
c− xLH

(xHH − xHL)− xLH
.

Otherwise when B1 is strictly negative and B2 is strictly positive all Bs prefer H if pA (θ) <
p∗A. In both cases, when all B agents update they will choose H. Hence a state which is an
equilibrium of the game can be reached from θ. When both expressions B1 and B2 are null,
we get a similar conclusion where the threshold value of pB (θ) is:

p∗B =
c− yHL

(yHH − yLH)− yHL
.

We are left with the case in which the product of the corresponding two expressions is
strictly negative for each population. However, when A1 and B1 have the same sign a
similar argument allows us to reach the same conclusion. Indeed, suppose that both A1 and
B1 are strictly positive. This implies that all Bs prefer H if pA (θ) > p∗A and all As prefer H
if pB (θ) > p∗B . Hence, for whatever values of pA (θ) and pB (θ) , starting from θ the process
can reach an equilibrium when one population revises at a time. The remaining possible
case occurs when B1B2 < 0 and A1A2 < 0 but A1B1 < 0. �

Proof of Proposition 2. It follows by applying the same arguments used in the Proof
of Proposition 1 and taking into account that yHL = xLH = VM−δ holds at any limit set. In
this case the conditions B1B2 < 0, A1A2 < 0 and A1B1 < 0 can not be simultaneously met
because both A2 and B2 are strictly positive. Consequently all limit sets are singleton. In
addition an equilibrium of the game can only support outcome (LL, 0, 0) if it also supports
at least one outcome following each investment profile. �

Before giving the proof we briefly review the concept of mutation connected set.

Definition 1 Consider a union of limit sets X. This set is mutation connected if for all
pairs Ω, Ω′ ∈ X exists a sequence of limit sets (Ω1 = Ω,Ω2, ..., Ωn = Ω′) such that (a) for
any k ∈ {1, ..., n− 1} , Ωk ∈ X and (b) every transition from Ωk to Ωk+1 needs no more
than one mutation.

Consider a limit set Ω which does not support all information sets and suppose a single
mutation occurs. If this mutation is a drift then the process reaches a new limit set Ω′ which
differs from Ω only for some belief and/or action at some unreached information sets. Let
Σ (Ω) be the set of equilibria which only differ from Ω for some beliefs (and/or actions)
held in some unreached information set. Sure enough the set Σ (Ω) is mutation connected.
When Ω is singleton, namely Ω = {θ}, we use Σ (θ) instead of Σ (Ω) .

Proof of Lemma 1.We give the detailed proof for ΓUG; we then suggest how to adapt it
to ΓDG.When multiple demands are observed at HH, we denote by

{
xHH,l

}k
l=1

the ordered
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sets of demands made by B and by
{
yHH,l

}k
l=1

the ordered sets of demands made by A.

By iterative applications of Lemma (4) we get
{
yHH,l

}k
l=1

=
{
VH − xHH,l

}1
l=k

. Since θ is
an equilibrium then the expected payoff at HH are:

ỹiHH (θ) = yHH,1 = VH − xHH,k; ∀i ∈ A

x̃iHH (θ) = xHH,1 = VH − yHH,k; ∀i ∈ B

where yHH,1 = yHH,kη
B
1 and xHH,1 = xHH,kη

A
1 and ηB1 (resp. ηA1 ) is the fraction of B

(resp. A) who claim xHH,1(resp. yHH,1) under θ.
I) Consider an equilibrium θ in which only the investment profile HH is observed and

multiple demands are made. Let a single agent B switch from xHH,k to xHH,1. When agents
A update they will make a demand yHH,k = VH−xHH,1. Hence, we reach a new equilibrium
θ′ in which only HH is observed and only the two demands

(
VH − xHH,1, xHH,1

)
occur.

II) Suppose now that two profiles are observed at the equilibrium θ. We give the proof
only when HH and HL are observed. The other remaining cases are similar.

II.1) Consider the case in which multiple demands are made following HH. Since θ is
an equilibrium, the following conditions must always be met:

pB (θ)
(
yHH,1 − ỹiLH (θ)− c

)
+ (1− pB (θ)) (yHL − c) ≥ 0, ∀i ∈ A(

VH − yHH,k
)
− c = VM − yHL, ∀i ∈ B.

When yHH,1 − c > δ, by a sequence of single mutations the process can get from θ to
θ1 ∈ Σ (θ) where yHH,1 − ỹiLH (θ1) − c > 0 for all As. At θ1 let a single agent A mutate
from yHH,k to yHH,1 and let all agents B revise; as a consequence they will all choose H
and ask

(
VH − yHH,1

)
. Therefore, the process reaches a new equilibrium θ′ where ρ (θ′) ={

HH, yHH,1, VH − yHH,1
}
. When instead yHH,1 − c ≤ δ, the inequality yHL − c ≥ 0 must

hold for all As. Suppose a single A mutates from yHH,k to y where y > yHH,k and let all
agents B update: as a consequence they all will choose L. Therefore, by a sequence of single
mutations the process reaches a new equilibrium θ′ where ρ (θ′) = {HL, yHL, VM − yHL}.

II.2) Now consider the case in which a single demand is made following HH. Suppose
yHL−c ≥ 0, the process can reach a new equilibrium θ′ where ρ (θ′) = {HL, yHL, VM − yHL}
when a single agent A mutates from yHH,1 to y where y > yHH,1 and all Bs revise. Sup-
pose instead yHL − c < 0, then: (a) Point (c) of Assumption 1 implies that the subgame
(HL, VM − δ) at θ is not reached; (b) yHH,1 − ỹiLH (θ1) − c ≥ 0 for every A. By drifting,
all agents B are led to accept the maximum feasible demand made by A in HL so that a
new equilibrium θ1 is reached. Sure enough, θ1 ∈ Σ (θ). Suppose now that a single agent A
changes her demand from yHL to VM − δ. When all agents A update, they observe that all
Bs have accepted the demand VM−δ; therefore, in HL their best response is yHL = VM−δ.
When all agents B update, they will choose H being xHL = δ. Hence, the process reaches
equilibrium θ′ where ρ (θ′) =

{
HH, yHH,1, VH − yH,1

}
.

III) Suppose now that all investment profiles are observed at equilibrium θ. Since θ is
an equilibrium the following conditions must be satisfied:

pB (θ)
(
yHH,1 − yLH − c

)
+ (1− pB (θ)) (yHL − c) = 0

pA (θ)
(
xHH,1 − xHL − c

)
+ (1− pA (θ)) (xLH − c) = 0.

where yHH,1 = VH − xHH,k, yHL = VM − xHL and yLH = VM − xLH . We may rewrite
these conditions as

pB (θ)A
′
1 + (1− pB (θ))A′2 = 0

pA (θ)B
′
1 + (1− pA (θ))B′2 = 0.

We argue that when the second expression (A′2 or B′2 ) is not positive for at least one
population then the process, through a sequence of single-mutations, can reach one equi-
librium supporting a smaller number of investment profiles. In order to see this suppose,
for instance, that A′2 < 0; in this case Point (c) of Assumption 1 assures that the subgame
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(HL, VM − δ) is not reached at θ. A drift can lead all agents B to accept the opponent’s
maximum feasible demand at HL. A new θ1 ∈ Σ (θ) is then reached. Suppose now that at
this new equilibrium a single agent A mutates her demand from yHL to VM − δ. When all
agents A revise, they will play H and will make a demand yHL = VM −δ. Now let all agents
B update. Since each agent B knows that xHL = δ and that all As have played H, then
her best reply depends on the sign of

(
xHH,1 − δ − c

)
. However, it is simple to see that for

any value of
(
xHH,1 − δ − c

)
, the process can reach a new equilibrium in which a smaller

number of investment profiles is realized. If, at this new equilibrium, two investment profiles
are realized, then the process can reach an equilibrium which supports a single outcome by
a further sequence of single transition (see point II.2 above). When both A′2 and B

′
2 are pos-

itive, a single mutation occurring in population A is enough to move the process from θ to
a new equilibrium θ′ where ρ (θ′) = {LH, yLH , VM − yLH} . The mutation needed depends
on how many demands are observed at HH. In particular: (i) when multiple demands are
made at HH, one mutation from yHH,k to yHH,1 is enough; (ii) when only one demand is
made at HH, one mutation from H to L is enough.

IV) The remaining case occurs when Ω is not a singleton. Under the Point (c) of As-
sumption 1 at least one of the following two subgames (LH, VM − δ) and (HL, VM − δ) is
never reached. The same argument used above implies that the population can get from Ω
to θ′ through a sequence of single-mutations.

Now consider game ΓDG. The above-mentioned arguments continue to work with minor
modifications. In particular since yHL = xLH = VM − δ then: (a) in case II) the set of
investments profiles supported by an equilibrium can either be {HH,HL} or {HH,LH};
(b) in case III) both A′2 and B

′
2 are positive; (c) case IV) does not arise. �

Proof of Lemma 2. Since in ΓDG the set ΣL is empty, the first point of the lemma
holds for ΓUG only.

(a) Let θ be an equilibrium belonging to ΣL. From θ, by a sequence of single mutations,
the process reaches a new equilibrium θ∗ ∈ Σ (θ) in which for every agent A and B it is true
that: (i) ỹiHH (θ

∗) = VH − xHH and VH − xHH > c+ δ; (ii) at the subgame (LH, VM − δ)
each agent A accepts (i.e. she chooses δ); (iii) x̃iHL (θ

∗) = δ and x̃iHH (θ
∗) = xHH and

xHH − δ − c ≥ 0. Suppose now an agent B mutates by playing H and makes a demand
VM − δ in LH. When agents B update, they will choose H since all agents A have accepted
VM − δ. When agents A revise they will play H since VH −xHH > c+ δ. Hence, the process
reaches a new equilibrium θ′ ∈ ΣH where ρ (θ′) = {HH, (VH − xHH) , xHH} .

(b) Consider ΓUG and let θ be an equilibrium belonging to ΣHL. At θ the pair of
demands (yHL, VM − yHL) is observed. Suppose that yHL < VM −δ. By drifting, all agents
B are led to accept the maximum feasible demand made by A in HL and deem that all
A make demand larger than VH − c + δ at HH. A new equilibrium θ1 ∈ Σ (θ) is thus
reached. Suppose now a single agent A changes her demand from yHL to VM − δ. When
agents A update, they observe that all Bs have accepted the demand VM − δ; therefore,
in HL their best response is yHL = VM − δ. When agents B update they continue to play
L since x̃iHH (θ1) < c + δ holds for all Bs. Hence, the process reaches a new equilibrium
θ′ ∈ ΣHL where ρ (θ′) = {HL, (VM − δ) , δ}. From θ′, by a sequence of single mutations,
the process can reach an equilibrium θ∗ ∈ Σ (θ′) in which all agents A have beliefs: (i)
ỹiHH (θ

∗) = yHH ; (ii) ỹiLH (θ
∗) = δ; (iii) δ+ c < yHH < VH − c− δ. Suppose now, an agent

B mutates by playing H and making a demand VH − yHH at HH. Let all agents B revise;
they will choose H and ask VH − yHH . When agents A update, the process reaches a new
equilibrium θ′ ∈ ΣH in which the pair of demands is (yHH , VM − yHH). Of course only the
last sequence of mutations is required when yHL = VM − δ.

The case in which θ is an equilibrium belonging to ΣLH is similar. Moreover the same
argument holds true also for ΓDG with the caveat that any equilibrium belonging to ΣHL
now supports the outcome (VM − δ, δ) only. �

Proof of Lemma 3. Let θ ∈ ΣL. From θ, by a sequence of single mutations, the
process can reach a new equilibrium θ∗ ∈ Σ (θ) in which: at the subgame (LH, VM − yLH)
each agent A accepts (i.e. she chooses yLH ); for ever A, ỹiHH (θ

∗) − yLH − c < 0 but
VM − yLH − c > 0 for ever B. Suppose an agent B mutates by playing H and makes a
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demand VM − yLH in LH. When all agents B update, they will choose H since population
A has accepted demand VM −yLH . When agents A revise they will continue to play L since
ỹiHH (θ

∗)− yLH − c < 0. Hence the process reaches a new equilibrium θ′ ∈ ΣLH in which
the pair of demands is (yLH , VM − yLH).The case in which θ is an equilibrium belonging
to ΣHL is similar. �

Lemma 1 and Lemma 2 together assert that, in both games, the adaptive process can
lead to an equilibrium θ ∈ ΣH by a sequence of single mutations, starting from any limit
set Ω /∈ ΣH . Therefore, according to Proposition 1 of Noldeke and Samuelson (1993), if ΣS
is a strictly subset of Σ then ΣS ⊆ ΣH .

Both Proposition 3 and Proposition 4 in the main text stem from a direct application of
Theorem 2 of Ellison (2000) which we now briefly recall. Let Σ be a union of limit sets; these
sets can be either mutation connected or not. The Radius R (Σ) is the minimum number
of mutations needed to escape from the basin of attraction of Σ and enter into another one
with positive probability. Consider an arbitrary state θ /∈ Σ and let (m1,m2, ..,mT ) be a
path from θ to Σ where Ω1, Ω2, ..Ωr is the sequence of limit sets through which the path
passes consecutively. Obviously Ωi /∈ Σ for i < r and Ωr ⊂ Σ. Furthermore, notice that a
limit set can appear several times in this sequence but not consecutively. The modified cost
of this path is defined by:

c∗ (m1, ...,mT ) = c (m1, ..,mT )−
r−1∑
i=2

R (Ωi)

where c (m1, ..,mT ) is the total number of mutations over the path (θ,m1,m2, ..,mT ). Let
c∗ (θ,Σ) be the minimal modified cost among all paths from θ to Σ. The Modified Coradius
of the basin of attraction of Σ is then:

CR∗ (Σ) = max
θ/∈Σ

c∗ (θ,Σ) .

Theorem 2 of Ellison (2000) shows that every union of limit sets Σ with R (Σ) > CR∗ (Σ)
encompasses all the stochastically stable states. In order to compute the minimum number
of mutations needed to escape from an equilibrium belonging to ΣH , both Propositions 3
and 4 make use of the result stated in Lemma 7 below. In what follows we write θx as
shorthand for an equilibrium belonging to ΣH with (VH − x, x) as the distributional rule.

Lemma 7 For δ suffi ciently small, the minimum number of mutations needed to get from
Σ (θx) to an equilibrium with the same investment profile but diff erent demands is:

r+B (x) =
⌊
N
(

δ
VH−x

)⌉
if x < VH

2

r−A (x) =
⌊
N
(
δ
x

)⌉
if x > VH

2

where r+B (x) is the number of mutations needed for the transition from θx to θx+δ whereas
r−A (x) is the number of mutations needed for the transition from θx to θx−δ. Moreover,
r+B (x) is a strictly increasing function of x and r

−
A (x) is a strictly decreasing function of

x.

Proof: By a direct application of Young (1993). �

Before giving the proof of Proposition 3 two further preliminary results are needed.
These are provided by Lemma 8 and Lemma 9 below. The first allows us to argue that
a norm of cooperation supporting the effi cient investment profile evolves in the long run
when condition (5) holds. Given this, the second result allows us to detect which norm of
distribution arises when the stochastically stable outcome support the effi cient investment
profile.



24

Lemma 8 Consider ΓUG. Then:
(a) an equilibrium θ′ ∈ ΣL can be reached from θ ∈ ΣUCH by a sequence of single-

mutation transitions;
(b) under condition (5) , CR∗

(
ΣUIH

)
= 1;

(c) under condition (5) , R
(
ΣUIH

)
> 1 and, consequently, ΣS ⊆ ΣUIH .

Proof. Point (a). Consider some θ ∈ ΣUCH and let {VH − x, x} be the observed pair of
demands. We show that starting from ΣUCH it may be possible to enter into the basin of
attraction of an equilibrium θ′ ∈ ΣL through a sequence of single-mutation transitions. In
order to describe this transition four cases have to be taken into account: (1) x > xUA; (2)
x = xUA; (3) x < xUB ; (4) x = xUB . We give the proof for cases (1) and (2) only; the remaining
cases are symmetric.

Case (1): let x > xUA. At θ the following inequality must hold:

Population A : Population B :

(VH − x− c)− ỹiLH (θ) ≥ 0 x− c− x̃iHL (θ) ≥ 0

VH − x− c < VM − δ x− c > VM − δ.

From θ the process can reach a new equilibrium θ1 ∈ Σ (θ) by a sequence of single mutations
in which the following is true for every agent: (i) x̃iLH (θ1) = δ and (ii) ỹiHL (θ1) − c < 0.
Suppose an agent A mutates by playing L and accepting her opponent’s demand at LH.
Let all agents A update. Since the mutant receives VM −δ, all As imitate and play L. When
agents B revise they will play L. The process then reaches a new equilibrium θ′ ∈ ΣL.

Case (2): let x = xUA. At θ, for any agent A it must be true that VH −xUA − c = VM − δ.
From θ the process can reach a new equilibrium θ1 ∈ Σ (θ) by a sequence of single mutations
in which the following is true for every agent: (i) x̃iLH (θ1) = xLH ; (ii) xLH − c < 0; (iii)
ỹiLH (θ1) = VM − δ and (iv) ỹiHL (θ1)− c < 0. Suppose an agent B mutates by demanding
x′ > xUA at HH. When agents A update they will all choose L since, for whatever best
action at HH, the expected payoff by playing H is now smaller than VM − δ. When all
agents B revise they will play L . The process then reaches a new equilibrium θ′ ∈ ΣL.

Point (b). Under condition (5) ΣUIH is well defined. By a direct application of previous
point (a), along with point (a) of Lemma 2, it follows that from θ ∈ ΣUCH it is possible to

reach θ̂ ∈ ΣUIH through a sequence of single mutations. Therefore c∗
(
θ,ΣUIH

)
= 1 for any

θ ∈ ΣUCH .
Besides, from Lemmas 1 and 2, we can deduce that for any Ω /∈ ΣH the minimal

modified cost for all paths from Ω to ΣIH , is equal to one, whatever the number of limit
sets the path goes through may be. Therefore, by putting together these results, we get:

CR∗
(
ΣUIH

)
= max
Ω/∈ΣU

IH

c∗
(
Ω,ΣUIH

)
= 1.

Point (c). We show that, under condition (5), more than one mutation is needed to leave
the basin of attraction of ΣUIH even when the worst-case equilibrium scenario is considered
as starting state.

I) First we show that a single mutation from H to L does not enable the process to leave
the set ΣUIH even if at θx ∈ ΣUIH each agent expects to receive: (i) the maximum payoff
when she plays L but the opponent still plays H; (ii) the minimum payoff when she plays
H but the opponent shifts to L.

Let us consider this scenario and suppose that an agent B had switched from H to L
and all agents A revised. This updating does not cause agents A to play L if

N − 1
N

[(VH − x− c)− (VM − δ)] +
1

N
(δ − c) > 0

which can be rewritten as

N − 1
N

(VH − x)− c >
N − 1
N

VM − δ. (13)
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Since x ∈
[
x̂UB , x̂

U
A

]
, condition (13) holds by definition. Therefore no agent A will change

her action after the revision. Similar argument can be applied to population B. Since as soon
as the mutant revises the process returns to ΣUIH , then a single mutation from H to L is
not enough to leave the basin of attraction of ΣUIH .

II) We now show that a single mutation from x to x′ (resp. from VH −x to y′) does not
enable the process to run away from the basin of attraction of ΣUIH even if at θx ∈ ΣUIH
each agent expects to get the maximum payoff when she plays L and the opponent chooses
H. Let one agent B only change her demand to x′. Obviously, no agents B imitate the
mutant when revising. When As update we know from Lemma 4 that their best response
is either VH − x or VH − x′. If x′ > x, agent A expects to receive (VH − x) N−1N

− c when
she demands VH −x and VH −x′− c when she demands VH −x′. Under Assumption 2, the
former payoff is greater than the latter. Hence agents A will not change their demands when
updating. Moreover, since (VH − x) N−1N

− c ≥ VM − δ, then updating will not cause agents
A to play action L. If x′ < x, agent A expects to get VH − x− c when she demands VH − x
and 1

N
(VH − x′) − c when she demands VH − x′. Under Assumption 2, the former payoff

is greater than the latter. Hence, agents A will not change their demands when updating.
Moreover, since VH − x− c > VM − δ, then updating will not cause agents A to play action
L. The case in which an agent A mutates from VH − x to y′ is symmetric. Since as soon as
the mutant revises the process returns to ΣUIH , then a single mutation from x to x′(resp.
from VH − x to y′) is not enough to escape from the basin of attraction of ΣUIH .

Points I) and II) taken together say that more than one mutation is needed in order to
escape from the basin of attraction of ΣUIH , i.e. R

(
ΣUIH

)
> 1. Given that CR∗

(
ΣUIH

)
= 1,

by Theorem 2 of Ellison (2000) we get ΣS ⊆ ΣUIH . �

We have now to derive the norms of distribution supporting ΣUIH . In order to do this we
have: (i) to compute the radius of Σ (θx), i.e. the minimum number of mutations required to
destabilize the outcome supported by θx, ∀θx ∈ ΣUIH ; (ii) to find an equilibrium belonging
to ΣUIH such that R (Σ (θx)) > CR∗ (Σ (θx)). Lemma 7 provides the minimum number of
mutations required to make a transition from θx ∈ ΣUIH to another equilibrium supporting
the same investment profile HH, but a different distributional rule. Lemma 9 below com-
pletes all the required details by giving the minimum number of mutations required to make
a transition from θx ∈ ΣUIH to θ′ /∈ ΣUIH .

Lemma 9 Consider ΓUG. The minimum number of mutations required to get from θx ∈
ΣUIH to an equilibrium which supports a diff erent investment profile is:

rA (x) =
⌊
N
(
1− VM−δ+c

x

)⌉
if x < VH

2

rB (x) =
⌊
N
(
1− VM−δ+c

VH−x

)⌉
if x > VH

2

Proof. Consider θx ∈ ΣUIH . Suppose p1 agents B mutate by playing L and p2 agents B
mutate by claiming x′ > xUA. For a given pair (p1, p2), agents A have the largest incentive
to change into L if their beliefs are such that: (i) they expect to get the maximum payoff
in an LH match; (ii) they expect to obtain the minimum payoff in an HL match. Consider
equilibrium θx ∈ ΣUIH in which the following holds for all agents: (i); ỹiLH = VM − δ and
ỹiHL = δ; (ii) x̃iLH = δ and in the subgame {HL, δ} all agents B accept. At θx, when some
agents B mutate and these mutations induce all agents A to play L, the process enters into
the basin of attraction of equilibrium θ′ ∈ ΣL with positive probability. Sure enough, after
updating, all agents A decide to play L if

N − p1
N

(VM − δ) > µH

(
θ̃x, p1, p2

)
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where LHS is the expected payoff by playing L and RHS is the expected payoff by playing H.

However, µH
(
θ̃x, p1, p2

)
depends on what the best demand in a match HH is. In particular

µH (.) =


N−p2−p1

N
(VH − x) + p1

N
δ − c if N−p2−p1

N−p1
(VH − x) ≥ (VH − x′)

N−p1
N

(VH − x′) + p1
N
δ − c if N−p2−p1

N−p1
(VH − x) < (VH − x′)

The minimum number of mutations in population B comes from the comparison between
the solutions of two constraint minimization problems (M1 and M2). In both problems
the objective function is p1 + p2. In the first (resp. second) problem we contemplate the
case in which the best action in HH is VH − x′ (resp. VH − x). Both problems require

p1 = 0 as a solution. Moreover pM1
2 = N

(
x′−x
VH−x

)
is the solution to the first problem and

pM2
2 = N

(
1− VM−δ+c

VH−x

)
is the solution to the second. Since pM1

2 > pM2
2 , the minimum

number of mutations in population B involves that: (i) mutating agents only change their
demands in the HH profile; (ii) these mutations cause agent A to shift to action L when
the best action in HH continues to be VH − x. Hence:

rB (x) =

⌊
N

(
1− VM − δ + c

VH − x

)⌉
(14)

and
rB = min

x
rB (x) = rB (x̂A) .

Suppose now some agents A mutate. As before, two kinds of mutations must be con-
sidered: p1 agents A mutate by playing L and p2 agents A mutate by demanding VH − x′
where x′ < xUB . In this case we look for an equilibrium θx ∈ ΣUIH in which for all agents: (i)
x̃iLH = δ and x̃iHL = VM − δ; (ii) ỹiHL = δ and in the subgame {LH, δ} all agents A accept.
It is easy to see that if some mutations of agents A occurs at θx and these mutations induce
all agents B to play L, then with positive probability the process enters into the basin of
attraction of equilibrium θ′ ∈ ΣL. After updating all agents B decide to play L if

N − p1
N

(VM − δ) > µH

(
θ̂x, p1, p2

)
where

µH (.) =


N−p2−p1

N
x+ p1

N
δ − c if N−p2−p1

N−p1
x ≥ x′

N−p1
N

x′ + p1
N
δ − c if N−p2−p1

N−p1
x < x′.

Proceeding as before, the minimum number of mutations in population A is

rA (x) =

⌊
N

(
1− VM − δ + c

x

)⌉
(15)

and
rA = min

x
rA (x) = rA (x̂B)

By comparing (14) and (15) we obtain rB (x) < rA (x) if x >
VH
2
. �

Proof of Proposition 3. Point (a). Consider ΓUG. From Point (c) of Lemma 8 we
know that ΣS ⊆ ΣUIH when condition 5 holds. Therefore, we are only left with the task of
deriving the distributional norm supporting the equilibria belonging to ΣUIH .

To detect R (Σ (θx)) for any θx ∈ ΣUIH we compare the results coming from Lemma 7
with those coming from Lemma 9. Notice that r+B (x) ≤ rB (x) if VM − δ ≤ VH − (x+ δ)− c
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and r−A (x) ≤ rA (x) if VM − δ ≤ x − δ − c; since these conditions are always satisfied for
any x ∈

[
x̂UB , x̂

U
A

]
we conclude that

R (Σ (θx)) =


r+B (x) if x < VH

2

r−A (x) if x > VH
2
.

Let x ≡ VH
2
and consider the set of equilibria Σ (θx). Let θx ∈ ΣUIH be an equilibrium.

When x < x, then the minimal modified cost from θx to Σ (θx) is associated with the path
θx → θx+δ → ...→ θx−δ → Σ (θx) . Conversely, when x > x, the minimal modified costs is
associated with path θx → θx−δ → ...→ θx+δ → Σ (θx) . Hence

c∗ (θx;Σ (θx)) = r+B (x) if x < VH
2

c∗ (θx;Σ (θx)) = r−A (x) if x > VH
2
.

By the monotonicity of r+B (x) and r
−
A (x) we obtain

CR∗ (Σ (θx)) = max
(
r+B (x− δ) ; r

−
A (x+ δ)

)
.

Since
R (Σ (θx)) = r+B (x) = r−A (x) > CR∗ (Σ (θx))

it follows from Ellison (2000) that the only stochastically stable outcome is
{
HH, VH

2
, VH
2

}
.

Point (b). Recall that when condition (5) does not hold then ΣH = ΣUCH ; hence one
mutation is enough to exit from the basin of attraction of ΣH (Point (a) of Lemma 8). In
what follow we shall apply Theorem 3 of Ellison (2000). It is worth noticing that R (Ω) = 1
for any limit set Ω. Indeed let Ω′ be a limit set; then it is always possible to reach Ω∗ ∈ Σ (Ω)
with one mutation by letting one agent to drift at some unreached information set. Hence,
if for limit sets Ω and Ω′ we have CR∗ (Ω′) = 1, then µ∗ (Ω) > 0 implies that µ∗ (Ω

′) > 0.
Concerning the minimal modified cost among all paths from a generic limit Ω set we already
know that:

(i) if ρ (Ω) is not a singleton, at least one Ω′ exists with ρ (Ω′) singleton, such that
CR∗ (Ω′) = 1 (Lemma 1);

(ii) if Ω ∈ ΣL, at least two limit sets Ω′ and Ω∗ exist, with different distributional rules
but both belonging to either ΣH or (ΣHL ∪ΣLH) and such that CR∗ (Ω′) = CR∗ (Ω∗) = 1
(Point (a) of Lemma 2 and Lemma 3);

(iii) if Ω ∈ ΣHL (resp. ΣLH ), at least two limit set Ω′ and Ω∗ exist, with different
distributional rules but both belonging to ΣH and such that CR∗ (Ω′) = CR∗ (Ω∗) = 1
(Point (b) of Lemma 2);

(iv) if Ω ∈ ΣH , at least one limit set Ω′ ∈ ΣL exists such that CR∗ (Ω′) = 1 (Point (a)
of Lemma 8).

Let Ω be a limit set such that µ∗ (Ω) > 0. By collecting previous information and using
Theorem 3 of Ellison (2000) we conclude that: (i) if ρ (Ω) is not a singleton, then µ∗ (Ω

′) > 0
where ρ (Ω′) is a singleton; (ii) if Ω ∈ ΣL, then µ∗ (Ω′) > 0 and µ∗ (Ω

∗) > 0 where Ω′ and
Ω∗ both belong to either ΣH or ΣHL∪ΣLH ; (iii) if Ω ∈ ΣHL (resp. ΣLH ) then µ∗ (Ω′) > 0
and µ∗ (Ω

∗) > 0 where both Ω′ and Ω∗ belong to ΣH ; (iv) if Ω ∈ ΣH then µ∗ (Ω
′) > 0

where Ω′ ∈ ΣL. Hence in this case an investment norm and a bargaining norm cannot evolve
in the long run. �

We now turn our attention to game ΓDG and to the proof of Proposition 4. As for game
ΓUG, also in this case two preliminary results are needed. In Lemma 10 below we show that
ΣS ⊆ ΣDIH .

Lemma 10 Consider ΓDG. Then:
(a) CR∗

(
ΣDIH

)
= 1;

(b) R
(
ΣDIH

)
> 1 and, consequently, ΣS ⊆ ΣDIH .
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Proof. Point (a). Firstly notice that the set ΣDIH is always well-defined since we can
always find a sequence of {δi} converging to zero compatible with condition (10). Indeed it
is enough to consider δi < δIH where 0 < δIH ≤ VH−2c

4
. Secondly observe that ΣDCH only

supports two distributional rules, namely, xDB and xDA . Consider an equilibrium θ ∈ ΣDCH
with xDB as distributional rule and suppose a single mutation from VH − xDB to VH − x′ >
VH −xDB occurs in population A. Suppose all Bs revise. Notice that whatever the best reply
at HH is, the expected payoff by playing H is now smaller than δ. Hence updating will now
cause agents B to change investment action and to play L. Therefore when θx ∈ ΣDCH one
mutation is enough to enter into the basin of attraction of θ′ ∈ (ΣHL ∪ΣLH). A similar
conclusion holds also when we consider xDA as distributional rule. Hence, from Lemma 2
point (b) we can deduce that the minimal modified cost across all paths from θx ∈ ΣDCH to
ΣDIH is equal to one, whatever the number of limit sets the path goes through.

In addition, from Lemma 1 and from Point (b) of Lemma 2, we can deduce that, for any
Ω /∈ ΣH , the minimal modified cost for all paths from θ to ΣDIH is equal to one, whatever
the number of limit sets the path goes through may be. Therefore

CR∗
(
ΣDIH

)
= max
Ω/∈ΣU

IH

c∗
(
Ω,ΣDIH

)
= 1.

Point (b). Let θx ∈ ΣDIH and consider the worst-case equilibrium scenario in which
ỹiLH (θx) = VH − x − c and x̃iHL (θx) = x − c. Suppose a single mutation from H to L
occurs in population B. This implies that profile HL is reached in which agents A behave as
dictators and claim VM − δ. When agents B revise, their updated beliefs become x̃iHL = δ;
as a consequence they choose H. The process then returns to an equilibrium θ′ ∈ Σ (θ). The
same occurs also when a single mutation from H to L occurs in population A. Suppose now a
single agent B mutates her demand from x to x′. Obviously no agent B imitates the mutant
when updating. When agents A revise, we know from Lemma 4 that their best response
is either VH − x or VH − x′. When x′ > x, agent A expects to receive (VH − x) N−1N

− c
by claiming VH − x and expect to receive VH − x′ − c by asking VH − x′. When instead
x′ < x, agent A expects to receive VH − x − c by claiming VH − x and expect to receive
(VH − x′) 1

N
− c by asking VH − x′. It is simple to see that, whatever the relation between

x and x′ is, Assumption 2 implies that the best response is always VH −x. Hence, updating
will not cause agents A to change both claim and investment action. This result allow us
to assert that R

(
ΣDIH

)
> 1. Therefore, given that CR∗

(
ΣDIH

)
= 1, by using Theorem 2 of

Ellison (2000) we get ΣS ⊆ ΣDIH . �

We have now to derive the norms of distribution supporting ΣDIH . As for ΓUG, we have
to compute the radius of θx ∈ ΣDIH (i.e. the minimum number of mutations required to
destabilize the outcome supported by θx, ∀θx ∈ ΣDIH ), and to find an equilibrium belonging
to ΣDIH such that R (Σ (θx)) > CR∗Σ (θx). The relevant information is provided by Lemma
7, which continues to be true, and by Lemma 11 below.

Lemma 11 Consider ΓDG. The minimum number of mutations required to get from θx ∈
ΣDIH to an equilibrium which supports a diff erent investment profile is:

rA (x) =
⌊
N
(
1− δ+c

x

)⌉
rB (x) =

⌊
N
(
1− δ+c

VH−x

)⌉
.

Proof. We give proof for rB (x) only; similar arguments can be used for rA (x). Consider
θx ∈ ΣDIH . Suppose p1 agents B mutate by playing L and p2 agents B mutate by claiming

x′ > x̂DA let θ̃x be the resulting state. Suppose these mutations induce all agents A to play
L. Suppose all A believe to receive at LH a payoff ỹLH ; this belief is compatible with the
fact that θx is an equilibrium only if ỹLH ≤ VH − x − c. Sure enough, at θ̃x all agents A
decide to play L if, after updating,

N − p1
N

ỹLH > µH

(
θ̃x, p1, p2

)
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where the LHS is the expected payoff by playing L and the RHS is the expected payoff

by playing H. However, µH
(
θ̃x, p1, p2

)
depends on the best demand in an HH match. In

particular

µH (.) =


(N−p2−p1)(VH−x)

N
+
p1(VM−δ)

N
− c if (N−p2−p1)(VH−x)

N−p1
≥ (VH − x′)

(N−p1)(VH−x′)
N

+
p1(VM−δ)

N
− c if

(N−p2−p1)(VH−x)
N−p1

< (VH − x′) .

Given ỹLH , the minimum number of mutations in population B are obtained by solving two
constrained minimization problems (M1 and M2). In both problems, the objective function
is p1+p2. InM1 (resp.M2), we contemplate the case in which the best action at HH is VH−
x′ (resp. VH −x). Both problems require p1 = 0 as a solution. Moreover, pM1

2 = N
(
x′−x
VH−x

)
is the solution of M1 for whatever value of ỹLH , and pM2

2 (ỹLH) = N
(
1− ỹLH+c

VH−x

)
is the

solution of M2. Notice that pM2
2 depends on ỹLH . Suppose pM2

2 (ỹLH) agents B claim
x′ > x. By updating, all agents A play L so that only profile LH is observed. Since all
agents B claim VM − δ then, after updating, all agents A learn that ỹLH = δ. This implies
that no agent A has the incentive to play H if

N − pM2
2 (ỹLH)

N
(VH − x)− c ≤ δ,

condition weakly satisfied when ỹLH = δ. Therefore, in the second minimization problem
the minimum number of mutations of agents B needed to enter into the basin of attraction
of θ′ from θx is

pM2
2 = N

(
1− δ + c

VH − x

)
.

Since pM1
2 > pM2

2 , the minimum number of mutations involves that: (i) mutating agents
only change their demands in the HH profile; (ii) these mutations cause agent A to shift
to action L when the best action in match HH continues to be VH − x; (iii) all agents A
correctly anticipate the distribution occurring at LH. Hence:

rB (x) =

⌊
N

(
1− δ + c

VH − x

)⌉
.

�

Proof of Proposition 4. Consider ΓDG. From Lemma 10 we know that ΣS ⊆ ΣDIH .
Thus, we are only left with the task of deriving the distributional norm supporting the
equilibria belonging to ΣDIH . To detect R (Σ (θx)) for any θx ∈ ΣDIH we compare the results
coming from Lemma 7 with those coming from Lemma 11. Notice that r+B (x) ≤ rB (x) if
2δ ≤ VH −x− c and r−A (x) ≤ rA (x) if 2δ ≤ x− c; since these conditions are always satisfied
for any x ∈

[
x̂DB , x̂

D
A

]
we conclude that

R (Σ (θx)) =


r+B (x) if x < VH

2

r−A (x) if x > VH
2
.

Before deriving CR∗ (Σ (θx)) , we observe that: x̂DB < VH
2
≤ x̂DA if δ ≤ δIH ≡ VH−2c

4
.

Therefore when ΣDIH is well defined (see the argument at point (a) of Lemma 10) the

condition x̂DB < VH
2

< x̂DA always holds. Let x ≡ VH
2

and consider the set of equilibria
Σ (θx) ; let θx ∈ ΣDIH be an equilibrium with x 6= x. From Lemma 7 we know that

c∗ (θx, Σ (θx)) =


r+B (x) if x < VH

2

r−A (x) if x > VH
2
.
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By the monotonicity of r+B (x) and r
−
A (x) we obtain

CR∗ (Σ (θx)) = max
(
r+B (x− δ) , r

−
A (x+ δ)

)
.

Of course, when x = x ≡ VH
2
, then R (Σ (θx)) = r+B (x) = r−A (x) . Since

R (Σ (θx)) = r+B (x) = r−A (x) > CR∗ (Σ (θx))

it follows from Theorem 2 of Ellison (2000) that ΣS = Σ (θx) ; the only stochastically stable

outcome is thus
{
HH, VH

2
, VH
2

}
and the distributional norm is

(
VH
2
, VH
2

)
. �
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Figures captions.

Fig. 1 Game ΓUG. Region HH denotes the parameter configuration supporting the
unique stochastically stable outcome while region NN denotes the parameter configuration
in which no norms evolves since several stochastically stable outcomes can exist

Fig. 2 Game ΓDG. Region HH denotes the parameter configuration supporting the
unique stochastically stable outcome

Fig. 3 Top: game ΓDG; bottom: game ΓUG. In both figures the triangle on the right
hand side denotes the parameter configuration for which investment by both agents is not
effi cient. No norms are observed in ΓUG while norms coevolve in ΓDG

Fig. 4 Game ΓC . Parameter configuration in which effi cient investment (HH) and no
investment (LL) are stochastically stable, compared with the parameter configuration (NN)
where no investment norm evolves


