
Chapter 6
Morph Creation and Vulnerability
of Face Recognition Systems to Morphing

Matteo Ferrara and Annalisa Franco

Abstract Face recognition in controlled environments is nowadays considered
rather reliable, and very good accuracy levels can be achieved by state-of-the-art
systems in controlled scenarios. However, even under these desirable conditions,
digital image alterations can severely affect the recognition performance. In partic-
ular, several studies show that automatic face recognition systems are very sensitive to
the so-called facemorphing attack, where face images of two individuals aremixed to
produce a new face image containing facial features of both subjects. Face morphing
represents nowadays a big security threat particularly in the context of electronic
identity documents because it can be successfully exploited for criminal intents, for
instance to fool Automated Border Control (ABC) systems thus overcoming security
controls at the borders. This chapter will describe the face morphing process, in an
overview ranging from the traditional techniques based on geometry warping and
texture blending to the most recent and innovative approaches based on deep neural
networks. Moreover, the sensitivity of state-of-the-art face recognition algorithms to
the face morphing attack will be assessed using morphed images of different quality
generated using various morphing methods to identify possible factors influencing
the probability of success of the attack.

6.1 Introduction

Face morphing is generally described as a seamless transition transforming a facial
image into another. Morphing was initially proposed as an image generation tech-
nique for computer graphics applications [1] or psychological studies [2, 3].However,
only in recent years it has emerged as a potential and severe security thread for Face
Recognition Systems (FRS). The main risk deriving from face morphing is espe-
cially related to the adoption of automatic face-based identity verification in various
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applications like civilian identitymanagement,MachineReadable TravelDocuments
(eMRTD), or visa management. A possible attack in relation to the use of MRTD in
Automated Border Control (ABC) gates has been firstly identified in [4] and later
confirmed by several research works. Identity verification at an ABC relies on the
comparison of a live captured probe face image with a digital face image stored in
an eMRTD such as an e-passport. If a morphed image, which is similar enough to
the face of the two parent subjects, can be included in an eMRTD, then two persons
can share the document. In this scenario, a criminal could exploit the passport of
an accomplice with no criminal records to overcome the security controls. In more
details, the subject with no criminal records (i.e., the accomplice) could apply for an
eMRTDby presenting themorphed face photo; if the image is not noticeably different
from his/her face, the police officer accepts the photo and releases the document (see
Fig. 6.1).

The attack will be successful if the morphed image contemporarily meets two
conditions.

• It is able to fool the human expert, i.e., the morphed face must be very similar
to the accomplice who applies for the document and no elements (e.g., morphing
artifacts) of the image should raise suspicions;

• the image fools at the same time the FRS used for automatic identity verification,
meaning that the morphed face can be successfully matched with both subjects
(criminal and accomplice).

Some studies confirm that morphed faces can be very realistic and able to fool
human experts [5–7]. It is well known, in fact, that unfamiliar face recognition is a

Passport Issuance ABC Verifica on

Regular
ppassport with
morphed face

iimage

Morphed image

Fig. 6.1 The face morphing attack in the eMRTD scenario. The morphed ID photo delivered to the
officer is very similar to the applicant, but also contains facial features of a different subject
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hard task for humans and it becomes evenharderwhen it has to be accomplishedbased
on a small-size id photo such as the one used by the citizens to apply for an identity or
travel document. This photo is generally obtained by printing a high-quality digital
image on photographic paper (typical size is 3.5 cm × 4.5 cm) and is then scanned
to be included into the document. This printing and scanning process (P&S) hides
many small details of the image (e.g., artifacts introduced by the morphing process)
thus making it more difficult for human examiners to spot the attack attempt.

Figure 6.2 shows two examples of morphing. In the first case (top row), the
morphed image (b) is obtained with an almost equal contribution of the two subjects
(a) and (c); the result is quite similar to subject (a) but a human expert could notice
some differences. In the second example, the morphed image (e) has been generated
from (d) and (f), but with a stronger contribution of subject (d). Visually the morphed
image is almost indistinguishable from the accomplice (d) and is very unlikely that
it would raise some suspicion by the officer. Both these morphed images, (b) and (d),
contain enough information of the “criminal” subject to fool commercial FRSs.

(d) (e) (f)

(a) (b) (c)

Fig. 6.2 Two example of morphed images: b obtained from the subjects (a) and (c); e obtained
from the subjects (d) and (f)
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It is worth noting that in case of successful attack, the document issued is perfectly
regular; the attack does not consist of altering the document content but in deceiving
the officer while issuing the document. The document released will thus pass all the
integrity checks (optical and electronic) performed at the gates.

This attack is made possible in practice by the procedure adopted in several
countries where there is no live enrolment for facial images and citizens apply for
the document by providing an IDphoto printed on photographic paper. The trust chain
is thus broken since citizens could intentionally alter the image content by different
possible digital image manipulations [5], even with criminal intents. Switching to
live enrolment would certainly be the most effective solution, but its adoption by
all the involved countries is very unlikely; moreover, we have to consider the huge
number of documents already issued since the introduction of eMRTDs, which still
represent a potential risk. In fact, governmental agencies already reported a few real
morphing attack attempts and recent news confirm that the criticalities related to the
morphing attack have reached a wide public audience [8–10]. Estimating the real
extent of this phenomenon is hard, due to the practical impossibility of spotting the
cases of successful attack. Unfortunately, the analysis of the vulnerability of FRSs
to morphing attack, discussed later in this chapter, is not encouraging and confirm
once again that designing effective countermeasures is quite urgent.

This chapter is organized as follows. Section 6.2 describes the face morphing
generation algorithms, presenting both traditional landmark-based approaches, as
well as innovative solutions based on deep learning. Section 6.3 analyzes and
discusses the vulnerability of commercial FRSs to morphing attack; finally, Sect. 6.4
draws some concluding remarks.

6.2 Face Morphing Generation

Nowadays, the generation of amorphed image has become quite an easy and inexpen-
sive task. Open-source solutions are publicly available, such as for instance general
image processing software with specific plugins (e.g., the GAP plugin for GIMP
[11]). Moreover, a number of free or commercial tools (e.g., FaceMorpher [12] or
FantaMorph [13]), as well as applications for mobile devices or online services are
available. Interested readers can refer to [14] for a comprehensive review of publicly
available morphing tools. It is however worth noting that the images obtained with
these fully automated systems are usually affected by the presence (more or less
accentuate) of clearly visible artifacts that would probably cause a rejection of the
image by the human officer during the document issuing process. As discussed later
in this chapter, the creation of a high quality and credible morphed image usually
requires an accuratemanual intervention aimed at removing themost relevant defects
and make the image undistinguishable from a bona fide one.
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6.2.1 Landmark Based Morphing

Landmark-based approaches for facemorphing allow synthesizing afluid andgradual
transformation from one image to another by exploiting facial landmark points in the
involved images. Reference points usually correspond to prominent facial compo-
nents such as mouth, nose, eyes or eyebrows, and approximately outline their shape.
Such reference points can be either manually annotated or automatically determined
using facial landmark detection algorithms such as Dlib [15], which is the most
widely used for this purpose. Of course, the effort needed in the two cases is different,
and manual annotation is a boring and time-consuming task; on the other hand, if
properly executed, manual landmark labeling usually provides more precise land-
mark locations and achieves a better image coverage. Automatic landmark detection
algorithms, in fact, usually adopt standard facial models that consider the central
part of the face and the chin but ignore for instance the forehead region. As we will
discuss later, the accuracy of landmark detection has a direct impact on the quality
and effectiveness of the generated morphed images.

Starting from the facial landmarks, the morphing process can be generally
described as follows. Let I0 and I1 be the two parent images to morph and let P0 and
P1 be the two sets of correspondence points in I0 and I1, respectively. For most of
the landmark-based approaches, the transformation between the two images is ruled
by the so-called morphing factor, a parameter α representing a weighting factor for
the two images. The morphing process is therefore generating a set of intermediate
frames M = {Iα, α ∈ R, 0 < α < 1} representing the transformation of the first
image (I0) into the second one (I1) as shown in Fig. 6.3. Note that, to obtain realistic
results, the two images need to be aligned in advance (e.g., by overlaying the eye
centers).

In general, each frame is a weighted linear combination of I0 and I1 (based on α

value), obtained by combining (i) geometric warping [16] of the two images based
on correspondence points and (ii) texture blending.

Formally:

Iα(p) = (1 − α) · I0
(
wPα→P0(p)

) + α · I1
(
wPα→P1(p)

)
, (6.1)

where

• p is a generic pixel position;
• α is the weight factor, representing the contribution of image I1 to the morphing

(α = 0.3 indicates that the morphed image will be obtained for the 30% from I1
and 70% from I0);

• Pα is the set of correspondence points aligned according to the weight factor α;
• wPB→PA(p) is a warping function.

Several warping techniques have been proposed in the literature [17]. A common
approach consists in representing the two sets of points (PA and PB) by means of
topologically equivalent (i.e., no folding or discontinuities are permitted) triangular
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(f)(e)(d)

(c)(b)(a)

Fig. 6.3 Morphing of image I0 (a) to I1 (f). b, c, d and e) are intermediate frames, obtained by the
morphing procedure, gradually moving from I0 to I1. The correspondence points and the triangular
meshes are highlighted in red and blue, respectively.

meshes (see Fig. 6.3) and computing local spatial transformations that map each
warped triangle to the corresponding original one [18]. Note that the meshes are
constrained to cover the whole images and not to cause self-intersection (i.e., each
pixel position is contained in exactly one mesh). A triangular mesh can be derived
from a set of points via Delaunay triangulation [19]. Given a generic pixel position
p in the warped image, the transformation used to map p onto the original image I
is the local transformation corresponding to the warped triangle that contains p (see
Fig. 6.4).

The set of aligned correspondence points Pα in Eq. (6.1) is computed as follows
(see Fig. 6.5):

Fig. 6.4 Example of image warping using triangular meshes. The point p in the warped image is
mapped into the original image using the inverse mapping of triangle � b2b3b4 into � a2a3a4
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Fig. 6.5 On the left, P0 (red circles) and P1 (blue squares) are the corresponding points of images
in Fig. 6.3a and f, respectively. On the right, the region containing points ui and vi is zoomed to
show point ri corresponding to morphed frame I0.4 (see Eq. (6.2) and Fig. 6.3c)

Pα = {ri |ri = (1 − α) · ui + α · vi ,ui ∈ P0, vi ∈ P1}. (6.2)

A more general formulation of the morphing process has been proposed in [20];
here geometric warping and image blending are ruled by two different factors.
Equation (6.1) can be generalized as follows:

IαB ,αW (p) = (1 − αB) · I0
(
wPαW →P0(p)

) + αB · I1
(
wPαW →P1(p)

)
, (6.3)

where αB and αW are the blending and warping factors, respectively.
The effects of blending andwarping are shown in Fig. 6.7where two very different

subjects have been selected (see Fig. 6.6) to highlight the influence of αB and αW .
From a visual point of view, the result from different combinations is overall quite
similar, but the effects produced on the probability of success of the attack by the
possibility of acting separately on geometry warping and image blending have to be
carefully considered. Several studies in fact show that, in the context of face recogni-
tion, humans aremore sensitive to texture than to geometry [21]; the study [20] reveals
that the same holds for FRSs, as confirmed by the experimental results reported in
Sect. 3.2. Assigning different weighting factors to texture blending and geometry
warping during the face morphing process significantly increases the chances of
success, especially in the presence of look-alike subjects.

The automatic generation of morphed images can produce some visible artifacts
that might be easily spotted by a human observer, thus drastically reducing the proba-
bility of success of the face morphing attack. The adoption of automatically detected
facial landmarks, further increase the probability of artifacts in case of inaccurate
point identification. The following visible artifacts are generally detectable:
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Fig. 6.6 Images I0 and I1
used to generate the morphed
images in Fig. 6.7

(a) (b)

• Macroscopic ghost artifacts in the face surrounding area (see Fig. 6.8a). Facial
landmarks are usually exclusively located in the facial region, and no reference
points are considered for hairs, ears, and ecc. No accurate warping is therefore
carried out for these regions, and the blending process produces therefore visible
artifacts due to different characteristics (e.g., hair style or background) of the two
contributing images.

• Minor artifacts close to the facial reference points (eyes, eye brows, mouth, nose,
chin, and nostrils) mainly due to insufficient or inaccurate landmarks. Typical
patterns are double edges or double reflections on irises (see Fig. 6.9a).

Awidely used solution to remove themacroscopic artifacts in the face surrounding
area is background substitution; the background region is typically replaced by the
corresponding region of one of the parent images (the one with the highest blending
factor), after a proper alignment (see Fig. 6.8b). An additional step is recommended
in this case, aimed at equalizing the skin color before background substitution. In fact,
due to different illumination conditions or skin color between the two face images,
the retouching result could be unsatisfactory, in particular when the facial landmarks
do not include the forehead region, thus causing a strong edge with the central face
region. To overcome this issue, the histogram matching method described in [22]
could be applied.

The second category of artifacts is more difficult to address, and no effective
automatic solutions have been identified so far. At present, only a very carefulmanual
post-processing is able to remove them, with a combination of low-level image
processing operations such small region cloning from the contributing images, direct
painting or edge smoothing (see Fig. 6.9b). Of course, this manual intervention is not
trivial and requires some practice to achieve a good result. However, manual post-
processing is a key element for the success of the morphing attack, in particular to
fool human experts, which could quite easily spot morphing artifacts if not carefully
removed.



6 Morph Creation and Vulnerability of Face Recognition Systems … 125

Fig. 6.7 Morphed images obtained with different blending and warping factors by combining
Fig. 6.6a (I0) and Fig. 6.6b (I1)

6.2.2 Deep Learning-Based Face Morph Generation

The face morphing approaches presented in the previous section provide a precise
control on the morphing process in relation for instance to the contribution of the
two subjects in the resulting image. On the other hand, since the process relies on
facial landmarks, an inaccurate detection of such reference points, as well as the lack
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(a) (b)

Fig. 6.8 Morphed image obtained from the two subjects in Fig. 6.3 with macroscopic artifacts in
the region around face; b morphed image in (a) after automatic background substitution

(a)

(b)

Fig. 6.9 a Small artifacts in the eye region, with double edge effect and multiple light reflections
in the iris; b eye region after manual post-processing for artifact removal

of reference points in specific face regions, determine in most cases the presence
of some ghost artifacts in the morphed image, which a human expert observing the
image could spot quite easily. As mentioned above, the realization of an “ideal”
morphed image requires a difficult and time-consuming manual post-processing
aimed at removing all visible artifacts. To overcome this limitation, some innovative
solutions for face morphing generation have been recently proposed, with the aim of
fully automating the generation process. In particular, a few recent works in the liter-
ature exploit the potential of Generative Adversarial Networks (GAN) to synthesize
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morphed images by sampling the two contributing facial images in the latent space,
without requiring preliminary landmark extraction and alignment.

GANs are based on the combined action of two different agents, a generator and
discriminator. The first one, the generator G, produces samples from a distribution
which should be ideally indistinguishable from the training distribution. The discrim-
inator D is trained to determine if the incoming samples are drawn from the real set of
training images or are fake samples generated by G. The training process gradually
improves the samples produced by the generator G, which learns the most effective
way to fool the discriminator.

The first approach for GAN-based face morphing generation, called MorGAN,
was proposed in [23]. The network architecture is inspired by the work [24] where
the Bidirectional Generative Adversarial Network (BiGAN) is introduced. In addi-
tion to the generator G from the standard GAN framework BiGAN includes an
encoder E which maps data x to latent representations z. The BiGAN discriminator
D discriminates not only in data space (x versus G(z)), but jointly in data and latent
space (tuples (x, E(x)) versus (G(z), z), where the latent component is either an
encoder output E(x) or a generator input z. The idea is that the BiGAN encoder
E should learn to invert the generator G, even if the two modules cannot directly
“communicate”. This architecture is adapted by the authors of [23] to the problem of
face morph generation. The generator is split into two components, complementary
inverse to each other, and the discriminator is trained to distinguish between joint
pairs (samples from the encoder and samples from the decoder). The main limitation
of the MorGAN approach is the limited size of the generated morphed images, 64
× 64 pixels, which is quite far from the resolution needed to fulfill the ISO/ICAO
quality standards (minimum inter-eye distance of 90 pixels) and to successfully fool
commercial FRSs. This last aspect is confirmed in [25] where the authors evaluate
the vulnerability of state-of-the-art face recognition systems to MorGAN morphed
images.

The same work [25] focuses on the generation of high-quality morphed images,
with the aimof overcoming the key limitation of theMorGANapproach. In particular,
the authors propose the adoption of StyleGAN [26] for morphing generation. Given
the latent code L1 of the face, StyleGAN maps the inputs to an intermediate latent
space through the mapping network. Themapping layer consists of 8 fully connected
layers serially connected. The approach synthesizes a data-subject-specific morphed
face by forcing a strategy to embed the face image into the latent space. The subject-
specific embedded latent space passes through the synthesis network consisting of
18 layers, thus obtaining a representation in 18 latent spaces (dimension 512) which
is further concatenated. The loss function driving the embedding measures the simi-
larity between the input image and the reconstructed image. The images of the two
contributing subjects are both processed according to the procedure described above
and a weighted average (to recall the idea of morphing factor) of the corresponding
latent codes is computed to obtain the morphed image latent code, which is finally
passed through the synthesis network to generate the high-resolution morphed image
(1024 × 1024).
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The morphing approach based on StyleGAN has been successively improved by
the same authors in [27]where theMIPGAN (Morphing through Identity Prior driven
GAN) approach is presented. The introduction of a loss function aimed at preserving
the identity of the generated morphed image, through enforced identity priors repre-
sents the main element of novelty. Given the images of the two contributing subjects,
the corresponding latent vectors are first computed using a latent prediction network.
The morphed image latent vector is again obtained by a weighted average of the two
input vectors and is finally passed through the synthesis network to obtain a morphed
image of size 1024 × 1024. The last step consists of a final optimization stage based
on the identity preserving loss function. The authors propose two different versions
of MIPGAN, obtained using two versions of StyleGAN, [26] and [28], respectively.
TheMIPGAN approach achieves interesting results in terms of efficacy of the attack,
as shown by the results reported in the next section.

Besides image resolution, another important aspect to consider is the similarity
of the morphed image to the two contributing subjects. From this point of view,
the landmark-based approaches certainly allow to better preserve the identity of the
two contributing subjects and to control quite easily (via the morphing factor) the
similarity of the resulting morphed images to one of the two individuals. GAN-based
approaches seem to have less control on this aspect, even when an identity preserving
loss function is adopted. Even if the morphed images generated using GAN-based
approaches can fool automatic FRSs, we believe that further work is needed to make
the generated images able to fool the human expert.

6.3 Vulnerability of Face Recognition Systems to Face
Morphing

In this section, we describe the experiments carried out using three commercial face
recognition SDKs (referred to as SDK1, SDK2, and SDK3) which provided top
performance in the “Face Recognition Vendor Test (FRVT)—1:1 Verification” [29,
30]; the names of the SDKs cannot be disclosed, and the results will be therefore
presented in anonymous form.

In order to simulate a realistic attack to an ABC system, the operational threshold
of the face recognition software have been fixed according to the Frontex guidelines
[31]. In particular, for ABC systems operating in verification mode, the face recog-
nition algorithm has to ensure a False Acceptance Rate (FAR) equal to 0.1% and a
False Rejection Rate (FRR) lower than 5%. During the experimentation, for each
SDK, the security threshold indicated in the corresponding documentation to achieve
FAR= 0.1% has been used. Since we focus on morphing attacks, the performance is
evaluated in terms of Mated Morph Presentation Match Rate (MMPMR) [32] with
the aim to quantify the percentage of morphing attacks able to fool the SDKs. To
this purpose the MMPMR for all SDKs have been measured by comparing morphed
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face images against probe images of both subjects involved in the generation of the
morphed image.

6.3.1 Data Sets

The SDKs have been evaluated on five data sets:

• BIOLAB-1.0 [5]: it contains 80 morphed images generated using the GIMP soft-
ware [11, 33] after a manual labeling of the facial reference points and a first
manual alignment based on eyes superimposition; a final manual retouch was
carried out to remove visible artifacts. For each morphed image, it contains two
probe images, one for each parent subject.

• MorphDB [34]: the aim of this dataset is to reproduce the typical scenario where
the ID photo is provided by the citizens printed on photographic paper and then
scanned by the officer during the issuing process. It contains 100 morphed images
generated using theSqirlzMorph 2.1 software [35]with facial landmarks automat-
ically detected and a morphing factor in the range [0.3;0.4]. After the generation,
the morphed images have been manually retouched to remove visible artifacts
introduced by the morphing procedure. The P&S images have been created by
printing the digital version on high quality photographic paper by a professional
photographer and scanned at 300 DPI. For each morphed image, it includes a
variable number of probe images of the two parent subjects.

• SOTAMD [36]: it contains 5748 high quality images for benchmarking under
realistic conditions. The dataset consists of facial images from subjects of various
ethnicities, age-groups, and both genders. After a careful subject pre-selection,
the morphed images have been created using seven different morphing algorithms
and applying manual post-processing to remove visible artifacts. Moreover, the
images have been also printed and scanned. For each morphed image, it includes
10 probe images, for each contributing subject, captured under a simulated ABC
gate operational scenario presentingmore variationswith respect to other datasets.

• AMSL [37]: a dataset containing images from the Face Research Lab London Set
[38]. 2175 morphed face images were generated using the morphing approach
described in [39]. All imagesweremodified in theway to complywith the require-
ments of the ICAO portrait quality standard for eMRTD [40] and to fit on a chip of
an eMRTD including cropping, down-scaling, and JPEG compression. For each
morphed image, it contains two probe images, one for each subject.

• B&W [20]: a dataset containing morphed images automatically generated by
separately varying the blending and the warping factors αB and αW to evaluate
their importance in fooling face recognition systems. It contains 560 morphed
images for each combination of αB and αW and for each of them, a probe image
for each contributing subject.
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BIOLAB-1.0, MorphDB, and SOTAMD datasets are available for testing on
the Bologna Online Evaluation Platform (BOEP) [41] hosted in the FVC-onGoing
framework [42, 43].

6.3.2 Results

Table 6.1 reports the single MMPMR of the three SDKs and their average on all
datasets (except for B&W data set whose results are reported below).

For all SDKs, the most difficult datasets seem to be both BIOLAB-1.0 and AMSL
with an average MMPMR of 95.0 and 92.7%, respectively. This is probably due to
a combination of different elements:

• morphingfactor—both BIOLAB-1.0 and AMSL datasets contain symmetric
morphed images (i.e., morphing factor equal to 0.5) while MorphDB dataset
contains asymmetric morphed images generated with a morphing factor in the
range [0.3;0.4] and SOTAMD dataset contains morphed images generated with
two different morphing factors (0.3 and 0.5);

• facial landmarks manually labeled—to generate BIOLAB-1.0 morphed images,
the facial landmarks have been manually selected, while automatically detected
facial landmarks have been used to generate MorphDB and SOTAMD morphed
images;

• forehead landmarks—BIOLAB-1.0 morphed images have been generated using
also landmarks manually labeled on the hairline (see Fig. 11 in [5]) which have
not been used to generate the other databases;

• facial outer region substitution—as shown in Fig. 6.3, the intermediate morphed
frames could present double exposure effects outside the facial region (e.g., back-
ground, hair, shoulders, and body). To make morphed images more realistic and
therefore more difficult to be detected, usually a retouching is applied. MorphDB
and SOTAMD morphed images have been automatically retouched by replacing

Table 6.1 MMPMR of the three SDKs on different data sets

Database Format Morphed
images

Probe
images
per
parent
subject

SDK1 (%) SDK2 (%) SDK3 (%) AVG
(%)

BIOLAB-1.0 Digital 80 1 98.75 96.25 90.00 95.00

MorphDB Digital 100 Variable 78.00 60.00 50.00 62.67

P&S 74.00 59.00 50.00 61.00

SOTAMD Digital 2045 10 69.10 50.81 46.41 55.44

P&S 3703 69.89 42.07 44.64 52.20

AMSL Digital 2175 1 99.08 94.25 84.78 92.70
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the pixels outside the face region with those of the accomplice image, while
BIOLAB-1.0 morphed images have been manually retouched.

• probe images—to simulate an ABC gate operational scenario, in the SOTAMD
database, the morphed images are compared against face images acquired using
ABC gates. Such images present different lighting conditions, and some of them
have been acquired as grayscale images. Such differences could decrease the
chance to fool the SDKs.

As the SOTAMD dataset [36] presents meta-data regarding the characteristics of
the parent subjects used for morphing (e.g., gender) and of the morphing generation
pipeline (e.g., morphing approach), theMMPMRof the three SDKs and their average
on different subsets are reported in Tables 6.2 and 6.3 (digital and P&S versions,
respectively).

Some interesting results can be observed, in relation to the main attributes
characterizing the database images:

• gender—the chance of fooling SDKs for female subjects looks on average higher
than for male subjects (about 10% better on both digital and P&S versions).

• post-processing—as expected manual retouching increases the probability of
fooling the SDKswith respect to automatic post-processing, even if the difference
is not so evident (about 5% better on both digital and P&S versions).

• morphingalgorithm—SDKs exhibit different behaviors as the morphing algo-
rithm changes; algorithms C02 and C01 present a higher change to fool SDKs

Table 6.2 MMPMR of the three SDKs on digital version of SOTAMD subsets

Attribute Subset #
Morphed
images

SDK1 (%) SDK2 (%) SDK3 (%) AVG
(%)

Gender Female 876 71.69 58.33 53.42 61.15

Male 1169 67.15 45.17 41.15 51.15

Post processing Automatic 1575 67.87 49.46 45.78 54.37

Manual 470 73.19 55.32 48.51 59.01

Morphing algorithm C01 325 79.08 64.92 55.08 66.36

C02 200 91.00 82.00 62.00 78.33

C03 400 65.00 43.75 40.75 49.83

C05 420 67.38 46.90 45.24 53.17

C06 400 61.75 40.00 40.50 47.42

C07 300 61.33 44.00 43.67 49.67

Morphing factor 0.3 1035 47.54 25.89 22.32 31.92

0.5 1010 91.19 76.34 71.09 79.54

Morph quality High 1059 89.99 76.11 66.19 77.43

Low 986 46.65 23.63 25.15 31.81
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Table 6.3 MMPMR of the three SDKs on P&S version of SOTAMD subsets

Attribute Subset #
Morphed
images

SDK1 (%) SDK2 (%) SDK3 (%) AVG
(%)

Gender Female 1661 71.76 49.91 50.87 57.52

Male 2042 68.36 35.70 39.57 47.88

Post processing Automatic 1453 66.83 37.72 45.42 49.99

Manual 2250 71.87 44.89 44.13 53.63

Morphing algorithm C01 500 79.80 53.00 57.60 63.47

C02 500 95.00 79.00 57.40 77.13

C03 1264 60.21 28.64 34.97 41.27

C05 939 68.26 38.45 43.66 50.12

C06 500 62.40 35.00 45.20 47.53

Morphing factor 0.3 1853 49.00 23.48 22.23 31.57

0.5 1850 90.81 60.70 67.08 72.86

Morph quality High 1920 90.73 64.90 63.39 73.00

Low 1783 47.45 17.50 24.45 29.80

Image compression Uncompressed 380 82.37 67.89 51.32 67.19

Compressed 3323 68.46 39.12 43.88 50.49

Table 6.4 MMPMR of SDK 1 on B&W data set for each combination of αB and αW . Different
values are represented by different blue levels (the darker, the greater)

0 0.1 0.2 0.3 0.4 0.5

0 1.4% 1.6% 2.1% 2.7% 4.3% 4.5%

0.1 5.4% 7.7% 8.4% 9.8% 11.1% 11.6%

0.2 18.0% 20.2% 22.3% 25.0% 27.1% 29.8%

0.3 40.5% 46.4% 49.6% 55.0% 58.6% 61.8%

0.4 73.0% 79.3% 82.7% 86.4% 88.9% 90.4%

0.5 93.0% 95.2% 96.6% 97.5% 97.7% 97.9%

with respect to algorithms C06, C07, and C03. Please refer to [36] for a detailed
description of the different morphing algorithms.

• morphingfactor—as expected symmetric morphing (morphing factor equals to
0.5) fools the SDKs more easily (more than 40% better on both digital and P&S
versions) than asymmetric morphing (morphing factor equals to 0.3).

• morph quality—as expected high quality morphs are more difficult to detect than
low quality morphs (about 45% better on both digital and P&S versions).

• image compression—the uncompressed images present a higher probability to
fool SDKs with respect to the compressed version (about 15% better).
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Tables 6.4, 6.5, 6.6, and 6.7 report the MMPMR of the three SDKs and their
average onB&Wdata set. For all SDKs blending andwarping present a very different
impact on the probability of success of the attack, while geometric modifications
obtained increasing the warping factor αW do not heavily affect recognition accuracy
(see ranges αB ∈ [0; 0.1], αW ∈ [0.4; 0.5]), an opposite behavior is observed for
the blending factor αB (αB ∈ [0.4; 0.5], αW ∈ [0; 0.1]). Hence, for a criminal it
would be much more convenient to create a morphed image with αB = 0.5 and
αW ∈ [0; 0.2] instead of using a balanced morphing factor in the range [0.2; 0.3] as

Table 6.5 MMPMR of SDK 2 on B&W data set for each combination of αB and αW . Different
values are represented by different blue levels (the darker, the greater)

0 0.1 0.2 0.3 0.4 0.5

0 1.4% 1.8% 2.1% 2.1% 3.0% 2.7%

0.1 3.6% 4.5% 5.7% 6.1% 7.0% 8.9%

0.2 9.3% 11.6% 15.7% 18.9% 23.8% 26.6%

0.3 27.1% 32.0% 38.4% 43.2% 47.7% 54.1%

0.4 50.9% 59.5% 66.4% 71.6% 76.3% 79.6%

0.5 72.0% 78.9% 85.0% 88.0% 91.1% 93.2%

Table 6.6 MMPMR of SDK 3 on B&W data set for each combination of αB and αW . Different
values are represented by different blue levels (the darker, the greater)

0 0.1 0.2 0.3 0.4 0.5

0 0.5% 0.9% 1.3% 1.1% 1.6% 2.1%

0.1 2.5% 3.0% 3.4% 4.6% 5.5% 7.0%

0.2 7.5% 9.8% 11.1% 13.2% 15.5% 18.6%

0.3 21.4% 23.9% 28.4% 33.0% 38.0% 42.5%

0.4 44.6% 51.3% 56.4% 61.1% 66.1% 69.3%

0.5 70.4% 75.5% 81.4% 85.9% 89.3% 91.6%

Table 6.7 Average MMPMR of the three SDKs on B&W data set for each combination of αB and
αW . Different values are represented by different blue levels (the darker, the greater). The green
region represents the most promising combinations of blending and warping factors to successfully
perpetrate the attack

0 0.1 0.2 0.3 0.4 0.5

0 1.1% 1.4% 1.9% 2.0% 3.0% 3.1%

0.1 3.8% 5.1% 5.8% 6.9% 7.9% 9.2%

0.2 11.6% 13.9% 16.4% 19.1% 22.1% 25.0%

0.3 29.7% 34.1% 38.8% 43.8% 48.1% 52.8%

0.4 56.2% 63.3% 68.5% 73.0% 77.1% 79.8%

0.5 78.5% 83.2% 87.7% 90.5% 92.7% 94.2%
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Fig. 6.10 Example images from the database used for the experiment. The morphed images are
obtained combining the two images I0 and I1 with different blending (αB ) and warping (αW ) factors

stated in [34, 44]. This choice would increase the chances of successful attack at the
border (from about 16–44 to 78–88%, on the average) keeping unaltered the chances
of fooling the human officer during the document issuing process. In fact, a visual
inspection of several generated morphs reveals that the difference between the two
images is imperceptible, in particular when look-alike subjects are involved (see the
example of Fig. 6.10). Moreover, we should always consider that human recognition
capabilities are surprisingly error-prone in front of unfamiliar faces [45] and small
appearance variations would probably be neglected. Finally, it is important to note
that the MMPMR values could be even higher because, in a real scenario, a criminal
would try to produce high quality morphed images, discarding the morphs with a
low probability of success and applying manual retouching to remove unrealistic
artifacts.

6.3.3 Deep Learning-Based Morphing Results

Currently no databases ofmorphed images generated byGANsare publicly available;
therefore, the vulnerability assessment we did only focus on images generated by
landmark-based approaches. However, as a reference, we think it is worth reporting
the preliminary results reported by the authors of the GAN-based approaches in their
paper [27].
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Table 6.8 MMPMR of a face recognition system on morphed images generated by GANs as
reported in [27]

Format Morph generation type

Facial landmark [46]
(%)

StyleGAN MIPGAN-I (%) MIPGAN-II (%)

Digital 100 64.68 94.36 92.93

P&S 97.64 61.72 92.97 80.56

P&S with compression 97.84 58.92 92.29 90.24

Table 6.8 compares the MMPMR of a state-of-the-art FRS on morphed images
generated by (i) GANs and (ii) a landmark-based morphing method [46]. While
StyleGAN generates morphed images with a low chance to fool the FRS (about
60%), the MIPGAN approach achieves interesting results in terms of efficacy of the
attack (about 90%) even if lower than the facial landmark method (about 98%).

On the other hand, even ifMIPGAN seems able to fool a FRS, some further efforts
are necessary to improve the similarity with the contributing subjects thus increasing
the effectiveness of the attack against human experts.

6.4 Conclusions

The general trust on automatic face recognition systems has recently been under-
mined by several possible kinds of attack, among which the face morphing is one of
themost insidious and difficult to address. Dealing with facemorphing is particularly
complex in the context of ePassports; FRS are requested to work at fixed operational
thresholds that guarantee a good trade-off between security and convenience in the
use of ABC gates. Unfortunately, at these thresholds, it is very hard for FRSs to reject
morphed images, thus making them quite vulnerable to the face morphing attack.
This is particularly true when themorphed facial image is accurately prepared, with a
manual intervention for facial landmark selection and artifact removal. Studies in the
literature show that humans are easily fooled by accuratemorphed images.Moreover,
the high success rate measured in this chapter for landmark-based morphing tech-
niques and the preliminary results reported in research papers for the GAN-based
approaches confirm that face morphing is a real security threat. Recently, several
research groups working on face recognition devoted significant efforts in designing
face morphing attack detection techniques but, as discussed in a later chapter, further
improvements are still needed to achieve good generalization capabilities.
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