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Abstract Methods to perform regression on compositional covariates have
recently been proposed using isometric log-ratios (ilr) representation of com-
positional parts. This approach consists of first applying standard regression
on ilr coordinates (with no need for either constraint on regression coefficients
or the use of Moore Penrose generalized inverse) and second, transforming the
estimated ilr coefficients into their contrast logratios counterparts which give
easy-to-interpret parameters for the linear effect of each compositional part,
in relative terms, on the response. In this work we present an extension of this
framework, where compositional covariate effects are allowed to be smooth in
the ilr domain. This is achieved by fitting a smooth function over the multi-
dimensional ilr space, using a basis of B-splines and a set of associated spline
coefficients. Smoothness is achieved by assuming random walk priors on spline
coefficients in a hierarchical Bayesian framework. The proposed methodology
is illustrated on a spatial dataset from an ecological survey on a gypsum out-
crop located in the Emilia Romagna Region, Italy.

Keywords Compositional data · Bayesian P-splines · Intrinsinc Gaussian
Markov Random Fields · Spatial regression · Vegetation cover

1 Introduction

Compositional data consist of vectors whose components refer to proportion of
a whole. The most fundamental property of a compositional data set is its in-
trinsic multivariate nature. Compositional data arise in several applied fields,
ranging from mineral compositions of rocks to air and water pollution, poll
data, economic activities and many others. In most of multivariate analysis, it
is the decision of the analyst to treat individual observations of several vari-
ables jointly, in order to exploit, understand or modeling their possible mutual
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dependence. On the contrary, a composition is multivariate by nature, because
the importance of one single component can only be evaluated with respect
to the total or with respect to other components. This fundamental feature of
compositions gave rise to a specific literature concerning compositional data
analysis, whose first comprehensive treatment was given in Aitchison (1986).
Such literature is basically concerned with the construction of suitable statisti-
cal methods that need to take account of the natural geometry of compositional
data: the geometry of the simplex. In fact, a D-part composition belongs to
the simplex

S
D =

{
(z1, . . . , zd, . . . , zD) : zd > 0, d = 1, . . . , D;

D∑

d=1

zd = c

}
,

where c is a positive constant whose value is irrelevant because only the ratios
of the parts contain the relevant information.
The case study that motivates the present research refers to an ecological
application: in particular, we investigate the relationship between vegetation
cover and substrate typologies within a rupicolous basophilic habitat defined as
priority by the European Commission (Council Directive 92/43/CEE). Avail-
able data consist of post-processed ground photos which provide information
about vegetation cover and substrate typology in a fine regular lattice: sub-
strate data are expressed as the proportion of cell grid occupied by each type
of substrate. Modeling vegetation cover in terms of substrate typologies is
crucial to evaluating substrate suitability, i.e., substrates’ natural ability to
support vegetation. A thorough discussion of the case study is given in Bruno
et al (2014) and Velli (2014). The aim of the case study is to evaluate the
effect of the composition of substrate typologies, observed at each pixel, on
vegetation coverage: hence, the methodological framework is regression on a
compositional covariate.
When dealing with compositional covariates, statistical modeling needs to be
coherent with the algebra of the simplex, in order to obtain sensible and in-
terpretable results: to this aim, the analysis starts from some transformation
of the covariate. Several contributions have been recently devoted to linear
regression on a compositional covariate (Bruno et al, 2014; Hron et al, 2012;
Tolosana-Delgado and van den Boogaart, 2011), where several advantages of
the isometric log-ratio (ilr, Egozcue et al (2003)) transformation have been
highlighted. In this paper, starting from ilr -transformed data, we consider the
case of non-parametric regression on a compositional covariate. The ilr trans-
formation maps the D-dimensional simplex S

D into the (D − 1)-dimensional
real space R

D−1, thus (D − 1)-dimensional smoothers are sought. The pro-
posed approach is based on multivariate Bayesian P-splines, i.e. B-splines with
roughness penalties, that have been shown to be effective and computationally
efficient tools for smoothing multidimensional data (Currie et al, 2006; Eilers
et al, 2006). To our knowledge, the only contribution in the framework of non-
parametric regression on a compositional covariate is provided by Di Marzio
et al (2014), where simplicial kernels are adopted in order to obtain local
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constant and local linear non-parametric estimators. The paper is organised
as follows. Section 2 discusses linear regression on a compositional covariate,
while section 3 deals with non-parametric regression within the Bayesian P-
spline framework. In section 4 the aforementioned case study is presented.
Some concluding remarks are sketched in section 5.

2 Linear regression on a compositional covariate

For the sake of simplicity, the methodology proposed in sections 2 and 3 con-
siders the case of a linear regression model where y is a real response variable
and z = (z1, . . . , zd, . . . , zD) is a D-part compositional covariate: this frame-
work is dubbed simplicial-real regression in Di Marzio et al (2014). As will be
shown in the application of section 4, all the presented theory can readily be
applied to Generalised Linear Models (GLM).
Specifying a linear model with a parameterisation providing sensible interpre-
tation of the compositional parts effect is a non-trivial task. Indeed, untrans-
formed components of the covariate cannot vary freely: hence, if untransformed
compositional covariate is used, model parameters can be misleading and suf-
fer of a lack of interpretability; moreover the design matrix of the proportional
representation of compositions is singular.
These problems have been tackled following different approaches, all based on
some transformation of the compositional covariate: a first advance in the field
was proposed in Aitchison and Bacon-Shone (1984), where log-contrast models
were introduced by applying the log-ratio transformation to the compositional
covariate. According to Tolosana-Delgado and van den Boogaart (2011), the
centered log-ratio (clr) representation of a composition is often convenient in
a regression framework because each coefficient can be related to an original
component. Nonetheless, the clr transformation is not expressed in terms of an
orthogonal basis, neither of the simplex nor of the real space and it generates
a singular design matrix that requires a sum-to-zero constraint for model esti-
mation. On one hand, this can easily be addressed in a simple linear regression
framework, where estimation of the regression coefficients can be obtained by
computing the Moore-Penrose inverse. On the other hand, this is not practical
in complex hierarchical models because of the computational burden implied
by linear constraints (Bruno et al, 2014), and has several disadvantages when
performing non-parametric regression, as will be discussed in section 3. In this
paper, following the approach proposed in Bruno et al (2014), we adopt the
ilr transformation which defines an isometry between S

D and R
D−1 and is

directly associated with orthogonal coordinates in the simplex. As discussed
in Egozcue et al (2003), an orthonormal basis matrix A associated with the
coordinate system generated by the ilr transformation can be obtained by
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sequential binary partition, namely, the d-th row of A is:

ad =

√
D − d

D − d+ 1


 0, 0︸︷︷︸
d−1 times

, 1,−(D − d)−1,−(D − d)−1

︸ ︷︷ ︸
D−d times


 , d = 1, . . . , D

(1)
The ilr transformation leads to ilr -transformed covariate x = ilr(z) = (x1, . . . , xd, . . . , xD−1),
where the coordinates associated to the basis (1) are:

xd =

√
D − d

D − d+ 1
log

zd

D−d

√∏D

j=d+1
zj

, d = 1, . . . , D. (2)

Such transformation gives some important advantages with respect to the clr

transformation, still providing exactly the same information on the relation-
ship between the response and the compositional covariate.
Let us consider a real response yi and a vector of ilr coordinates xi = (xi,1, . . . , xi,D−1),
i = 1, . . . , n indexing the observations. The starting point for regression on a
compositional covariate is the linear model:

yi = α+ xT

i βl + εi, εi ∼ N(0, σ2
ε ), i = 1, . . . , n (3)

where βl is a (D − 1)-dimensional vector of regression coefficients and α is
the intercept. Note that, independently of D, model (3) could be thought as
a regression model on one single compositional covariate, since what is being
explained is just the variation of the response with respect to variation of the
compositions of a whole, that in this case is represented by ilr coordinates.
In practice, the number of parts determines the dimensionality of the domain
of the compositional covariate and can generate problems due to the curse of
dimensionality.
When parameterisation (3) is adopted, the first coefficient β1l gives informa-
tion about the relative contribution of the first part to the variation of the
response. As an example, a positive coefficient implies that increasing the con-
tribution of the first part of the compositional covariate with respect to all the

other, has a positive effect on the response: indeed, as can be seen from equa-
tion (2), the first ilr coordinate involves a comparison between the first compo-
nent and all the remaining components. Coefficients βjl, j = 2, . . . , D−1, can-
not be interpreted analogously. Nonetheless, meaningful regression coefficients
for all parts can be obtained switching from ilr to clr coefficients by means
of a simple linear transformation. In fact, clr coordinates can be obtained
starting from ilr coordinates as clr(z) = ilr(z)TA: thus, the D-dimensional
vector of clr regression coefficients can be obtained starting from model (3)

as β̃clr = ATβ. It is worth noting that coefficients β̃clr sum to zero by con-
struction and convey all the relevant information concerning the effect of each
part on the response variable: in fact, if the proportion of part d increases,
then the proportion of at least one of the other parts must decrease. Thus, if
increasing the share of the d-th part does have a positive effect on the response
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variable, then increasing the share of some other part will necessarily have a
negative effect. For this reason, coherently with the most prominent feature of
compositional data, clr coefficients can be interpreted as the relative effect of
each part w.r.t. all the others. Summarizing, regression models based on the ilr
transformation provide an orthonormal coordinate counterpart to clr regres-
sion conveying exactly the same information about the relationship between
the covariate and the response. The properties of the ilr transformation have
been proven to be advantageous when estimating complex hierarchical models
with no need of introducing linear constraints and reveal extremely useful in
the context of non-parametric regression, as discussed in the following section.

3 Non-parametric regression on a compositional covariate

Let us consider the following model

yi = α+ f(xi) + εi, εi ∼ N(0, σ2
ε ), i = 1, . . . , n (4)

where α is the intercept, f(xi) is a (D − 1)-dimensional smooth function of
the ilr coordinates xi = (xi,1, ..., xi,D−1)

T and εi is an error term. Model (4),
which constitutes the non-parametric generalisation of model (3), basically re-
alizes smoothing of the response data yi over a compositional covariate zi by
means of its ilr coordinates xi.
In general, given data yi and a covariate xi, i = 1, ..., n, statistical smooth-
ing techniques are such that, for an arbitrary value x0, an estimate f̂(x0) is
computed by a weighted mean of the data with weights depending on the
euclidean distances between x0 and xi, for each i = 1, ..., n. In our case, dis-
tances between realizations of a compositional covariate should be measured in
the simplex using Aitchison algebra (Aitchison, 1986). However, since the ilr

transformation is an isomorphism from S
D to R

D−1, i.e. it has the property
of being an isometric representation, distances between compositions in the
simplex can just be measured by euclidean norms in the ilr real domain.

Remark 1 Given two D-parts compositions w1,w2 ∈ S
D, the isometric prop-

erty implies that
da(w1,w2) = ‖ilr(w1)− ilr(w2)‖ (5)

where

da(w1,w2) =

√√√√ 1

D

∑

i<j

{
log

(
w1i

w1j

)
− log

(
w2i

w2j

)}

is the Aitchison distance and ‖ · ‖ is the euclidean norm.

Property (5) offers a practical solution to manage the difficult task of fit-
ting a D dimensional smooth function on the simplex S

D by just fitting a
(D − 1)-dimensional smooth function on the unconstrained real space R

D−1.
This property has been exploited by Di Marzio et al (2014) who use simpli-
cial kernels defined on ilr coordinates to perform local linear regression on
compositional data.



6

3.1 P-spline

In this work, we adopt an approach based on the P-spline method proposed by
Eilers and Marx (1996), which can easily be adapted to the case of smoothing
over a (D − 1)-dimensional space. The general P-spline method focuses on
regression on a basis of B-splines and a difference penalty on the associated
spline coefficients. B-splines are required to be equispaced over the covariate
domain, i.e. are centred at knots laying on a regular grid, in a way that smooth-
ing is only regulated by penalties (Eilers and Marx, 2010). Typical penalties
are made by combining a roughness measure, usually considering first or sec-
ond order differences at neighbouring knots, and a parameter controlling the
balance between smoothness and goodness of fit. In the frequentist approach,
estimation is performed via penalized maximum likelihood, conditional on a
fixed value for the smoothing parameter. Selection of the smoothing param-
eter requires cross-validation or grid search procedures, which can be hugely
computationally demanding in large datasets or multidimensional settings.
A Bayesian approach has been proposed in Lang and Brezger (2004), using
random walk priors on the spline coefficients and an Inverse Gamma prior
on the smoothing parameter. The resulting fit accounts for uncertainty of the
smoothing parameter estimation.

P-splines have been used as a general tool to model smooth covariate effects
in structured additive regression models (Brezger and Lang, 2006). Specifically,
to perform surface fitting, the P-spline method has been applied in several con-
texts involving spatial data, for example in disease mapping (Lee and Durbán,
2009; Goicoa et al, 2012), forestry and ecology (Kneib et al, 2008) and air
pollution modelling (Lee and Durbán, 2011). The extension from spatial to
multidimensional grid data has been described in Eilers et al (2006) and Cur-
rie et al (2006), using classical inferential procedures.

3.2 P-spline smoothing on ilr coordinates

In what follows, we show how the P-spline approach can be adapted to the case
of non-parametric regression on a compositional covariate, in a hierarchical
Bayesian framework. The isometric property of the ilr transformation allows
the B-spline basis matrix to be built in the unconstrained R

D−1 domain. This
will produce a smoothing method which is perfectly coherent with the algebra
of the simplex. The non-parametric function in equation (4) is specified as

f(xi) = B(xi)β, (6)

where B(xi) is the i-th row entry of a B-spline basis matrix Bn×q, containing
multivariate B-splines evaluated at the (D − 1)-dimensional vector xi, and β

is a q-dimensional vector of spline coefficients.
A practical way to obtain the full basis matrix B is to use tensor products of
marginal basis (Wood, 2006) defined over each ilr coordinate xj , j = 1, ..., D−
1. The steps needed for building B are briefly described in the following. At
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the first step, marginal bases Bj , j = 1, ..., D − 1, of dimension n × qj , are
obtained as a collection of qj univariate B-spline functions centred at equally-
spaced knots (laying on a regular knot-grid). In order to define a knot-grid over
xj , let the range rj = [min(xj),max(xj)] be divided into q′j internal intervals
of the same length. A univariate B-spline is a bell-shaped function consisting
of g+1 polynomial pieces, each piece of degree g (e.g. g = 3, cubic). B-splines
are non zero over a limited domain spanned by g+1 intervals, this giving good
numerical properties and stable fitting algorithms. The number of columns qj
is given by q′j + g, while the number of knots required for building the basis
is q′j + 2g + 1. Note that, some knots external to the range rj are needed for
any point inside the range to be covered by the same number of B-splines.
When all B-splines inside Bj are supported (e.g. when a sufficient amount of
data belong to the intervals where 1-dimensional bases are non zero), qj is also
the rank of Bj . For all details on computation of a B-spline basis matrix see
Eilers and Marx (1996). In practice, the knot-grid can either be specified by
choosing q′ or simply by defining the locations of regularly spaced knots over
rj . Knots over rj will denoted with vector mj of length qj .
At the second step, the tensor product of marginal B-splines is obtained by
the kronecker product (⊗):

B(xi) = B1(x1)⊗ ...⊗Bj(xj)⊗ ...⊗BD−1(xD−1),

where B(xi) the i-th row of B, containing B-splines evaluated at xi. Analo-
gously Bj(xj) is the row entry of Bj containing B-splines evaluated at xj . To
compute B in practice, the box product operator (�) can be used.

Definition 1 Given two matrices Pm×c1 and Qm×c2 , the box product oper-
ator is defined as:

P�Q = (P ⊗ 1T

c2
)� (1T

c1
⊗Q)

where 1k indicates a column vector of ones with length k and � is the element-
wise product.

Eventually, the full basis matrix is B = BD−1�BD−2� . . .�B1 with dimen-
sion n× q where q = q1q2 · . . . · qD−1.
Figure 1 describes the steps leading to the full basis matrixB in the case where
D = 3. In the upper panels of Figure 1, marginal and bivariate B-splines are
displayed to aid visualization of a tensor product operation on two marginal
bases, i.e. when we have two ilr coordinates x1 and x2. In the upper left
panel, marginal univariate B-splines are plotted with dashed and solid lines
along x1 and x2 respectively, with knots indicated by dots. A perspective plot
of the bivariate B-splines resulting from the tensor product of the marginal
bases is displayed in the upper right panel of Figure 1. In the lower left panel,
a flattened version of the perspective plot with the same bivariate B-splines
seen from top are shown: contours emphasize the symmetric shape of each
B-spline and their regular spacing in R

2. In this panel, knots are represented
by dots; note, these are the vertexes of a 2-dimensional regular grid m whose
coordinates are

(
m1 ⊗ 1T

q2
,1T

q1
⊗m2

)
. In the lower right panel, a ternary plot
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Fig. 1 Bivariate B-spline basis functions over the ilr domain, in the case of a 3-part com-
position. Upper left panel shows marginal basis, with knots identified by dots. Upper right
panel and lower left panels display B-splines in a perspective plot and a flat representation,
respectively. The lower right panel shows how B-splines appear in the simplex S3. The shape
of the B-splines is highlighted by contours in the last two panels

shows how things appears in the simplex: B-splines have symmetric shapes
and are equispaced in terms of Aitchison geometry. Ternary diagrams are the
most popular tool for compositional data visualization when D = 3. A ternary
diagram is an equilateral triangle equivalent to the 3-dimensional simplex: a
generic 3-parts compositional observation, z = (zj)j=1,...,3, will plot at a dis-
tance zj from the opposite side of vertex j. At each vertex of the triangle, the
components takes the maximum value of 1.
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3.3 Priors

Intrinsic Gaussian Markov Random Fields (IGMRFs) (Rue and Held, 2005) are
widely adopted to model smooth random effects. In what follows IGMRFM (τK)
denotes the (multivariate normal) distribution of a M -dimensional random
vector with (M ×M)-dimensional structure matrix K and precision parame-
ter τ . An IGMRF prior on spline coefficients β is specified as:

β ∼ IGMRFq(τβKβ) (7)

τβ ∼ Gamma(a, b) (8)

where the structure matrix Kβ is a sparse precision matrix, whose non zero
pattern describes conditional dependencies between spline coefficients placed
in correspondence of the vertexes of the knot-grid. A similar prior was pro-
posed by Lang and Brezger (2004) for Bayesian inference on spline coefficients
of a univariate P-spline model. The purpose is to penalize deviations of spline
coefficients from a constant (or a linear, depending on the random walk order)
unknown level, in a way that a not too variable set of βs is achieved. The degree
of variability of the joint posterior distribution of β is regulated by the preci-
sion parameter τβ , assuming a global amount of smoothness operating all over
the knot-grid. According to the Markov assumption, coefficients β are con-
ditionally independent given coefficients at neighbouring knots (e.g. adjacent
vertexes). The definition of neighbourhood, determines different smoothing
models; see Rue and Held (2005) ch. 3 for a detailed description of IGMRFs
on regular lattices. In order to obtain the structure matrix Kβ , we proceed
by specifying marginal structures Rj , j = 1, . . . , D− 1, and combine them by
means of sums of Kronecker products. In principle, different marginal struc-
tures can be assumed to achieve different smoothing along each dimension.
Let Rj be the structure matrix associated to an IGMRF defined on the knots
mj . Kβ turns out to be:

Kβ =
(
IqD−1

⊗ ...⊗ Iq2 ⊗R1

)
+

(
IqD−1

⊗ ...⊗ Iq3 ⊗R2 ⊗ Iq1
)
+

...(
RD−1 ⊗ IqD−2

⊗ ...⊗ Iq1
)

(9)

where Iq is the identity matrix of dimension q. Note that, if R = Rj , j =
1, ..., D−1, is specified as the structure matrix of a random walk prior of order
1 (RW1) on a one-dimensional grid, i.e. (considering qj = 5 as an example):

R =




1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1
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Table 1 B-spline basis B and structure matrices Kβ according to the number D of com-
positional parts

n. parts B Kβ

2 B2�B1 (Iq2 ⊗R1) + (R2 ⊗ Iq1 )
3 B3�B2�B1 (Iq3 ⊗ Iq2 ⊗R1) + (Iq3 ⊗R2 ⊗ Iq1 ) + (R3 ⊗ Iq2 ⊗ Iq1 )
. . .

. . .

. . .

D BD−1�...�B1

(
IqD−1

⊗ ...⊗ Iq2 ⊗R1

)
+

(
IqD−1

⊗ ...⊗ Iq3 ⊗R2 ⊗ Iq1
)
+(

RD−1 ⊗ IqD−2
⊗ ...⊗ Iq1

)

the resulting structure matrix Kβ corresponds to a RW1 prior on a D − 1
dimensional regular grid. Table 1 summarises steps for building the full basis
B and structure Kβ for varying D.

4 Application

In this section, we apply non-parametric regression on a compositional covari-
ate in a spatial framework. In particular, we consider data gathered in a study
designed within the framework of the priority defined by the European Com-
mission (Council Directive 92/43/CEE), with the aim of investigating habitat
“6110* Rupicolous calcareous or basophilic grasslands of the Alysso-Sedion

albi”. The ecological study collected data at several times on an area struc-
tured as a regular lattice of dimension 30× 30, containing S = 900 grid cells.
A spatio-temporal analysis of these data is provided in Bruno et al (2014),
where linear regression on a compositional covariate was performed tacking
account of spatial and temporal correlation.
For the purposes of this paper, we focus on the analysis of a single time; spatio-
temporal modelling constitutes one of the possible extensions. A ground-photo
of the study area was taken and then processed via GIS algorithms to pro-
duce a digital image for vegetation cover and ground composition, considering
D = 4 substrates: moss, litter, soil and bare rock. Each grid cell in the dig-
ital image provides information collected over N = 100 pixels. At each grid
cell i, we denote with yi the number of pixels covered by a plant and with
zs = (zi1, zi2, zi3, zi4) the proportion of pixels occupied respectively by moss,
litter, soil and bare rock. A quick measure of vegetation occupancy probability
can be obtained as π̂i = yi/N . A map of the study area reporting vegetation
cover is shown in the left panel of Figure 2, where a substantial degree of spatial
correlation can be observed. For visualising vegetation cover vs the composi-
tional covariate, since D = 4, a regular tetrahedron can in principle be used,
which is a generalisation of the ternary diagram. A tetrahedron is reported in
the right panel of Figure 2 where dots are colored proportionally to vegeta-
tion cover observed at each substrate composition. Colors vary smoothly from
red (low vegetation) to green (high vegetation). The tetrahedron highlights
low vegetation cover in correspondence of compositions where bare rock has a
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Fig. 2 Left panel: map of vegetation cover. Right panel: vegetation cover vs substrate
composition; green (red) colors correspond to high (low) vegetation cover.

high relative weight, while high vegetation cover is observed when moss and
litter are prevalent.
The aim of the hierarchical model proposed in what follows is to fit a smooth
surface over the simplex identified by the tetrahedron in the right panel of
Figure 2; a smooth surface is used to describe substrate suitability for vege-
tation cover. At the same time, spatial correlation observed in the left panel
of Figure 2 is taken into account in the model. The linear and non-parametric
alternatives discussed in sections 2 and 3 are compared in order to understand
the meaning and emphasize the merits of P-spline smoothing in the context
of regression on a compositional covariate.

4.1 Model

We propose a Bayesian hierarchical model which specifies a smooth relation-
ship between vegetation occupancy probability and substrate composition by
using the methodology proposed in section 3. Conditionally on vegetation oc-
cupancy probability πi, counts yi are assumed to follow a Binomial distribu-
tion, i.e., the binary response at each pixel within a grid cell is considered as
the realization of an independent trial:

yi|πi, N ∼ Binomial(πi, N) i = 1, . . . , S.

To model the vegetation occupancy probability as a function of covariates, we
adopt the probit link; the linear predictor is specified as follows:

Φ−1(πi) = α+ f(xi) + θi,
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where α is the intercept and θ = (θ1, . . . , θS) is a spatially structured vector
of random effects modelled as an IGMRF:

θ ∼ IGMRFS(τθKθ).

Kθ is specified as the structure matrix of a Random Walk of order 1 on the
regular lattice formed by the grid cells.
The term f(xi) captures the relationship between substrate composition and
vegetation cover. According to the linear model, model hierarchy can be com-
pleted as

f(xi) = xT

i βl βl ∼ N(0, 1000).

For specifying the P-spline smoothing model, we assume:

f(xi) = B(xi)β

β ∼ IGMRFS(τβKβ) (10)

τβ ∼ Gamma(a, b)

using a B-spline basis B built as tensor products of marginal bases Bj , j =
1, 2, 3, as described in section 3. Structure matrixKβ is specified as in equation
(9). In building Kβ , the same difference matrix Rj has been used for each ilr

coordinate. This is coherent with the assumption of a global τβ regulating the
degree of smoothing all over the simplex. As regards knot-grid resolution, qj =
7 equispaced knots have been selected on each ilr coordinate, giving a 73 =
343-dimensional structure matrix Kβ and a (900× 343)-dimensional full basis
matrix B. As it is very often the case in multidimensional smoothing using
B-splines, rank(B) < q, since extreme knots are not supported. Nevertheless,
prior (10) allows model identifiability by borrowing strength between adjacent
coefficients.

The Markov property of IGMRF models implies sparseness of the pre-
cision matrix, which allows fast computations, making multidimensional P-
spline smoothing feasible. Two alternative strategies are currently very pop-
ular for approximating the joint posterior distribution: MCMC sampling and
Integrated Nested Laplace Approximations (INLA, Rue and Martino 2009).
Computations have been performed using both methods, codes are available
upon request from the corresponding author. Note that, to allow model iden-
tifiability, the smooth surface Bβ must be estimated under the constraint
1T

qBβ = 0, i.e. a sum to zero constraint is imposed on the smooth surface:
this can easily be implemented both in INLA and MCMC.

4.2 Results

Comparison of the fitting performances in terms of Deviance Information Cri-
terion (DIC, Spiegelhalter et al (2002)) shows a slightly better performance
of the non-parametric model (DIC = 4343) with respect to the linear model
(DIC = 4352). Models not including the spatial random effect θ, show poor fit-
ting performances both in the linear and non-parametric case, delivering DIC
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Table 2 Posterior summaries for the regression coefficients - linear model

parameter mean 0.025quant 0.975quant Substrate β̃clr

α -1.8042 -1.9202 -1.6901 Moss (M) 0.082
βl1 0.0944 0.0391 0.1498 Litter (L) 0.107
βl2 0.1644 0.1181 0.2109 Soil (S) -0.048
βl3 0.0659 0.0163 0.1154 Bare rock (B) -0.141

values respectively equal to 16324 and 16157: hence, the explanatory variable
does not capture all the spatial variation of the response variable. In table 2,
some posterior summaries for the linear model parameters are reported. Pos-
terior means of the ilr coefficients βl are all statistically significant, showing a
significant effect of substrate composition on vegetation cover. As discussed in
section 2, while βl1 can be interpreted as the effect of the first part with respect
to all the others, coefficients βl2 and βl3 do not have a sensible interpretation
since they are not directly related to compositional parts. For this reason, the
last column of the table reports clr coefficients obtained as β̃clr = ATβl where
A is the orthonormal basis defined in equation (1): these coefficients sum to
zero and can readily be interpreted as relative substrate suitability measures.
It can be seen that moss and litter show positive relative suitability, on the
contrary soil and bare rock show negative relative suitability, with litter being
the most suitable substrate and bare rock being the less suitable one.

Building appropriate graphics to visualise the effect of a compositional
covariate when D = 4 is a non trivial task. A practical approach is to focus on
the relative magnitudes of three components (sub-compositions) conditioning
on the remaining one. This is the approach adopted in Figure 3, where, in
each row, ternary diagrams conditional on a single part are plotted: from top
to bottom, diagrams are conditional on moss (M), litter (L), soil (S) and bare
rock (B), respectively. Ternary diagrams in the first column report the effect of
our compositional covariate in the linear model case; while in the second and
third columns, ternaries display the same compositional effect in the smooth
model case. In the first two column panels, the conditioning value is equal
to the average of the conditioning part over the study region: for example,
panels (1.1) and (1.2) are conditional on the moss average, i.e. M = 0.47. In
the third column panels, we choose an arbitrary conditioning value equal to
0.7. In each ternary diagram, dark green (dark red) colors are associated to
substrate compositions that are more suitable (less suitable) for vegetation
cover, conditionally on the chosen value for the conditioning component.

The patterns observed in the first column of Figure 3 are just a graphical
display of the inference that can be drawn by clr coefficients: high suitability
(green) values are in the neighbourhood of vertexes associated to moss (M)
and litter (L), while low suitability (red) values are in the neighbourhood of
vertexes associated to soil (S) and bare rock (B). The patterns observed in
the first column ternaries, display how a linear relationship appears in the
simplex: it is worth to notice that, when adopting the linear model, the same



14

Linear: M=0.47

L S

B

(1.1)

Smooth:  M = 0.47

L S

B

(1.2)

Smooth:  M = 0.7

L S

B

(1.3)

−2.71

−2.11

−1.50

−0.90

−0.30

Linear: L=0.29

M S

B

(2.1)

Smooth:  L = 0.29

M S

B

(2.2)

Smooth:  L = 0.7

M S

B

(2.3)

−2.87

−2.28

−1.68

−1.09

−0.49

Linear: S=0.09

M L

B

(3.1)

Smooth:  S = 0.09

M L

B

(3.2)

Smooth:  S = 0.7

M L

B

(3.3)

−3.12

−2.40

−1.67

−0.95

−0.22

Linear: B=0.16

M L

S

(4.1)

Smooth:  B = 0.16

M L

S

(4.2)

Smooth:  B = 0.7

M L

S

(4.3)

−2.84

−2.44

−2.04

−1.64

−1.24

Fig. 3 Ternary diagrams showing the substrate composition effect on vegetation cover
(substrate suitability). In rows 1-4, ternaries are plotted conditionally on moss (M), litter
(L), soil (S), and bare rock (B) respectively. First column panels show ternaries referred
to the linear model while second and third column panels show ternaries referred to the
P-spline model
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pattern is observed independently of the value of the conditioning part, since
it is determined by constant clr coefficients. On the other hand, the local
nature of the smooth model allows the shape of the relationship to change
according to the value of the conditioning part, as can be seen by comparing
the second and third columns of Figure 3. As a matter of fact, joint smoothing
performed by Bayesian P-splines, incorporates the effect of interaction among
parts, allowing a far more flexible and detailed description of the relationship
between compositions and the response, with the drawback that no synthetic
parameters are available to describe such relationship.

5 Conclusions

In this work, a non-parametric approach to regression on compositional co-
variates is developed using Bayesian P-spline. The availability of fast Bayesian
computation (Rue et al, 2009) makes Bayesian P-splines appealing for multi-
dimensional smoothing with a low-rank B-spline basis, which is the approach
assumed in this paper. Furthermore, we believe particular features of P-splines
give advantages in terms of modelling and computations which can be impor-
tant in multidimensional data settings (such as when estimating compositional
covariate effects). Firstly, the rank of a B-spline basis matrix is much lower
than sample size (low-rank smoother). Secondly, B-splines basis functions are
local, i.e. non zero over a limited domain, this allowing sparse matrix com-
putation and numerical stability. Thirdly, penalized regression with B-splines
centred at equispaced knots work well in sparse data contexts, when, for in-
stance, covariate data are sparsely scattered over R

D−1; in such situations
the combined use of equispaced knots with difference penalties on coefficients
allows to smoothly interpolate between gaps. Data sparseness over the com-
positional domain is a feature of our application analysed in section 4 but is
also frequent in spatial statistics, especially in geostatistics.

The methodology is illustrated on a case study concerning a habitat in-
cluded in the framework of the priority defined by the European Commission,
where investigating the relationship between vegetation cover and substrate
typology can be helpful in quantifying substrate suitability. The approach
proposed in this paper allows a flexible and detailed description of the rela-
tionship between compositions and the response, but it can be extended in
several directions. Future work includes computationally feasible extensions
to the spatio-temporal case and careful evaluation of the prior assumptions on
the spline coefficients and smoothing parameter.
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