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Abstract

Residential assets, comprising buildings and household contents, are a major source of
direct flood losses. Existing damage models are mostly deterministic and limited to par-
ticular countries or flood types. Here, we compile building-level losses from Germany,
Italy and the Netherlands covering a wide range of fluvial and pluvial flood events. Uti-
lizing a Bayesian network (BN) for continuous variables, we find that relative losses (i.e.
loss relative to exposure) to building structure and its contents could be estimated with
five variables: water depth, flow velocity, event return period, building usable floor space
area and regional disposable income per capita. The model’s ability to predict flood losses
is validated for the 11 flood events contained in the sample. Predictions for the German
and Italian fluvial floods were better than for pluvial floods or the 1993 Meuse river flood.
Further, a case study of a 2010 coastal flood in France is used to test the BN model’s per-
formance for a type of flood not included in the survey dataset. Overall, the BN model
achieved better results than any of 10 alternative damage models for reproducing average
losses for the 2010 flood. An additional case study of a 2013 fluvial flood has also shown
good performance of the model. The study shows that data from many flood events can be
combined to derive most important factors driving flood losses across regions and time,
and that resulting damage models could be applied in an open data framework.
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1 Introduction

Floods affect many types of assets, but residential buildings and their contents are usu-
ally the most exposed to extreme events due to their sheer number. For example, after the
extensive 2016 floods in the Loire and Seine river basins in France, damages to dwellings
constituted 68% of the number of all claims and 52% of the total value of losses (Fédéra-
tion Francaise de I’Assurance 2017). Similarly, the vast majority of buildings damaged by
the 1993 Meuse river flood in the Netherlands were residential buildings, which contrib-
uted 38% to total flood losses (Wind et al. 1999). Numerous damage models have been
used to predict losses to residential assets. Accurate estimation, especially at the scale of
individual buildings, is difficult as it requires good quantification of all three components
of flood risk, namely hazard, exposure and vulnerability (Kron 2005; Merz et al. 2010).

Most damage models rely only on water depth, as it is by far the most important deter-
minant of flood losses (Merz et al. 2013; Schroter et al. 2014; Amadio et al. 2019). Addi-
tionally, it is usually available from flood hazard analyses. Other hazard variables that are
sometimes included are, for instance, flow velocity, inundation duration or level of con-
tamination (Kreibich et al. 2009; Gerl et al. 2016). Different flood types are characterized
by different intensities of those parameters. Fluvial (riverine) floods, generated by rainfall
or snowmelt, are associated with rather large water depths and long inundation duration,
but rather low flow velocities and contamination levels unless a dike is breached. Conse-
quences of pluvial floods from short but intense rainfall are dependent on local conditions.
In small, especially mountainous, catchments, they generate high velocities and significant
amounts of debris, but are of short duration. When occurring in cities, due to the exceed-
ance of drainage systems’ capacity (known as urban floods), rather low water depths are
generated. However, velocities could be very high, and inundation duration could be large
as well if action is not undertaken to remove the water from low-lying areas and basements.
Coastal floods have the potential of causing both extreme water depths and flow velocities
due to the mass of water involved combined with waves and, frequently, tides. Contamina-
tion from saltwater is another factor specific for this flood type and can contribute signifi-
cantly to damages. In areas affected by dike or dune breaches, the duration of inundation
can be long (Apel et al. 2016; Chen et al. 2010; Kelman and Spence 2004; Webster et al.
2014; Zellou and Rahali 2019). Given all those differences between flood types, it is com-
mon to separate flood damage models by individual flood types.

Exposure is the value of assets endangered by floods. Many approaches to estimate the
size and economic value of buildings and their contents exist (Figueiredo et al. 2016; Huiz-
inga et al. 2017; Paprotny et al. 2018, 2020a; Rothlisberger et al. 2018). Some damage
models directly estimate the absolute value of losses, but others only provide the relative
loss (loss relative to exposure), which requires estimating exposure separately. Construct-
ing a damage model from empirical flood loss data also requires obtaining data on expo-
sure. Additionally, variables related to exposure are also used directly in multivariate mod-
els, such as building footprint area, presence of basement and building/contents value (Gerl
et al. 2016; Wagenaar et al. 2018; Amadio et al. 2019).

Factors influencing flood losses not related to hazard or exposure fall under vulner-
ability. Those are, for instance, the construction characteristics of buildings, their occu-
pants and external conditions that influence the amount of losses at a given intensity of
hazard and amount of exposure. For example, the resistance characteristics of the build-
ings and use of precautionary/emergency measures are considered particularly important
(Thieken et al. 2005; Merz et al. 2010; Van Ootegem 2015; Vogel et al. 2018). Building
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characteristics include building type (single-family, semi-detached, apartment blocks, etc.),
number of floors, quality, material, size and age. Flood precaution or mitigation is related
both to the deployment of particular measures (e.g. adapted use of buildings, installation
of barriers, use of water pumps, evacuation) and their efficiency that depends also on early
warning lead time or occupants’ flood experience and knowledge of flood hazard. Flood
preparedness is further related to household characteristics like ownership status or income
as well as past flood experience related to frequency of flood events (Bubeck et al. 2012,
2018). Vulnerability of buildings can be analysed by modelling the physical processes of
flood actions on buildings (Kelman and Spence 2004; Korswagen et al. 2019), but in prac-
tice, much simpler methods have to be used as available data about buildings are typically
not detailed enough.

Currently, there are several dozen damage models available—28 were identified for
Europe alone by Gerl et al. (2016). All models were created for particular types of floods
(river, pluvial, coastal) based on data from particular countries or even particular flood
events. This specialization creates a problem of damage model selection when carrying
out a flood assessment for a different flood type or country, let alone for a continental or
global-scale study. This is further exacerbated since some models provide absolute losses,
reducing their transferability, while some of the remainder lack accompanying exposure
estimation procedures. Furthermore, most models are deterministic, often in the form of
univariate damage functions/curves (Merz et al. 2013; Gerl et al. 2016). Multivariate, prob-
abilistic models are fairly recent (Schroter et al. 2014; Rozer et al. 2019; Wagenaar et al.
2018), but are growing in popularity as they quantify the uncertainty of flood loss predic-
tions. They also enable computing loss—frequency curves for whole portfolios, regions or
countries (Schwierz et al. 2010), i.e. the probability that a loss of given magnitude would
occur in a broader geographical area rather than a single location. Further, they are increas-
ingly available for reuse, e.g. from Oasis Loss Modelling Framework (2020). The dif-
ferences between damage models translate into very different predictions of flood losses
(Apel et al. 2009; Merz et al. 2010; Bubeck et al. 2011; Jongman et al. 2012; Cammerer
et al. 2013; Carisi et al. 2018). At the same time, uncertainty related to hazard intensity
was found less important than uncertainty related to exposure or vulnerability (Apel et al.
2009; de Moel et al. 2011; Rojas et al. 2013; Metin et al. 2018). Some limited attempts of
an integrated approach were made, such as combining data from multiple events within a
country (Merz et al. 2013; Schréter et al. 2014), deploying ensembles of damage models
(Figueiredo et al. 2018), creating synthetic pan-European or global models from national
models (Huizinga 2007; Huizinga et al. 2017) or analysing the transferability of damage
models between countries (Wagenaar et al. 2018).

Apart from progress in statistical techniques employed in damage models, increasing
data availability enables new approaches to flood risk estimation. Assessments at various
spatial scales, from local to continental, require advancement in several aspects in order to
provide comparable, accurate and reproducible results including information on the uncer-
tainty of the outcomes. A flood damage model that could be universally applied to different
European countries and flood types should therefore:

e Integrate the different intensities and characteristics of river, pluvial and coastal floods
in one model that would be applicable to all types of floods.

e Include consistent valuation of residential assets, including household contents,
between countries and regions.

e Combine data from multiple events and countries, so that the model would work in dif-
ferent socio-economic and geographical environments.
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Preferably, such a damage model would also be probabilistic to quantify uncertainty and
be implementable entirely using openly available datasets.

This paper aims at advancing the current methodologies of vulnerability estimation in
flood risk assessments by tackling the above-mentioned goals. The approach presented here
involves a building-level probabilistic damage model (Sect. 2.2) created through incorpo-
ration of flood loss data from river and pluvial floods in Germany, the Netherlands and
Italy from a period of over 20 years (Sect. 2.1). It is validated (Sect. 2.3) not only for the
11 events in the sample (Sect. 3.1), but also for a dedicated case study of a coastal flood in
France (Sect. 3.2) and further confirmed with an additional case study of a fluvial flood in
Germany (Sect. 3.3). The limitations and uncertainties are discussed (Sect. 4.1) and needs
for future work identified (Sect. 4.2).

2 Materials and methods
2.1 Data collection and processing

The flood damage model is based on data collected from 11 flood events that have occurred
in Germany, the Netherlands and Italy between 1993 and 2014. For each flood, a post-
disaster household survey was carried out, supplemented by hazard and exposure informa-
tion from various other sources. Since these floods and related survey datasets have been
described before, we will refer to the appropriate publications for details, while providing
only the most relevant information herein. A summary of the events is provided in Table 1
together with the information on the extent of impacts and post-disaster surveying efforts.
The location of all collected data points (individual surveyed households) is presented in
Fig. 1.

2.1.1 Flood events and post-disaster surveys

German floods represent the largest share of events in the dataset. Six fluvial events
include floods caused by summer heavy rainfall in 2002 (Engel 2004; Ulbrich et al. 2003),
2005 (Bayerisches Landesamt fiir Umwelt 2007), 2010 (Polnisch-deutsch-tschechische
Expertengruppe, 2010); caused by spring thaw combined with rainfall in 2006 (Bundesan-
stalt fiir Gewdsserkunde 2006) and 2013 (Schréter et al. 2015); and by snowmelt in 2011
(Axer et al. 2012). The remaining pluvial flood events affected many locations in Germany,
but the post-disaster surveys were carried out only in particular cities. The impact of the
2005 flood (Rozer et al. 2016) was surveyed in the towns of Hersbruck (Bavaria) and Loh-
mar (North Rhine-Westphalia), 2010 flood (Rozer et al. 2016) in Osnabriick (Lower Sax-
ony) and 2014 flood in Miinster and Greven, both in North Rhine-Westphalia (Spekkers
et al. 2017).

Randomly selected households affected by all nine German floods were interviewed
by a professional surveying company. The exact questionnaire varied between surveys,
but primarily included flood intensity (e.g. water depth, duration and perceived velocity),
the use of individual precautionary and emergency measures, building characteristics (e.g.
type, age, number of flats, floor space), previous flood experience, the value of damages to
building structure and household contents and socio-economic characteristics of the per-
sons interviewed and their households (age, income, number of persons in the household,
etc.). For detailed information on the survey methodology in general, we refer to Thieken
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Fig. 1 Location of individual surveyed households affected by floods which were surveyed after the events
and used in this study to build the residential flood damage model. Borders from Eurostat (2019), rivers
from CCM2 dataset (Vogt et al. 2007)

et al. (2005, 2017), for specific data collection and processing information for the fluvial
flood events to Merz et al. (2013) and Schréter et al. (2014), and for the pluvial flood events
to Rozer et al. (2016) and Spekkers et al. (2017).

The flood event in the Netherlands in December 1993 was caused by rainfall of long
duration in the Meuse river basin over France and Belgium. This led to high river discharge
in bordering Dutch province of Limburg and extensive flooding along a long stretch of the
river Meuse (Wind et al. 1999). After the event, the national government compensated the
flood damages, and therefore, experts were sent to collect information on every affected
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household. The resulting dataset was amended by Wagenaar et al. (2017, 2018) with cadas-
tral data and a hydrodynamic simulation. This modified dataset is used in this study.

The final event included in the study occurred in Italy in January 2014 and was caused
by a structural dike failure along the Secchia river after a period of heavy rainfall (Orlan-
dini et al. 2015). After the disaster, local authorities conducted surveys for the purpose of
flood loss compensation. This dataset was then amended by Carisi et al. (2018) with hydro-
dynamic simulations and exposure estimates and as such is applied in this study.

2.1.2 Merging and processing data from flood events

The datasets from the described events were merged and then amended to increase con-
sistency between the various sources. Also, data for variables not recorded in certain sur-
veys were added from external sources, along with new variables. Variables considered
in the study for inclusion in the flood damage model (Sect. 2.2.2) are listed in Table 2. It
is worth noting that our study focuses on those variables that are available and consistent
across all 3 case studies. Furthermore, only continuous variables (as opposed to discrete
ones) are considered here as the statistical method used in the study requires specifically
continuous variables. In practice, only continuous variables are available for all surveys
except for building type. Examples of omitted variables include building age and presence
of basement (not available for Italy); number of floors, use of precautionary and emergency
measures, household characteristics or contamination of floodwater (only obtainable for
Germany, though not for all areas); or various topographical indices such as distance from
flood source, which is not applicable to pluvial floods. In this overview, we mostly refer the
reader to the original studies for information on the derivation of flood survey data (marked
“X” in Table 2) and focus on data added over the course of this study (“X/o0” and “0”).

Water depth, flow velocity and inundation duration come from two different sources. In
the German surveys, the respondents were asked to estimate these quantities; water depth
above the highest affected floor was transformed into water depth above ground level based
on the number of steps leading to the ground floor and assumptions about basement height
(Schroter et al. 2014). As for flow velocity, the respondents assessed it based on a qualita-
tive scale, providing a value from 1 to 6, with half-points possible (Thieken et al. 2005).
A value of 0.1 m/s was assigned to each full step of this qualitative scale. In case of inun-
dation, the respondents provided an estimate how long their homes were under water, in
hours or days. Data on water depths, flow velocity and inundation durations for the Dutch
and Italian floods are the result of two-dimensional hydrodynamic simulations described in
Wagenaar et al. (2017) and Carisi et al. (2018), respectively.

Return periods for German fluvial flood events are computations made from multiple
gauging stations located along the affected river stretches by Elmer et al. (2010), and hence,
return period varies locally within each event. Return periods of the 1993 Meuse and 2014
Secchia floods were also estimated from river gauge records by the authors of the respec-
tive case studies (Wagenaar et al. 2018; Carisi et al. 2018). A different approach had to be
used for the pluvial flood events in Germany. The return period was computed firstly by
obtaining hourly precipitation data in 1 km resolution from the RADOLAN dataset. This
dataset is generated by the German weather service by combining precipitation radar and
rain gauges (Deutscher Wetterdienst, 2018). A total of 13.5 years of data (mid-2005—end-
2018) was gathered. At each of the 4 affected areas—Hersbruck 2005, Lohmar 2005, Osna-
briick 2010, Miinster 2014—the RADOLAN grid cell with the highest total precipitation
during each event was selected as a basis of calculating intensity—duration—frequency (IDF)
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curves. An R package IDF v1.1 (Ritschel et al. 2017), using methodology of Koutsoyiannis
et al. (1998), was utilized in this computation. Once the IDF curves were obtained, they
were applied to each RADOLAN grid cell that contained affected households from the sur-
veys, generating return periods specific for each data point in the pluvial flood subsample.

The total absolute damages (losses) to building structure and to household contents are
estimates of the surveyed residents in the German dataset. In the Dutch dataset, the losses
were assessed by damage experts conducting the surveys. The values for the Italian dataset
were retrieved from compensation claims submitted to the government. The actual amount
of compensation paid was also available for the 2014 Secchia flood, and however, it was
usually much lower than the claims largely due to limited amount of money made available
by the government (Carisi et al. 2018). We therefore relied on the value of claims despite
possible overestimation of losses. The relative losses were calculated by dividing the abso-
lute losses by the estimated value of the buildings and contents, description of which fol-
lows below. It should be noted that both the damage data and exposure estimates discussed
below explicitly exclude private vehicles.

Exposure variables are related to the size and value of residential buildings and their
contents. This refers to, where possible, the entire affected building and not only to the
household surveyed. Usable floor space area of dwellings was recorded in the surveys,
except for the 1993 flood, which was added from the Dutch cadastre (Wagenaar et al.
2017). The gross (replacement) value of building and household contents is a product of
floor space area of the whole building and mean value of the building or contents per m>.
The datasets differ in methods used to derive the mean value per m> For Germany, we
use the estimates included in the source database of the surveys—HOWAS21 (Kellermann
et al. 2020), that were computed according to a methodology described by Thieken et al.
2005. The methodology regarding building value per m? is based on insurance industry
guidelines (Dietz 1999) and distinguishes various characteristics of the buildings (number
of storeys, basement size, roof type) recorded in the original survey data. The valuation of
household contents is based on their mean insurance values per household and differenti-
ated spatially using data on postal code-level purchasing power (Thieken et al. 2005).

For the Netherlands, building value was computed with a uniform value per m? due
to lack of more detailed valuation data accessible for this country. They are used here as
provided by Wagenaar et al. (2017). However, in the original Dutch dataset the value of
contents was assumed the same in each household irrespective of their size and hence had
to be replaced with a better estimate. Consequently, the value of contents was calculated
by multiplying the floor space area by standardized contents value per m? based on the
methodology described in Paprotny et al. (2020a). The original study covered only years
2000-2017, and hence, 1993 values were calculated using data listed in Supplementary
Table S1. In this method, a timeseries of final household consumption expenditure on cer-
tain consumer durables in a country is transformed into the stock of consumer durables
using the perpetual inventory method, which is a standard way to compute stocks of assets
in economics and accounting. The estimated stock for the whole Netherlands was then
divided by the estimated total floor space area of all dwellings in the country to derive a
standardized contents value per m?.

The original study for the Italian flood used market (depreciated, or net) value of build-
ings and provided no information on exposure in terms of household contents. To avoid
inconsistency with other flood events, we recomputed exposure by multiplying the floor
space area with estimates of building value and contents per m> from Paprotny et al.
(2020a). That study used national accounts and building construction data to generate
timeseries of gross replacement costs of existing dwellings and consumer durables in 30
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European countries (2000-2017). In all studied areas, exposure estimates refer for the year
of each event. They were derived (from previous studies or calculated here) in nominal
prices for the purpose of obtaining relative losses. However, for inclusion of the total build-
ing and contents value as explanatory variables, they were expressed in real 2015 prices
using variable- and country-specific deflators. The deflators for Germany and Italy were
taken from Paprotny et al. (2020a), while in case of the Netherlands, they were extended
back to 1993 as a result of exposure estimation carried out in this study.

Two economic variables at the regional level defined by the Nomenclature of Territo-
rial Units for Statistics (NUTS) were collected to better express local exposure and vul-
nerability. Gross domestic product (GDP) and net disposable income of households per
capita were obtained at NUTS level 3 or 2, depending on availability per variable. The data
were collected for the year of each event, which was accessible for all floods in Germany
and Italy from Eurostat (2020). In case of the Netherlands, the relevant regional data were
only available until 1995 from Statistics Netherlands (2019), and therefore, the 1995 values
were extrapolated back to 1993 using national growth rate of GDP and household income
per capita. Both variables in all case studies were transformed to real 2015 prices using,
respectively, the GDP deflator and the deflator for final consumption expenditure of house-
holds, which is a major subcomponent of the household disposable income account.

Households were geolocated in case of the German and Italian surveys on the basis
of their street addresses, while in the original Dutch dataset, the households were identi-
fied only by six-digit postcode. Wagenaar et al. (2017) located them and extracted building
characteristics from the cadastre on the basis of comparing modelled and surveyed water
depths, taking the building among all in a postcode area that had the smallest difference in
water depth between the datasets. This procedure could cause errors in calculating expo-
sure and, consequently, relative losses. However, Wagenaar et al. (2017) consider potential
errors to be limited as the very detailed Dutch postcodes typically refer only to a few build-
ings, usually of similar characteristics. Also, while the usable floor space area and other
variables should refer to the whole building, it was found that at the German and Dutch
datasets do not always consistently record damages and exposure for buildings with multi-
ple households. In a minority of cases, they refer to one of the households at least for some
variables. In the Italian dataset, the records are for individual households only, but they
could be merged for multi-family houses based on their street addresses. This transforma-
tion was done for better consistency with the other two datasets, and therefore, the original
1330 data points were reduced to 782 through merging.

2.2 Flood loss estimation model
2.2.1 Bayesian networks

The flood damage model utilizes a class of graphical, probabilistic models known as
Bayesian networks (BNs). In recent years, they have been increasingly used for flood risk
modelling applications (Paprotny and Morales-Nédpoles 2017; Beuzen et al. 2018; Couas-
non et al. 2018; Jager et al. 2018; Wu et al. 2019). Still, BN-based flood damage models
have been few created from flood loss data for Germany (Schréter et al. 2014; Vogel et al.
2018; Paprotny et al. 2020b) and the Netherlands (Wagenaar et al. 2017, 2018). They used
BNss for discrete variables together with algorithms for automated set-up of the models. In
contrast, we apply here a nonparametric BN for continuous variables to create an expert
knowledge-driven model. This particular variant of BNs is known as nonparametric due
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to the use of empirical marginal distributions and hence does not require assuming any
continuous marginal distribution or discretizing the data as in discrete BNs. This method
was originally introduced by Kurowicka and Cooke (2006). Compared to other possible
methods, nonparametric BNs have several advantages, as they:

e are probabilistic rather than deterministic, thus providing uncertainty bounds of the
predictions (in contrast to multivariate regressions);

e utilize continuous variables without assuming any marginal distribution, the need for
discretizing or normalizing the data, which can significantly alter the results;

e can be quantified with data that have partially missing values (not possible in discrete
BN or, e.g. random forests), and also with relatively small datasets;

e can be applied, after quantification, in situations where whole variables for conditional-
izing the BN are not available;

e are graphical and, in contrast to machine learning methods, could be easily presented in
their entirety;

e the model’s quality depends solely on the data and its structure, as there are no tuning
parameters, which are numerous in machine learning methods.

A Bayesian network is “a directed acyclic graph, together with an associated set of
conditional probability distributions” (Hanea et al. 2006). It consists of two elements:
nodes, which are random variables represented by marginal distributions, and arcs, which
indicate the dependency structure of the model. The node on the upper end of an arc is
known as the “parent”, and the node on the end is the “child”. The joint probability density
f(xl,xz, ,xz) is defined as follows:

Flexnx,) = [T 0) QY
i=1

where pa(i) is the set of parent nodes ofX;. A BN is applied to give predictions for a par-
ticular case through updating the probability distribution of child nodes given new evidence
at parent nodes. To quantify a defined structure of nodes and arcs in a BN, 2 elements are
required, namely the marginal distributions and a representation of the dependency at each
arc. Here, we use empirical (nonparametric) margins and normal (