
Vol.:(0123456789)

Journal of Network and Systems Management (2022) 30:19
https://doi.org/10.1007/s10922-021-09631-7

1 3

MSN: A Playground Framework for Design and Evaluation 
of MicroServices‑Based sdN Controller

Sisay Tadesse Arzo, et al. [full author details at the end of the article]

Received: 2 April 2021 / Revised: 16 September 2021 / Accepted: 17 September 2021 /  
Published online: 21 October 2021 
© The Author(s) 2021

Abstract
Software-defined networking decouples control and data plane in softwarized net-
works. This allows for centralized management of the network, but complete central-
ization of the controller functions raises potential issues related to failure, latency, 
and scalability. Distributed controller deployment is adopted to optimize scalabil-
ity and latency problems. However, existing controllers are monolithic, resulting in 
code inefficiency for distributed deployment. Some seminal ongoing efforts have 
been proposed with the idea of disaggregating the SDN controller architecture into 
an assembly of various subsystems, each of which can be responsible for a certain 
controller task. These subsystems are typically implemented as microservices and 
deployed as virtual network functions, in particular as Docker Containers. This ena-
bles flexible deployment of controller functions. However, these proposals (e.g., �
ONOS) are still in their early stage of design and development, so that a full decom-
position of the SDN controller is not been available yet. To fill that gap, this article 
derives some important design guidelines to decompose an SDN controller into a set 
of microservices. Next, it also proposes a microservices-based decomposed control-
ler architecture, foreseeing communications issues between the controller sub-func-
tions. These design and performance considerations are also proven via the imple-
mentation of the proposed architecture as a solution, called Micro-Services based 
SDN controller (MSN), based on the Ryu SDN controller. Moreover, MSN includes 
different network communication protocols, such as gRPC, WebSocket, and REST-
API. Finally, we show experimental results that highlight the robustness and latency 
of the system on a networking testbed. Collected results prove the main pros and 
cons of each network communication protocol and an evaluation of our proposal in 
terms of system resilience, scalability and latency.

Keywords Software defined networking · Network function virtualization · 
Microservice-based decomposition architecture · ETSI management and 
orchestration · Docker container · 5G
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1 Introduction

Software-defined networking (SDN) is a networking paradigm that aims to give 
a definitive solution to break the limitations of traditional network infrastructure 
[1]. It breaks the vertical integration by separating the network control logic (i.e., 
the control plane) from the underlying routers and switches that forward the traf-
fic (i.e., the data plane). With the separation of control and data planes, network 
switches have become simple forwarding devices, while the control logic is logi-
cally centralized in a controller entity, thus simplifying policy definition and net-
work (re)configuration and evolution [2].

In particular, the SDN architecture consists of three layers [3]: data plane, 
control plane, and the application plane as an additional layer sitting atop them. 
Moving from the uppermost to the lowest layer, the application plane contains 
software applications to provide network services and performs ranges of func-
tionalities such as Quality of Service (QoS), advanced security, and advanced 
routing. The control plane is the central agent which interfaces the application 
and data plane to implement applications network requirements: it communi-
cates through the northbound interface to the applications and via the southbound 
interface to the forwarding devices. The data plane, is responsible for handling 
and forwarding packets and contains a group of data plane resources that can for-
ward and manipulate packets. These resources include forwarding devices that 
have physical/logical interfaces to receive the incoming packets and forward them 
to an outgoing interface(s). The controller communicates with forwarding devices 
using several network communication protocols, in most of the cases the Open-
Flow protocol [4].

The main issues of the centralized control plane range from latency constraints 
to fault tolerance and load balancing, to tackle those challenges, the distribution 
of the SDN controllers has been proposed to reduce typical issues of centralized 
controllers [5]. However, existing controllers are implemented as monolithic 
entities, even in the case of distributed deployments. In particular, in the case 
of distributed SDN controllers, there are replicas of the SDN controller, which 
means all SDN sub functionalities are replicated even if not all are necessary. For 
instance, Ryu SDN Controller [6], an open-source SDN controller implementa-
tion, provides a single piece of code installable on heterogeneous operating sys-
tems that enables the machine (or virtual machine) to act as an SDN controller. 
At the current time, all opensource and proprietary releases of SDN implemen-
tations adopt a monolithic software approach, which include ONOS [7], Open-
DayLight [8], and Floodlight [9]. The main issue of monolithic implementations 
is that it does not allow network administrators and developers to choose SDN 
components and/or functionalities to (de-)activate for having the SDN controller 
functionalities according to SDN deployment and application needs in different 
scenarios. This results in limited flexibility in the network and creates multiple 
problems in terms of scalability, fault isolation, and latency. In particular, future 
5G network infrastructures will leverage the network softwarization and network 
slicing concepts using SDN and Network Function Virtualization (NFV) in 5G 
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[10]. However, in some scenarios system constraints can be very strict, such as in 
Industrial 4.0 and 5G Tactile Internet, which require a high rate of reliability and 
low latency communications [11, 12], and therefore, the adoption of a monolithic 
SDN deployment may result not suitable.

At the same time, the legacy definition of the SDN reference architecture does 
not mandate the internal composition, implementation, and design of an SDN con-
troller [3]. Thus, the SDN controller can be decomposed and implemented as a set 
of software components, running in a distributed manner. Specifically, it is possible 
to design the SDN controller as a composition of logical sub-functions, sharing the 
network service load and creating a robust system against failures. These sub-func-
tions are loosely coupled units that can be executed in different and distributed com-
puting platforms [13]. The possibility of decomposing the monolithic SDN control-
ler and designing the controller as loosely coupled provides a possibility of flexible 
controller deployment.

Accordingly, some research efforts have been started to decompose an SDN con-
troller into microservices. For instance, the ONOS project proposes �ONOS, which 
is the next-generation architecture for the Open Network Operating System control-
ler [14]. �ONOS adopts a microservices-based architecture disaggregating the con-
troller and the core itself as an assembly of various subsystems. However, �ONOS 
has been specialized mainly for cloud datacenter scenarios by employing a ser-
vice orchestrator, Kubernetes, to manage microservices that are realized as Docker 
containers.

Even if �ONOS, faced the issues discussed above, the implementation is in an 
early stage that needs more works to provide a playground framework. In addition, 
their approach has some limitations: first, is limited to certain technologies, not 
all 5G compliant, for instance, Kubernetes instead of ETSI MANO or containers 
instead of VNFs. Second, inter-functionalities communication is limited to Google 
Remote Procedure Call (RPC), which does not give a fair degree of flexibility in cer-
tain scenarios. Finally, the implementation is not completed yet and that hinders the 
possibility to thoroughly test it.

To overcome all those limitations, we propose a novel microservices-based SDN 
controller decomposed architecture based on Ryu SDN Controller called MSN that 
has been specifically designed for next-generation 5G RAN Edge deployments and 
shows several original elements. First, it shows original design guidelines for imple-
menting a microservices-based SDN controller; second, presents a novel decompo-
sition architecture for SDN controller by showing the use of REST-API or gRPC 
or WebSocket as different possible interfaces between the decomposed and virtual-
ized/containerized functions of the controller; third, it presents an implementation 
proposal using Ryu SDN Framework that is completely agnostic to particular tech-
nologies and is 5G compliant (e.g., ETSI MANO and Virtual Machines or Docker 
Containers); fourth, it presents an evaluation of the proposed implementation, which 
indicates the robustness of the system and the low latency achieved by showing a 
comparison of communication interfaces such as REST-API, gRPC, and Web-
Socket; finally, an open-source version of our proposed framework is available for 
the community at the link: https:// gitlab. com/ dscot ece/ ryu_ sdn_ decom posit ion/. In 
particular, the contribution of this article is summarized as follows:

https://gitlab.com/dscotece/ryu_sdn_decomposition/
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– to analyze and discuss the possibility of decomposing an SDN controller;
– to propose a microservice-based SDN controller decomposing architecture;
– to decompose the Ryu controller and to deploy it in a docker container as a proof 

of concept;
– to perform evaluation for the decomposed controller from functionality, resil-

iency, scalability, and latency perspectives.

The rest of the paper is organized as follows. Section  2 discusses the motivation 
and background of decomposing an SDN controller. Section 3 presents the design 
guidelines for decomposing an SDN controller into microservices. Section 4 illus-
trates the proposed architecture and the performance evaluation for functionality, 
reliability, scalability and latency. Section 5 presents the literature review. Finally, 
we conclude by presenting our conclusion, while discussing future research direc-
tion in Sect. 6.

2  Background and Motivation

In this section, we briefly review the existing standard architectures for softwar-
ized networks such as SDN and NFV by analyzing the large numbers of synergies 
between them. Once clarified the standard monolithic SDN controller, we present 
the motivational factors for decomposing the SDN controller. Finally, we provide a 
list of SDN functionalities and we motivate the benefits for distributing these func-
tionalities as microservices.

2.1  Background

SDN and NFV are network softwarization paradigms that are transforming the net-
work management and design approaches. Network softwarization is the mapping of 
hardware-based network functions into software. Network softwarization enhances 
the possibilities of innovation due to flexibility, programmability, virtualization, and 
slicing. SDN and NFV enable the traditional static network to be flexible paving the 
way for network innovation.

What we have discussed above implies the physical separation of the network 
control plane from the forwarding data plane. NFV is an architecture proposed by 
ETSI for network function softwarization. In other words, it is a softwarized imple-
mentation of network functions. The functions are traditionally implemented in 
preparatory hardware [15] such as firewall, load-balanced, deep packet inspection 
(DPI), and network address translator (NAT). The architecture of NFV contains 
three main components.

– Network function virtualization infrastructure (NFVI) consists of the hardware 
and software that host different virtual network functions (VNFs).
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– VNFs are softwarized network functions such as firewall, network address trans-
lation (NAT), packet/serving-gateway (P/S-G), and baseband unit (BBU). These 
functions could be deployed in a containerized environment such as Docker.

– NFV management and network orchestration (MANO) is the place where man-
agement and orchestration of VNFs are implemented.

SDN and NFV are complementary technologies that can support each other for bet-
ter and computer network softwarization and management. An attempt to unify and 
find a single architecture considering the two paradigms is done in [16]. The SDN 
controller provides the possibility of programming the network to have a virtualized 
network that NFV could use to orchestrate virtual functions that are deployed in a 
data center or distributed environment. Whereas, NFV could provide a virtualized 
SDN controller that can be deployed in a cloud. Such possibility provides flexibility 
and full network function softwarization. Figure 1 shows the unified SDN and NFV 
architecture.

2.2  Overview of SDN Controller Components

Existing legacy SDN controllers are typically implemented as the composition of 
various function modules and libraries in a single monolithic system [6–9]. For 
instance, Ryu controllers have internal components such as event distributor, topol-
ogy discovery, and firewall and libraries such as Netconf, NetFlow, and sFlow. The 
Open Network Foundation (ONF) defined the basic elements and conceptual frame-
work for an SDN controller design [3]. As defined by ONF, the internal components 

Fig. 1  A unified architecture for SDN and NFV
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of the SDN controller typically contain the following basic network elements and 
basic functions. The very basic network elements that an SDN controller has to 
manage are:

– Devices are units such as switches, routers, ports, and other physical networking 
units.

– Links are physical or wireless interconnections that connects one physical/logical 
port to another physical/logical port(s).

– Hosts represent the end devices such as computers.
– Packets/flows are the fundamental units of information in user and management 

services, at the network layer.

An inventory of these elements is registered and their state is updated in the control-
ler’s database. The common functions are:

– Topology management is managing a topology and determining which nodes 
and edges are present in the topology.

– Device and link discovery and management is a mechanism to configure and 
incorporate new devices into the network system.

– Route management is determining the path for a packet/flow to route through 
the network from the source to the destination. It computes the path for a given 
packet of flow based on the packet information.

– Routing/forwarding rule-setting enables the packet to route from the source to 
the destination based on the computed path.

– Performance monitoring is the mechanism of ensuring the performance of a net-
work such as QoS for a given service.

– Network-state management is the management of the network information such 
as links status, available path, the available device along with their status, etc.

Depending on SDN controller types, the internal components of a controller may 
vary. Figure 2 depicts the ONF’s SDN architecture. The functionalities mentioned 
above are confined in the Control Plane as part of the SDN controller. In addition, 
there are possible to have a set of sub-functions that we can consider as additional/
high-level functions. These functions in most existing SDN controller implementa-
tions are implemented as external applications confined in the Application Plane. 
In particular, the SDN controller supports a set of APIs (via the North Bound Inter-
face) that make it possible to implement external network services. The most com-
mon SDN-based external applications are:

– Virtualization and slicing;
– Tenant creation and tunneling;
– Traffic flow measurement and statistics (telemetry);
– Performance monitoring;
– Firewall and security;
– Network address translation;
– Load balancing.
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2.3  Ryu SDN Framework

Due to its simplicity and components-based architecture, the Ryu SDN frame-
work is the starting point for our MSN implementation. In particular, a Ryu 
application consists of a Python script that extends the RyuApp base class and 
implements the Observable and Observer interface. These interfaces allow the 
application to interact with the event-based communications in the Ryu frame-
work. For instance, the OFPPacketIn event is the event generated when the 
switch sends the packet to the controller. This event invokes the subscribed func-
tionality that can process the packet and can create the OpenFlow rule. First, the 
Ryu Framework starts the Application Manager that loads all the applications and 
registers the associated events. The most important application in the Ryu Frame-
work is ofp_handler which allows the framework to interact with OpenFlow pro-
tocol (OpenFlowController class). To efficiently communicate with switches, 
Ryu Framework creates a virtual representation of switches called Datapath.

Figure  3 shows the logical architecture of the monolithic Ryu SDN Frame-
work. The ofp_handler operates as the event dispatcher of the Framework and 
manages the Datapaths. In particular, it manages the Hello and Echo messages 
and updates the status of the ports when necessary. The Ryu apps, once invoked 
by an event can reply directly to the Datapaths.

By default, if nothing is specified, Ryu starts with only ofp_handler as applica-
tion. The ofp_handler is the core-fundamental component of the Ryu SDN frame-
work as it contains all the basic SDN functionalities.

Application Plane External Applications 
External Applications 

External Applications 

North Bound Interface API API

South Bound Interface OpenFlow

Control Plane External Applications 
External Applications 
Network Services 

SDN
Controller

Data Plane External Applications 
External Applications 

Network Devices 

Fig. 2  ONF’s software-defined network architecture
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2.4  Motivation for SDN Controller Decomposition

Recently, the application of distributed SDN controllers has been widely studied in 
the literature, from different deployment perspectives. The main efforts were on the 
applications IoT device for smart city, disaster management [17–19], and Industrial 
Internet of Things (IIoT). In the following of this paper, we focus on the applica-
tion of distributed deployment for IIoT. This because is a challenge scenario due 
to very strict requirements in terms of latency, reliability, and scalability. In par-
ticular, IIoT is a new paradigm in Industry 4.0 and it consists of the remote opera-
tion of machines, computers, and robots enabling intelligent industrial operations. 
Moreover, it is aimed at complete automation of the manufacturing process, from 
the raw material input to manufacturing, storage, distribution, and end-user market-
ing. In such scenarios, various heterogeneous devices and users are involved [20]. 
IIoT network requires real-time controlling, e.g., to control robots. These applica-
tions require, resilient, dynamic, and autonomous networking with low-cycle times 
(around 100 ms), and a high-reliability rate (close to 99,99%) [11, 12]. These 
requirements are very difficult to achieve with the existing SDN centralized control-
ler deployment, especially for a large network. It is because SDN deployment incurs 
in propagation latencies as they have to be deployed at the center, which could be 
at a significant distance from the network device or forwarding switches to be man-
aged. Therefore, despite the expected benefits of centralized controller design, it 
raises many challenges, including scalability and reliability.

The existing technique proposed to alleviate this problem is the hierarchical 
deployment of the SDN controller. Using the physical decentralization of the con-
trol plane approach, it is expected to address the scalability and latency problems 
[20]. However, such physically distributed, but logically centralized, systems bring 
an additional set of challenges. First, the distributed deployment of a monolithic 

Fig. 3  Ryu internal monolithic logical Architecture
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SDN controller requires (unnecessary) replication of code so to deploy the whole 
SDN controller at each location. That means whenever a new controller is deployed 
the whole SDN system has to be replicated in the distributed location. In other 
words, the monolithic system further provides a granular level challenge in terms 
of increasing the required functionalities. As the SDN system’s internal modules are 
tightly coupled, it is difficult to dynamically increase the serving capability of the 
controller without adding a new SDN controller. In other words, the whole SDN has 
to be replicated in response to the workload demand that could have been performed 
by increasing just the required functional modules of the SDN controller. Further-
more, in terms of resilience, the monolithic system also has further disadvantages 
as a single controller fails in a given local area, it has to use the central controller 
which is further away from the center creating latency and congestion [21]. This 
is because instead of instantiating the specific function that leads to failure, either 
it has to instantiate the whole SDN controller or contact the nearby controller. See 
Table 1 for comparison between monolithic systems and microservice system.

However, if we can decompose the monolithic SDN controller into sub-func-
tions, we could deploy only the required functionality in the required location as 
per network size and network management workload demands. Moreover, dynamic 
response to dynamic network demand is possible by dynamically instantiating the 
required functions of the controller components to meet the service and network 
demands. This means dynamically scaling the controller capability with the dynamic 
service demand.

Therefore, a decomposed SDN controller deployment could provide a flexible 
and efficient local deployment of required controller’s functionalities, while decep-
tively scaling controller’s unctions on demand. This would potentially be advanta-
geous in terms of latency and reliability, due to reduced code size and the flexible 
scaling of resources and controller functions. It would become possible to dynami-
cally increase the number of functions and resources, which could be a horizontal 
and vertical extension of functions deployed as virtual network functions (VNFs) 
to meet the service demands. A typical application of a decomposed SDN scenario 
is depicted in Fig. 4. The SDN controller with the minimum required functionality 
could be hosted in an edge data center.

2.5  Microservice Architecture

The monolithic SDN controller is easier to develop and deploy. However, since 
a monolithic SDN controller is built as a single and indivisible unit, updates or 
changes are very difficult because they require the replacement of the whole stacks 
of the control system. Moreover, handling a huge codebase, adopting new technol-
ogy such as AI, dynamic scaling, deploying, and implementing changes is very dif-
ficult. This is a big disadvantage in the era of functions containerization and cloudi-
fication where features of loose-coupling, distributed deployment, and dynamic 
scaling of resources are required. In general, the monolithic SDN controller has dis-
advantages of scalability, reliability, and reusability.
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In principle, monolithic SDN controllers have pros and cons compared to micros-
ervices. Microservices are a means of creating loosely-coupled sub-functions or 
sub-services, replacing a large software system. So far we have mentioned its dis-
advantages. An alternative approach that we have indicated so far is microservices. 
A multi-agent system is also another alternative to have a decomposed management 
system. Since we are focusing on a microservice-based decomposition technique, we 
will limit our discussion to only microservices instead of multi-agent approaches, 
which is discussed in detail in [22].

Microservice is a variant of the service-oriented architecture (SOA) structural 
style in software development [23]. It arranges an application as a collection of 
loosely coupled services. In a microservices architecture, services are fine-grained 
decoupled functions. The protocols are interconnecting the decoupled services are 
lightweight. The architecture describes a particular way of designing software appli-
cations as suites of independently deployable services. While there is no precise 

Fig. 4  Microservices-based SDN deployment blueprint in IIoT Scenarios
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definition of this architectural style, there are certain common characteristics around 
an organization, business capability, automated deployment, intelligence in the end-
points, and decentralized control of languages and data.

As per the above definition, microservices-based systems provide the possibil-
ity of building a system from small heterogeneous components. A lot of existing 
tools could be geared toward microservices such as communication interfaces. 
Microservices-based systems have the advantages of scalability, reusability, flexibil-
ity, and agility. A comparison of microservices and monolithic systems is provided 
in Table  1. In the table, we made three important considerations. First, the SDN 
functions that we are proposing to be designed as microservice inherit the general 
microservice properties. Second, the microservice-based SDN function could be 
considered as separate functions that could be placed in a container and cloud envi-
ronment. Third, by instantiating and sequencing the necessary functions, we can rec-
reate the decomposed SDN controlled system with only the important and required 
SDN functions hosting them in the nearest edge computing data center. We discuss 
these points further in the next subsection

3  Microservices‑Based Decomposed SDN Controller

This section provides the proposed decomposed architecture of an SDN controller, 
presenting a functional definition of components and interfaces. The proposed SDN 
controller decomposition architecture shows the decoupling of internal components 
of the SDN controller to be deployed as a microservice.

3.1  SDN Controller Internal Components as a Microservice

The main principle to retain in decomposing an SDN controller is that the network 
information and state should be synchronized and self-consistent providing a global 
view of the network. That allows an independent implementation and components 
reuse. We consider a decomposition of SDN controller, as depicted in Fig. 5 which 
shows a decomposed three-layer SDN architecture reflected in an NFV architecture 
[15].

Figure 6 depicts our proposed deployment architecture of the decomposed SDN 
controller, based on microservice architecture. The main principle behind the archi-
tecture is the use of microservice based functions to replace the monolithic SDN 
controller and develop it as a lossless coupled composition of containerized ser-
vices. As discussed in Sect. 2.2, we identified and defined the internal components 
of the SDN controller that could be developed independently as a microservice. This 
requires delineating the system based on specific service functions. In other words it 
should be possible to specifically define as function that could independent be devel-
oped as microservice and deployed in a virtual environment or container.

This also mean that the control layer core sub-functions are decomposed into sub-
functions and implemented as microservice and deployed as VNFs in containers. 
Each sub-function is developed as a microservice and creates an independent and 
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Fig. 5  Architectural overall of proposed microservices-based SDN Controller decomposition

Fig. 6  Proposed microservices-based SDN controller sample deployment architecture



 Journal of Network and Systems Management (2022) 30:19

1 3

19 Page 14 of 31

autonomous service unit. These microservices are able to independently perform 
the required service function. The independence of microservices would provide the 
possibility of deploying them in a distributed environment while scaling them as per 
the service workload. This may require instantiating multiple instances of the same 
service or new instances of additional microservices.

Once the necessary functions are developed as microservices, the SDN system 
requires a service aggregation to deliver a final functional system. Therefore, the 
final controller system becomes the organization of the independently developed 
microservices to create the equivalent SDN controller functions. As indicated above, 
the controller’s components can be executed on arbitrary computing platforms on 
distributed and virtualized resources such as virtual machines (VMs) or containers 
in data centers. The loosely-composed system can be viewed as a black box, defined 
by its externally-observable behavior, emulating the original monolithic SDN con-
troller. However, a distributed implementation must consider maintaining a syn-
chronized and self-consistent view of network information and states. The indepen-
dently developed microservices based functions could be orchestrated by a standard 
orchestrator, such as MANO. This would create a service function chain to equiva-
lently perform the legacy SDN controller’s functions.

As can be seen from Fig.  5, the upper layer is a pool of independently imple-
mented microservice based SDN components such as topology manager, event han-
dler, and other applications. Each component performs a specific function such as 
traffic routing, topology management, and even handling. It is possible to categorize 
functions as basic SDN controller functions and additional functions or applications. 
Basic SDN controller functions are mandatory to provide the minimum possible 
function of the SDN controller.

3.2  External Applications as a Microservice

In addition to the network services, external applications could be incorporated to 
extend the controller basic functionality [3, 14]. Depending on the network to be 
controlled, various types of applications could be implemented in the application 
layer such as additional QoS service, traffic predictions, traffic classification, slic-
ing, firewall, and novel deep packet inspection, see Fig. 6. All these functions can 
be developed based on microservice and could be considered as VNF in container 
which can be deployed in a distributed environment. In doing so, we are effectively 
eliminating the traditional delineation between the control layer and the application 
layer. This is interesting concept to notice as the legacy architecture of the SDN con-
troller has three layers, which are forwarding, control, and application, see Fig. 2. 
However, in the proposed MSN framework there is no apparent difference between 
an SDN internal function and network application that are deployed as VNF in 
containers. This is because all components could be implemented as loosely cou-
pled microservices, and running in a container that can be deployed anywhere. Our 
implementation is a testbed showing this by splitting the Ryu controller into two 
separate functions that are deployed in a docker container.
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3.3  Communication Interface Between Decomposed Services

As indicated above, in our proposed MSN framework, the components can be 
deployed as VNF in a distributed environment as a web service. A web service is 
a service that can be called by an application. Therefore, the decomposed SDN 
controller sub-functions could be considered as web services, which can separate 
programs that are independent of other applications and can be run on different 
machines. Such functions communicate with each other or with the event distribu-
tor, such as sending and receiving event notifications through the communication 
interface. These communication interfaces between the decomposed and container-
ized applications are based on open-source communication interfaces. These generic 
communication interfaces are tested in our implementation which are REST, Web-
Socket, and gRPC. Each of them has its pros and cons in terms of latency for web-
based services.

3.3.1  Communication Interface Between the Decomposed Microservice Based 
Controller Functions

Our proposed MSN framework uses RESTful API for as the communication inter-
face. RESTful is an application program interface that uses HTTP requests to GET, 
PUT, POST, and DELETE data [23, 24]. It provides interoperability between differ-
ent network application developers of the SDN controller sub-functions. These APIs 
can be used to facilitate efficient microservices-based function orchestration and 
automation of the network to align with the needs of different applications. RESTful 
API is a stateless architecture for data transfer. We chose REST for multiple reasons 
such as performance, scalability and, most important, is the standard declared in the 
3GPP white-paper about Release 15 of 5G networks [25]. RESTful API also allows 
the support of large numbers of components and interactions among them which 
makes it ideal for IIoT deployment scenario indicated above. Moreover, RESTful 
API has a uniform interface which simplifies and decouples functions making it 
suitable for a microservice-based SDN function communication.

As a comparison with RESTful API while testifying our hypothesis on how the 
use of REST has advantages for SDN controller decomposition, we used gRPC 
and WebSocket [24]. gRPC is an open-source remote procedure call (RPC) system 
initially developed. It uses HTTP/2 for transport, Protocol Buffers as the interface 
description language, and provides features such as authentication, bidirectional 
streaming and flow control, blocking or non-blocking bindings, and cancellation and 
timeouts. gRPC is roughly seven times faster than REST when receiving data and 
roughly ten times faster than REST when sending data for this specific payload. This 
is mainly due to the tight packing of the Protocol Buffers and the use of HTTP/2 by 
gRPC. Moreover, WebSocket is another communications protocol that provides a 
full-duplex communication channel between the servers and the clients, using a sin-
gle TCP connection. It was standardized by the IETF as RFC 6455 in 2011 [24]. It 
provides real-time communication between a client and the server.

Finally, we would like to indicate that the drawback of an SDN controller decom-
position and deploying it as a distributed system could create an additional challenge 
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of synchronization between components. Even if the decomposition has advantages 
compared to a centralized SDN architecture in terms of availability, resilience, and 
flexibility for a reconfigurable system, the distribution of functions imposes a con-
tinuous network state synchronization challenge. The network state database could 
be centralized or distributed. In other words, the network state is replicated or dis-
tributed between the controllers requiring repeated synchronization. In each case, 
maintaining synchronization is a challenge. However, the problem of synchroniza-
tion of the database in a distributed system is a long-studied subject that could be 
considered for the case of decomposed SDN controller [26, 27]. For example, the 
existing controller synchronization strategies developed for distributed controllers 
improve joint controller decision making for inter-domain routing. Given existing 
solutions in the literature, in this work, we consider the proposed MSN system pre-
cisely synchronized. This assumption is made reasonable by the system’s charac-
teristics. The various modules, composing the distributed SDN controller, are vir-
tual containers placed in and running on servers and, more in general, on network 
computing hardware. The containers get the synchronization from the clocks of 
their hosting hardware. In fact, this network hardware is accurately synchronized via 
well-known standardized synchronization protocols like IEEE 1588 Precision Time 
Protocol (PTP) [28, 29], which has already been used to achieve a synchronization 
accuracy in the order of tens of nanoseconds.

4  TestBed Implementation and Performance Results

For the evaluation of the MSN implementation, we proposed an implementation 
based on Ryu SDN controller [6] due to its component-based characteristics that 
blend well with the microservices-based SDN controller perspective. The following 
subsections introduce first the fundamentals of our proposed microservices-based 
decomposition framework and, finally, we present our experimental environment 
and the performance results of the MSN implementation.

4.1  Decomposing Ryu SDN Controller

As theoretically described in the Sect. 3, we identified in the Ryu implementation 
the essential modules that describe a basic SDN system:

– Event Handler System Management: this module is in charge of catching an 
OpenFlow event and forwarding it to the destination. This module works reac-
tively and may be considered as the core module for a decomposed SDN imple-
mentation.

– Routing System: this function is used to generate Flow rules to allow the network 
to exchange packets among nodes and switches.

– South-bound Management: this module allows the system to interact with the 
underlying system with several protocols.
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The starting point for the microservices-based SDN decomposition is the charac-
terization of the core part of the SDN system that allows the communication from 
network components to the applications (i.e.: from the control plane to the data 
plane). In particular, the externalization of that SDN core part allows the network to 
be observable and manageable from external processes. The proposed MSN imple-
mentation follows that principle and its implementation is provided to demonstrate 
the feasibility of using a middleware that allows the interaction between the core of 
the SDN and external processes.

First, we isolated the event emitter from the core of Ryu Framework and we cre-
ated a support middleware module (the yellow block in the Fig. 7), incorporating the 
REST APIs block with the emitter to be able to transform events in REST calls. The 
middleware is the fundamental block for a microservices-based SDN decomposi-
tion, precisely because connects the legacy SDN environment with external micros-
ervices. Second, we turned each Ryu App in a separate block (i.e., microservices) 
external to the Ryu Framework which can communicate with the Framework via 
REST APIs through the middleware. In this way, we transform an SDN functionality 
into an atomic block (microservice) releasing it from the whole SDN Framework. 
For implementation purpose, we leverage the already existing REST-based APIs 
in the Ryu framework, precisely the ofctl_rest module. Figure 7 shows the resulted 
Ryu-based MSN implementation architecture. The described approach can be used 
for different network technologies, not only REST-based, such as gRPC, WebSocket, 
RPC, and so on. What is changing is the block internal to the middleware (the ofctl_
rest block in the Fig. 7) module that connects to external microservices.

Once demonstrate the feasibility of the MSN framework, to improve reliability and 
scalability is important to leverage a solution like virtualization and/or containerization 
that results easy to orchestrate via an orchestrator. In our solution, we adopted Docker 

Fig. 7  Ryu-based MSN Implementation Architecture
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Container as containerization ecosystem, Open Source MANO for the orchestration 
and OpenStack as the infrastructure layer. We produced different Dockerfile for repro-
ducing the architecture shown in Fig. 7. In particular, we created a Docker container 
for our middleware that incorporates the ofp_emitter and ofctl_rest blocks inside and 
another Docker container for the event handler functionalities such as the ofp_handler 
block. Finally, Ryu Apps are considered as separated Docker Containers that include 
SDN functionalities including routing functionality or Firewall. For major details, we 
have all codes available at repo source: https:// gitlab. com/ dscot ece/ ryu_ sdn_ decom 
posit ion/.

4.2  Experimental Environment

Our performance evaluation aims to prove the feasibility of the MSN framework and 
evaluates its performance by proposing a benchmark of several communication tech-
nologies to enable needed interconnections and interoperability across microservices. 
The tests show results in terms of reliability, scalability, and latency of the system. To 
achieve this, we separated our testbed into two different parts: first, we tested the sys-
tem latency introduced by splitting the SDN controller in microservices for different 
network interconnection technologies; finally, we tested our system to calculate the 
improvements in terms of reliability and scalability.

The performance of the MSN framework has been evaluated in a simulated testbed 
environment. We used the implementation details described in the Sect. 4.1. In addi-
tion, the OpenFlow protocol will be used for the forwarding plane of switches. How-
ever, it should be noted that the vision of the MSN framework is completely agnostic to 
any specific SDN implementation. Our testbed consists of a Linux workstation (Ubuntu 
Server 18.04 LTS) equipped with a 2x AMD Opteron(tm) Processor 6376 3.2GHz 16 
cores processor and 32 GB 1600MHz DDR3 memory. We employ the following soft-
ware, used to implement and test the proposed architecture:

– The Microstack version of the Openstack which plays the physical infrastructure of 
our testbed

– The docker community edition version 19.03.7 for dockerized microservices
– The open-source MANO release 8 as the system orchestrator
– Ryu SDN Framework
– Python 3
– Mininet for creating a virtual network

We evaluated the feasibility and performance of the solution for three different network 
communication technologies such as WebSocket, gRPC, and REST. Finally, all results 
obtained in the testbed are an average of 30 runs that exhibited a limited variance of 
under 5%.

https://gitlab.com/dscotece/ryu_sdn_decomposition/
https://gitlab.com/dscotece/ryu_sdn_decomposition/
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4.3  Benchmark of Network Communication Protocols

First, the testbed calculates the overhead introduced by the microservices-based 
approach in-terms of response time. To ensure this, we calculated three different 
latency: the response time of the first packet, the response time of the normal flow, 
and the average response time of rule updating packets. The response time for the 
first packet means, the time needed to send the first packet from one node to another. 
In an SDN network, with a reactive approach, the controller adds rules to the data-
plane when it receives a new packet. This generates latency for the first packet of 
the flow. Once that is done, the flow can reach the destination node without passing 
through the SDN controller. Sometimes, during the flow, there are some updating 
packets to update, for instance, the expiration time of a rule. These packets gener-
ate latency because as in the case of the first packet, the flow must reach the SDN 
controller before. We repeated these experiments for different nodes of the network 
(H1 and H3 first, and then H1 and H10). As it can be seen from Fig. 8, there are two 
switches between H1 and H3, and there are five switches between H1 and H10. To 
calculate these latencies, we sent a video streaming across the network and we kept 
the average round trip time. We repeated this test for each network communication 
technology.

The results, shown in Fig.  9, show that the major delay is on the first packet 
latency. REST protocol appears to be seven times slowest than WebSocket technol-
ogy, in H1 and H3 scenario, whereas gRPC protocol provides performance like the 
REST protocol but a little faster. The performance further degrades in the H1 and 
H10 scenario for all protocols. In particular, the REST protocol results around ten 
times slower than WebSocket technology. This is due to the multiple connections 
between switches. Finally, the performance of all protocols during the normal flow 
was omitted due to the very low latency time (0.01 ms average around all protocols) 
but proves that all protocols are consistent and similar to each other.

In conclusion, we note that the REST protocol has a high response time for the 
first packet and rule updating packets compared to WebSocket and also to standard 
Ryu. However, the response time during the normal flow remains the same for all 

Fig. 8  Mininet Topology for Experimental Testbed
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protocols. Therefore, it is apparent that the benefits of the microservice-based SDN 
model need to be balanced with any trade-offs incurred. On the one hand, despite 
the WebSocket protocol proves to be faster, it strongly depends on the Socket con-
cept which means rely on the IP address and the Port number of the services. On 
the other hand, the gRPC protocol could become dominant in the future thanks to 
the adoption of the HTTP/2 protocol and to the use of Protobuf as the payload for-
mat. Furthermore, factors such as scalability and reliability (or availability) should 
be taken into account when deciding whether to use standard SDN or the micros-
ervices-based one. Moreover, the best choice of the right communication protocol 
depends on many factors including the context. For instance, a heterogeneous and 
ultra-reliable industrial scenario may require REST as a communication protocol to 
guarantee high connectivity among devices.

4.4  Resilience and Scalability Test

Finally, the testbed is designed to calculate the improvements of our solution in 
terms of the reliability and scalability of the system. To achieve these features, we 
used the ETSI MANO standard such as the open-source MANO implementation. 
The microservices-based approach allows the system to develop a horizontal scal-
able to easily adapt to the dynamics of the input workload and to tolerate poten-
tial run-time faults. Indeed, the OSM Autoscaling functionality automatically scales 
VNFs based on available metrics such as CPU and memory consumption, packets 
received, packets sent, and so on. Each SDN component is a Docker container that 
will be encapsulated in a VNF. Therefore, there will be single or multiple VNFs that 
represent SDN applications or functionalities. As discussed before, the OSM Autos-
caling function provides an automatic solution for fault tolerance management. This 

Fig. 9  Performance results
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is possible through a scaling descriptor, that is part of the Virtual Network Function 
Descriptor (VNFD) which specifies the metrics and thresholds to be monitored.

4.4.1  Resilience Test

To test the resilience of the system, a node sends a continuous flow of packets. This 
test simulates the fault for an SDN routing path component and the possibility of 
instantiating a new instance as a backup. In this test, the communication between 
VNFs is via REST protocol and the MANO orchestrator helps to manage them by 
automatic scaling process. In particular we used a video streaming simulation, from 
a source to a sink node while the SDN routing microservice goes down. Figure 10 
shows the average message delay recorded during the experiment. Each observation 
shows the delay in the control plane and the data plane. Since there is no message 
lost between time T1 and T2 but only small glitches in both the average message 
delay in the control plane and data plane at two instants prove the robustness of the 
system. The other small peaks correspond to the controller’s rule updating packets at 
the datapath. The first delay is the delay introduced by the first packet, see the next 
experiments. This experiment shall be understood as a way to highlight the robust-
ness achieve by the SDN system in its microservices-based deployment. Therefore, 
the standard SDN Controller, if some issues occur, is not able to react unless it is 
used in a distributed way. However, this means having two o more SDN Controllers 
deployed at the same time.

4.4.2  Scalability Test

We evaluate the scalability of the system in two different scenarios: multiple net-
work service, and single network service. ETSI MANO defines network services 
(NSs) as a composition of VNFs that specifies a service such as an SDN control-
ler. The first scenario—multiple NS—relates to the scalability of the entire NS 
that is comparable to a distributed SDN scenario. Figure  11 shows the related 
scenario in the OpenStack and Open Source MANO platforms. The OpenStack 

Fig. 10  Resilience Test: average message delay
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provides a management network and a data network to correctly connect entities 
to each other, in particular, the Mininet network and the SDN system. In this sce-
nario, we instantiate different NS to provide scalability. The load balancer in the 
mininet network provides a distributed control plane where each controller is in 
charge of a sub-set of the switches.

In the other scenario—single NS—we simulate the scalability of VNFs for 
instance the routing capabilities of the MSN prototype by keeping a single NS. 
Figure 12 shows the related scenario in the OpenStack and Open Source MANO 
platforms. The SDN system is composed of a single NS in which each micros-
ervices (as VNFs) can be instantiated multiple times to provide robustness and 
scalability. The autoscaling feature of the Open Source MANO allows to define 
the scaling descriptor as a part of the VNF definition. In particular, is possible 
to define several metrics to monitor and a load balancer (included in the middle-
ware) that redirects requests to the routing service following a balancing strategy 
such as Round Robin and so on.

We calculated the average latency time for the first packet and for the normal flow 
by considering different host at different distances. The reference topology shown in 
Fig. 13 is composed of 16 hosts and relates to a hierarchical network topology that 
is the most widely used in real datacenters [30]. In the Fig. 14 we show the average 
latency time for the first packet in both scenarios with 2 and 3 replicas, while the 
average time for normal flow is depicted in Fig. 15. In conclusion, we tested two 
different scenarios in the OpenStack and Open Source MANO for the scalability 
concern, and we noted that replicating the entire NS performs better than a single 
NS. This because in our test the middleware is the bottleneck for the switches while 
splitting the management of the network to more middleware is more efficacy. How-
ever, in the second scenario, it is possible to replicate the middleware as well.

Fig. 11  Scalability test: scenario 1 (multiple NS)
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5  Related Work

In recent years, there has been a lot of interest in SDN-based mobile networks, 
and several papers are proposing SDN-based mobile network architectures and 
listing the benefits they can bring to the mobile industry [20, 31–33]. In particu-
lar, the high numbers of researches and the high interest in this topic have led 
to an evolution of the traditional SDN architecture and due to the widespread of 

Fig. 12  Scalability test: scenario 2 (Single NS—multiple VNF)

Fig. 13  Scalability test: network topology
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the IoT, the SDN paradigm has started to be used to manage the IoT in several 
domains including smart city [34], smart home [35], smart health [36] and so 
on. The SDN paradigm helps the IoT networks to challenge several issues such 
as latency, reliability, privacy, flow control, etc. However, it still has some issues 

Fig. 14  Scalability test: average latency time for the first packet
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caused by the logical centralization of the SDN controller, the main of them being 
scalability and robustness [37].

There are also numerous SDN controller implementation both from the open-
source community and from commercial vendors. Typical examples are NOX, POX, 
Ryu, OpenDayLight, and ONOS. Even if the core principle of all SDN controllers is 
the same, each of them has a slightly different implementation approach. NOX is the 
first OpenFlow-based SDN controller written in C++ [38]. In the early exploration 
of the OpenFlow and SDN space, NOX has been the basis for many research and 
development projects. The NOX internal components mainly contain event handlers 
to receive and dispatch events such as incoming packets. POX is similar to NOX 
with a Python-only implementation. It is considered as a general, open-source Open-
Flow controller [39]. Ryu is also a component-based SDN controller [6]. OpenDay-
Light is a collaborative open-source controller [8]. It is a modular, extensible, scal-
able, and multi-protocol SDN controller deployment. ONOS is also an open-source 
SDN controller [7]. The ONOS SDN controller software is written using Java and it 
provides a distributed SDN application platform atop Apache Karaf OSGi container. 
The controller has been designed to operate as a cluster of nodes that are similar in 
terms of their software stack and can endure the failure of individual nodes without 
causing disruptions in its ability to control the network operation.

All of above SDN implementations are based on a modular approach. However, 
all of them are based on monolithic architecture. NFV has changed the way we 
deploy network functions [15]. It enables easier, flexible, and dynamic deployment 
of a given network functions. SDN and NFV are complementary technologies [3, 
15], but SDN controller function could be considered as a network function and it 
can be deployed as a VNF in a container [15]. However, the overall controller is a 
cumbersome and monolithic process. ONF specification indicated a possibility of 
implementing the SDN controller as either monolithic or decomposed in microser-
vices [3]; however, only a few recent efforts have started exploiting this second pos-
sible design choice.

In wireless cellular networks, a recent article [40] showed how to split BaseBand 
units (BBU) of wireless RAN deployment. The authors propose to split it into dif-
ferent configurations; in each configuration, the functional units of BBU are split 
to be deployed as a virtualized functions. The BBU is virtually stored in a network 
cloud and accessible, as a shared resource. Similar to other network functions, such 
as BBU in wireless networks, SDN controller could be decomposed [41].

The first work showing an externalization of packet processing in SDN is pre-
sented in [41]. As an extension of this work, the author in [42] provided steps that 
are required to migrate from a monolithic to a microservice-based architecture. The 
functional components are distributed as microservices and a gRPC is used to com-
municate between the core modules and external components or applications.

�ONOS is the latest solution proposed towards a standard architecture for distrib-
uted and split control plane. The � ONOS project aims at creating a new generation 
of SDN architectures based on ONOS, splitting it into a set of microservices. These 
split functionalities are deployed as Docker containers and managed by Kubernetes 
orchestrator. The �ONOS project is relatively young (it started in October 2019) and 
it is based on the P4/P4runtime [43] protocol which is a different control protocol 
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compared to the standard de-facto for the SDN paradigm, namely, the OpenFlow 
protocol. P4 protocol can emulate the behavior of OpenFlow; in addition, the com-
munication between functionalities is via gRPC-based protocols, including gRPC 
Network Management Interface (gNMI) for network management interface configu-
ration and gRPC Network Operations Interface (gNOI) for network command opera-
tions. However, the �ONOS implementation is still in its infancy and there is still no 
available implementation to play with. Moreover, and most important, some imple-
mentation choices are not compliant with ongoing 5G standards. First, �ONOS has 
limited integration with and support for ETSI-NFV standards because it neither 
implements the OpenFlow abstraction nor that of legacy network elements. In par-
ticular, the use of Kubernetes does not allow an easy integration within the 5G Edge 
architecture which requires ETSI-based protocols such as ETSI-MEC and ETSI-
MANO. On the contrary, MSN framework exploits ETSI-NFV standard to define 
its architecture and ETSI-MANO for managing microservices, which allows MSN 
to easily operate within 5G-based networks. Second, in � ONOS the communica-
tion between microservices is based on gRPC, a Remote Procedure Call framework 
developed by Google, which allows network entities to communicate (once defined 
an agreement) by serializing data with the Protocol Buffers, another Google solu-
tion. This results in a not so easy interaction with most available third-party applica-
tions which are using more open protocols such as REST-APIs. Because of that, in 
our MSN solution, we defined a generic communication module between microser-
vices that allow users to choose the network communication technologies according 
to scenario requirements. This operation can be done at developing time, but, thanks 
to the dynamicity of containers/VMs orchestration via ETSI-MANO, it is possible 
to change dynamically the network communication technology. Finally, � ONOS is 
based on the ONOS SDN system that forces users to have previous knowledge on it. 
Also, this may result inefficient in several scenarios where network entities are not 
powerful enough to run the (rather heavy) ONOS system such as the Industrial IoT 
scenario. To overcome this, MSN framework provides general guidelines to decom-
pose an SDN system that is completely agnostic to specific SDN software and com-
munication means.

In general, to the best of the authors’ knowledge, the MSN solution is the first 
seminal work implementing complete guidelines for the SDN controller decomposi-
tion in microservices that fit 5G requirements including an implementation based on 
VNFs, Docker containers, and ETSI-MANO.

6  Discussion and Conclusion

In this paper, the microservices-based decomposition architecture is proposed for 
the SDN paradigm to improve agility, scalability, and reliability. The SDN fea-
tures including dynamic flow control and the possibility to reconfigure the network 
according to application needs make it an enabler for the 5G next-generation IIoT 
networks. However, most SDN controllers are deployed as a monolithic block, and 
that can make them not efficient enough to cover the requirements of the IIoT net-
works such as scalability and robustness.
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The MSN framework, proposed in this paper, paves the way to a new generation 
of microservices-based approaches for the next generation 5G-ready SDN networks. 
The use of microservices represents a big step ahead for the Cloud Continuum also 
in the vision of the Edge/Cloud hybrid architectures [44]. This paper inspects the 
use of microservices in the SDN paradigm presenting pros and cons of this novel 
paradigm when employed in this specific domain. The results presented in this paper 
are focused on the delay for the first packet, which means the latency introduced by 
the decomposition and distribution of microservices. Obtained results demonstrate 
the feasibility of applying microservices-based architecture to the SDN paradigm, 
which offers a wide range of benefits including deployment agility, scalability, and 
robustness that can be granted for each different SDN controller functionality. In 
the proposed solution, we take into account more ways to interconnect microser-
vices with each other by analyzing different protocols such as REST, gRPC, and 
Websocket. That allowed to compare not only the introduced delay by the men-
tioned technologies, but also the benefits that each protocol could bring. The tests 
show significant improvement in terms of reliability of the system in the case of a 
microservice become unavailable. Moreover, tests on the scalability show how to 
achieve scalability on the MANO orchestrator with two different scenarios. There-
fore, orchestrating microservices for managing fault tolerance or for distributing the 
load will be a task for the MANO orchestrator. We also provide to the community 
working in the field our implementation.1

Boosted by obtained results, we are now working along different ongoing work 
directions. First, we are using a reactive approach in the evaluation, we are working 
on implementation also a proactive approach so to further improve some aspects of 
latency. In fact, a reactive approach allows a system to react when something hap-
pens, for instance when a fault of a specific functionality occurs. In particular, MSN 
reacts by instantiating a new instance of the functionality as an VNF via the MANO 
orchestrator. On the contrary, using a proactive approach for the orchestrator would 
guarantee less downtime service by leveraging intelligent algorithms to predict fault 
at functionalities. Second, we are considering the possibility to add intelligence 
at the orchestration level to dynamically and proactively manage network entities 
according to network behavior. For instance, if the network is not performing as 
expected (e.g., because of congestion), an intelligent orchestrator can predict that 
and can allocate useful functionalities to overcome the congestion. This vision can 
be extended to all system components including every single SDN (sub-)functional-
ity, by bringing intelligence at functionality level. So, each functionality can set up 
its behavior to fit network requirements. Third, we are working on a resource pro-
visioning strategy, where a plan is needed for the careful identification of network 
nodes, VNFs, and services that will fulfill the application requirements. In particu-
lar, the provisioning strategy must consider both applications and control network 
functionalities as resources to manage. Following the plan instructions, the orches-
trator will deploy and configure all resources needed by the application.

1 For more details on the implementation and to reproduce the presented tests, we provide the entire pro-
ject at https:// gitlab. com/ dscot ece/ ryu_ sdn_ decom posit ion/.

https://gitlab.com/dscotece/ryu_sdn_decomposition/
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