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Artificial intelligence has made tremendous advances since its inception about seventy

years ago. Self-driving cars, programs beating experts at complex games, and smart

robots capable of assisting people that need care are just some among the successful

examples of machine intelligence. This kind of progress might entice us to envision a

society populated by autonomous robots capable of performing the same tasks humans

do in the near future. This prospect seems limited only by the power and complexity

of current computational devices, which is improving fast. However, there are several

significant obstacles on this path. General intelligence involves situational reasoning,

taking perspectives, choosing goals, and an ability to deal with ambiguous information.

We observe that all of these characteristics are connected to the ability of identifying and

exploiting new affordances—opportunities (or impediments) on the path of an agent to

achieve its goals. A general example of an affordance is the use of an object in the hands

of an agent. We show that it is impossible to predefine a list of such uses. Therefore,

they cannot be treated algorithmically. This means that “AI agents” and organisms differ

in their ability to leverage new affordances. Only organisms can do this. This implies that

true AGI is not achievable in the current algorithmic frame of AI research. It also has

important consequences for the theory of evolution. We argue that organismic agency is

strictly required for truly open-ended evolution through radical emergence. We discuss

the diverse ramifications of this argument, not only in AI research and evolution, but also

for the philosophy of science.

Keywords: artificial intelligence (AI), universal turing machine, organizational closure, agency, affordance,

evolution, radical emergence, artificial life (ALife)

1. INTRODUCTION

Since the founding Dartmouth Summer Research Project in 1956 (McCarthy et al., 1955), the
field of artificial intelligence (AI) has attained many impressive achievements. The potential of
automated reasoning, problem solving, and machine learning has been unleashed through a wealth
of different algorithms, methods, and tools (Russell and Norvig, 2021). Not only do AI systems
accomplish to perform intricate activities, e. g., playing games (Silver et al., 2016), and to plan
complex tasks (LaValle, 2006), but most current apps and technological devices are equipped
with some AI component. The impressive recent achievements of machine learning (Domingos,
2015) have greatly extended the domains in which AI can be applied, from machine translation to
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automatic speech recognition. AI is becoming ubiquitous in
our lives. In addition, AI methods are able to produce some
kinds of creative artworks, such as paintings (Hong and
Curran, 2019), and music (Briot and Pachet, 2020); moreover,
GPT-3, the latest version of a deep learning system able to
generate texts characterized by surprising writing abilities, has
recently been released (Brown et al., 2020) surrounded by some
clamor (Chalmers, 2020; Marcus and Davis, 2020).

These are undoubtedly outstanding accomplishments.
However, each individual success remains limited to quite
narrowly defined domains. Most of today’s AI systems are
target-specific: an AI program capable of automatically planning
tasks, for example, is not usually capable of recognizing faces
in photographs. Such specialization is, in fact, one of the main
elements contributing to the success of these systems. However,
the foundational dream of AI—featured in a large variety of
fantastic works in science-fiction—is to create a system, maybe
a robot, that incorporates a wide range of adaptive abilities
and skills. Hence, the quest for Artificial General Intelligence
(AGI), computational systems able to connect, integrate, and
coordinate these various capabilities. In fact, true general
intelligence can be defined as the ability of combining “analytic,
creative, and practical intelligence” (Roitblat, 2020, page 278).
It is acknowledged to be a distinguishing property of “natural
intelligence,” for example, the kind of intelligence that governs
some of the behavior of humans as well as other mammalian and
bird species.

If one considers the human brain as a computer—and by
this we mean some sort of computational device equivalent to a
universal Turing machine—then the achievement of AGI might
simply rely on reaching a sufficient level of intricacy through the
combination of different task-solving capabilities in AI systems.
This seems eminently feasible—a mere extrapolation of current
approaches in the context of rapidly increasing computing
power—even though it requires not only the combinatorial
complexification of the AI algorithms themselves, but also of the
methods used to train them. In fact, many commentators predict
that AGI is just around the corner, often admonishing us about
the great (even existential) potentials and risks associated with
this technological development (see, for example, Vinge, 1993;
Kurzweil, 2005; Yudkowsky, 2008; Eden et al., 2013; Bostrom,
2014; Shanahan, 2015; Chalmers, 2016; Müller and Bostrom,
2016; Ord, 2020).

However, a number of serious problems arise when
considering the higher-level integration of task-solving
capabilities. All of these problems are massively confounded
by the fact that real-world situations often involve information
that is irrelevant, incomplete, ambiguous, and/or contradictory.
First, there is the formal problem of choosing an appropriate
metric for success (a cost or evaluation function) according
to context and the task at hand. Second, there is the problem
of identifying worthwhile tasks and relevant contextual
features from an abundance of (mostly irrelevant) alternatives.
Finally, there is the problem of defining what is worthwhile
in the first place. Obviously, a truly general AI would have
to be able to identify and refine its goals autonomously,
without human intervention. In a quite literal sense, it

would have to know what it wants, which presupposes
that it must be capable of wanting something in the
first place.

The problem of machine wanting has often been linked
by philosophers to arguments about cognition, the existence
of subjective mental states and, ultimately, to questions about
consciousness. A well-known example is John Searle’s work on
minds and AI (see, for example, Searle, 1980, 1992). Other
philosophers have attempted to reduce machine wanting to
cybernetic goal-seeking feedback (e. g., McShea, 2012, 2013,
2016). Here, we take the middle ground and argue that the
problem is rooted in the concept of organismic agency, or bio-
agency (Moreno and Etxeberria, 2005; Barandiaran et al., 2009;
Skewes and Hooker, 2009; Arnellos et al., 2010; Campbell, 2010;
Arnellos andMoreno, 2015; Moreno andMossio, 2015; Meincke,
2018). We show that the term “agency” refers to radically
different notions in organismic biology and AI research.

The organism’s ability to act is grounded in its functional
organization, which grants it a certain autonomy (a “freedom
from immediacy”) (Gold and Shadlen, 2007). An organism not
only passively reacts to environmental inputs. It can initiate
actions according to internal goals, which it seeks to attain by
leveraging opportunities and avoiding obstacles it encounters
in its umwelt, that is, the world as perceived by this particular
organism (Uexküll von, 2010; Walsh, 2015). These opportunities
and obstacles are affordances, relations between the living agential
system and its umwelt that are relevant to the attainment of its
goals (Gibson, 1966). Organismic agency enables a constructive
dialectic between an organism’s goals, its repertoire of actions,
and its affordances, which all presuppose and generate each other
in a process of constant emergent co-evolution (Walsh, 2015).

Our argument starts from the simple observation that
the defining properties of natural systems with general
intelligence (such as organisms) require them to take advantage
of affordances under constraints given by their particular
motivations, abilities, resources, and environments. In more
colloquial terms, general intelligences need to be able to
invent, to improvise, to jury-rig problems that are relevant to
their goals. However, AI agents (unlike biological ones) are
defined as sophisticated algorithms that process information from
percepts (inputs) obtained through sensors to actions (outputs)
implemented by effectors (Russell and Norvig, 2021). We
elaborate on the relation between affordances and algorithms—
defined as computational processes that can run on universal
Turing machines—ultimately arriving at the conclusion that
identifying and leveraging affordances goes beyond algorithmic
computation. This leads to two profound implications. First,
while it may still be possible to achieve powerful AI systems
endowed with quite impressive and general abilities, AGI cannot
be fully attained in computational systems that are equivalent
to universal Turing machines. This limitation holds for both
non-embodied and embodied Turing machines, such as robots.
Second, based on the fact that only true agents can harvest the
power of affordances, we conclude that only biological agents are
capable of generating truly open-ended evolutionary dynamics,
implying that algorithmic attempts at creating such dynamics in
the field of artificial life (aLife) are doomed to fail.
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Our argument proceeds as follows: In Section 2, we provide
a target definition for AGI and describe some major obstacles
on the way to achieve it. In Section 3, we define and contrast
the notion of an agent in organismic biology and AI research.
Section 4 introduces the crucial role that affordances play in
AGI, while Section 5 elucidates the limitations of algorithmic
agents when it comes to identifying and leveraging affordances.
In Section 6, we show that our argument also applies to embodied
AI agents such as robots. Section 7 presents a number of possible
objections to our argument. Section 8 discusses the necessity
of bio-agency for open-ended evolution. Finally, Section 9
concludes the discussion with a few remarks on the scientific and
societal implications of our argument.

2. OBSTACLES TOWARD ARTIFICIAL
GENERAL INTELLIGENCE

The proposal for the Dartmouth Summer Research Project
begins with an ambitious statement: “An attempt will be made to
find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and
improve themselves” (McCarthy et al., 1955). Over the 66 years
that have passed since this was written, the field of AI research
has made enormous progress, and specialized AI systems have
been developed that find application across almost all aspects
of human life today (see Introduction). However, the original
goal of devising a system capable of integrating all the various
capabilities required for “true machine intelligence” has not yet
been reached.

According to Roitblat (2020), the defining characteristics of
general intelligence are:

• reasoning and problem-solving,
• learning,
• inference-making,
• using common-sense knowledge,
• autonomously defining and adjusting goals,
• dealing with ambiguity and ill-defined situations, and
• creating new representations of the knowledge acquired.

Some of these capabilities are easier to formalize than others.
Automated reasoning, problem-solving, learning, and inference-
making, for example, can be grounded in the principles of formal
logic, and are reaching impressive levels of sophistication in
contemporary deep-learning approaches (Russell and Norvig,
2021). In contrast, the complete algorithmic formalization of
the other items on the list remains elusive. We will discuss
the problem of autonomously defining goals shortly. The three
remaining characteristics are not only hard to implement
algorithmically, but are difficult to define precisely in the first
place. This vagueness is of a semantic and situational nature: it
concerns the meaning of concepts to an agent, the knower, in
their particular circumstances.

For example, we have no widely agreed-upon definition of
what “common-sense knowledge” is. In fact, it is very likely that
there is no generalizable definition of the term, as “common
sense” represents a kind of perspectival knowing that depends

radically on context. It represents a way of reacting to an everyday
problem that is shared by many (or all) people at a given location
and time. It is thus an intrinsically situational and normative
concept, and its meaning can shift drastically across different
societal and historical contexts. What it would mean for a
computer to have “common sense” remains unclear: does it have
to act in a way that humans of its time and location would
consider commonsensical? Or does it have to develop its own
kind of computer-specific, algorithmic “common sense”? What
would that even mean?

Exactly the same problem affects the ability of AI algorithms to
create new representations of knowledge. Those representations
must not only correspond to some state of affairs in the world, but
must also be relatable, understandable, and useful to some kind
of knowing agent. They must represent something to someone.
But who? Is the task of AGI to generate representations for
human understanding? If not, what kind of sense does it make
for a purely algorithmic system to generate representations
of knowledge? It does not need them, since it does not use
visualizations or metaphors for reasoning and understanding.
Again, the semantic nature of the problem makes it difficult to
discuss within the purely syntactic world of algorithmic AIs.

Since they cannot employ situational knowledge, and since
they cannot represent and reason metaphorically, AI systems
largely fail at dealing with and exploiting ambiguities (Byers,
2010). These limitations have been identified and formulated
as the frame problem more than fifty years ago by Dreyfus
(1965) (see also Dreyfus, 1992). Today, they are still with us as
major obstacles for achieving AGI. What they have in common
is an inability of algorithmic systems to reckon with the kind of
uncertainty, or even paradox, that arises from context-dependent
or ill-defined concepts. In contrast, the tension created by such
unresolved states of knowing is often a crucial ingredient for
human creativity and invention (see, for example, Scharmer and
Senge, 2016).

Let us argue the case with an illustrative example. The
ability to exploit ambiguities plays a role in almost any human
cognitive activity. It can turn up in the most unexpected places,
for instance, in one of the most rule-based human activities—
an activity that we might think should be easy to formalize.
As Byers beautifully observes about creativity in mathematics,
“[a]mbiguity, which implies the existence of multiple, conflicting
frames of reference, is the environment that gives rise to new
mathematical ideas. The creativity of mathematics does not come
out of algorithmic thought” (Byers, 2010, page 23). In situated
problem-solving, ambiguity is oftentimes the cornerstone of a
solution process. Let us consider the mathematical riddle in
Figure 1: if we break ambiguities by taking a purely formalized
algebraic perspective, the solution we find is hardly simple.1 Yet,
if we change perspective and we observe the graphical shape of
the digits, we can easily note that what is summed up are the
closed loops present in the numeric symbols. It turns out that
the puzzle, as it is formulated, requires the ability to observe
from different perspectives, to dynamically shift perceptive and

1In the sense of a suitable model explaining the riddle. See Burnham and Anderson

(2002).
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FIGURE 1 | A riddle found by one of the authors in a paper left in the coffee room of a department of mathematics.

cognitive frames, mixing both graphical and algebraic approaches
for a simple solution.

Following Byers, we observe that even a strongly formalized
human activity—the process of discovery in mathematics—is not
entirely captured by an algorithmic search. A better metaphor
would be an erratic walk across dark rooms. As Andrew Wiles
describes his journey to the proof of the Fermat conjecture,2

the solution process starts from a dark room where we “stumble
around bumping into the furniture;” suddenly we find the light
switch and, in the illuminated room, we “can see were we
were”—an insight! Then, we move to an adjacent dark room
and continue this process finding successive “light switches” into
further dark rooms until the problem, at last, is solved. Each step
from one room to the other is an insight, not a deduction and not
an induction. The implication is fundamental: themathematician
comes to know a new world via an insight. The insight itself
is not algorithmic. It is an act of semantic meaning-making.
Roger Penrose makes the same point in the Emperor’s New
Mind (Penrose, 1989).

Human creativity, in all kinds of contexts, seems to
require frame-switching between metaphorical or formal
representations, alongside our capabilities of dealing with
contradictions and ambiguities. These are not only hallmarks
of human creative processes, but should also characterize
AGI systems. As we will see, these abilities crucially rely on
affordances (Gibson, 1966). Therefore, we must ask whether
universal Turing machines can identify and exploit affordances.
The initial step toward an answer to this question lies in the
recognition that affordances arise from interactions between an
agent and its umwelt. Therefore, we must first understand what
an agent is, and how the concept of an “agent” is defined and
used in biology and in AI research.

3. BIO-AGENCY: CONTRASTING
ORGANISMS TO AI AGENTS

So far, we have avoided the question how an AGI could
choose and refine its own goals (Roitblat, 2020). This problem
is distinct, but still tightly related to the issues of ambiguity
and representation discussed in the previous section. Selecting
goals has two aspects. The first is that one must motivate the
choice of a goal. One must want to reach some goal to have
a goal at all, and one must have needs to want something.
The other aspect is to prioritize some particular goal over a

2Nova interview, https://www.pbs.org/wgbh/nova/article/andrew-wiles-fermat.

set of alternatives, according to the salience and the alignment
of the chosen goal with one’s own needs and capabilities in a
given context.

Choosing a goal, of course, presupposes a certain autonomy,
i. e., the ability to make a “choice” (Moreno and Mossio, 2015).
Here, we must emphasize again that our use of the term “choice”
does not imply consciousness, awareness, mental states, or even
cognition, which we take to involve at least some primitive kind
of nervous system (Barandiaran and Moreno, 2008). It simply
amounts to a system which is capable of selecting from a more
or less diversified repertoire of alternative dynamic behaviors
(“actions”) that are at its disposal in a given situation (Walsh,
2015). All forms of life—from simple bacteria to sophisticated
humans—have this capability. The most central distinction to be
made here is that the selection of a specific behavior is not purely
reactive, not entirely determined by environmental conditions,
but (at least partially) originates from and depends on the internal
organization of the system making the selection. This implies
some basic kind of agency (Moreno and Mossio, 2015). In its
broadest sense, “agency” denotes the ability of a system to initiate
actions from within its own boundaries, causing effects that
emanate from its own internal dynamics.

Agency requires a certain type of functional organization.
More specifically, it requires organizational closure (Piaget,
1967; Moreno and Mossio, 2015), which leads to autopoietic
(i. e., self-making, self-maintaining, and self-repairing)
capabilities (Maturana and Varela, 1973, 1980). It also leads
to self-determination through self-constraint: by maintaining
organizational closure, an organism is constantly providing
the conditions for its own continued existence (Bickhard,
2000; Mossio and Bich, 2017). This results in the most basic,
metabolic, form of autonomy (Moreno and Mossio, 2015).
A minimal autonomous agent is a physically open, far-from-
equilibrium, thermodynamic system capable of self-reproduction
and self-determination.

Organisms, as autonomous agents, are Kantian wholes, i. e.,
organized beings with the property that the parts exist for and
by means of the whole (Kant, 1892; Kauffman, 2000, 2020).
“Whole” indicates that organizational closure is a systems-level
property. In physical terms, it can be formulated as a closure
of constraints (Montévil and Mossio, 2015; Moreno and Mossio,
2015;Mossio et al., 2016). Constraints change the dynamics of the
underlying processes without being altered themselves (at least
not at the same time scale). Examples of constraints in organisms
include enzymes, which catalyze biochemical reactions without
being altered in the process, or the vascular system in vertebrates,
which regulates levels of nutrients, hormones, and oxygen in
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different parts of the bodywithout changing itself at the time scale
of those physiological processes (Montévil and Mossio, 2015).

It is important to note that constraint closure does not
imply a fixed (static) network of processes and constraints.
Instead, organizational continuity is maintained if the current
closed organization of a system causally derives from previous
instantiations of organizational closure, that is, its particular
organized state at this moment in time is dynamically
presupposed by its earlier organized states (Bickhard, 2000;
DiFrisco and Mossio, 2020). Each successive state can (and
indeed must) differ in their detailed physical structure from the
current state. To be a Kantian whole, an autonomous system
must perform at least one work-constraint cycle: it must perform
physical work to continuously (re)constitute closure through new
as well as recurring constraints (Kauffman, 2000, 2003; Kauffman
and Clayton, 2006). Through each such cycle, a particular set
of constraints is propagated, selected from a larger repertoire
of possible constraints that all realize closure. In this way, the
system’s internal dynamics kinetically “lift” a set of mutually
constituting processes from the totality of possible dynamics.
This is how organizational closure leads to autopoiesis, basic
autonomy, and self-determination by self-constraint: the present
structure of the network of interacting processes that get “lifted”
is (at least to some degree) the product of the previous unfolding
of the organized network. In this way, organization maintains
and propagates itself.

However, one key ingredient is still missing for an agent
that actively chooses its own goals. The basic autonomous
system we described above can maintain (and even repair)
itself, but it cannot adapt to its circumstances—it cannot react
adequately to influences from its environment. This adaptive
capability is crucial for prioritizing and refining goals according
to a given situation. The organism can gain some autonomy
over its interactions with the environment if it is capable of
regulating its own boundaries. These boundaries are required for
autopoiesis, and thus must be part of the set of components that
are maintained by closure (Maturana and Varela, 1980). Once
boundary processes and constraints have been integrated into the
closure of constraints, the organism has attained a new level of
autonomy: interactive autonomy (Moreno and Mossio, 2015). It
has now become a fully-fledged organismal agent, able to perceive
its environment and to select from a repertoire of alternative
actions when responding to environmental circumstances based
on its internal organization. Expressed a bit more colloquially,
making this selection requires being able to perceive the world
and to evaluate “what’s good or bad for me,” in order to
act accordingly. Here, the transition from matter to mattering
takes place.

Interactive autonomy provides a naturalistic (and completely
scientific) account of the kind of bio-agency (and the particular
kind of goal-directedness or teleology that is associated with
it, Mossio and Bich, 2017), which grounds our examination of
how organisms can identify and exploit affordances in their
umwelt. But before we get to this, let us contrast the complex
picture of an organismal agent as a Kantian whole with the much
simpler concept of an agent in AI research. In the context of
AI, “[a]n agent is anything that can be viewed as perceiving its

environment through sensors and acting upon that environment
through effectors” (Russell and Norvig, 2021, original emphasis).
In other words, an AI agent is an input–output processing device.
Since the point of AI is to do “a good job of acting on the
environment” (Russell and Norvig, 2021), the internal processing
can be quite complicated, depending on the task at hand. This
very broad definition of an AI agent in fact includes organismal
agents, since it does not specify the kind of processes that
mediate between perception and action. However, although not
always explicitly stated, it is generally assumed that input-output
processing is performed by some sort of algorithm that can be
implemented on a universal Turing machine. The problem is
that such algorithmic systems have no freedom from immediacy,
since all their outputs are determined entirely—even though
often in intricate and probabilistic ways—by the inputs of the
system. There are no actions that emanate from the historicity
of internal organization. There is, therefore, no agency at all in
an AI “agent.” What that means and why it matters for AGI and
evolution will be the subject of the following sections.

4. THE KEY ROLE OF AFFORDANCES

Having outlined a suitable naturalistic account of bio-agency, we
can now revisit the issue of identifying and exploiting affordances
in the umwelt, or perceived environment, of an organism. The
concept of an affordance was first proposed by Gibson (1966)
in the context of ecological psychology. It was later adopted to
diverse fields of investigation such as biosemiotics (Campbell
et al., 2019) and robotics (Jamone et al., 2016). “Affordances” refer
to what the environment offers to an agent (in the organismic
sense defined above), for “good or ill.” They can be manifested
as opportunities or obstacles on our path to attain a goal. A
recent philosophical account emphasizes the relation between
the agent and its perceived environment (its umwelt), stating
that affordances guide and constrain the behavior of organisms,
precluding or allowing them to perform certain actions, showing
them what they can and cannot do (Heras-Escribano, 2019, p. 3).
A step, for instance, affords us the action of climbing; a locked
door prevents us from entering. Affordances fill our world with
meaning: organisms do not live in an inert environment, but “are
surrounded by promises and threats” (Heras-Escribano, 2019,
p. 3).

The dialectic mutual relationship between goals, actions,
and affordances is of crucial importance here (Walsh, 2015).
Affordances, as we have seen, require an agent with goals. Those
goals motivate the agent to act. The agent first chooses which
goal to pursue. It then selects an action from its repertoire
(see Section 3) that it anticipates to be conducive to the
attainment of the goal. This action, in turn, may alter the way the
organism perceives its environment, or it may alter aspects of the
environment itself, which leads to an altered set of affordances
present in its umwelt. This may incite the agent to choose an
alternative course of action, or even to reconsider its goals. In
addition, the agent can learn to perform new actions or develop
new goals along the way. This results in a constructive co-
emergent dynamic in which sets of goals, actions, and affordances
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continuously generate and collapse each other as the world of the
agent keeps entering into the next space of possibilities, its next
adjacent possible (Kauffman, 2000). Through this co-emergent
dialectic, new goals, opportunities, and ways of acting constantly
arise. Since the universe is vastly non-ergodic, each moment in
time provides its own unique set of opportunities and obstacles,
affording new kinds of goals and actions (Kauffman, 2000). In
this way, true novelty enters into the world through radical
emergence—the generation, over time, of opportunities and rules
of engagement and interaction that did not exist at any previous
time in the history of the universe.

A notable example of such a co-emergent process in a
human context is jury-rigging: given a leak in the ceiling, we
cobble together a cork wrapped in a wax-soaked rag, stuff it
into the hole in the ceiling, and hold it in place with duct
tape (Kauffman, 2019). In general, solving a problem through
jury-rigging requires several steps and involves different objects
and actions, which articulate together toward a solution of the
problem, mostly without any predetermined plan. Importantly,
jury-rigging uses only specific subsets of the totality of causal
properties of each object involved. Often, these properties do not
coincide with previously known functional features of the object.
Consider a tool, like a screwdriver, as an example. Its original
purpose is to tighten screws. But it can also be used to open a can
of paint, wedge a door open, scrape putty off the window, to stab
or poke someone (please don’t), or (should you feel so inclined)
to pick your nose with it. What is important to note here is that
any physical object has an indefinite number of alternative uses in
the hands of an agent (Kauffman, 1976). This does not mean that
its uses are infinite—even if they might be—but rather that they
cannot be known (and thus prestated) in advance.

Ambiguity and perspective-taking also play a fundamental
role in jury-rigging, as the goal of the task is to find suitable
novel causal properties of the available objects to solve the
problem at hand. The same happens in an inverse process, where
we observe an artifact (or an organism Kauffman, 2019), and
we aim at providing an explanation by articulating its parts,
along with the particular function they carry out. For example,
if we are asked what the use of an automobile is, we would
probably answer that it is a vehicle equipped with an engine
block, wheels, and other parts, whose diverse causal features
can be articulated together to function as a locomotion and
transportation system. This answer resolves most ambiguities
concerning the automobile and its parts by providing a coherent
frame in which the parts of the artifact are given a specific
function, aimed at explaining its use as a locomotion and
transportation system. In contrast, if one supposes that the
purpose of an automobile is to fry eggs, one would partition
the system into different sets of parts that articulate together in
a distinct way such that eggs can be fried on the hot engine
block. In short, for the inverse process with regard to artifacts
(or organisms) what we “see it as doing” drives us to decompose
the system into parts in different ways (Kauffman, 1976). Each
such decomposition identifies precisely that subset of the causal
properties of the identified parts that articulate together to
account for and explain “what the system is doing” according
to our current frame. It is critical to note that there is no

universal or unique decomposition, since the way to decompose
the system depends on its use and context (see also Wimsatt,
2007).

To close the loop of our argument, we note that the
prospective uses of an object (and hence the decomposition we
choose to analyze it) depend on the goals of the agent using
it, which, in turn, depend on the agent’s repertoire of actions
and the affordances available to it, which change constantly
and irreversibly over time. It is exactly because all of these
are constantly evolving through their co-emergent dialectic
interactions that the number of uses of an object remains
indefinite and, in fact, unknowable (Kauffman, 2019). Moreover,
and this is important: there is no deductive relation between the
uses of an object. Take, for example, an engine block, designed
to be a propulsive device in a car. It can also serve as the
chassis of a tractor. Furthermore, one can use it as a bizarre
(but effective) paper weight, its cylinder bores can host bottles
of wine, or it can be used to crack open coconuts on one of
its corners. In general, we cannot know the number of possible
uses of an engine block, and we cannot deduce one use from
another: the use as a paper weight abstracts from details that
can conversely be necessary for it to be used to crack open
coconuts. As Robert Rosen put it, complex systems invariably
retain hidden properties, and their manipulation can always
result in unintended consequences (Rosen, 2012). Even worse,
we have seen that the relation between different uses of a thing
is merely nominal, as there is no kind of ordering that makes it
possible to relate them in amore structured way (Kauffman, 2019;
Kauffman and Roli, 2021b).

This brings us to a cornerstone of our argument: when jury-
rigging, it is impossible to compose any sort of well-defined list
of the possible uses of the objects to be used. By analogy, it
is impossible to list all possible goals, actions, or affordances

of an organismic agent in advance. In other words, Kantian

wholes can not only identify and exploit affordances, but they

constantly generate new opportunities for themselves de novo.
Our next question is: can algorithmic systems such as AI “agents”
do this?

5. THE BOUNDED RATIONALITY OF
ALGORITHMS

In the introduction, we have defined an algorithm as a
computational process that can run on a universal Turing
machine. This definition considers algorithms in a broad
sense, including computational processes that do not halt.
All algorithms operate deductively (Kripke, 2013). When
implementing an algorithm as a computer program by means
of some kind of formal language (including those based
on recursive functional programming paradigms), we must
introduce specific data and code structures, their properties
and interactions, as well as the set of operations we are
allowed to perform on them, in order to represent the
objects and relations that are relevant for our computation.
In other words, we must provide a precisely defined ontology
on which the program can operate deductively, e. g., by
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drawing inferences or by ordering tasks for solving a given
problem. In an algorithmic framework, novelty can only be
represented combinatorially: it manifests as new combinations,
mergers, and relations between objects in a (potentially vast,
but predefined) space of possibilities. This means that an
algorithm cannot discover or generate truly novel properties
or relations that were not (at least implicitly) considered in
its original ontology. Therefore, an algorithm operating in a
deductive manner cannot jury-rig, since it cannot find new causal
properties of an object that were not already inherent in its
logical premises.

To illustrate this central point, let us consider automated
planning: a planning program is given an initial state and a
predefined goal, and its task is to find a feasible—and ideally
optimal—sequence of actions to reach the goal. What makes
this approach successful is the possibility of describing the
objects involved in the task in terms of their properties, and
of representing actions in terms of the effects they produce on
the world delimited by the ontology of the program, plus the
requirements that need to be satisfied for their application. For
the planner to work properly, there must be deductive relations
among the different uses of an object, which are exploited by the
inference engine to define an evaluation function that allows it
to arrive at a solution. The problem with the planner is that,
in general, there is no deductive relation between the possible
uses of an object (see Section 4). From the use of an engine
block as a paper weight, the algorithm cannot deduce its use as
a method to crack open coconuts. It can, of course, find the latter
use if it can be deduced, i. e., if there are: (i) a definitive list of
properties, including the fact that the engine block has rigid and
sharp corners, (ii) a rule stating that one can break objects in
the class of “breakable things” by hitting them against objects
characterized by rigid and sharp corners, and (iii) a fact stating
that coconuts are breakable.

The universe of possibilities in a computer program—
however, broadly construed—is like a world of LEGOTM bricks:
components with predefined properties and compositional
relations can generate a huge space of possible combinations,
even unbounded if more bricks can always be supplemented.
However, if we add scotch tape, which makes it possible
to assemble bricks without being constrained by their
compositional mechanism, and a cutter, which enables us
to cut the bricks into smaller pieces of any shape, then rules
and properties are no longer predefined. We can no longer
prestate a well-defined list of components, with associated
properties and relations. We now have a universe of indefinite
possibilities, and we are no longer trapped inside the formal
frame of algorithms. Formalization has reached its limits. What
constitutes a meaningful compositional relation becomes a
semantic question, depending on our particular circumstances
and the whims of our creative mind. Our possibilities may not
be infinite, but they become impossible to define in advance.
And because we can no longer list them, we can no longer treat
them in a purely algorithmic way. This is how human creativity
transcends the merely combinatorial innovative capacities of
any AI we can build today. Algorithms cannot take or shift

perspective and that is why they cannot leverage ambiguity for

innovation in the way an organismic agent can. Algorithms

cannot jury-rig.
At the root of this limitation is the fact that algorithms cannot

want anything. To want something implies having goals that
matter to us. We have argued in Section 3, that only organismic
agents (but not algorithmic AI “agents”) can have goals, because
of their being Kantian wholes with autopoietic organization
and closure of constraints. Therefore, nothing matters to an
algorithm. But without mattering or goals, an algorithm has no
means to identify affordances (in fact, it has no affordances),
unless they are already formally predefined in its ontology, or
can be derived in some logical way from predefined elements
of that ontology. Thus, the algorithm cannot generate meaning
where there was none before. It cannot engage in the process
of semiosis (Peirce, 1934, p. 488). For us to make sense of the
world, we must take a perspective: we must see the world from a
specific point of view, contingent on our nature as fragile, limited,
mortal beings which circumscribes our particular goals, abilities,
and affordances. This is how organismic agents generate new
frames in which to formalize posssibilities. This is how we tell
what is relevant to us fromwhat is not. Algorithms cannot do this,
since they have no point of view, and require a predefined formal
frame to operate deductively. To them, everything and nothing is
relevant at the same time.

Now, we must draw our attention to an issue that is often
neglected when discussing the nature of general intelligence: for
a long time, we have believed that coming to know the world is a
matter of induction, deduction, and abduction (see, for example,
Hartshorne and Weiss, 1958; Mill, 1963; Ladyman, 2001; Hume,
2003; Okasha, 2016; Kennedy and Thornberg, 2018). Here, we
show that this is not enough.

Consider induction, proceeding from a finite set of examples
to an hypothesis of a universal. We observe many black ravens
and formulate the hypothesis that “all ravens are black.” Observe
that the relevant variables and properties are already prestated,
namely “ravens” and “black.” Induction is over already identified
features of the world and, by itself, does not identify new
categories. In induction, there is an imputation of a property
of the world (black) with respect to things we have already
identified (ravens). There is however no insight with respect to
new features of the world (cf. Section 2). Let us pause to think
about this: induction by itself cannot reveal novel features of the
world—features that are not already in our ontology.

This is even more evident for deduction, which proceeds from
prestated universal categories to the specific. “All men are mortal,
Socrates is a man, therefore Socrates is a mortal.” All theorems
and proofs in mathematics have this deductive structure.
However, neither induction nor deduction by themselves can
reveal novel features of the world not already in our ontology.

Finally, we come to abduction, which aims at providing
an explanation of an observation by asserting an already
known precondition that is likely to have this observation as
a consequence. For example, if we identify an automobile as a
means of locomotion and transportation, and had decomposed
it into parts that articulate together to support its function as
a means of locomotion and transportation, we are then able to
explain its failure to function in this sense by a failure of one
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of its now defined parts. If the car does not turn on, we can
suppose the battery is dead. Abduction is differential diagnosis
from a prestated set of conditions and possibilities that articulate
to carry out what we “see the system as doing or being.” But there
is no unique decomposition. The number of decompositions is
indefinite. Therefore, when implemented in a computer program,
this kind of reasoning cannot reveal novel features of the world
not already in the ontology of the program.

To summarize: with respect to coming to know the world,
once we have carved the world into a finite set of categories, we

can no longer see the world beyond those categories. In other
words, new meanings—along with their symbolic grounding in
real objects—are outside of the predefined ontology of an agential
system. The same limitation also holds for probabilistic forms
of inference, involving, e. g., Bayesian nets (see Gelman et al.,
2013). Consider the use of an engine block as a paper weight,
and a Bayesian algorithm updating to improve engine blocks with
respect to functioning as a paper weight. No such updating will
reveal that engine blocks can also be used to crack open coconuts.
The priors for such an innovation could not be deduced, even in
principle. Similarly, Markov blankets (see, for example, Hipólito
et al., 2021) are restricted to pre-existing categories.

Organisms come to know new features of the world by
semiosis—a process which involves semantic meaning-making of
the kind described above, not just formal (syntactic) reasoning
through deduction, induction, or abduction. This is true of
mathematicians. It is also true of Caledonian crows who solve
problems of astonishing complexity, requiring sophisticated
multi-step jury-rigging (Taylor et al., 2010). Chimpanzees
learning to use tools have the same capacity to improvise (Köhler,
2013). Simpler organisms—down to bacteria—must have it too,
although probably in a much more limited sense. After all,
they are at the basis of an evolutionary process toward more
complex behavior, which presupposes the identification and
exploitation of new opportunities. Our human ontology has
evolved into a much more complex state than that of a primitive
unicellular organism. In general, all organisms act in alignment
with their goals, capabilities, and affordances (see Section 4), and
their agential behavior can undergo variation and selection. A
useful action—exploiting a novel affordance—can be captured
by heritable variation (at the genetic, epigenetic, behavioral,
or cultural level) and thus passed on across generations. This
“coming to know the world” is what makes the evolutionary
expansion of our ontologies possible. It goes beyond induction,
deduction, and abduction. Organisms can do it, but universal
Turing machines cannot.

In conclusion, the rationality of algorithms is bounded by
their ontology. However vast this ontology may be, algorithms
cannot transcend their predefined limitations, while organisms
can. This leads us to our central conclusion, which is both radical
and profound: not all possible behaviors of an organismic

agent can be formalized and performed by an algorithm—not

all organismic behaviors are Turing-computable. Therefore,

organisms are not Turing machines. It also means that true

AGI cannot be achieved in an algorithmic frame, since AI
“agents” cannot choose and define their own goals, and hence
exploit affordances, deal with ambiguity, or shift frames in ways

organismic agents can. Because of these limitations, algorithms
cannot evolve in truly novel directions (see Section 8 below).

6. IMPLICATIONS FOR ROBOTS

So far, we have only considered algorithms that run within
some stationary computing environment. The digital and purely
virtual nature of this environment implies that all features
within in must, by definition, be formally predefined. Its digital
environment, in its finite totality, is the ontology of an AI
algorithm. There is nothing outside it for the AI “agent” to
discover. The real world is not like that. We have argued in the
previous sections that our world is full of surprises that cannot
be entirely formalized, since not all future possibilities can be
prestated. Therefore, the question arises whether an AI agent that
does get exposed to the real world could identify and leverage
affordances when it encounters them.

In other words, does our argument apply to embodied Turing
machines, such as robots, that interact with the physical world
through sensors and actuators and may be able to modify
their bodily configuration? The crucial difference to a purely
virtual AI “agent” is that the behavior of a robot results from
interactions between its control program (an algorithm), its
physical characteristics (which define its repertoire of actions),
and the physical environment in which it finds itself (Pfeifer
and Bongard, 2006). Moreover, learning techniques are put to
powerful use in robotics, meaning that robots can adapt their
behavior and improve their performance based on their relations
to their physical environment. Therefore, we can say that robots
are able to learn from experience and to identify specific sensory-
motor patterns in the real world that are useful to attain their
goals (Pfeifer and Scheier, 2001). For instance, a quadruped robot
controlled by an artificial neural network can learn to control
its legs on the basis of the forces perceived from the ground,
so as to develop a fast and robust gait. This learning process
can be guided either by a task-oriented evaluation function,
such as forward gait speed, or a task-agnostic one that rewards
coordinated behaviors (Prokopenko, 2013), or both.

Does that mean that robots, as embodied Turing machines,
can identify and exploit affordances? Does it mean that robots,
just like organisms, have an umwelt full of opportunities and
threats? As in the case of stationary AI “agents,” the answer
is a clear and resounding “no.” The same problems we have
discussed in the previous sections also affect robotics. Specifically,
they manifest themselves as the symbol grounding problem and
the frame problem. The symbol grounding problem concerns the
issue of attaching symbols to sensory-motor patterns (Harnad,
1990). It amounts to the question whether it is feasible for a
robot to detect relevant sensory-motor patterns that need to be
associated with new concepts—i. e., new variables in the ontology
of the robot. This, in turn, leads to the more general frame
problem (see Section 2 and McCarthy and Hayes, 1969): the
problem of specifying in a given situation what is relevant for a
robot’s goals. Again, we run into the problem of choosing one’s
own goals, of shifting frames, and of dealing with ambiguous
information that cannot be formalized in the form of a predefined
set of possibilities.
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As an example, consider the case of a robot whose goal it
is to open coconuts. Its only available tool is an engine block,
which it currently uses as a paper weight. There are no other
tools, and the coconuts cannot be broken by simply throwing
them against a wall. In order to achieve its goal, the robot must
acquire information on the relevant causal features of the engine
block to open coconuts. Can it exploit this affordance? The
robot can move around and perceive the world via its sensors.
It can acquire experience by performing random moves, one
of which may cause it to hit the engine block, to discover that
the block has the property of being “hard and sharp,” which
is useful for cracking the nut. However, how does the robot
know that it needs to look for this property in the objects of
its environment? This is but the first useful step in solving the
problem. By the same random moves, the robot might move
the engine block, or tip it on its side. How can the robot
“understand” that “hard and sharp” will prove to be useful,
but “move to the left” will not? How long will this single
step take?

Furthermore, if the coconut is lying beside the engine block,
tipping it over may lead to the nut being cracked as well. How can
the robot connect several coordinated causal features to achieve
its goal, if none of them can be deduced from the others? The
answer is: it cannot. We observe that achieving the final goal

may require connecting several relevant coordinated causal

features of real-world objects, none of which is deducible

from the others. This is analogous to the discovery process in
mathematics we have described in Section 2: wandering through
a succession of dark rooms, each transition illuminated by the
next in a succession of insights. There is no way for the robot
to know that it is improving over the incremental steps of
its search. Once an affordance is identified, new affordances
emerge as a consequence and the robot cannot “know” in
advance that it is accumulating successes until it happens upon
the final achievement: there is no function optimization to
be performed over such a sequence of steps, no landscape
to search by exploiting its gradients, because each step is a
search in a space of possibilities that cannot be predefined.
The journey from taking the first step to reaching the ultimate
goal is blind luck over some unknown time scale. With more
steps, it becomes increasingly difficult to know if the robot
improves, since reaching the final goal is in general not an
incremental process.

The only way to achieve the robot’s ultimate goal is for it to
already have a preprogrammed ontology that allows for multi-
step inferences. Whether embodied or not, the robot’s control
algorithm can only operate deductively. But if the opportunity
to crack open coconuts on the engine block has been predefined,
then it does not really count as discovering a new causal
property. It does not count as exploiting a novel affordance.
Robots do not generate new opportunities for themselves

in the way organisms do. Even though engaging with their

environment, they cannot participate in the emergent triad

of goals, actions, and affordances (see Section 4). Therefore,
we must conclude that its embodied nature does not really
help a robotic algorithm to achieve anything resembling
true AGI.

7. POSSIBLE OBJECTIONS

We suspect that our argument may raise a number of objections.
In this section, we anticipate some of these, and attempt to
provide adequate replies.

A first potential objection concerns the ability of deep-
learning algorithms to detect novel correlations in large data
sets in an apparently hypothesis-free and unbiased manner.
The underlying methods are mainly based on complex network
models, rather than traditional sequential formal logic. When
the machine is trained with suitable data, shouldn’t it be able
to add new symbols to its ontology that represent the newly
discovered correlations? Would this not count as identifying and
exploiting a new affordance? While it is true that the ontology
of such a deep-learning machine is not explicitly predefined, it
is nevertheless implicitly given through the constraints of the
algorithm and the training scenario. Correlations can only be
detected between variables that are defined through an external
model of the data. Moreover, all current learning techniques
rely on the maximization (or minimization) of one or more
evaluation functions. These functions must be provided by the
designers of the training scenario, who thus determine the criteria
for performance improvement. The program itself does not have
the ability of choosing the goal of the task at hand. This even holds
for task-agnostic functions of learning scenarios, as they again
are the result of an imposed external choice. In the end, with
no bias or hypothesis at all, what should the learning program
look for? In a truly bias- or hypothesis-free scenario (if that is
possible at all), any regularity (even if purely accidental) would
become meaningful (Calude and Longo, 2017), which results in
no meaning at all. Without any goal or perspective, there is no
insight to be gained.

A second objection might be raised concerning the rather
common observation that AI systems, such as programs playing
chess or composing music, often surprise us or behave in
unpredictable ways. However, machine unpredictability does not
imply that their behavior is not deducible. Instead, it simply
means that we cannot find an explanation for it, maybe due
to a lack of information, or due to our own limited cognitive
and/or computational resources. For example, a machine playing
chess can take decisions by exploiting a huge repertoire of moves,
and this may produce surprising behavior in the eye of the
human opponent, since it goes far beyond our own cognitive
capacity. Nevertheless, the behavior of the machine is deductively
determined, ultimately based on simple combinatorics. More
generally, it is well-known that there are computer programs
whose output is not compressible. Their behavior cannot be
predicted other than actually running the full program. This
computationally irreducible behavior cannot be anticipated, but
it is certainly algorithmic. Due to their competitive advantage
when dealing with many factors, or many steps, in a deductive
procedure, AI “agents” can easily fool us by mimicking creative
behavior, even though their algorithmic operation does not allow
for the kind of semantic innovation even a simple organism is
capable of.

A third objection could be that our argument carelessly
ignores potential progress in computational paradigms and robot
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design that may lead to a solution of the apparently irresolvable
problems we present here. A common futurist scenario in
this context is one in which AI “agents” themselves replace
human engineers in designing AI architectures, leading to a
technological singularity—a technology which is far beyond
human grasp (see, for example, Vinge, 1993; Kurzweil, 2005;
Eden et al., 2013; Bostrom, 2014; Shanahan, 2015; Chalmers,
2016). We are sympathetic to this objection (although not
to the notion of a singularity based on simple extrapolation
of our current capabilities). Our philosophical approach is
exactly based on the premise that the future is open, and
will always surprise us in fundamentally unpredictable ways.
But there is no paradox here: what we are arguing for is
that AGI is impossible within the current algorithmic frame
of AI research, which is based on Turing machines. We are
open to suggestions how the limitations of this frame could be
transcended. One obvious way to do this is a biological kind of
robotics, which uses organismic agents (such as biological cells)
to build organic computation devices or robots. We are curious
(and also apprehensive) concerning the potential (and dangers)
which such non-algorithmic frameworks hold for the future. An
AGI which could indeed choose its own goals, would not be
aligned with our own interests (by definition), and may not be
controllable by humans, which seems to us to defy the purpose
of generating AI as a benign and beneficial technology in the
first place.

One final, and quite serious, philosophical objection to our
argument is that it may be impossible to empirically distinguish
between a sophisticated algorithm mimicking agential behavior,
and true organismic agency as outlined in Section 3. In this
case, our argument may be of no practical importance. It is
true that humans are easily fooled into interpreting completely
mechanistic behavior in intentional and teleological terms.
Douglas Hofstadter (2007), for example, mentions a dot of
red light that is moving along the walls of the San Francisco
Exploratorium, responding by simple feedback to movements
of the museum visitors. Every time a visitor tries to touch the
dot, it seems to escape at the very last moment. Even though
based on a simple feedbackmechanism, it is tempting to interpret
such behavior as intentional.3 Could we have fallen prey to
such an illusion when interpreting the behavior of organisms
as true agency? We do not think so. First, the organizational
account of agency we rely on not only accounts for goal-
oriented behavior, but also for basic functional properties of
living systems, such as their autopoietic ability to self-maintain
and self-repair. Thus, agency is a higher-level consequence of
more basic abilities of organisms that cannot easily be accounted
for by alternative explanations. Even though these basic abilities
have not yet been put to the test in a laboratory, there is no
reason to think that they won’t be in the not-too-far future.
Second, we think the account of organismic agency presented
here is preferable over an algorithmic explanation of “agency”
as evolved input-output processing, since it has much greater
explanatory power. It takes the phenomenon of agency seriously

3Regarding machine intentionality see also the work by Braitenberg (1986).

instead of trying to explain it away. Without this conceptual
framework, we could not even ask the kind of questions raised
in this paper, since they would never arise within an algorithmic
framework. In essence, the non-reductionist (yet still naturalist)
world we operate in is richer than the reductionist one in
that it allows us to deal scientifically with a larger range
of undoubtedly interesting and relevant phenomena (see also
Wimsatt, 2007).

8. OPEN-ENDED EVOLUTION IN
COMPUTER SIMULATIONS

Before we conclude our argument, we would like to consider
its implications beyond AGI, in particular, for the theory of
evolution, and for research in the field of artificial life (ALife).
One of the authors has argued earlier that evolvability and agency
must go together, because the kind of organizational continuity
that turns a cell cycle into a reproducer—the minimal unit
of Darwinian evolution—also provides the evolving organism
with the ability to act autonomously (Jaeger, 2022). Here, we
go one step further and suggest that organismic agency is a

fundamental prerequisite for open-ended evolution, since it
enables organisms to identify and exploit affordances in their
umwelt, or perceived environment. Without agency, there is
no co-emergent dialectic between organisms’ goals, actions,
and affordances (see Section 5). And without this kind of
dialectic, evolution cannot transcend its predetermined space
of possibilities. It cannot enter into the next adjacent possible.
It cannot truly innovate, remaining caught in a deductive
ontological frame (Fernando et al., 2011; Bersini, 2012; Roli and
Kauffman, 2020).

Let us illustrate this with the example of ALife. The
ambitious goal of this research field is to create models of
digital “organisms” that are able to evolve and innovate in
ways equivalent to natural evolution. Over the past decades,
numerous attempts have been made to generate open-ended
evolutionary dynamics in simulations such as Tierra (Ray,
1992) and Avida (Adami and Brown, 1994). In the latter
case, the evolving “organisms” reach an impressive level of
sophistication (see, for example, Lenski et al., 1999, 2003; Zaman
et al., 2014). They have an internal “metabolism” that processes
nutrients to gain energy from their environment in order to
survive and reproduce. However, this “metabolism” does not
exhibit organizational closure, or any other form of true agency,
since it remains purely algorithmic. And so, no matter how
complicated, such evolutionary simulations always tend to get
stuck at a certain level of complexity (Bedau et al., 2000;
Standish, 2003). Even though some complexification of ecological
interactions (e. g., mimics of trophic levels or parasitism) can
occur, we never observe any innovation that goes beyond what
was implicitly considered in the premises of the simulation. This
has led to some consternation and the conclusion that the strong
program of ALife—to generate any truly life-like processes in a
computer simulation—has failed to achieve its goal so far. In fact,
we would claim that this failure is comprehensive: it affects all
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attempts at evolutionary simulation that have been undertaken
so far. Why is that so?

Our argument provides a possible explanation for the failure
of strong ALife: even though the digital creatures of Avida, for
example, can exploit “new” nutrient sources, they can only do
so because these sources have been endowed with the property
of being a potential food source at the time the simulation was
set up. They were part of its initial ontology. The algorithm
cannot do anything it was not (implicitly) set up to do. Avida’s
digital “life forms” can explore their astonishingly rich and large
space of possibilities combinatorially. This is what allows them,
for example, to feed off other “life forms” to become predators
or parasites. The resulting outcomes may even be completely
unexpected to an outside observer with insufficient information
and/or cognitive capacity (see Section 7). However, Avida’s “life
forms” can never discover or exploit any truly new opportunities,
like even the most primitive natural organisms can. They cannot
generate new meaning that was not already programmed into
their ontology. They cannot engage in semiosis. What we
end up is a very high-dimensional probabilistic combinatorial
search. Evolution has often been likened to such intricate search
strategies, but our view suggests that organismic agency pushes
it beyond.

Organismic open-ended evolution into the adjacent possible
requires the identification and leveraging of novel affordances.
In this sense, it cannot be entirely formalized. In contrast,
algorithmic evolutionary simulations will forever be constrained
by their predefined formal ontologies. They will never be able to
produce any true novelty, or radical emergence. They are simply
not like organismic evolution since they lack its fundamental
creativity. As some of us have argued elsewhere: emergence is
not engineering (Kauffman and Roli, 2021a). The biosphere is
an endlessly propagating adapting construction, not an entailed
algorithmic deduction (Kauffman, 2019). In other words, the
world is not a theorem (Kauffman and Roli, 2021b), but a
neverending exploratory process. It will never cease to fascinate
and surprise us.

9. CONCLUSION

In this paper, we have argued two main points: (1) AGI is
impossible in the current algorithmic frame of research in
AI and robotics, since algorithms cannot identify and exploit
new affordances. (2) As a direct corollary, truly open-ended
evolution into the adjacent possible is impossible in algorithmic
systems, since they cannot transcend their predefined space
of possibilities.

Our way of arriving at these conclusions is not the only
possible one. In fact, the claim that organismic behavior is
not entirely algorithmic was made by Robert Rosen as early
as the 1950s (Rosen, 1958a,b, 1959, 1972). His argument is
based on category theory and neatly complements our way
of reasoning, corroborating our insight. It is summarized in
Rosen’s book “Life Itself ” (Rosen, 1991). As a proof of principle,
he devised a diagram of compositional mappings that exhibit
closure to efficient causation, which is equivalent to organizational

closure (see Section 3). He saw this diagram as a highly abstract
relational representation of the processes that constitute a living
system. Rosen was able to prove mathematically that this type
of organization “has no largest model” (Rosen, 1991). This has
often been confounded with the claim that it cannot be simulated
in a computer at all. However, Rosen is not saying that we
cannot generate algorithmic models of some (maybe even most)
of the behaviors that a living system can exhibit. In fact, it
has been shown that his diagram can be modeled in this way
using a recursive functional programming paradigm (Mossio
et al., 2009). What Rosen is saying is exactly what we are
arguing here: there will always be some organismic behaviors
that cannot be captured by a preexisting formal model. This
is an incompleteness argument of the kind Gödel made in
mathematics (Nagel and Newman, 2001): for most problems, it is
still completely fine to use number theory after Gödel’s proof. In
fact, relevant statements about numbers that do not fit the theory
are exceedingly rare in practice. Analogously, we can still use
algorithms implemented by computer programs to study many
aspects of organismic dynamics, or to engineer (more or less)
target-specific AIs. Furthermore, it is always possible to extend
the existing formal model to accommodate a new statement
or behavior that does not yet fit in. However, this process is
infinite. We will never arrive at a formal model that captures all
possibilities. Here, we show that this is because those possibilities
cannot be precisely prestated and defined in advance.

Another approach that comes to very similar insights to
ours is biosemiotics (see, for example, Hoffmeyer, 1993; Barbieri,
2007; Favareau, 2010; Henning and Scarfe, 2013). Rather than a
particular field of inquiry, biosemiotics sees itself as a broad and
original perspective on life and its evolution. It is formulated in
terms of the production, exchange, and interpretation of signs in
biological systems. The process of meaning-making (or semiosis)
is central to biosemiotics (Peirce, 1934). Here, we link this process
to autopoiesis (Varela et al., 1974; Maturana and Varela, 1980)
and the organizational account, which sees bio-agency grounded
in a closure of constraints within living systems (Montévil
and Mossio, 2015; Moreno and Mossio, 2015; Mossio et al.,
2016), and the consequent co-emergent evolutionary dialectic
of goals, actions, and affordances (Walsh, 2015; Jaeger, 2022).
Our argument suggests that the openness of semiotic evolution
is grounded in our fundamental inability to formalize and
prestate possibilities for evolutionary and cognitive innovation
in advance.

Our insights put rather stringent limitations on what
traditional mechanistic science and engineering can understand
and achieve when it comes to agency and evolutionary
innovation. This affects the study of any kind of agential system—
in computer science, biology, and the social sciences—including
higher-level systems that contain agents, such as ecosystems or
the economy. In these areas of investigation, any purely formal
approach will remain forever incomplete. This has important
repercussions for the philosophy of science: the basic problem
is that, with respect to coming to know the world, once we
have carved it into a finite set of categories, we can no longer
see beyond those categories. The grounding of meaning in real
objects is outside any predefined formal ontology. The evolution
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of scientific knowledge itself is entailed by no law. It cannot be
formalized (Kauffman and Roli, 2021a,b).

What would such a meta-mechanistic science look like? This
is not entirely clear yet. Its methods and concepts are only now
being elaborated (see, for example, Henning and Scarfe, 2013).
But one thing seems certain: it will be a science that takes agency
seriously. It will allow the kind of teleological behavior that is
rooted in the self-referential closure of organization in living
systems. It is naturalistic but not reductive. Goals, actions, and
affordances are emergent properties of the relationship between
organismal agents and their umwelt—the world of meaning they
live in. This emergence is of a radical nature, forever pushing
beyond predetermined ontologies into the adjacent possible.
This results in a worldview that closely resembles Alfred North
Whitehead’s philosophy of organism (Whitehead, 1929). It sees the
world less as a clockwork, and more like an evolving ecosystem,
a creative process centered around harvesting new affordances.

It should be fairly obvious by now that our argument heavily
relies on teleological explanations, necessitated by the goal-
oriented behavior of the organism. This may seem problematic:
teleological explanations have been traditionally banned from
evolutionary biology because they seemingly require (1) an
inversion of the flow from cause to effect, (2) intentionality, and
(3) a kind of normativity, which disqualify them from being
proper naturalistic scientific explanations.

Here, we followWalsh (2015), who provides a very convincing
argument that this is not the case. First, it is important to note that
we are not postulating any large-scale teleology in evolution—
no omega point toward which evolution may be headed. On the
contrary, our argument for open-endedness explicitly precludes
such a possibility, even in principle (see Section 8). Second,
the kind of teleological explanation we propose here for the
behavior of organisms and its evolution is not a kind of causal
explanation. While causal explanations state which effect follows
which cause, teleological explanation deals with the conditions
that are conducive for an organism to attain its goal. The goal
does not cause these conditions, but rather presupposes them.
Because of this, there is no inversion of causal flow. Finally, the
kind of goal-directed behavior enabled by bio-agency does not
require awareness, intentionality, or even cognition. It can be
achieved by the simplest organisms (such as bacteria), simply due
to the fact that they exhibit an internal organization based on a
closure of constraints (see Section 3). This also naturalizes the
kind of normativity we require for teleology (Mossio and Bich,
2017): the organism really does have a goal from which it can
deviate. That goal is to stay alive, reproduce, and flourish. All
of this means that there is nothing supranatural or unscientific
about the kind of teleological explanations that are used in our

argument. They are perfectly valid explanations. There is no need
to restrict ourselves to strictly mechanistic arguments, which
yield an impoverished world view since they cannot capture the
deep problems and rich phenomena we have been discussing
throughout this paper.

While such metaphysical and epistemological considerations
are important for understanding ourselves and our place in the
world, our argument also has eminently practical consequences.
The achievement of AGI is often listed as one of the most
threatening existential risks to the future of humanity (see, for
example, Yudkowsky, 2008; Ord, 2020). Our analysis suggests
that such fears are greatly exaggerated. No machine will want to
replace us, since nomachine will want anything, at least not in the
current algorithmic frame of defining a machine. This, of course,
does not prevent AI systems and robots from being harmful.
Protocols and regulations for AI applications are urgent and
necessary. But AGI is not around the corner, and we are not alone
with this assessment. The limits of current AI applications have
been questioned by others, emphasizing that these systems lack
autonomy and understanding capabilities, which we conversely
find in natural intelligence (Nguyen et al., 2015; Broussard, 2018;
Hosni and Vulpiani, 2018; Marcus and Davis, 2019; Mitchell,
2019; Roitblat, 2020; Sanjuán, 2021; Schneier, 2021). The true
danger of AI lies in the social changes and the disenfranchisement
of our own agency that we are currently effecting through target-
specific algorithms. It is not Skynet, but Facebook, that will
probably kill us in the end.
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