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A detailed description is given of the phase diagram for a two-component unitary Fermi gas with
mass and population imbalance, for both homogeneous and trapped systems. This aims at providing
quantitative benchmarks for the normal-to-superfluid phase transition of a mass-imbalanced Fermi
gas in the temperature-polarization parameter space. A self-consistent t-matrix approach is adopted,
which has already proven to accurately describe the thermodynamic properties of the mass and
population balanced unitary Fermi gas. Our results provide a guideline for the ongoing experiments
on heteronuclear Fermi mixtures.

I. INTRODUCTION

Ultra-cold gases provide a unique platform to inves-
tigate the nature of pairing in fermionic superfluids.
Through the use of Fano-Feshbach resonances [1], it is
possible to tune the attractive interaction between two
fermionic components of the gas, making the superfluid
system to span the BCS-BEC crossover from a Bardeen-
Cooper-Schrieffer (BCS) condensate of highly overlap-
ping Cooper pairs to a Bose-Einstein condensate (BEC)
of dilute tightly-bound molecules [2]. At the resonance,
the scattering length of the inter-particle interaction di-
verges and the system enters the so-called unitary regime.
Besides the tunability of the interaction, ultra-cold

Fermi gases allow for a direct control of the population
of the two fermionic components undergoing pairing. In
the original experimental observations on the BCS-BEC
crossover, which were realized with ultra-cold gases of
fermionic 40K [3] and 6Li [4–6], pairing was achieved with
equal populations of two different hyperfine states of the
same atomic species. Afterwards, the effect of the popu-
lation imbalance of the two components was also investi-
gated experimentally [7–9]. Moreover, different fermionic
species are available to realize combinations of different
nature. The first attempts to realize a mass-imbalanced
mixture were made with a 6Li-40K mixture [10–12]. In
this case, the occurrence of enhanced inelastic collisions
near the Fano-Feshbach resonances [13] made the study
of equilibrium properties rather problematic. More re-
cently, two additional mass-imbalanced mixtures were
considered, made of 40K-161Dy [14, 15] and 6Li-53Cr [16].
In particular, a broad Fano-Feshbach resonance with sup-
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pressed inelastic processes was found in the K-Dy mix-
ture [15], making it a promising candidate for realizing a
mass-imbalanced superfluid.
On the theoretical side, the first works addressing pair-

ing in mass-imbalanced Fermi mixtures were based on a
mean-field approach [17–26], which correctly describes
the system in the BCS (weak-coupling) limit but allows
only for a qualitative description in the unitary regime.
These works resulted in a very rich phase diagram, both
at zero temperature [17–23] and at finite temperature
[23–26]. In particular, at finite temperature the phase
diagram is governed by either a tricritical point (where
the normal-to-superfluid phase transition changes from
second to first order) or a Lifshitz point (where the order
parameter of the superfluid in the normal-to-superfluid
phase transition changes from being homogeneous to a
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) periodic struc-
ture [27]), depending on mass ratio and coupling [23–26].

A first attempt to produce a beyond-mean-field finite-
temperature phase diagram for a mass-imbalanced uni-
tary Fermi gas was done in Refs. [24, 25], by using a po-
laronic ansatz for the fermionic self-energy fitted on the
zero-temperature quantumMonte Carlo equation of state
of Ref. [28], together with a screening correction to the
interaction. The beyond-mean-field nature of the phase
transition close to zero temperature has also been investi-
gated in Refs. [29–31] by the functional-renormalization-
group approach.

Quite recently, beyond-mean-field t-matrix approaches
were also employed to obtain a mass-imbalanced phase
diagram with equal populations, first with partial [32, 33]
and later with full self-consistency [34, 35]. In this con-
text, it is important to remark that t-matrix approaches
are ab initio and do not make use of phenomenologi-
cal parameters. In particular, the fully self-consistent
t-matrix approach (also known as Luttinger-Ward ap-
proach) [36–39] appears to be the most suitable candidate
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for a quantitative description of the phase diagram of
the mass-imbalanced unitary Fermi gas. This approach
compares rather well with Monte Carlo and experimen-
tal data for thermodynamic quantities at unitarity in the
mass-balanced case [38–42]. In addition, when extended
to the mass-imbalanced case, it does not suffer from the
problem of a vanishing critical temperature on the BCS
side of unitarity, which occurs in other non-self-consistent
or partially self-consistent approaches [34, 35].
In this article, we use the self-consistent t-matrix ap-

proach to investigate the phase diagram of a unitary
Fermi gas with both mass and population imbalance. To
this end, we consider both a homogeneous and a harmon-
ically trapped system. The explicit aim is to provide the
optimal parameters that allow for the observation of su-
perfluidity in experiments with mass-imbalanced Fermi
gases. In the homogeneous case, we consider both a mix-
ture of 40K and 161Dy atoms (like in Refs. [14, 15]) and a
mixture of 6Li and 53Cr atoms (like in Ref. [16]). In the
trapped case, we consider the K-Dy mixture only. Our
analysis focuses on a second-order normal-to-superfluid
phase transition. Accordingly, it does not consider the
occurrence of either phase separation related to a first-
order normal-to-superfluid phase transition or an FFLO
phase.
Our main results concern the temperature-polarization

phase diagrams calculated at unitarity within the self-
consistent t-matrix approach, for (i) a homogeneous K-
Dy mixture, (ii) a homogeneous Li-Cr mixture, (iii) a har-
monically trapped K-Dy mixture with two different trap
configurations, and (iv) a harmonically trapped mass-
balanced Fermi gas for reference purposes. In particular,
for the trapped K-Dy mixture we also investigate the de-
pendence of the phase diagram on the ratio of the trap
frequencies for the two atomic species, and characterize
the phase diagram by varying this ratio. Experimentally,
this can be done by variation of the wavelength of the
trapping light or by employing a two-color trap, which
selectively traps the two components with lasers of dif-
ferent wavelengths. We further present the density pro-
files in the trap, both at the critical temperature and in
the normal phase. Finally, we quantify the increase of
intra-species three-body recombinations which is due to
the contraction of the density profiles with respect to the
non-interacting case, within the experimental conditions
of Ref. [15].
The paper is organized as follows. Section II recalls the

basic equations of the self-consistent t-matrix approach.
Sections III and IV report on the numerical results ob-
tained for the homogeneous and harmonically trapped
systems, respectively. Section V gives our conclusions.

II. THEORETICAL APPROACH

In this Section, we introduce the basic equations of
the self-consistent t-matrix approach for a homogeneous
Fermi gas with mass and density imbalance. In the fol-
lowing, we shall set ~ = 1.

We consider a mass-imbalanced Fermi gas at temper-
ature T , with the light (L) and heavy (H) components
interacting with each other through an attractive con-
tact interaction with associated scattering length aF .
The single-particle Green’s function for the σ component
(σ = L,H) can be expressed as [39]

Gσ(k) =
(

G0,σ(k)
−1 − Σσ(k)

)−1

, (1)

where G0,σ(k) = [k2/(2mσ) − µσ − iωn]
−1 is the non-

interacting counterpart, with mσ the mass and µσ the
chemical potential of the σ component. Within the self-
consistent t-matrix approach, the self-energy Σσ(k) in
Eq. (1) is given by [39]

Σσ(k) = −

∫

dQ

(2π)3
1

β

∑

ν

Γ(Q)Gσ̄(Q− k) , (2)

where

Γ(Q) = −

(

m

4πaF
+Rpp(Q)

)−1

(3)

is the particle-particle propagator with m =
2mLmH/(mL+mH) twice the value of the reduced mass
for the two components, and

Rpp(Q) =

∫

dk

(2π)3

( 1

β

∑

n

Gσ(k)Gσ̄(Q− k)−
m

k2

)

, (4)

the renormalized particle-particle bubble. In the above
expressions, β = 1/(kBT ) is the inverse temperature (kB
being the Boltzmann constant), the index σ = (L,H) and
its complementary one σ̄ = (H,L) distinguish the two
atomic species, k = (k, ωn) and Q = (Q,Ων) are four-
vectors, where ωn = (2n + 1)πβ (n integer) and Ων =
2πνβ (ν integer) are fermionic and bosonic Matsubara
frequencies, respectively. Equations (1)-(4) have to be
solved up to self-consistency. The numerical procedure
to achieve this self-consistency is described in detail in
Ref. [39].
The critical temperature Tc for the normal-to-

superfluid second-order phase transition is then obtained
by the Thouless criterion [43]:

[

Γ(Q = 0;T = Tc)
]−1

= 0 . (5)

This equation needs be solved together with the density
equations for both σ components

nσ = −

∫

dk

(2π)3
1

β

∑

n

eiηωnGσ(k) (η → 0+), (6)

which determine the chemical potentials µσ for the two
species with given densities nσ.



3

our data

Hanai�Ohashi

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

rm

T
c
�T

F

HkFaFL
-1=0, p=0

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

rm

T
c
�T

F
H

FIG. 1. (Color online) The critical temperature Tc (in units
of the effective Fermi temperature TF ) obtained by the self-
consistent t-matrix approach (full line) is shown vs the mass
ratio rm for a homogeneous density-balanced Fermi gas at uni-
tarity, and compared with the theoretical values from Ref. [34]
(circles). The inset shows Tc in units of the Fermi tempera-

ture TFH = (6π2nH)2/3/(2mHkB) of the heavy component.
Both in the main panel and the inset, the dashed portions of
the lines are extrapolations of the full lines toward rm = 0
and the dotted vertical lines correspond to the threshold for
the Efimov instability at rm = 1/13.6 [44–47].

III. NUMERICAL RESULTS FOR

THE HOMOGENEOUS SYSTEM

In this Section, we consider a mass-imbalanced Fermi
gas embedded in a homogeneous environment, whose
knowledge will be needed for treating the trapped case
discussed in Sec. IV.
The interaction between the two components is conve-

niently described in terms of the dimensionless coupling
(kF aF )

−1 (at unitarity of interest here, (kFaF )
−1 = 0),

where the effective Fermi wave vector

kF = (3π2n)1/3 (7)

is defined in terms of the total particle density n = nL +
nH . The effective Fermi energy

EF =
(3π2n)2/3

2m
(8)

can be also associated with this wave vector, where m
stands again for twice the value of the reduced mass like
in Eqs. (3) and (4). By rescaling the energies in terms of
EF , the lengths in terms of k−1

F , and so on, the phase dia-
gram becomes universal, meaning that, at fixed coupling
(kF aF )

−1 and polarization p = (nH − nL)/(nH + nL),
the critical temperature Tc (in units of the effective
Fermi temperature TF = EF /kB) becomes a function
of the mass ratio rm = mL/mH only. In particular,
rm = 40/161 for the K-Dy mixture of Refs. [14, 15] and
rm = 6/53 for the Li-Cr mixture of Ref. [16]).
Figure 1 shows the ratio Tc/TF vs rm for a homo-

geneous Fermi gas at unitarity and with balanced den-
sities (p = 0). Our results agree with those obtained

rm=1
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rm=6�53
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FIG. 2. (Color online) The critical temperature Tc (in units
of the effective Fermi temperature TF ) obtained by the self-
consistent t-matrix approach is shown vs the polarization
p = (nH − nL)/(nH + nL) for the homogeneous system
at unitarity. Several values of the mass ratio rm are con-
sidered, corresponding to the: (i) mass-balanced Fermi gas
(rm = 1, dashed-dotted line), (ii) mass-imbalanced K-Dy mix-
ture (rm = 40/161, full line), and (iii) mass-imbalanced Li-Cr
mixture (rm = 6/53, dashed line). In the mass-imbalanced
cases, the dotted portions of the lines represent linear extrap-
olations of the curves toward T = 0 for negative p.

by a similar approach in Ref. [34] (circles). The ratio
Tc/TF is seen to decrease monotonically for decreasing
rm and to extrapolate toward zero for rm = 0. How-
ever, at fixed mH this is just an effect of the chosen nor-
malization in terms of TF , since TF → ∞ for rm → 0.
To remove this effect, in the inset of Fig. 1 the critical
temperature is shown in units of the Fermi temperature
TFH = (6π2nH)2/3/(2mHkB) of the heavy component.
In this way, the ratio Tc/TFH is instead seen to increase
for decreasing rm, until it reaches a weak maximum for
rm = 0.0763 where Tc/TFH = 0.277, after which it de-
creases toward the (extrapolated) value Tc/TFH = 0.268
for rm → 0. It is interesting that the value of rm that
corresponds to this maximum about coincides with the
critical mass ratio rm = 1/13.6 = 0.0735 (indicated by a
vertical dotted line both in the main panel and the inset
of Fig. 1), where the Efimov effect occurs and the system
becomes unstable. This instability occurs because light
atoms can mediate an inverse square attractive potential
between pairs of heavy atoms, which is strong enough to
make the pairs to collapse [44–47].
The ratio Tc/TF can be also obtained as a function

of the polarization p, by fixing the coupling (kF aF )
−1

and the mass ratio rm. This is shown in Fig. 2 for a
homogeneous two-component Fermi system at unitarity,
with (i) equal masses (dashed-dotted line), (ii) the mass
ratio rm = 40/161 corresponding to a K-Dy mixture (full
line), and (iii) the mass ratio rm = 6/53 corresponding
to a Li-Cr mixture (dashed line). We have verified that
in the mass-balanced case our results agree with those
obtained by a similar approach in Ref. [48].
Note from Fig. 2 that in the mass-balanced case the
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maximum of Tc/TF occurs for equal densities (p = 0).
For mass-imbalanced mixtures, however, the maximum
occurs instead at negative values of the polarization p,
which corresponds to a majority of light atoms (this be-
havior is in line with what found within a mean-field
approach in Refs. [24–26, 49]). In particular, from Fig. 2
we obtain pmax = −0.0775 for the K-Dy mixture and
pmax = −0.114 for the Li-Cr mixture. It should, however,
be remarked that the value of pmax depends on the units
used for normalizing Tc. When these units are in terms of
the Fermi temperature TFH = (6π2nH)2/3/(2mHkB) of
the heavy component, we obtain pmax = −0.166 for the
K-Dy mixture and pmax = −0.204 for the Li-Cr mixture;
otherwise, when the units are in terms of the Fermi tem-
perature TFL = (6π2nL)

2/3/(2mLkB) of the light com-
ponent, we obtain pmax = 0.003 for the K-Dy mixture
and pmax = −0.036 for the Li-Cr mixture.
Note further from Fig. 2 that for the K-Dy mixture,

on the p > 0 side the Tc curve decreases up to a point
where it starts developing a reentrance, in a similar way
to what happens for the mass-balanced case (the reen-
trance points being (p+, T+

c /TF ) = (0.2175, 0.0462) for
the K-Dy mixture and (p+, T+

c /TF ) = (0.7180, 0.0646)
for the mass-balanced case). Usually, this reentrant be-
havior is associated with a region of phase separation in
the phase diagram, where the normal-superfluid phase
transition becomes of first-order and the second-order
curve for Tc is covered by the phase separation region
[50]. From mean-field calculations [24–26], we expect in
addition an FFLO phase to develop in this region of the
phase diagram. For the Li-Cr mixture, on the other hand,
we have not been able to find a reentrant region in the
Tc curve due to convergence problems in the numerical
calculations. In this case, it might be possible that a
reentrance point cannot be reached by our numerical al-
gorithm owing to an FFLO phase developing before the
reentrance. Note finally from Fig. 2 that on the p < 0
side Tc decreases monotonically with increasing |p|, un-
til it reaches T = 0 at the (extrapolated) critical values
p− ≃ −0.47 for the K-Dy mixture and p− ≃ −0.68 for
the Li-Cr mixture.
As a final comment, we mention that at a qualita-

tive level the unitary phase diagrams for the second-
order phase transition shown in Fig. 2, obtained by the
self-consistent t-matrix approach, appear quite similar to
those obtained in Refs. [24–26] by a mean-field approach.
However, at a quantitative level significant differences
occur between the results of the two approaches, since
the value of the critical temperature is reduced even by
70−80% in the self-consistent t-matrix approach with re-
spect to the mean-field one. This difference is expected to
show up when comparison with the ongoing experiments
will eventually be possible.

IV. NUMERICAL RESULTS

FOR THE TRAPPED SYSTEM

In this Section, we consider a mass-imbalanced Fermi
gas trapped in a harmonic potential Vσ(r) = mσω

2
σr

2/2,

rm=1, rΩ=1
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FIG. 3. (Color online) The critical temperature Tc for the
trapped system (in units of the Fermi temperature T t

F ), ob-
tained at unitarity by the self-consistent t-matrix approach, is
shown vs the global polarization P = (NH −NL)/(NH +NL).
Results for a mass-imbalanced K-Dy mixture with trap fre-
quency ratio rω = 3.6 (full line) and rω = 7.0 (dashed line)
are compared with those of a mass-balanced Fermi gas with
equal trap frequencies (dashed-dotted line). The inset shows
the Tc curves for the K-Dy mixture in units of the Fermi tem-
perature T t

FH = ωH(6NH)1/3/kB of the heavy component.
In main panel and inset, dotted lines are quadratic extrapo-
lations of the K-Dy curves toward T = 0 for negative P .

where the frequencies ωσ are different for each component
σ = (L,H). It is then convenient to introduce the trap
frequency ratio rω = ωL/ωH between the frequencies of
the two components (in particular, rω = 3.60 for the K-
Dy mixture in the experiment of Ref. [15]).
The effects of the harmonic potential are included

within a local-density approximation, which partitions
the inhomogeneous (trapped) system into locally homo-
geneous regions with local densities nσ(r) for the two
species (for additional details, cf. Sec. IV of Ref. [42]).
Without loss of generality, the original anisotropic har-
monic potential used in the experiments is then conve-
niently transformed into an isotropic harmonic potential
through a simple rescaling of the spatial coordinates. The
phase diagrams of the anisotropic and isotropic systems
then coincide with each other, provided one replaces each
frequency ωσ of the isotropic system by the correspond-
ing geometric mean (ωσ,x ωσ,y ωσ,z)

1/3 of the frequencies
along the three axis of the anisotropic system. The only
assumption is that the aspect ratio λσ = ωσ,z/ωσ,x of the
potentials is the same for the two species (such that the
same isotropic mapping can be applied to both species).
This condition is met by the experiment of Ref. [15], since
both species are trapped by the same laser light.
Next we define the effective Fermi energy for the

trapped system, in the form

Et
F = ω0(3N)1/3 , (9)

where ω0 = (ωLωH)1/2 is the geometric mean of the fre-
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quencies for the two species and N = NL+NH the total
number of atoms. Akin to what is done for the homo-
geneous system, in terms of the Fermi energy (9) for the
trapped system we then define the effective Fermi wave
vector ktF =

√

2mEt
F , the ensuing coupling parameter

(ktF aF )
−1, and the Fermi temperature T t

F = Et
F /kB.

In addition, the critical temperature Tc is here defined
as the temperature at which the trapped gas becomes
superfluid at the trap center. Accordingly, we are not
searching for the possible occurrence of shell superfluidity
away from the trap center [20–22], and limit our investi-
gation to the regions of physical parameters where super-
fluidity occurs at the trap center only. We also assume
that normal-to-superfluid transition is of second order, as
we did in Sec. III for the homogeneous case. With these
provisions, we are going to determine the dependence of
Tc on polarization and frequency ratio.

A. Dependence of Tc on the polarization P

Figure 3 shows the temperature-polarization phase di-
agram for a trapped system at unitarity, with the mass
ratio rm = 40/161 of the K-Dy mixture and the trap
frequency ratio rω = 3.6 (like in Ref. [15]) (full line)
and rω = 7.0 (dashed line). Comparison is also shown
with the results for a mass-balanced Fermi gas with
equal trap frequencies (dashed-dotted line). Here P =
(NH −NL)/(NH +NL) is the global population polariza-
tion that characterizes the imbalance between the num-
ber of atoms of the two species. In the inset of Fig. 3 the
Tc curves for the K-Dy mixture are instead reported in
units of the Fermi temperature T t

FH = ωH(6NH)1/3/kB
of the heavy component (the conversion factor between
the two scales being T t

FH/T t
F = (rω)

−1/2(1+P )1/3). This
is to facilitate future comparisons with the experimental
data for the K-Dy mixture, since in the corresponding ex-
periment T t

FH is used as the unit of temperature owing
to the fact that the heavy component serves for cooling
and thermometry purposes [15].
Similarly to the homogeneous case of Fig. 2, also for

the mass-balanced case of Fig. 3 the maximum of Tc/T
t
F

occurs for equal populations, while for the K-Dy mixture
the maximum occurs on the P < 0 side for both fre-
quency ratios rω there considered. The value of the po-
larization Pmax corresponding to this maximum depends
on the trap frequency ratio rω. In a simple Thomas-Fermi
calculation of the density profiles for the non-interacting
mixture at T = 0, the value of the global polarization P
for which the densities at the trap center are equal in-
creases monotonically with rω . In a related fashion, we
also expect the value of Pmax to increase (and eventually
change sign) by increasing rω , since the maximum value
of Tc should correspond to nL(r = 0) ≃ nH(r = 0). On
the P > 0 side of the K-Dy phase diagram, Fig. 3 shows
that the behavior of the Tc curve is similar to that of the
mass-balanced case, with a reentrance at the upper crit-
ical polarization P+ which could signal the presence of
phase separation or of exotic phases. On the P < 0 side,
on the other hand, Tc remains finite down to a lower crit-

rΩ=3.6

rΩ=7.0
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HkF
t aFL
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FIG. 4. (Color online) The local density polarization p(0) at
the trap center is shown as a function of the global polariza-
tion P for a unitary K-Dy mixture in a harmonic trap at Tc,
with the trap frequency ratio rω = 3.6 (full line) and rω = 7.0
(dashed line).

ical value P− close to −1 (specifically, the extrapolated
values for the lower critical polarization are P− = −0.992
for rω = 3.6 and P− = −0.976 for rω = 7) [51].
To better characterize the behavior of Tc vs P for the

K-Dy mixture, Fig. 4 shows the local density polarization
p(0) = (nH(0)−nL(0))/(nH(0)+nL(0)) at the trap cen-
ter (with nσ(0) = nσ(r = 0)) as a function of the global
polarization P for rω = 3.6 and rω = 7.0. For both val-
ues of rω, the main feature to be noted from Fig. 4 is
the wider range of P in contrast to the more compressed
range of p(0). This is because, when the global popula-
tion imbalance is increased in a trap, the system tends
to compensate for this increase and accordingly depletes
the minority density profile on the wings to favor pairing
at the trap center.

B. Dependence of Tc on the frequency ratio rω

Here we analyze dependence of the K-Dy phase dia-
gram on the trap frequency ratio rω = ωL/ωH . The
range of rω here explored is limited on the small rω side
by the occurrence of shell superfluidity. We have, in fact,
verified that shell superfluidity first appears for rω ≃ 3.4
just at the upper critical value P+ where the reentrance
occurs in Fig. 3, and then progressively moves to smaller
values of P in correspondence to lower values of rω , reach-
ing eventually P = 0 for rω ≃ 2.
Figure 5 shows the critical temperature Tc (in units of

the Fermi temperature of the heavy component T t
FH) as

a function of rω, for a trapped K-Dy mixture at unitar-
ity with equal populations (P = 0). The critical tem-
perature is seen to markedly increase for increasing rω.
A physical argument to account for this increase goes
as follows. Suppose that rω = ωL/ωH gets increased
by increasing the trap frequency ωL for the light com-
ponent, while keeping fixed the trap frequency ωH for
the heavy component in such a way that T t

FH remains
constant. For the lower value rω = 2.0 of the trap fre-
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FIG. 5. (Color online) The critical temperature Tc (in units of

the Fermi temperature T t
FH = ωH(6NH)1/3/kB of the heavy

component) for a unitary K-Dy mixture with equal popula-
tions (P = 0) in a harmonic trap is shown as a function of
the trap frequency ratio rω. In the inset, the same curve
is shown with Tc in units of the effective Fermi temperature
T t
F = ω0(3N)1/3/kB for the trapped system.

quency ratio we have considered, our calculation results
in a majority of heavy atoms at the trap center corre-
sponding to a positive value of the local density polar-
ization p(0). By increasing rω , the density of the light
atoms at the trap center increases as their trap becomes
more confining. As a consequence, p(0) decreases and
eventually approaches zero. This situation favors pairing
(in accordance with Fig. 2 for the homogeneous case),
so that one gets an increase of the critical temperature
Tc/TF (r = 0) in units of the local Fermi temperature
TF (r = 0) = (3π2n(0))2/3/(2mkB). The total local den-
sity n(0) = nL(0) + nH(0) at the trap center increases,
too, so that the increase of the critical temperature in
units of the trap Fermi temperature of the heavy compo-
nent Tc/T

t
FH = Tc/TF (r = 0)(TF (r = 0)/T t

FH) is going
to be even more pronounced than that of Tc/TF (r = 0).
This is because TF (r = 0) is proportional to n(0)2/3

while T t
FH remains constant. We have numerically ver-

ified that Tc/T
t
FH continues increasing up to the larger

value rω = 80 that we have explored (i.e., much beyond
the range shown in Fig. 5).

An additional relevant feature of the polarization-
temperature phase diagram, to be explored as a function
of the trap frequency ratio rω , is the reentrance point
(P+, T+

c ) for P > 0, since it provides a rough estimate
of the tricritical point at which phase separation begins
to appear. Figures 6(a) and 6(b) show the dependence
on rω of P+ and T+

c = Tc(P = P+), respectively. Upon
increasing rω , P

+ is seen to increase and slowly approach
the asymptotic value P+ = 1, while T+

c /TFH appears to
saturate at the value of T+

c /TFH ≃ 0.33.

0 5 10 15 20
0.0

0.1

0.2

0.3

0.0

rΩ

T
c+
�T

F
H

t

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

rΩ

T
c+
�T

Ft

HbL HkF
t aFL

-1=0, rm=40�1610 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

P
+

HaL HkF
t aFL

-1=0, rm=40�161

FIG. 6. (Color online) (a) The global polarization P+ at
the reentrance of the Tc(P ) curve of the critical tempera-
ture for a unitary trapped K-Dy mixture (with rm = 40/161)
is shown as a function of the trap frequency ratio rω. (b)
The critical temperature T+

c = Tc(P = P+) (in units of

T t
FH = ωH(6NH)1/3/kB) at the reentrance of the Tc(P ) curve

of the critical temperature for a unitary trapped K-Dy mix-
ture is shown as a function of the trap frequency ratio rω. In
the inset, the same curve is shown with Tc in units of the effec-
tive Fermi temperature T t

F = ω0(3N)1/3/kB for the trapped
system.

C. Density profiles

We now consider representative density profiles calcu-
lated both at the critical temperature Tc (as obtained
in Secs. IVA and IVB) and in the normal phase. In
the following, the radial position r in the trap is con-
veniently expressed in units of the Thomas-Fermi radius
RH

TF of the heavy component, as given by the condition
1
2
mωH(RH

TF )
2 = Et

FH where Et
FH = ωH(6NH)1/3 is the

Fermi energy for the heavy component.

Figure 7 shows the density profiles calculated at Tc for
a unitary K-Dy mixture with rω = 7.0 (cf. also Fig. 3),
for four characteristic values of the polarization P . For
P > 0 (corresponding to a majority of heavy atoms),
the profile of the heavy-atom cloud has a kink where the
profile of the light-atom cloud vanishes, with a small tail
of non-interacting atoms in excess surviving for larger
r. A similar behavior occurs for P < 0 (corresponding
to a majority of light atoms) for the light-atom cloud,
although it appears less evident in this case.

In addition, Fig. 8 shows the density profiles calculated
at Tc for a unitarity K-Dy mixture with global polariza-
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FIG. 7. (Color online) Density profiles for the light (circles)
and heavy (diamonds) components of a unitary K-Dy mixture
in a harmonic trap at Tc with a trap frequency ratio rω = 7.0,
for four characteristic values of the global polarization P . Full
lines are interpolations to the calculated points. In each panel,
the corresponding values of the local polarization p(0) at the
trap center are also indicated for convenience. In the insets,
the stars identify the positions along the Tc(P ) curves (full
lines) of the values of the global polarization used in the main
panels for the calculation of the density profiles.

tion P = 0 (cf. also Fig. 5) for four characteristic values
of the trap frequency ratio rω. Here, the main effect of in-
creasing rω (which can be obtained by increasing ωL and
keeping ωH fixed) is to shrink both density profiles re-
sulting in an increase the total density at the trap center.
This is because, as the light-atom cloud gets shrunk by
the trap becoming more confining, the heavy-atom cloud
gets also shrunk in order to maximize the attractive inter-
action energy. For even larger values of rω , however, the
heavy-atom cloud will stop following the tight light-atom
cloud, because the cost in kinetic energy would overcome
the gain in interaction energy.

Finally, Fig. 9 shows the density profile obtained at
various temperatures for a unitary K-Dy mixture with
polarization P = 0.69 and rω = 3.6 (these values of P
and rω correspond to the experimental conditions con-
sidered in Fig. 5(a) of Ref. [15]). The non-interacting
density profiles at the same temperatures are also shown
for comparison (dotted lines). From this comparison it is
evident that at low temperature (T/T t

FH . 1) the attrac-
tive interaction between light and heavy atoms results in
a strong contraction of the density profiles with respect
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FIG. 8. (Color online) Density profiles for the light (circles)
and heavy (diamonds) components of a unitary K-Dy mixture
in a harmonic trap at Tc with equal populations (P = 0), for
four characteristic values of the trap frequency ratio rω. Full
lines are interpolations to the calculated points. In each panel,
the corresponding values of the local polarization p(0) at the
trap center are also indicated for convenience. In the insets,
the stars identify the positions along the Tc(rω) curves (full
lines) of the values of the trap frequency ratio rω used in the
calculation of the density profiles.

to those of the non-interacting case.
In Ref. [15], this contraction was proposed as the main

mechanism behind the experimentally observed increase
of three-body losses of Dy in the K-Dy mixture with re-
spect to the free Dy case. To quantify the increase of
intra-species three-body recombinations due to the con-
traction of the density profiles, we follow Ref. [15] (cf. the
Supplemental Material therein) and define the factors

βσ =

∫

drn3
σ(r)

∫

drn3
TF,σ(r)

(σ = L,H) (10)

where nTF,σ(r) are the corresponding Thomas-Fermi
(non-interacting) density profiles.
Figure 10 shows the factors βσ as a function of tem-

perature for the unitary K-Dy mixture with P = 0.69
and rω = 3.6. At the lowest temperature (T/T t

FH=0.08)
of our calculation, we obtain the values βL = 4.73
and βH = 3.29. These results imply that in the low-
temperature (with respect to T t

FH) regime of the normal
phase the three-body recombination rate can be strongly
increased by the contraction of the density profiles. [We

may mention that the values βph
L = 2.85 and βph

H = 2.07
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FIG. 9. (Color online) Density profiles for the light (circles)
and heavy (diamonds) components of a unitary K-Dy mix-
ture in a harmonic trap with global polarization P = 0.69
and trap frequency ratio rω = 3.6, for four characteristic val-
ues of the temperature. Full lines are interpolations to the
calculated points. In each case, the corresponding Thomas-
Fermi (non-interacting) density profiles are shown for com-
parison (dotted lines). In the insets, the full lines represent
the Tc-vs-P curves and the stars identify the positions in the
polarization-temperature phase diagram at which the density
profiles of the main panels are calculated.

still larger than unity were alternatively obtained by a
simple phenomenological model developed at T = 0 in
the Supplemental Material of Ref [15].] At higher tem-
peratures (T/T t

FH & 1), on the other hand, our results
imply that the effect of the contraction of the density
profiles on the three-body recombinations becomes pro-
gressively less relevant, in such a way that βσ approaches
unity in Fig. 10. Since a much larger enhancement of
Dy losses (of about 4) was observed in Ref. [15] for
T/T t

FH ≃ 1.9, our calculations do not support the pos-
sibility that this large value of βH could result from the
contraction of the density profiles.

V. CONCLUDING REMARKS

We have presented a detailed quantitative analysis
of the temperature-polarization phase diagram for the
second-order normal-to-superfluid phase transition of a
mass-imbalanced Fermi gas at unitarity, for both homo-
geneous and harmonically trapped systems. The corre-
sponding phase diagrams have been obtained within a
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FIG. 10. (Color online) The three-body decay rate factors βσ

(with σ = L,H) for a unitary K-Dy mixture in a harmonic
trap with global polarization P = 0.69 and trap frequency
ratio rω = 3.6 are shown as a function of temperature (for
which both normalizations in terms of T t

F and T t
FH are used).

fully self-consistent t-matrix approach, which has already
proved capable to compare well with quantum Monte
Carlo and experimental results for a mass-balanced sys-
tem at unitarity and is now awaiting comparison with
the results of the forthcoming experiments with mass-
imbalanced mixtures. For the homogeneous system we
have considered both a 6Li-53Cr and 40K-161Dy mixture,
while for the trapped system we have mainly focused on
the K-Dy mixture since the corresponding experiments
have already reached quantum degeneracy and demon-
strated tunability. For the trapped system, we have also
investigated the dependence of the phase diagram on the
ratio rω of the trap frequencies for the two species, which
is an experimentally controllable parameter. We have
shown that an increase of rω results in an increase of the
critical temperature and thus makes the superfluid phase
more accessible experimentally.
For the trapped system, we have further presented

a number of representative density profiles for the two
species, both at Tc and in the normal phase, and we
have quantified the effect of the contraction of the den-
sity profiles due to the inter-species attraction on the
three-body recombination rates with respect to the non-
interacting case under the same conditions of the exper-
iment of Ref. [15]. Our calculation shows that, although
this effect can be important at low temperature (with
respect to T t

FH) in the normal phase, it cannot explain
the observed increase of three-body losses at the temper-
atures considered in Ref. [15].
As pointed out in the Introduction, in the present work

we did not consider the possible occurrence of a first-
order normal-to-superfluid phase transition. In practice,
this would require a major computational effort, whereby
the self-consistent t-matrix approach would need to be
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extended to the superfluid phase in the presence of both
population and mass imbalances. Nevertheless, a rough
estimate of the region of parameters where phase sepa-
ration (and/or transition to more exotic FFLO phases)
is expected to occur, can already be obtained from the
position of the reentrance point in the curves of Tc that
we have presented. Specifically, in analogy with what
is found at the mean-field level, phase separation is ex-
pected to occur for temperatures below and for polar-
izations close to the reenntrance point in these curves.
In addition, on the basis of variational arguments, phase
separation is expected to enlarge the region of global po-
larization where superfluidity (coexisting with a normal
phase) takes place. Even when phase separation occurs,

the values we have obtained for the critical polarizations
will thus represent a valuable piece of information for the
experiments, by providing in this case a lower bound to
the actual polarization.

In conclusion, we expect that the results presented in
this article can extensively be used as relevant bench-
marks for guiding the search of superfluidity in ongo-
ing and future experiments with hetero-nuclear trapped
Fermi mixtures.
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