ALMA MATER STUDIORUM UNIVERSITȦ DI BOLOGNA

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis

This is the submitted version (pre peer-review, preprint) of the following publication:

Published Version:
Locke, S.A., Van Dam, A., Caffara, M., Pinto, H.A., López-Hernández, D., Blanar, C.A. (2018). Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. INTERNATIONAL JOURNAL FOR PARASITOLOGY, 48(13), 1043-1059 [10.1016/j.ijpara.2018.07.001].

Availability:
This version is available at: https://hdl.handle.net/11585/661036 since: 2021-12-15
Published:
DOI: http://doi.org/10.1016/j.ijpara.2018.07.001

Terms of use:
Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

Title: Nuclear and mitochondrial phylogenomics of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) ${ }^{1}$
Authors: Sean A. Locke ${ }^{\text {a, },}$, Alex Van Dam ${ }^{\text {a }}$, Monica Caffara ${ }^{\text {b }}$, Hudson Alves Pinto ${ }^{\text {c }}$, Danimar López-Hernández ${ }^{\text {c }}$, Christopher Blanar ${ }^{\text {d }}$
${ }^{\text {a}}$ University of Puerto Rico at Mayagüez, Department of Biology, Box 9000, Mayagüez, Puerto Rico 00681-9000
${ }^{\text {b }}$ Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy
${ }^{\text {c }}$ Departament of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
${ }^{\mathrm{d}}$ Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, USA 333147796.
*corresponding author: University of Puerto Rico at Mayagüez, Department of Biology, Box 9000, Mayagüez, Puerto Rico 00681-9000. Tel.. +1 787832 4040x2019; fax +1 7872653837.

Email sean.locke@upr.edu

[^0]Abstract: Higher systematics within the Digenea, Carus 1863 have been relatively stable since a phylogenetic analysis of partial nuclear ribosomal markers (rDNA) led to the erection of the Diplostomida Olson, Cribb, Tkach, Bray, and Littlewood, 2003. However, recent mitochondrial (mt) genome phylogenies suggest this order might be paraphyletic. These analyses show members of two diplostomidan superfamilies are more closely related to the Plagiorchiida La Rue, 1957 than to other members of the Diplostomida. In one of the groups implicated, the Diplostomoidea Poirier, 1886, a recent phylogeny based on mt DNA also indicates the superfamily as a whole is non-monophyletic. To determine if these results were robust to additional taxon sampling, we analyzed mt genomes from seven diplostomoids in three families. To choose between phylogenetic alternatives based on mt genomes and the prior rDNA-based topology, we also analyzed hundreds of ultra-conserved elements (UCEs) assembled from shotgun sequencing. The Diplostomida was paraphyletic in the mt genome phylogeny, but supported in the UCE phylogeny. We speculate this mitonuclear discordance is related to ancient, rapid radiation in the Digenea. Both UCEs and mt genomes support the monophyly of the Diplostomoidea and show congruent relationships within it. The Cyathocotylidae Mühling, 1898 are early diverging descendants of a paraphyletic clade of Diplostomidae Poirier, 1886, in which were nested members of the Strigeidae Railliet, 1919; the results support prior suggestions that the Crassiphialinae Sudarikov, 1960 will rise to the family level. Morphological traits of diplostomoid metacercariae appear to be more useful for differentiating higher taxa than those of adults. We describe a new species of Cotylurus Szidat, 1928, resurrect a species of Hysteromorpha Lutz, 1931, and find support for a species of Alaria Schrank, 1788 of contested validity. Complete rDNA operons are provided as a resource for future studies. discordance, Cotylurus, Hysteromorpha, Alaria

Keywords: Strigeida, Diplostomida, Phylogenomics, Metacercaria, Nuclear-mitochondrial

1. Introduction

Early efforts to organize the higher taxonomy of digenetic trematodes relied mainly on external morphology of adults (reviewed by La Rue, 1957). As life cycles became better known, Cort (1917), Stunkard (1946) and others increasingly emphasized other characters, particularly cercarial morphology. Using a variety of methods, different authors produced conflicting hypotheses and higher classifications, but many concluded a close relationship exists among members of the Diplostomoidea Poirier, 1886, the Clinostomatoidea Lühe, 1901, and the Schistosomatoidea Stiles and Hassall, 1898 (Brooks et al., 1985; Dubois, 1970a; Gibson, 1996; La Rue, 1957; Pearson, 1972). Most authors assigned these and other superfamilies to the Strigeida (=Strigeatoidea) La Rue 1957, which are characterized by furcocercous cercariae that penetrate hosts (Gibson and Bray, 1994). The close relationship among strigeids, clinostomes and schistosomes was supported by a phylogenetic analysis of partial nuclear ribosomal markers (rDNA) from digeneans in 77 families (Olson et al., 2003). In this analysis, however, several other families in the Strigeida fell within the Plagiorchiida La Rue, 1957, leading Olson et al. (2003) to erect the order Diplostomida, which now includes diplostomoids, clinostomatids, and schistosomatoids.

The work of Olson et al. (2003) created stability in higher systematics within the Digenea. For example, the subsequent studies and future research directions discussed by Kostadinova and Pérez-del-Olmo (2014) are mainly limited to intra-ordinal relationships. However, recent work raises questions about the status of the Diplostomida (Fig. 1). Separate phylogenetic analyses of mt genomes show two diplostomidans (Clinostomum Leidy, 1856, Diplostomum von Nordmann, 1832) are more closely related to the Plagiorchiida than to other members of the Diplostomida (Brabec et al., 2015; Briscoe et al., 2016; Chen et al., 2016; see also Fig. 5 in Park, 2007). Brabec
et al. (2015) argued that data from additional taxa are needed before biological and taxonomic implications can be judged. However, it is well to note that the mt phylogenies were based on alignments of considerably more characters than the rDNA phylogeny of Olson et al. (2003). Moreover, mt genome analyses now collectively include two of three diplostomidan superfamilies, and statistical support for the alliance of non-schistosome diplostomidans with the Plagiorchiida has increased with increased taxon sampling (support of the key nodes of 0.77 in Brabec et al., 2015; 1.0 in Chen et al., 2016; 0.93 in Briscoe et al., 2016). More generally, mtDNA has been useful in revealing ordinal relationships in other Platyhelminthes (Waeschenbach et al., 2012). Further evaluation of this discordance (Fig. 1) was one of two goals of our study.

Another was to estimate relationships among members of one superfamily in the Diplostomida, the Diplostomoidea, which are characterized by the tribocytic organ, a holdfast absent in other digeneans. Six families recognized or erected by Dubois $(1938,1970 b)$ are in wide use, although problems with these classifications are often noted. Shoop's (1989) cladistic analysis indicated the Diplostomidae Poirier, 1886 was paraphyletic. Both Shoop (1989) and Niewiadomska (2002a) agreed that the morphological type of the metacercaria appears to reflect higher relationships in the Diplostomoidea, but the higher classifications of Dubois (1938, 1970b), based largely on the class of hosts and morphology adults, did not take this into account. Most molecular phylogenetic studies indicate the superfamily is monophyletic, but find the two largest families, the Strigeidae Railliet, 1919 and Diplostomidae, are not (Blasco-Costa and Locke, 2017; Dzikowski et al., 2004; Olson et al., 2003). One analysis of partial cytochrome c oxidase 1 (CO1) recovered the Cyathocotylidae Mühling, 1898 (Diplostomoidea) within the

Schistosomatoidea (Hernández-Mena et al., 2017), which suggests even the superfamily could be non-monophyletic.

Two obstacles currently prevent molecular assessment of higher taxonomy within the Diplostomoidea, its position within the Digenea, and implications for the order Diplostomida. The first is poor taxonomic and geographic coverage (Blasco-Costa and Locke, 2017). Recent work is encouraging, with studies including members of the Proterodiplostomidae Dubois, 1936 (Hernández-Mena et al., 2017), Brauninidae Wolf, 1903 and Cyathocotylidae (Blasco-Costa and Locke, 2017; Fraija-Fernández et al., 2015), and less well-sampled regions (Blasco-Costa et al., 2016; Chaudhary et al., 2017; López-Hernández et al., 2018; Sereno-Uribe et al., 2018).

Another issue is that accumulating molecular data may not be sufficiently rich in characters to resolve higher relationships. Most analyses of intra-diplostomoid relations are based on sequences of DNA from one or two loci totalling less than 2000 bp in length (e.g., Blasco-Costa and Locke, 2017, and references therein). This seems sufficient for specimen identification, discrimination of species, and species membership in genera (e.g., Chibwana et al. 2013; Locke et al. 2015; López-Hernández et al., 2018), but relationships among genera and families are less resolved. For example, there is inconsistency and often little support in the polarity among Alaria, Apharyngostrigea, and Cardiocephaloides in fig. 3 in Olson et al. (2003), fig. 1 in Fraija-Fernández et al. (2015), and fig. 2 in Hernández-Mena et al. (2017), which are all phylogenies based on concatenated sequences of rDNA subunits. The deep conflict between recent mt genome phylogenies and those based on shorter nuclear DNA sequences (Fig. 1) may also be related to differences in the number of informative characters.

Here we attempt to progress on both fronts. We increase the number and diversity of mitochondrial genomes from the Diplostomoidea, in order to explore discordant results of recent
phylogenetic studies, namely the possible placement of the Cyathocotylidae outside the Diplostomoidea (Hernández-Mena et al., 2017), and the Diplostomidae as a basal lineage in the order Plagiorchiida (Brabec et al., 2015). Both results originate from analysis of mtDNA, and we obtained data to determine if these patterns were robust to additional taxon sampling. To decide between what were likely to be conflicting topologies based on mtDNA and rDNA, we employed phylogenomic analyses of ultra-conserved elements (UCEs).

Although we set out to work on higher relationships among a small number of representative specimens, we were aware that the diversity and identity of diplostomoid species often differs from initial suspicions based on morphology (Blasco-Costa and Locke, 2017). We therefore supported our identifications with morphological comparisons and analysis of additional DNA sequences from closely related species, which led to several findings related to the alpha taxonomy of the seven specimens of principal interest.

2. Materials and Methods

2.1 Specimen collection and identification

Twenty-five specimens in good condition were selected for potential Illumina shotgun sequencing (described below). These worms had been stored in ethanol and identified to genus, and were chosen to represent major clades in Blasco-Costa and Locke (2017). DNA was extracted from individual worms, or subsamples, using Qiagen's DNEasy blood and tissue kit (GmbH , Germany), following the manufacturer's protocol with two $200-\mu \mathrm{L}$ elutions. Of these 25 worms, we selected seven (Table 1) after measuring DNA concentration with Nano-drop (0.5-22 $\mathrm{ng} / \mu \mathrm{l}$ in $400 \mu \mathrm{l})$ and Qubit ($0-4.96 \mathrm{ng} / \mu \mathrm{l}$) and excluding samples with evidence of DNA degradation (Bioanalyzer).

Additional conspecific or closely related parasites that contributed to identification of the seven worms, or constituted relevant host or geographic records, were processed morphologically and with PCR and Sanger sequencing (see below). Morphological vouchers were cleared in Amman's lactophenol, rehydrated, stained in dilute acetocarmine, dehydrated in ethanol, cleared in clove oil, and mounted on a slide in Canada balsam. Vouchers comprised hologenophores (DNA sequenced from the worm studied morphologically), paragenophores (similar worms from the same individual host paired for either morphological or molecular work) and syngenophores (voucher worms from different host individuals collected at the same time, or on other occasions, or in the same region, as the worms from which DNA was extracted) (Pleijel et al., 2008). Drawings and measurements were made with the aid of a camera lucida and ocular micrometer.

2.2 Molecular and phylogenetic analysis

Seven samples were processed on a single lane of an Illumina HiSeq 4000 and 150-bp paired-end libraries were built using Illumina TrueSeq adapters at the UC Davis Genome Center. Partial CO1 barcodes were obtained using the primers and PCR protocols of Moszczynska et al. (2009) and Sanger sequencing, from the seven worms or other representatives, and were used to seed iterative assemblies of Illumina reads of whole mitochondrial genomes, using Geneious V9. Mitochondrial genomes were annotated in MITOS (Bernt et al., 2013) using NCBI's Echinoderm and Flatworm Mitochondrial translation table (number 9). Additional annotations, including minor modifications to MITOS output, were made using alignments with mitochondrial genomes from two species of Diplostomum (Brabec et al., 2015) (KR269763-4), Clinostomum complanatum (KM923964), Fasciola hepatica (NC_002546.1), Trichobilharia regenti (NC_009680.1), and Schistosoma japonicum (NC_002544.1). A similar approach was taken to
assemble complete rDNA operons (18S, ITS1, 5.8S, ITS2, and 28S). Illumina reads were mapped to rDNA sequences from, in some cases, the same samples or other representatives obtained using primers in Galazzo et al. (2002); Olson et al. (2003), and in other cases, using previously published sequences from the same species or close relatives (GB ACCESSIONS XXXXXX).

The seven mitochondrial genomes were analyzed with previously published data from Digenea and Eucestoda. Protein-coding regions were extracted and placed in the same order (i.e., atp6+nad2 and nad3 were placed before and after nad1, respectively in Schistosoma haematobium, S. spindale, and S. mansoni, in which the order of these genes differs). Proteincoding regions were concatenated, and both nucleotide and translated into amino acid sequences were aligned using MAFFT (L-INS-I). Alignments were stripped of columns with gaps and analyzed with RAXML (Silvestro and Michalak, 2012; Stamatakis, 2014) using a substitution model selected with the Bayesian Information Criterion (Tamura et al., 2013).

For UCE work, quality trimming was conducted with bbduk from the BBMap package (Bushnell, 2014). De novo genomes were assembled for each sample with IDBA-Hybrid (Peng et al., 2012) using Schistosoma mansoni (GCF_000237925.1) to help scaffold similar regions. The quality of de novo assemblies was assessed with BUSCO (Simão et al., 2015). Conserved genomic regions across were identified using PHYLUCE v1.6 (Faircloth, 2016). Trimmed reads were aligned to the S. mansoni genome using stampy-1.0 (Lunter and Goodson, 2011) with a substitution rate set to 0.05 to capture overlapping regions with trimmed data. Using overlapping regions from the S. mansoni genome, an initial probe set was mapped back to the de novo genomes via PHYLUCE scripts. Genomes were similarly analyzed from Clonorchis sinensis
(PRJDA72781), Echinostoma caproni (PRJEB1207), Diphyllobothrium latum (PRJEB1206), and Fasciola hepatica (PRJEB6687).

Complete probe sets were generated for ten out of twelve species (phyluce_probe_query_multi_fasta_table in PHYLUCE), with 801 loci and 16,671 $3 \times$ tiling probes post-duplicate-filtering. Loci were aligned using MAFFT and with 90% matrix occupancy, 517 loci were retained. The MAFFT-Gblocks option was called in PHYLUCE to remove poorly aligned regions. Phylogenetic reconstructions were computed using RAxML (Stamatakis, 2014) from a concatenated matrix with GTRGAMMA substitution rate, with 1,000 bootstrap replicates in each of 20 parallel runs, and Diphyllobothrium latum set as outgroup. The resulting maximum-likelihood (ML) tree with bootstrap bi-partitions was annotated with morphological and life-history characters from the Diplostomoidea (supplementary Fig. 1). We also generated one tree without setting D. latum as the outgroup, and another after running PHYLUCE and RAxML solely with the seven diplostomoids and S. mansoni set as outgroup (the latter yielding 796 conserved genetic elements, and 63,959 variable sites based on 85% matrix occupancy). In both the latter cases (not shown), the topology obtained was well supported and indistinguishable from the UCE tree reported below.

3. Results

3.1 General molecular results

The genomic analysis of seven samples yielded $7.8 \times 10^{8} 150$-bp reads, mean 1.1×10^{8}, range $2.1 \times 10^{7}-1.4 \times 10^{8}$ reads per sample; mean $\mathrm{N} 50=2833 \mathrm{bp}$, range $542-11122 \mathrm{bp}$). Below, and in Table 2, these and other results are broken down by species.

3.2 Phylogenetic analysis of mitochondrial genomes

The mitochondrial genomes were 13,665-15,107 bp in length (supplementary Table 1). The 12 coding regions occurred in the same order as in digeneans other than S. haematobium, S. spindale, and S. mansoni. In C. prussica, two pairs of tRNA genes were reversed in order compared with other diplostomoids. One of these reversals, the occurrence of trnN prior to trnP, is also a feature of Clinostomum complanatum (KM923964). The order of three tRNA genes occurring between nad6 and nad5 in C. medioconiger differed from that seen in other diplostomoids, and these genes were positioned adjacent to a 774-bp non-coding span which, among diplostomoids and Clinostomum, was unique to C. medioconiger.

Phylogenetic analysis of nucleotide or translated amino acid sequences from the 12 concatenated coding regions of the mitochondrial genomes did not support the order Diplostomida (Fig. 2). The diplostomoids and Clinostomum emerged as early diverging descendants from common ancestors of the Plagiorchiida, rather than grouping with Schistosoma and Trichobilharzia.

3.3 Phylogenetic analysis of ultra-conserved elements (UCEs)

The Diplostomoidea were monophyletic in the topology obtained from ML analysis of 517 conserved genetic elements, comprising 84,902 distinct patterns across 234,783 characters per taxon (Fig. 3). Consistent with the concept of the Diplostomida and Plagiorchiida, the Diplostomoidea and Schistosoma formed a clade separate from a clade comprising plagiorchiidans Clonorchis, Echinostoma, and Fasciola.

Relationships among diplostomoids were similar to those recovered by analysis of mt genomes, differing slightly within a clade of Diplostominae Alaria + Hysteromorpha + Tylodelphys + Diplostomum (Figs. 2, 3). Within the diplostomoids, Cyathocotyle prussica was basal to a clade
in which the Diplostomidae were paraphyletic. The diplostomid Posthodiplostomum centrarchi was basal to a clade of both strigeids and other diplostomids. The two strigeids were sister taxa.

The non-molecular characters of metacercariae showed higher correspondence with the UCE topology than did the characters of adults (Fig 3, supplementary Fig. 1). Within the Diplostomoidea all five morphological or life-history characters of metacercariae mapped onto genomic clades, while correspondence was poorer for adult characters. Metacercarial apomorphic characters included the structure of the reserve bladder, presence or absence of encystment, free or enclosed limebodies, and the presence or absence of pseudosuckers, which distinguished clades comprising relatively small subsets of species. For example, the structure of the reserve bladder differs among the following four groups, which correspond to clades in the molecular phylogeny: Cyathocotyle, Posthodiplostomum, Cardiocephaloides + Cotylurus, and Alaria + Hysteromorpha + Tylodelphys. Commonly recognized metacercarial morphotypes (prohemistomulum, neascus, tetracotyle, diplostomulum) mapped onto all clades formed.

3.4 Morphological and molecular support of identification or description of species

Specimens were identified morphologically, and dimensions are reported in $\mu \mathrm{m}$ and given as range (means, \pm standard deviation, n measured). Sequences of partial sequences of cytochrome c oxidase 1 (DNA barcodes) from mitochondrial genomes were also compared to previously published data and with sequences from additional collections. In a neighbour-joining phenogram (Fig. 4), CO1 sequences fell into distinct clusters in which the minimum p-distance between nearest neighbour species was in all cases less than the maximum distance within species; these clusters formed well supported clades in separate ML analysis. Complete rDNA operons (Supplementary Table 1) were subjected to BLAST searches, which supported identifications in all cases, as described further below.

3.4.1 Cyathocotyle prussica Mühling, 1896

Cyathocotyle prussica was identified based on morphology of the unstained specimen prior to DNA extraction, and its provenance (host, geographic origin). Metacercariae of C. prussica have been reported from Gasterosteus aculeatus and other small-bodied fishes throughout Europe (Kalbe et al., 2016; Kvach et al., 2016). The DNA used for genomic work was obtained from a metacercaria from Gasterosteus aculeatus collected at the same time as the specimen sequenced by Blasco-Costa and Locke (2017) and no morphological voucher remains. The CO1 region of the mitochondrial genome assembly was 99.7 \% (587 / 589 identities) similar to MF 124273, and the rDNA operon 99.1% (762/769 identities) similar to KY951726, both from Blasco-Costa and Locke (2017). The rDNA operon differed by 2.5-20.8\% from 13 published rDNA sequences from cyathocotylids on GenBank.
3.4.2 Posthodiplostomum centrarchi (Hoffman, 1958) Stoyanov, Georgieva, Pankov, Kudlai, Kostadinova, and Georgiev, 2017 (Fig. 5).
[Measurements from 9 specimens (6 paragenophores, 3 hologenophores) ex Ardea herodias, Montreal, Quebec, Canada]

Total length 1222-1775; forebody and hindbody separated by marked constriction. Forebody spatulate 680-1200 long, 452-875 wide, oval to lanceolate, with anterior lateral edges often recurved ventrally. Hindbody oval, widest in anterior half, tapering posteriorly, 520-875 long, 248-750 wide. Hindbody length / forebody length $0.58-0.86$. Oral sucker terminal, $38-72 \times 38-$ 72. Ventral sucker $55-90 \times 55-80$, in posterior half of forebody, centered $54-71 \%$ along forebody sagittal axis. Tribocytic organ 140-200 $\times 144-256$. Pharynx $40-53$ long, $40-53$ wide. Oesophagus 60-72 long. Ovary lateral to anterior testis at anterior margin of hindbody, 80-105 \times

72-88. Testes occupying first 55-80\% of hindbody. Anterior testis irregularly, smoothly lobed 96-200 long, 144-272 wide. Posterior testis, sinuous, v-shaped, pointed posteriorly, 176-350 long, 216-350 wide. Vitelline reservoir intertesticular, median. Vitellaria densest at level of posterior of tribocytic organ and in base of forebody, extending anteriorly beyond ventral sucker by slightly more than one ventral-sucker length, in hindbody extending more than halfway to posterior extremity and bifurcating into two posteriorly oriented bands at and beyond vitelline reservoir, sometimes exceeding, sometimes exceeded by, posterior extent of posterior testis. Copulatory bursa eversible, terminal or slightly dorsal, 120-216 long, 135-300 wide, housing muscular genital cone. Eggs few, 0-4, length 70-98 $\times 42-64$ (See supplementary Table 2 for means, standard deviations, n structures measured).

3.4.2.1 Remarks

MacCallum (1921) summarily described Posthodiplostomum (Diplostomum) minimum from Ardea herodias in New York, USA. Hoffman (1958) created two sub-species, P. minimum centrarchi and P. minimum minimum, for lineages infecting either centrarchids or cyprinids, respectively. Stoyanov et al. (2017) elevated the centrarchid subspecies to P. centrarchi.

Our observations largely agree with Dubois' (1970b) description of the adult (although he did not distinguish P. centrarchi and P. minimum), except in the following respects (Supplementary Table 2): Two of nine specimens were up to 75 greater in total length; in $4 / 9$ specimens, we observed the hindbody to be widest at the anterior testis (e.g., Fig 5), rather than at the level of the posterior testis as in Dubois (1970b). The oral sucker was the same length as the pharynx in $1 / 6$ specimens, rather than larger as in Dubois (1970b); the tribocytic organ was wider in 3/6 specimens (200-256 versus maximum of 190 in Dubois, 1970b); and in 7/9 specimens the copulatory bursa was both longer and wider than maximum values (160×160) reported by

Dubois (1970b). The dimensions of the specimens we encountered also exceed values reported by Palmieri (1977), who reported means and standard deviations from adults from diverse hosts experimentally infected with metacercariae from centrarchids. However, as seen above, morphometric deviations relative to these studies were small, and Palmieri (1977) showed that adult morphology varies a great deal within P. centrarchi. Also, deviations were obtained from hologenophores genetically matching P. centrarchi common in centrarchid hosts (e.g., see records in (Boone et al., 2018; Locke et al., 2010)), and therefore there is no doubt they represent P. centrarchi.

The worm used in genomic analysis had partial CO1 sequences and ITS1-5.8S-ITS2 sequences 99-100\% similar to those of P. centrarchi (=Posthodiplostomum sp. 3 of Locke et al., 2010; Stoyanov et al., 2017), including the hologenophore in Fig. 5, and CO1 from P. centrarchi from liver of Lepomis microlophus in Puerto Rico.

3.4.3 Cardiocephaloides medioconiger Dubois and Vigueras, 1949 (Fig. 6)

[Measurements from 3 hologenophores ex Thallasius maximus, Florida Keys, USA]

Total length 7273-8324; forebody and hindbody separated by moderate constriction. Forebody tulip-shaped 1333-1616 long, 1414-1455 wide. Hindbody 5657-6869 long, 1232-1293 wide, width gradually increasing posteriorly, widest at level of testes, tapering to point at posterior extremity. Hindbody 3.5-4.9 as long as forebody. Oral sucker 103-160 $\times 175-193$. Ventral sucker 103-168 $\times 112-128$. Tribocytic organ bi-lobed, with one lobe well developed and darkly staining. Pharynx 129-152 long, 119-152 wide. Ovary pretesticular, 363-363 long, 300-363 wide. Vitellaria dense in anterior hindbody, absent from ventral surface in region of ovary and testes, extending dorsally along anterior of copulatory bursa. Testicular zone 828-1010 long.

Anterior testis 303-475 long, 606 wide. Posterior testis 363-484 long, 485-707 wide. Vitelline reservoir intertesticular. Eggs numerous 94-117 long, 62-70 wide with shells 2.0-2.2 thick. Copulatory bursa 1010-1919 long. Hindbody length 3.6-5.6 times that of copulatory bursa (means, standard deviations, n structures measured in Supplementary Table 3).

3.4.3.1 Remarks

Cardiocephaloides medioconiger was described from Larus argentatus in Cuba and has been reported from T. maximus in the same region (Dubois, 1970b). The morphology of the three voucher specimens was consistent with Dubois (1970b) (Supplementary Table 3), except that the following were larger: forebody (maxima of length and width of 1500 and 1360, respectively, in Dubois, 1970b), oral sucker (maximum width 136 in Dubois, 1970b) and ovary (maximum $278 \times$ 300 in Dubois, 1970b). The four CO1 barcode sequences obtained were $99.1-99.8 \%$ similar to C. medioconiger (JX977783) from Larus sp. collected in Campeche, Mexico (Hernández-Mena et al., 2014). Within species of Cardiocephaloides, mean variation in CO1 is 0.7% (range $0-1.5 \%$) and between species, 8.8% (range $7.4-9.7 \%$). The rDNA operon from the specimen we collected differed by 1.2% (1669/1672 identities) from 18S (MF398359, isolate DNA181) and 2.3% from the ITS (1041/1065 identities with JX977844, isolate DNA181) of Cardiocephaloides sp. from Larus occidentalis in Baja California, Mexico, and by 0.5\% (1839/1848 identities) from 18S from C. longicollis (AY222089) from Larus ridibundus, Ukraine.
3.4.4.1 Cotylurus marcogliesei n. sp. (Fig. 7)

3.4.4.2 Description

[Measurements from 11 specimens (3 hologenophores, 7 paragenophores, and holotype), ex Lophodytes cucullatus]

Adult total length 816-1152 (973 $\pm 107,10)$; forebody and hindbody separated by marked constriction. Body mildly arched dorsally. Forebody cup-shaped 216-408 (307 $\pm 51,11$) long, 312-640 $(436 \pm 95,10)$ wide, with broad, oblique opening. Ventral forebody wall markedly shorter than dorsal. Hindbody stout along entire length, 600-880 (703 $\pm 96,10)$ long, 256-520 $(318 \pm 81,9)$ wide. Forebody to hindbody length ratio $1: 1.9-2.8(2.3 \pm 0.3,10)$. Oral sucker terminal, 48-80 $(68 \pm 13,9) \times 64-112(85 \pm 15,8)$. Ventral sucker 64-128 $(99 \pm 24,6) \times 80-168$ $(108 \pm 28,7)$. Tribocytic organ bilobed, with one or both lobes extending anteriorly beyond margin of forebody; proteolytic gland not observed. Pharynx small, difficult to observe, 28-34 $(30 \pm 3,3)$ long, $33-56(43 \pm 12,3)$ wide. Testes tandem, small, lobed and smooth; anterior testis $112-168(132 \pm 27,4)$ long, $112-120(116 \pm 6,2)$ wide, posterior margin at $32-45(38 \pm 6,4) \%$ of hindbody. Posterior testis $136-160(144 \pm 11,4)$ long, $104-116(110 \pm 8,2)$ wide, with posterior margin at 59-67 $(64 \pm 3,5) \%$ of hindbody. Ovary, near anterior extremity of hindbody, oval, 40$96(68 \pm 40,2)$ long, $56-56(56 \pm 0,2)$ wide. Vitellaria follicular, confined to hindbody, densely distributed in ventro-lateral field extending posteriorly to level of copulatory bursa and genital bulb, without obscuring the latter. Vitelline reservoir intertesticular; median. Uterus with 4-13 $(9 \pm 3,9)$ eggs, $76-108(95 \pm 7.6,37)$ long $\times 40-72(56 \pm 6.9,37)$ wide. Copulatory bursa large, genital bulb round, oval or reniform, $72-144(111 \pm 27,7) \times 74-160(117 \pm 27,7)$.

3.4.4.3 Diagnosis

Adults of Cotylurus marcogliesei n. sp. possess a typically strigeid morphology, vitellaria confined to the hindbody, genital bulb in the copulatory bursa and smooth, bi- or trilobed testes with lobes pointing posteriorly, all of which are characteristic of Cotylurus. The wide opening of the forebody is more representative of Ichthyocotylurus Odening, 1969 (Niewiadomska, 2002b), but the presence of a genital bulb and testes with posterior facing lobes, in addition to CO 1
sequence similarity (Fig. 4) indicate the species belongs to Cotylurus. The most morphologically similar species is C. brevis Dubois and Rausch, 1950, from which molecular data are unavailable. The hindbody of C. marcogliesei n . sp. is $2.1-2.8$ times as long as the forebody, while in C. brevis it is 1.3-1.9 times as long (Dubois, 1970b) (Supplementary Table 4). Mature adults of C. marcogliesei n. sp. are 816-1152 (mean 990) in total length, and half of the specimens were shorter than the minimum length of C. brevis (1000-1800) (Dubois, 1970b). The pharynx is shorter in C. marcogliesei n. sp. (28-34) than in C. brevis (50-59), although this organ is difficult to visualize in both species (Dubois, 1970b) and may not be a reliable character for identification or discrimination. To our knowledge, no members of the genus Cotylurus have been recorded from Lophodytes (Anatidae, Merginae), which further distinguishes it from C. brevis, originally described in Europe and found mainly in Aythya and Anas spp. (Anatidae, Anatinae).

> Type host: Lophodytes cucullatus (definitive host)

Site of infection: Small intestine (definitive host)

Type locality: Montreal, Quebec, Canada ($50.183 \mathrm{~N},-98.383 \mathrm{~W}$) (definitive host)

Type material: Holotype (adult worm) Voucher accessions forthcoming;

Representative DNA sequences: CO1: XXXXXXX.

Etymology: The species is named after David J. Marcogliese, for his contributions to parasitology.

Partial CO1 sequence was obtained from one of two specimens of C. flabelliformis from Aythya vallisneria collected in Manitoba. The paragenophore was 782 long, with forebody 351×367,
strongly arched dorsally, hindbody 638×399, oral sucker 64×96, pharynx 44×44, ventral sucker 88×112, eggs $(n=30) 93-100 \times 50-60$, and its dimensions, morphology, host and geographic provenance agree with the collective accounts of Dubois (1970b), Campbell (1971) and Lapage (1961). Sequences of CO1 were obtained from three specimens of Cotylurus strigeoides Dubois, 1958 from Aythya collaris. The three hologenophores were 1818 long, with forebody 64 long, hindbody 1313-1475 $\times 747-768$, oral sucker 160×112, pharynx 88×76, ventral sucker 192×136, ovary $152-231 \times 128-207$, anterior testis $223-283 \times 239-423$, posterior testis 271-319 $\times 271-343$, eggs $(39 \leq n \leq 79) 88-98 \times 56-64$. The CO1 sequences from C. strigeoides were 1.1-1.5\% divergent from a CO1 sequence (JX977781) of a worm from Aythya affinis collected in Sonora, Mexico (Hernández-Mena et al., 2014). Because of the low level of divergence between C. strigeoides and JX977781, we believe all these data originate from C. strigeoides, but JX977781 is identified as C. gallinulinae. The material we examined was distinguished from C. gallinulinae by a large pharynx (5\% of total length, and over half the size of the oral sucker, versus $\leq 2 \%$ of total length, and less than half the size of the oral sucker in C. gallinulinae, Dubois, 1970b), and the position of the ovary immediately posterior to the division of the fore- and hindbody (Dubois, 1958), whereas in C. gallinulinae it lies further posterior (Fig. 211 in Dubois (1970b). Records in Manitoba and Sonora are plausible for C. strigeoides, which is known from California and Alaska, whereas C. gallinulinae is neotropical (Dubois, 1970b; McDonald, 1981). Both JX977781 and the specimens we identified as C. strigeoides were from anatid hosts, which is typical for C. strigeoides, whereas C. gallinulinae is known from members of the Raillidae (Dubois, 1970b; McDonald, 1981). Within Cotylurus as whole, CO1 varies 0$0.3 \%$ (mean 0.2%) within species and $3.4-11.2 \%$ (mean 8.3%) between species (considering JX977781 as C. strigeoides). Sequences of CO1 from C. marcogliesei n. sp. differed by 7.9-
9.3% from other species of Cotylurus. The rDNA operon of C. marcogliesei n. sp. differs from other species of Cotylurus by 0.7-3\% (JX977841, KY513180-2, MF398340).

3.4.5 Alaria americana Hall and Wigdor, 1918 (Fig. 8)

[Measurements from 8 specimens (2 hologenophores, 6 paragenophores), ex Vulpes vulpes, Nova Scotia, Canada]

Total length 2121-2868; forebody and hindbody separated by shallow constriction. Forebody with foliaceous lateral margins folded over ventral surface, 1375-1858 long, 465-869 wide. Hindbody oval, 606-1010 long, 252-559 wide. Forebody 1.6-2.3 times longer than hindbody. Lappets 136-240 long, with stippled glandular tissue along outer margin and protruding from anterior extremity lateral to oral sucker, 64-120 $\times 50-119$. Ventral sucker $88-104 \times 88-120$. Tribocytic organ originating posterior to ventral sucker, 667-788 long, 160-250 wide. Pharynx muscular, pyriform, 120-150 long, 45-96 wide, wider posteriorly, larger than oral sucker. Pharynx length 1.2-2.0 times oral sucker length. Testes in anterior two thirds of hindbody. Anterior testis smooth, unevenly lobed, lateral, 110-319 $\times 120-327$, situated opposite Mehlis' gland. Posterior testis sub-symmetrical, extending laterally across hindbody width, with two lateral, round lobes, $80-223 \times 152-270$. Ovary lateral near anterior extremity of hindbody, round to oval, 67-160 $\times 65-280$ wide. Vitellaria mainly in forebody, dense in tribocytic organ, extending anterior to or just past ventral sucker, extending posterior to or slightly beyond forebody-hindbody constriction. Ejaculatory pouch fusiform, $250-444 \times 101-135$, with muscular walls 31-55 thick, extending from posterior testis, or just posterior, to dorsally opening genital atrium. Seminal vesicle with sinuous with transverse sections lying dorsal to ejaculatory pouch, posterior to posterior testis. Vitelline reservoir intertesticular; median. Eggs 0-11, 102-136 long $\times 36-80$ wide. (means, standard deviations, n structures measured in Supplementary Table 5)

3.4.5.1 Remarks

Dubois (1970b) considered A. americana a junior synonym of A. marcianae. The morphological, molecular and life-history data herein support Johnson (1970) and Pearson and Johnson (1988), who maintained A. americana as valid (Supplementary Table 5). Adults of A. americana are larger (>2000) than those of A. marcianae (<2000) and have a thicker-walled ejaculatory pouch (>20 compared with <20 in A. marcianae). The CO1 from adults from Vulpes vulpes in Nova Scotia matched (i.e., 98.4-99.8\% similarity) sequences from two mesocercariae from a Lithobates clamitans in Quebec. Both V. vulpes and L. clamitans are known hosts of A. americana in North America (Dubois, 1970b). Adults of this species occur in canid definitive hosts, while A. marcianae mainly matures in felid and mustelid hosts (Pearson and Johnson, 1988). The adult A. marcianae sequenced in Uhrig et al. (2015) was collected from Taxidea taxus (Mustelidae).

In A. americana and other Alaria spp., intraspecific CO1 distances range from 0 to 2.9% and interspecific distances from 8.4 to 13.1% (total 53 CO 1 sequences from A. americana, A. mustelae, and A. marcianae; A. marcianae includes Alaria sp. 2 of Locke et al. (2011) as noted by Uhrig et al. (2015), who recorded the sequence match but mistakenly referred to Alaria sp. 1 of Locke et al. (2011)). We also include here new CO1 records from A. mustelae from Martes pennanti from Wisconsin.

The rDNA operon of A. americana assembled from genomic data differs by 2.2-13.5\% from 13 sequences from A. mustelae, A. marcianae, A. alata and three unidentified species of Alaria (comparisons of various regions of the rDNA array, limited to sequences overlapping > 500 bp , AF184263, AY222091, JF769477-8, JF769480, JF769482, JF769484, JF820605, JF820607, JF820609, KT254014, KT254021, KT254023). Notably, A. americana differs from A.
marcianae by 6.1% in partial 28S rDNA (914/973 identities with KT254021-2, Uhrig et al., 2015)) and by $8.4-8.9 \%$ in partial CO1 (KT254037-9, Uhrig et al. 2015).

3.4.6 Hysteromorpha triloba (Rudolphi, 1819) (Fig. 8, Supplementary Fig. 3)

[Metacercaria; measurements from 7 paragenophores, ex lateral and cheek muscle of Squalius cephalus (mean weight 67 g) from Bidente River, Forlì-Cesena province, Emilia Romagna region, Italy; 10/10 fish infected with hundreds of metacercariae.]

Total length 776-889 ($830 \pm 42,7$); body oval or pyriform, with poor demarcation between forebody and hindbody. Forebody round 536-664 ($606 \pm 48,7$) long, $576-687(630 \pm 33,7)$ wide, with pseudosuckers forming cup-shaped depressions $48-80(64 \pm 12,7)$ deep, $44-96(69 \pm 14,12)$ wide. Hindbody bluntly triangular, roughly 120-303 $(225 \pm 62,7)$ long, $256-545(404 \pm 96,7)$ wide at widest point, where it joins forebody. Oral sucker terminal, $72-125(82 \pm 19,7)$ long, $52-$ $84(70 \pm 12,7)$ wide. Pharynx $50-76(61 \pm 10,7)$ long, $30-44(36 \pm 4,7)$ wide. Ventral sucker $60-$ $82(70 \pm 8,7)$ long, $88-107(99 \pm 6,7)$ wide, sometimes anterior to, sometimes covered by tribocytic organ. Tribocytic organ trilobed, 160-229 (193 $\pm 27,6)$ long, $163-320(207 \pm 54,7)$ wide. Oesophagus 20-47 (34土19, 2) long, caeca almost reaching end of hindbody, flanking or passing ventrally over genital primordia in hindbody.

Hysteromorpha corti comb. nov. (Hughes, 1929) (Fig. 10)
[Adult; measurements from 12 paragenophores, ex Phalacrocorax auritus, Montreal, Quebec, Canada]

Total length 1052 - 1633 (1314 $\pm 172,12$); forebody and hindbody separated by constriction. Forebody spathulate, 490-762 $(664 \pm 86,12)$ long, 404-707 $(509 \pm 82,12)$ wide. Hindbody oval, 490-943 (658 $\pm 125,12)$ long, $381-636(480 \pm 68,12)$ wide. Pseudosuckers forming recessed
depressions in forebody, 47-129 $(78 \pm 26,9)$ deep, $70-200(105 \pm 38,9)$ across. Oral sucker $50-$ $107(75 \pm 16,12) \times 71-107(86 \pm 12,12)$. Ventral sucker $36-107(75 \pm 18,11) \times 43-143(93 \pm 30$, 11). Tribocytic organ 142-321 (241 $\pm 58,12)$ long, 190-293 $(237 \pm 33,11)$ wide. Pharynx muscular, pyriform, $52-68(59 \pm 6,5)$ long, $40-70(52 \pm 11,5)$ wide. Ovary $71-100(85 \pm 14,5) \times$ 64-114 (81 $\pm 19,5)$, anterior to anterior testis. Anterior testis smooth, unevenly lobed, lateral, 107-214 $(169 \pm 31,10) \times 107-250(171 \pm 48,7)$. Posterior testis extending laterally across hindbody width, with two lateral, round lobes, 143-229 (171 $\pm 35,9) \times 357-500(423 \pm 51,8)$. Vitelline reservoir intertesticular; sub-median. Vitellaria from anterior to ventral sucker to posterior extremity, forming a narrow ventral band in hindbody at level of testes. Genital atrium subterminal, dorsal. Eggs 0-9, 87-109 $(96 \pm 6,12)$ long $\times 44-66(54 \pm 6,12)$ wide.
[Metacercaria; measurements from 7 syngenophores, ex Catostomus commersoni ($\mathrm{n}=1$), Notemigonus crysoleucas ($\mathrm{n}=5$), Montreal and Great Lakes region, Canada]

Total length $712-880(796 \pm 55,7)$; body oval or shield-shaped, with poor demarcation between forebody and hindbody. Forebody round $640-696(670 \pm 25,5)$ long, $384-472(428 \pm 34,7)$ wide. Hindbody bluntly triangular, roughly $80-160(126 \pm 32,5)$ long, $152-200(176 \pm 34,2)$ wide at widest point, where it joins forebody. Oral sucker terminal, 60-68 $(62 \pm 4,5)$ long, 56-68 (63 ± 4, 5) wide. Pharynx $32-35(33 \pm 2,3)$ in diameter. Ventral sucker 56-68 $(60 \pm 6,5)$ long, 60-76 $(73 \pm 6,6)$ wide, sometimes anterior to, sometimes partly covered by tribocytic organ. Tribocytic organ trilobed, 136-176 $(163 \pm 18,4)$ long, 116-160 $(137 \pm 19,5)$ wide.

3.4.6.1 Diagnosis and Remarks

Sequences of CO1 from metacercariae of H. triloba from Italy differed by 6.9-9.7 (mean 8.7)\% from material collected in North and Central America (Fig. 4). Among the Italian isolates, CO1
varied by 0.3-0.8 (mean 0.5)\%, and among American samples, by 0-5.6 (mean 1.7)\%. The rDNA operon of Italian H. triloba differed from American isolates by $0-0.2 \%$ from 18 S and 28 S subunit sequences 1281-1694 bp in length (HM114365, MF398354-7) and by $0.1-0.3 \%$ to ITS1-5.8S-ITS2 sequences 1017-1261 in length (HM064925-7, JF769486, MG649479-93). These 20 aligned ITS sequences from Hysteromorpha had three variable sites, with one transitional mutation in ITS1 private to the Italian sequence. Rudolphi (1819) described Hysteromorpha triloba (as Distoma trilobum) in Europe from four adults from Phalacrocorax carbo collected by Bremser, who was based in Vienna (Sattmann et al., 2014). The type host has a wide, but mainly Eurasian distribution (Hatch et al., 2000). A description of metacercaria of H. triloba from cyprinids in Europe by Ciurea (1930) largely agrees with our observations of metacercariae from S. cephalus (Cyprinidae), and the ventral and oral suckers, pharynx and oesophagus are generally smaller in European than in American isolates (Supplementary Table 6). We consider these European and American isolates of Hysteromorpha to be separate species, even if meristic or morphological differences were not discerned between American and European adults of Hysteromoprha based on available data and descriptions (Supplementary Table 6), and rDNA divergence levels are small. Because the species was described in Europe, from a host with a Palaearctic distribution, and similar metacercariae are known from cyprinids in Europe (see also records in Bykhovskaya-Pavlovskaya, 1962), the name H. triloba is reserved for the Palearctic lineage. In the Nearctic, Hughes (1929) provided the first description of Hysteromorpha, from metacercariae in the muscle of Ameiurus nebulosus and Ameiurus melas in the Illinois River. Hughes (1929) named these metacercariae Diplostomulum corti. Hugghins (1954a, 1954b) synonymized D. corti with Hysteromorpha triloba (Rudolphi, 1819) Lutz 1931. The North American species of Hysteromorpha will therefore bear the name created by Hughes (1929).
3.4.7 Tylodelphys immer Dubois, 1961 (Fig. 11).
[Measurements from 5 adult paragenophores, ex Gavia immer.]

Total length 1515-1636; body linguiform, poor demarcation between forebody and hindbody. Forebody 970-1111 long, 455-556 wide, oval in shape with pointed anterior flanked by conspicuous pseudosuckers 160-232; forebody widest usually in anterior third (4/5 specimens). Ventral surface tegument with plicate folds on anterior half to two thirds of forebody. Cylindrical hindbody tapering to terminate in rounded extremity, 525-566 long, 284-404 wide. Hindbody length / forebody length $0.47-0.56$; hindbody width / forebody width $0.51-0.85$. Oral sucker terminal, 80-119 long, 100-127 wide. Pharynx well developed, 68-84 long, 66-80 wide. Ventral sucker 90-109 long, 100-131 wide, situated slightly more than halfway along length of forebody, the anterior edge occurring 51-54\% from anterior end of forebody. Tribocytic organ oval to round, 240-288 long, 152-240 wide. Ovary round or bilobed, small, sub-median, near or overlapped by postero-lateral edge of tribocytic organ, 40-80 long, 56-80 wide. Testicular zone extending posteriorly from forebody-hindbody division, occupying first 29-39\% of hindbody. Testes tandem, symmetric, bilobed. Anterior testis 80-96 long, 272-344 wide, wider than posterior testis. Posterior testis 88-112 long, 272-320 wide. Vitelline field densest in vicinity of tribocytic organ, extending two thirds of length of forebody, ending 31-34\% of distance from anterior edge of ventral sucker to anterior extremity, in hindbody narrowing to a ventral strip between lobes of posterior testis, terminating in a lateral band at level of seminal vesicle.

Vitelline reservoir intertesticular, sub-median. Copulatory bursa with subterminal, wide, thickwalled ventral opening 168-184 long, 160-184 wide, housing well-developed genital cone 112152 wide. Uterus with $1-8$ eggs, $82-100$ long $\times 44-68$ wide.

3.4.8 Remarks

Most of these observations and dimensions agree with the account of Dubois (1970b) (supplementary Table 7), although he did not comment on the tegument; a pseudosucker on one specimen was shorter (160 versus 180 minimum length in Dubois, 1970b); the pharynx was wider in three worms (74-80 versus maximum of 70 in Dubois, 1970b); the ventral sucker was longer in 4 worms (104-109 versus 100 in Dubois (1970b) and wider in one (131 versus 122 in Dubois, 1970b); the ovary was smaller (40-80×56-80 versus $95-115 \times 80-145$ in Dubois, 1970b) and more median in 3 worms; the anterior testis was shorter in 3 worms ($80-88$ versus 90 in Dubois, 1970b), the posterior in one (88 versus 90 in Dubois, 1970b); and the genital cone was wider in 2 worms (152 versus 135 in Dubois, 1970b). These variations seem within that to be expected within species, and thus not taxonomically significant. They could reflect differences in maturity, as the worms included in our analysis had 0-8 eggs, while Dubois (1970b) examined material with 4-17 eggs, or again might be artefacts of differences in specimen preparation.

The specimens used for morphological and genomic analysis in the present study were from the same individual host as the T. immer studied by Locke et al. (2015), and the mitochondrial genome and rDNA operon were 98.1-99.9 \% similar to CO1 (Fig. 4) and identical to ITS sequences (KT186804-6) of Locke et al. (2015).

4. Discussion

We confirmed and expanded on recent analyses showing a paraphyletic pattern of mt genome evolution in the Diplostomida (Brabec et al., 2015; Briscoe et al., 2016; Chen et al., 2016). The mt genomic phylogeny conflicts with the rDNA phylogeny upon which the Diplostomida was erected (Figs. 1, 2). There were about one quarter as many variable sites in the rDNA alignment as in our alignment of mt nucleotides (1444 variable sites in Olson et al., 2003). Thus, the well-supported mt topology in Fig. 2, containing members of two of three
superfamilies in the Diplostomida, might have cast doubt on the validity of the order. However, a much larger genomic dataset, which we had designated as an arbiter between mitonuclear alternatives, yielded unequivocal support for the order (Fig. 3).

Discordance between nuclear and mt phylogenies is not uncommon, and although it is more often recorded at shallower nodes than in the present study (e.g., Perea et al., 2016; Platt et al., 2018), differences also occur among deeply divergent lineages (e.g., Sun et al., 2015, and compare Inoue et al., 2003 and Faircloth et al., 2013). In the present case, the discrepancy occurs along short internal branches at the base of longer terminal branches (Figs. 2, 3). This is consistent with ancient, rapid radiation, which is inherently difficult to resolve, particularly in conjunction with incomplete lineage sorting (Whitfield and Lockhart, 2007). Along these short internal branches, mitochondrial genomes of digeneans may have a lower phylogenetic signal/noise ratio than nuclear genes, exacerbating effects of incomplete taxon sampling (Graybeal and Cannatella, 1998; Hedtke et al., 2006; Philippe et al., 2011). Genomic data (both mt and nuclear) from other diplostomidans and early, divergent lineages from the Plagiorchiida are needed to clarify this (Brachylaimoidea Joyeux and Foley, 1930, Liolopidae Odhner, 1912, Aporocotylidae Odhner, 1912, Spirorchiidae Stunkard, 1921, Bivesiculoidea Yamaguti, 1934).

Within the Diplostomoidea, however, the mt and UCE phylogenies are congruent, which suggests they reflect evolutionary relationships among the species studied. Figures 2 and 3 also share elements that recur in prior work. In most molecular phylogenies, the superfamily is monophyletic and cyathocotylids are basal (Blasco-Costa and Locke, 2017; Dzikowski et al. 2004; Hernández-Mena et al., 2017), as herein. Both the branching order and composition of the major diplostomoid clades in Figs. 2 and 3 herein are consistent with an analysis of concatenated CO1 and rDNA spacer sequences by Blasco-Costa and Locke (2017). The association of

Hysteromorpha, Alaria, Tylodelphys and Diplostomum is consistent with trees in FraijaFernández et al. (2015), López-Jiménez et al. (2017), and Olson et al. (2003). Discrepancies (e.g., Hysteromorpha in Hernández-Mena et al., 2017) are typically associated with poor nodal support. These genera are also consistently associated with Austrodiplostomum and Neodiplostomum (Blasco-Costa and Locke, 2017; Hernández-Mena et al., 2017; Locke et al., 2015; the latter sometimes misidentified as Fibricola, see Blasco-Costa and Locke, 2017), and the name Diplostomidae should be reserved for members of this group.

Like other studies, our analysis indicates the Diplostomidae s.l. is paraphyletic. Posthodiplostomum, though nominally part of the family, is separate from and basal to a clade composed of other diplostomids and the Strigeidae. Posthodiplostomum belongs to the Crassiphialinae Sudarikov, 1960 and is consistently recovered with other members of this subfamily (e.g., Uvulifer, Bolbophorus, Ornithodiplostomum, Mesoophorodiplostomum and Posthodiplostomum in Athokpam and Tandon, 2014; Blasco-Costa and Locke, 2017; HernándezMena et al., 2017; López-Jiménez et al., 2017; Sereno-Uribe et al., 2018; Locke et al., 2010, see fig. S4). One recent analysis suggests some of these genera are not distinct (López-Hernández et al., 2018). As noted by Blasco-Costa and Locke (2017) and Hernández-Mena et al. (2017), it appears that the Crassiphialinae will rise to the family level, although it would be prudent to obtain data from the type genus, Crassiphiala Van Haitsma, 1925, before enacting this.

Both the present and the weight of prior phylogenetic analysis (see above) suggest that some family-level clades in the Diplostomoidea are distinguishable by long-recognized metacercarial morphotypes. For example, crassiphialinids and other diplostomids are clearly evolutionarily distinct, and readily separated by their metacercariae (neascus and diplostomulum). In adult forms, members of these two clades are sometimes discriminated by
the distribution of the vitellaria, but this character fails in many cases (Niewiadomska, 2002c). The view that the metacercaria offers an impoverished subset of the phylogenetically informative characters found in the adult (Gibson, 1987) seems not to apply in the Diplostomoidea. For example, the infection sites and encystment habits of metacercariae may be phylogenetically conserved. Diplostomid genera with metacercariae that reside unencysted in the eyes of second intermediate hosts consistently group together in molecular phylogenies (Blasco-Costa and Locke, 2017; Hernández-Mena et al., 2017) and in Diplostomum, habitats within the eye are conserved (Blasco-Costa et al., 2014) and may influence diversification (Locke et al., 2015). Some morphological characters are also more easily visualized in metacercariae. For example, the character that mapped best onto phylogenetic analysis herein, the structure of the reserve bladder, is seldom described in the adult, likely because it is obscured by reproductive structures in mature worms (for an exception, see Overstreet et al., 2002). The value of this character fits Niewiadomska's (2002a) concept of four main morphotypes. Shoop (1989) distinguished additional types of metacercariae, but molecular phylogenies have not supported their distinctness (e.g., see Neodiplostomum/Fibricola, and Bolbophorus, which possess neo- and prodiplostomula in Shoop's system, in Blasco-Costa and Locke, 2017; Hernández-Mena et al., 2017). Further assessing the evolution of metacercarial characters and morphotypes will require additional molecular and morphological analysis. In the Strigeidae, all metacercariae are of a single type (tetracotyle), but the family is frequently non-monophyletic in molecular studies (Blasco-Costa and Locke, 2017; Hernández-Mena et al., 2017). It would be fruitful to characterize the reserve bladder in metacercariae belonging to the Proterodiplostomidae, which Hernández-Mena et al. (2017) found to be an early diverging, but not basal member of the diplostomoid clade. The simpler reserve bladder in the Cyathocotylidae, and the reticulate forms
with transverse commisures in the crown clade of Strigeidae and Diplostomidae, predict intermediate complexity in proterodiplostomids.

The initial aim of this study was a phylogenomic evaluation of higher relationships among a small number of worms. To this end, we selected seven specimens identified to genus that were promising for shotgun sequencing. After closer examination of vouchers, we recorded a new species of Cotylurus, resurrected a species of Hysteromorpha, and found support for a species of Alaria of contested validity, and these findings were supported with molecular data. Identifications were less than straightforward in 3/7 cases, a proportion similar to the 20/44 studies in which diplostomoid diversity differed from expectations (reviewed by Blasco-Costa and Locke, 2017). One taxonomic result involved reconsideration of H. triloba, which has long been thought to be cosmopolitan (Hugghins, 1954b; Locke et al., 2011; Lutz, 1931; SerenoUribe et al., 2018). The genetic divergence seen in Hysteromorpha could be construed as intraspecific variation in widely separated populations (particularly the low level of rDNA variation), but we believe recently formed species to be a more plausible explanation. In addition to the molecular evidence, the non-overlapping ranges of the definitive hosts of Nearctic and Paleartic Hysteromorpha (i.e., Phalacrocorax spp.) suggest long isolation, and the distinction between H. triloba and H. corti are supported by morphological differences in the metacercaria. Moreover, the finding that Hysteromorpha is represented by a distinct species in North America, H. corti, is consistent with a general trend. With sequences now available from thousands of specimens and many valid and putative species of diplostomoids and clinostomids, intercontinental distributions supported by molecular data are exceedingly rare, and limited to distributions along the margins of a second continent (e.g., Austrodiplostomum compactum (=A. ostrowskiae), Locke et al. 2015). More commonly, a single species thought to cosmopolitan is
revealed by DNA to be comprised of multiple geographically isolated species (e.g., Diplostomum spathaceum, D. baeri, Clinostomum complanatum, Caffara et al., 2011; Galazzo et al., 2002; Locke et al., 2015). The presence of the North American species, P. centrarchi, in Europe (Kvach et al., 2017; Stoyanov et al., 2017) and the Caribbean (Bunkley-Williams and Williams, 1994; present study) is instructive, as it is associated with recent introductions of non-native intermediate hosts. The overall pattern suggests intercontinental distributions based on historical records should be regarded skeptically in diplostomoids, clinostomids, and, we would suggest, other digeneans with life cycles tied to fresh water. For example, we predict that DNA will reveal that Palearctic Apharyngostrigea cornu is distinct from North American isolates sequenced by Locke et al. (2011). Because A. cornu was described in Europe (Zeder, 1800), the North American lineage will need to be renamed. Similarly, the Holarctic distribution of Cotylurus brevis (Dubois, 1970b; McDonald, 1981) seems doubtful. South American isolates of H. triloba (Lunaschi et al., 2007; Lutz, 1931) are also likely to represent another species, distinct from the North American and European lineages.

Acknowledgements

We are indebted to Brandon Ballengée (McGill University), Kimberly Bates (Winona State University), Matías J. Cafaro (University of Puerto Rico at Mayagüez, UPRM), Gary Conboy (University of Prince Edward Island), Martin Kalbe (Max Planck Institute for Evolutionary Biology), David Kerstetter (Nova Southeastern University), Audrey J. Majeske (UPRM), J. Daniel McLaughlin (Concordia University), and Le Nichoir Wildlife Rehabilitation Centre for providing hosts, worms, or laboratory access. Lutz Froenicke and staff at the UC Davis Genome Center are gratefully acknowledged. Isabel Blasco-Costa (Natural History Museum of Geneva) provided constructive suggestions that improved an earlier version of the manuscript. Early
phases of this study were supported by the Canadian Federal Government's Genomics Research Development Initiative, an NSERC Discovery Grant (A6979), and by Paul D. N. Hebert at the Center for Biodiversity Genomics, University of Guelph, Canada through funding from NSERC, Genome Canada, the Ontario Genomics Institute and the International Barcode of Life initiative. Major funding support was provided by the Puerto Rico Science, Technology and Research Trust to SL and computational support was provided to by an NSF-XSEDE grant (TG-BIO170048) SL and AVD.

Figure legends

Fig. 1. Schematic of phylogenetic conflict in the Digenea emerging from prior studies. Analysis of nuclear rDNA (nDNA) indicates Diplostomum, Clinostomum, and Schistosoma belong to the Diplostomida (Olson et al., 2003), while mitochondrial genomes (mtDNA) indicate Diplostomum and Clinostomum belong to the Plagiorchiida (Brabec et al., 2015; Briscoe et al., 2016; Chen et al., 2016). A polytomy occurs in the mitochondrial phylogeny because Diplostomum and Clinostomum have not been included together in prior analysis.

Fig. 2. Phylogenetic analysis of seven representatives of the Diplostomoidea and 29 other members of the Platyhelminthes, estimated using maximum likelihood based on 5647 variable sites in 13 protein-coding genes in the mitochondrion. Nodes are labelled with support from 1000 bootstrap replicates, with support from analysis of translated amino acids (supplementary Fig. 2) after the slash. Unlabelled nodes indicate support of 100/100. An asterisk and grey branch indicate topological inconsistency with analysis of amino acids. GenBank accessions of sequences from other studies are AF215860.1, AF216697.1, AF217449.1, AF219379.2, DQ157222.2, DQ157223.1, DQ859919.1, DQ985706.1, EU921260.2, FJ381664.2, HE601612.1, KC330755.1, KF214770.1, KF318786.1, KF318787.1, KF475773.1, KF543342.1, KM280646.1,

KM923964.1, KP844722.1, KR269763.1, KR269764.1, KR703278.1, KT239342.1, KU060148.1, KU641017.1, KX169163.1, KX765277.1, MF136777.1.

Fig. 3. Maximum likelihood analysis of 517 conserved genetic elements from seven members of the Diplostomoidea, and other Platyhelminthes. The gray or black shaded boxes indicate families recognized by Dubois (Dubois, 1938, 1970b) and Niewiadomska (Niewiadomska, 2002a). Colors in matrix at right encode morphological and life history characters separated by developmental stage (supplementary Table 1). Metacercarial morphotypes indicated at far right are: $\mathrm{P}=$ prohemistomulum, $\mathrm{D}=$ diplostomulum, $\mathrm{N}=$ neascus, $\mathrm{T}=$ tetracotyle. The alignment is $234,783 \mathrm{bp}$ in length, with $149,881(64 \%)$ invariant and $84,902(36 \%)$ variable sites. The analysis was based on 90% matrix occupancy. Nodes had 100% support in 1000 bootstrap replicates, except where indicated. Accessions of non-diplostomoid genomes obtained from Wormbase (Howe et al., 2016) are PRJEB1206, PRJDA72781, PRJEB6687, PRJEB1207.

Fig. 4. Neighbour-joining tree of uncorrected p-distance among 195 partial sequences of cytochrome c oxidase I (CO1). Shaded clades had $>99 \%$ support in 500 bootstrap replicates in ML analysis (not shown) and are annotated with identifications, host and geographic records mentioned in the results. Sequences from the present study were obtained from species labelled in bold. This includes Sanger-sequenced amplicons of the barcode region of COI ($\mathrm{n}=35$, XXXXXX-X) and mitochondrial genomes of specimens used in Figures 2 and 3. Sequences $(\mathrm{n}=160)$ from other studies are FJ477182, FJ477203, FJ477217, HM064651-9, HM064712, HM064714-7, HM064799-843, JF769422-76, JF904528-36, JX977781-4, KR271481-93, KT254037-9, KX931421-3, KY513231-6, MF124272-3, MF398316, MG649464-78.

Fig. 5. Adult of Posthodiplostomum centrarchi Hoffman, 1958, from Ardea herodias, Ile aux Herons, St. Lawrence River, Quebec, Canada. Scale $=200 \mu \mathrm{~m}$. Hologenophore for partial sequence of cytochrome c oxidase I, Genbank accession XZXXXXXX.

Fig. 6. Adult of Cardiocephaloides medioconiger Hall \& Wigdor, 1918, from Thalassius maximus, Florida, United States. Scale $=2000 \mu \mathrm{~m}$. Hologenophore for partial sequence of cytochrome c oxidase I, Genbank accession XZXXXXXX.

Fig. 7. Adults of Cotylurus marcogliesei n. sp. from Lophodytes cucullatus in Montreal, Quebec, Canada. Scale $=200 \mu \mathrm{~m}$. Hologenophores for Genbank accession XZXXXXX.

Fig. 8. Adult of Alaria americana Hall \& Wigdor, 1918, from Vulpes vulpes, Nova Scotia, Canada. Scale $=500 \mu \mathrm{~m}$. Paragenophore for partial sequence of cytochrome c oxidase I, Genbank accession XZXXXXXX.

Fig. 9. Metacercariae of Hysteromorpha triloba (Rudolphi, 1819) from Squalius cephalus, Italy. Scale $=200 \mu \mathrm{~m}$. Paragenophores for partial sequence of cytochrome c oxidase I, Genbank accession XZXXXXXX.

Fig. 10. Adult of Hysteromorpha corti (Hughes, 1929) from Phalacrocorax auritus, Montreal, Quebec, Canada. Italy. Scale $=200 \mu \mathrm{~m}$. Paragenophore for partial sequence of cytochrome c oxidase I, Genbank accession XZXXXXXX.

Fig. 11 (a). Adult of Tylodelphys immer Dubois, 1961, from Gavia immer in Montreal, Quebec, Canada. Scale $=200 \mu \mathrm{~m}$. (b). Ventral tegument of forebody. VS=ventral sucker, arrow points to anterior of worm. Scale $=50 \mu \mathrm{~m}$. Paragenophore for partial sequence of cytochrome c oxidase I, Genbank accessions KR271483, KR271487, KR271489.

Supplementary Fig. 1. Characters mapped onto the topology of the phylogenomic analysis of the Diplostomoidea.

Supplementary Fig. 2. Phylogenetic analysis of seven representatives of the Diplostomoidea and 29 other members of the Platyhelminthes, estimated using maximum likelihood based on translated amino acids in 13 protein-coding genes in the mitochondrion

Supplementary Fig. 3. Metacercaraie of Hysteromorpha triloba in muscle of Squalius cephalus. A-B: live metacercariae $($ scale $=100 \mu \mathrm{~m})$; Metacercariae in cheek (C), lateral (D) and caudal (E) muscle.

Supplementary Table 1. Characteristics of mitochondrial genomes and rDNA operons for seven members of the Diplostomoidea.

Supplementary Table 2. Selected morphometrics from adults of Posthodiplostomum reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n).

Supplementary Table 3. Selected morphometrics from adults of Cardiocephaloides medioconiger reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n).

Supplementary Table 4. Selected morphometrics from adults of Cotylurus reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n).

Supplementary Table 5. Selected morphometrics from adults of Alaria reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n).

Supplementary Table 6. Selected morphometrics from metacercariae and adults of
Hysteromorpha from the present and other studies, reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n).

Supplementary Table 7. Selected morphometrics from adults of Tylodelphys immer reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n).

References

Athokpam, V., Tandon, V., 2014. Morphological and molecular characterization of Posthodiplostomum sp. (Digenea: Diplostomidae) metacercaria in the muscles of snakeheads (Channa punctata) from Manipur, India. Helminthologia 51, 141-152.
Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., Stadler, P.F., 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313-319.
Blasco-Costa, I., Faltýnková, A., Georgieva, S., Skírnisson, K., Scholz, T. and Kostadinova, A., 2014. Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: Diplostomidae) in Iceland. Int. J. Parasitol. 44, 703-715.
Blasco-Costa, I., Locke, S.A., 2017. Life history, systematics and evolution of the Diplostomoidea Poirier, 1886: progress, promises and challenges emerging from molecular studies. Adv. Parasitol. 98, 167-244.
Blasco-Costa, I., Poulin, R., Presswell, B., 2016. Morphological description and molecular analyses of Tylodelphys sp. (Trematoda: Diplostomidae) newly recorded from the freshwater fish Gobiomorphus cotidianus (common bully) in New Zealand. J. Helminthol. 91, 332-345
Blasco-Costa, Isabel, Poulin, R., Presswell, B., 2016. Species of Apatemon Szidat, 1928 and Australapatemon Sudarikov, 1959 (Trematoda: Strigeidae) from New Zealand: linking and characterising life cycle stages with morphology and molecules. Parasitol. Res. 115, 271-289.
Boone, E.C., Laursen, J.R., Colombo, R.E., Meiners, S.J., Romani, M.F., Keeney, D.B., 2018. Infection patterns and molecular data reveal host and tissue specificity of Posthodiplostomum species in centrarchid hosts. Parasitology (In press) DOI: 10.1017/S0031182018000306

Brabec, J., Kostadinova, A., Scholz, T., Littlewood, D.T.J., 2015. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens. Parasit. Vectors 8, 1-11.
Briscoe, A.G., Bray, R.A., Brabec, J., Littlewood, D.T.J., 2016. The mitochondrial genome and ribosomal operon of Brachycladium goliath (Digenea: Brachycladiidae) recovered from a stranded minke whale. Parasitol. Int. 65, 271-275.

Brooks, D.R., O'Grady, R.T., Glen, D.R., 1985. Phylogenetic analysis of the Digenea (Platyhelminthes: Cercomeria) with comments on their adaptive radiation. Can. J. Zool. 63, 411-443.
Bunkley-Williams, L., Williams, E.H., 1994. Parasites of Puerto Rican freshwater sport fishes. Department of Natural and Environmental Resources, San Juan, PR.
Bushnell, B., 2014. BBMap: A Fast, Accurate, Splice-Aware Aligner. Presented at the 9th Annual Genomics of Energy \& Environment Meeting, USDOE Office of Science (SC), Walnut Creek, CA.
Bykhovskaya-Pavlovskaya, I.E., 1962. Key to Parasites of Freshwater Fish of the U.S.S.R., Keys to Fauna of the U.S.S.R. Izdatelstvo Akademii Nauk SSSR.
Caffara, M., Locke, S.A., Gustinelli, A., Marcogliese, D.J., Fioravanti, M.L., 2011. Morphological and molecular differentiation of Clinostomum complanatum and Clinostomum marginatum (Digenea: Clinostomidae) metacercariae and adults. J. Parasitol. 97, 884-891.
Campbell, R., 1971. Biology and development of Cotylurus flabelliformis (Trematoda: Strigeidae). PhD Thesis. Iowa State University, Ames, Iowa.
Chaudhary, A., Gupta, S., Verma, C., Tripathi, R., Singh, H.S., 2017. Morphological and molecular characterization of metacercaria of Tylodelphys (Digenea: Diplostomidae) from the piscine host, Mystus tengara from India. J. Parasitol. 103, 565-573.
Chen, L., Feng, Y., Chen, H.-M., Wang, L.-X., Feng, H.-L., Yang, X., Mughal, M.-N., Fang, R., 2016. Complete mitochondrial genome analysis of Clinostomum complanatum and its comparison with selected digeneans. Parasitol. Res. 115, 3249-3256.
Chibwana, F.D., Blasco-Costa, I., Georgieva, S. Hosead, K.M., Nkwengulila, G., Scholz, T., Kostadinova, A. 2013. A first insight into the barcodes for African diplostomids (Digenea: Diplostomidae): Brain parasites in Clarias gariepinus (Siluriformes: Clariidae). Infection, Genetics and Evolution. 17, 62-70.
Ciurea, I., 1930. Contributions à l'étude morphologique et biologique de quelques strigeidés des oiseaux ichtyophages de la faune de Roumanie (recherches expérimentales). Arch. Roum. Pathol. Expérimentale Microbiol. 3, 277-323.
Cort, W.W., 1917. Homologies of the excretory system of the forked-tailed cercariae: A preliminary report. J. Parasitol. 4, 49.
Dubois, G., 1970a. Les fondements de la taxonomie des Strigeata La Rue (Trematoda: Strigeida). Rev. Suisse Zool. 77.
Dubois, G., 1970b. Synopsis des Strigeidae et des Diplostomatidae (Trematoda). Mém. Société Neuchâtel. Sci. Nat. 10, 1-727.
Dubois, G., 1958. Les Strigeida (Trematoda) de Californie de la collection June Mahon. Bull. Société Neuchâtel. Sci. Nat. 81, 69-78.
Dubois, G., 1938. Monographie des Strigeida (Trematoda). Mém. Société Neuchâtel. Sci. Nat. 6, 1-535.
Dzikowski, R., Levy, M.G., Poore, M.F., Flowers, J.R., Paperna, I., 2004. Use of rDNA polymorphism for identification of Heterophyidae infecting freshwater fishes. Dis. Aquat. Organ. 59, 35-41.
Faircloth, B.C., 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786-788.

Faircloth, B.C., Sorenson, L., Santini, F., Alfaro, M.E., 2013. A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of Ultraconserved Elements (UCEs). PLoS ONE 8, e65923.
Fraija-Fernández, N., Olson, P.D., Crespo, E.A., Raga, J.A., Aznar, F.J., Fernández, M., 2015. Independent host switching events by digenean parasites of cetaceans inferred from ribosomal DNA. Int. J. Parasitol. 45, 167-173.
Galazzo, D.E., Dayanandan, S., Marcogliese, D.J., McLaughlin, J.D., 2002. Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNAsequence data and comparisons with European congeners. Can. J. Zool. 80, 2207-2217.
Gibson, D.I., 1996. Guide to the Parasites of Fishes of Canada: Trematoda, Canadian Special Publication of Fisheries and Aquatic Sciences. NRC Research Press.
Gibson, D.I., 1987. Questions in digenean systematics and evolution. Parasitology 95, 429-460.
Gibson, D.I., Bray, R.A., 1994. The evolutionary expansion and host-parasite relationships of the Digenea. Int. J. Parasitol. 24, 1213-1226.
Graybeal, A., Cannatella, D., 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9-17.
Hatch, J.J., Brown, K.M., Hogan, G.G., Morris, R.D., 2000. Great Cormorant (Phalacrocorax carbo). Birds N. Am. Online.
Hedtke, S.M., Townsend, T.M., Hillis, D.M., Collins, T., 2006. Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst. Biol. 55, 522-529.
Hernández-Mena, D.I., García-Prieto, L., García-Varela, M., 2014. Morphological and molecular differentiation of Parastrigea (Trematoda: Strigeidae) from Mexico, with the description of a new species. Parasitol. Int. 63, 315-323.
Hernández-Mena, D.I., García-Varela, M., Pérez-Ponce de León, G., 2017. Filling the gaps in the classification of the Digenea Carus, 1863: systematic position of the Proterodiplostomidae Dubois, 1936 within the superfamily Diplostomoidea Poirier, 1886, inferred from nuclear and mitochondrial DNA sequences. Syst. Parasitol. 94, 833-848.
Hoffman, G.L., 1958. Experimental studies on the cercaria and metacercaria of a strigeoid trematode, Posthodiplostomum minimum. Exp. Parasitol. 7, 23-50.
Howe, K.L., Bolt, B.J., Cain, S., Chan, J., Chen, W.J., Davis, P., Done, J., Down, T., Gao, S., Grove, C., Harris, T.W., Kishore, R., Lee, R., Lomax, J., Li, Y., Muller, H.-M., Nakamura, C., Nuin, P., Paulini, M., Raciti, D., Schindelman, G., Stanley, E., Tuli, M.A., Van Auken, K., Wang, D., Wang, X., Williams, G., Wright, A., Yook, K., Berriman, M., Kersey, P., Schedl, T., Stein, L., Sternberg, P.W., 2016. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 44, D774-D780.
Hugghins, E.J., 1954a. Life history of a strigeid trematode, Hysteromorpha triloba (Rudolphi, 1819) Lutz, 1931. II. Sporocyst through adult. Trans. Am. Microsc. Soc. 73, 221-236.

Hugghins, E.J., 1954b. Life history of a strigeid trematode, Hysteromorpha triloba Rudolphi, 1819) Lutz, 1931. I. Egg and miracidium. Trans. Am. Microsc. Soc. 73, 1-15.

Hughes, R.C., 1929. Studies on the trematode family Strigeidae (Holostomidae), No. XIV: Two new species of Diplostomula. Occas. Pap. Mus. Zool. 202, 1-29.
Inoue, J.G., Miya, M., Tsukamoto, K., Nishida, M., 2003. Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the "ancient fish." Mol. Phylogenet. Evol. 26, 110-120.
Johnson, A.D., 1970. Alaria mustelae: Description of mesocercaria and key to related species. Trans. Am. Microsc. Soc. 89, 250-253.

Kalbe, M., Wegner, K.M., Reusch, T.B.H., 2016. Dispersion patterns of parasites in 0+ year three-spined sticklebacks: a cross population comparison. J. Fish Biol. 60, 1529-1542. Kostadinova, A., Pérez-del-Olmo, A., 2014. The Systematics of the Trematoda, in: Toledo, R., Fried, B. (Eds.), Digenetic Trematodes. Springer New York, New York, NY, pp. 21-44.
Kvach, Y., Jurajda, P., Bryjová, A., Trichkova, T., Ribeiro, F., Přikrylová, I., Ondračková, M., 2017. European distribution for metacercariae of the North American digenean Posthodiplostomum cf. minimum centrarchi (Strigeiformes: Diplostomidae). Parasitol. Int. 66, 635-642.
Kvach, Y., Ondračková, M., Jurajda, P., 2016. First report of metacercariae of Cyathocotyle prussica parasitising a fish host in the Czech Republic, Central Europe. Helminthologia 53, 1-5.
La Rue, G.R., 1957. The classification of Digenetic Trematoda: A review and a new system. Exp. Parasitol. 6, 306-349.
Lapage, G., 1961. A list of the parasitic protozoa, helminths and Arthropoda recorded from species of the family Anatidae (ducks, geese and swans). Parasitology 51, 1-109.
Locke, S.A., Al-Nasiri, F.S., Caffara, M., Drago, F., Kalbe, M., Lapierre, A.R., McLaughlin, J.D., Nie, P., Overstreet, R.M., Souza, G.T., Takemoto, R.M., Marcogliese, D.J., 2015. Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. Int. J. Parasitol. 45, 841855.

Locke, S.A., McLaughlin, J.D., Lapierre, A.R., Johnson, P.T., Marcogliese, D.J., 2011. Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. J. Parasitol. 97, 846-851.
Locke, S.A., McLaughlin, J.D., Marcogliese, D.J., 2010. DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Mol. Ecol. 19, 2813-2827.
López-Hernández, D., Locke, S.A., de Melo, A.L., Leite Rabelo, E., Pinto, H.A., 2018. Molecular, morphological and experimental assessment of the life cycle of Posthodiplostomum nanum Dubois 1937 (Trematoda: Diplostomidae) from Brazil, with phylogenetic evidence of paraphyly of the genus Posthodiplostomum Dubois, 1936. Infect. Genet. Evol. In press. DOI: 10.1016/j.meegid.2018.05.010
López-Jiménez, A., Pérez-Ponce de León, G., García-Varela, M., 2017. Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in Middle America, with the description of a new species. J. Helminthol. In press. DOI: 10.1017/S0022149X17000888
Lunaschi, L.I., Cremonte, F., Drago, F.B., 2007. Checklist of digenean parasites of birds from Argentina. Zootaxa 1403, 1-36.
Lunter, G., Goodson, M., 2011. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936-939.
Lutz, A., 1931. Contribuição ao conhecimento da ontogenia das strigeidas. Mem. Inst. Oswaldo Cruz 25, 333-342.
MacCallum, G., 1921. Studies in helminthology. Zoopathologica 1, 137-284.
McDonald, M.E., 1981. Key to Trematodes Reported in Waterfowl. US Fish and Wildlife Service.
Moszczynska, A., Locke, S.A., McLaughlin, J.D., Marcogliese, D.J., Crease, T.J., 2009. Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic
trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol. Ecol. Resour. 9, 75-82.
Niewiadomska, K., 2002a. Superfamily Diplostomoidea, in: Gibson, D.I., Jones, A., Bray, R. (Eds.), Keys to the Trematoda. CABI Publishing, Oxon, UK, pp. 159-166.
Niewiadomska, K., 2002b. Family Strigeidae Railliet, 1919, in: Gibson, D., Jones, A., Bray, R. (Eds.), Keys to the Trematoda. CABI Publishing, Oxon, UK, pp. 231-241.
Niewiadomska, K., 2002c. Family Diplostomidae Poirier, 1886, in: Gibson, D.I., Jones, A., Bray, R. (Eds.), Keys to the Trematoda. CABI Publishing, Oxon, UK, pp. 167-196.

Olson, P., Cribb, T., Tkach, V., Bray, R., Littlewood, D., 2003. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 33, 733-755.
Overstreet, R.M., Curran, S.S., Pote, L.M., King, D.T., Blend, C.K., Grater, W.D., 2002. Bolbophorus damnificus n. sp. (Digenea: Bolbophoridae) from the channel catfish Ictalurus punctatus and American white pelican Pelecanus erythrorhynchos in the USA based on life-cycle and molecular data. Syst. Parasitol. 52, 81-96.
Palmieri, J.R., 1977. Host-induced morphological variations in the strigeoid trematode Posthodiplostomum minimum (Trematoda: Diplostomatidae) II: Body measurements and tegument modifications. Gt. Basin Nat. 37, 129-137.
Park, G.-M., 2007. Genetic comparison of liver flukes, Clonorchis sinensis and Opisthorchis viverrini, based on rDNA and mtDNA gene sequences. Parasitol. Res. 100, 351-357.
Pearson, J.C., 1972. A phylogeny of life-cycle patterns of the Digenea. Adv. Parasitol. 10, 153189.

Pearson, J.C., Johnson, A.D., 1988. The taxonomic status of Alaria marcianae (Trematoda: Diplostomidae). Proc. Helminthol. Soc. Wash. 55, 102-103.
Peng, Y., Leung, H.C., Yiu, S.-M., Chin, F.Y., 2012. IDBA-UD: a de novo assembler for singlecell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420-1428.
Perea, S., Vukić, J., Šanda, R., Doadrio, I., 2016. Ancient mitochondrial capture as factor promoting mitonuclear discordance in freshwater fishes: A case study in the genus Squalius (Actinopterygii, Cyprinidae) in Greece. PLOS ONE 11, e0166292.
Philippe, H., Brinkmann, H., Lavrov, D.V., Littlewood, D.T.J., Manuel, M., Wörheide, G., Baurain, D., 2011. Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biol. 9, e1000602.
Platt, R.N., Faircloth, B.C., Sullivan, K.A., Kieran, T.J., Glenn, T.C., Vandewege, M.W., Lee, T.E., Baker, R.J., Stevens, R.D., Ray, D.A., 2018. Conflicting evolutionary histories of the mitochondrial and nuclear genomes in New World Myotis bats. Syst. Biol. 67, 236249.

Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., Sundberg, P., Thollesson, M., 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol. Phylogenet. Evol. 48, 369-371.
Rudolphi, C., 1819. Entozoorum synopsis cui accedunt mantissima duplex et indices locupletissima. Sumptibus Augusti Rücker, Berlin, Germany
Sattmann, H., Hörweg, C., Stagl, V., 2014. Johann Gottfried Bremser (1767-1827) und die Kuhpockenimpfung. Wien. Klin. Wochenschr. 126, 3-10.
Sereno-Uribe, A.L., López-Jimenez, A., Andrade-Gómez, L., García-Varela, M., 2018. A morphological and molecular study of adults and metacercariae of Hysteromorpha triloba
(Rudolpi, 1819), Lutz 1931 (Diplostomidae) from the Neotropical region. J. Helminthol. In press. DOI: 10.1017/S0022149X17001237
Shoop, W.L., 1989. Systematic analysis of the Diplostomidae and Strigeidae (Trematoda). J. Parasitol. 75, 21-32.
Silvestro, D., Michalak, I., 2012. raxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335-337.
Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M., 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics btv351.
Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.
Stoyanov, B., Georgieva, S., Pankov, P., Kudlai, O., Kostadinova, A., Georgiev, B.B., 2017. Morphology and molecules reveal the alien Posthodiplostomum centrarchi Hoffman, 1958 as the third species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) in Europe. Syst. Parasitol. 94, 1-20.
Stunkard, H.W., 1946. Interrelationships and taxonomy of the digenetic trematodes. Biol. Rev. 21, 148-158.
Sun, M., Soltis, D.E., Soltis, P.S., Zhu, X., Burleigh, J.G., Chen, Z., 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol. Phylogenet. Evol. 83, 156-166.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.
Uhrig, E.J., Spagnoli, S.T., Tkach, V.V., Kent, M.L., Mason, R.T., 2015. Alaria mesocercariae in the tails of red-sided garter snakes: evidence for parasite-mediated caudectomy. Parasitol. Res. 114, 4451-4461.
Waeschenbach, A., Webster, B.L., Littlewood, D.T.J., 2012. Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Mol. Phylogenet. Evol. 63, 834-847.
Whitfield, J.B., Lockhart, P.J., 2007. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258-265.
Zeder, J., 1800. Erster Nachtrag zur Naturgeschichte der Eingeweidewürmer. Leipzig.

Table 1. Origins of samples and data in the present and other studies

Table 1. Origins of samples and data in the present and other studies

Table 1. Origins of samples and data in the present and other studies

	Locality	Source	CO1 accession	UCE accession	Mt genome accession	rDNA operon accession	Museum accession
Ardea cinerea, L. gibbosus Tylodelphys Diesing, 1850	Spain, Slovakia, Bulgaria	Stoyanova et al. 2017	KX931421-3				
Tylodelphys immer Dubois, 1961							
Gavia immer	Quebec, Canada	present study		XXXXXX	XXXXXX	XXXXXXX	XXXXXXX
G. immer, Coregonus clupeaformis, Notropis hudsonius, Perca flavescens, Salvelinus fontinalis	Quebec, Canada	Locke et al. 2015	KR271481-93				
Strigeidae Railliet, 1919							
Cardiocephaloides Sudarikov, 1959							
Cardiocephaloides medioconiger Dubois and Vigueras, 1949							
Thallasius maximus	Florida, USA	present study	XXXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXXXX
Larus sp.	Campeche, Mexico	Hernandez-Mena Parasitol. Int. 63 (2), 315-323 (2014)	JX977782-3				
Cardiocephaloides sp.							
Larus occidentalis	Baja California, Mexico	Hernandez-Mena Parasitol. Int. 63 (2), 315-323 (2014)	JX977784				
Cotylurus Szidat, 1928 Cotylurus marcogliese n . sp.							
Lophodytes cucullatus	Montreal, Quebec,	present study	XXXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX

Table 1. Origins of samples and data in the present and other studies

Table 1. Origins of samples and data in the present and other studies

	Locality	Source	CO1 accession	UCE accession	Mt genome accession	rDNA operon accession	Museum accession
Mesostephanus Lutz, 1935							
Mesostephanus microbursa Caballero, Grocott, and Zerecero, 1953							
Sula nebouxii	Nayarit, Mexico	Hernandez-Mena et al 2017	MF398316				
Mesostephanus sp.							
L. gibbosus, Pomoxis nigromaculatus	Quebec, Canada	Locke et al. 2010	$\begin{aligned} & \text { HM064651, } \\ & \text { HM064653-9 } \end{aligned}$				
Brauninidae Wolf 1903							
Braunina Heider, 1900							
Braunina cordiformis Wolf, 1903							
Delphinus delphis	Coastal waters, Argentina	Blasco-Costa and Locke, 2017	MF124272				

1010 Table 2. Selected assembly statistics for 150-bp paired-end reads from IDBA_hybrid.

	Reads	Aligned reads	Expected coverage	Contigs	N50	max	mean	Total length	N80
Cyathocotylidae									
Cyathocotyle prussica	21208232	7029966	0.055976	336463	542	13687	522	175748574	396
Strigeidae									
Cardiocephaloides medioconiger	91513844	72475903	0.120399	566427	11122	157631	1204	682202373	2185
Cotylurus marcogliesei n . sp.	136959212	80825403	0.133569	2065313	1662	217472	427	883621846	204
Diplostomidae									
Alaria americana	130527714	71565054	0.072403	1899210	1540	90097	658	1249851331	507
Hysteromorpha triloba	130953814	78792229	0.076501	1923782	1675	89784	675	1299457195	496
Posthodiplostomum centrarchi	143789074	81923449	0.105401	2157712	1245	878066	497	1074511666	329
Tylodelphys immer	123480600	80297700	0.155342	1736417	2044	382985	432	751015059	201

1011

1012
1013

bioRxiv preprint doi: https://doi.org/10.1101/333518; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bio a license to display the preprint in perpetuity. It is made available under

 certified by peer review) is the athor/fundéf, who hastg

VS

Supplementary Figure 1. Characters mapped onto the topology of the phylogenomic analysis of the Diplostomoidea. ©aracters 1-10 were not included in the published figure because they are invariant within the Diplostomoidea Adult

Schistosoma manson
Cyathocotyle prussica
Posthodiplostomum centrarchi
Cardiocephaloides medioconiger
Cotylurus marcogliesei
Alaria americana
Hysteromorpha triloba
Tylodelphys immer
Character

1						6			8				11	12			14	15				18
0	0	0	0	0		0	0			0	0		0	0	0		0	0	0			0
3	3	3	3	3		3	3			3	3		0	3	0		1	1	1			0
3	3	3	3	3		3	3			3	3		3	3	0		1	3	1			0
3	3	3	3	3		3	3		3	3	3		3	3	0		3	3	3			0
3	3	3	3	3		3	3		3	3	3		3	0	0		3	3	3			3
3	3	3	3	3		3	3		3	3	3		3	3	3		1	3	1			3
3	3	3	3	3		3	3		3	3	3		3	0	0		1	3	1			3
3	3	3	3	3		3	3		3	3	3		3	3	0		1	1	1			3

$\begin{array}{llllll}19 & 20 & 21 & 22 & 23 & 2\end{array}$

0	0	0	0	0	0
0	0	0	0	3	1
3	0	0	3	1	3
3	0	0	3	1	3
0	3	3	3	1	2
0	3	3	3	1	2
0	3	3	3	0	2

Character

Adult
0=dioecious; 3=monoeciou
$0=$ testes >2; 3=testes 2
$0=$ cirrus sac absent; $3=$ cirrus sac present

$0=$ genital pore median; $3=$ gential pore terminal/sub-terminal
$0=$ infection site of adult is gut; $3=$ infection site of adult is outside gut
$0=$ testes non-spherical; $3=$ testes spherica
$0=$ testes tandem; $3=$ testes opposite
$0=$ pharynx absent; $3=$ pharynx present
$0=$ metacercaria absent; $3=$ metacercaria presen
$0=$ genital bursa absent; $3=$ genital bursa present
$0=$ genital cone absent; $3=$ genital cone present
$0=$ gesocercria
$0=$ =tribocytic organ absent; $1=$ tribocytic organ lingual; 3=tribocytic organ bilobate
$0=$ trody shape unsegment; $1=$ =slightly segnmented; $3=$ fore/hindbody division
15 0=body shape unsegment; $1=$ slightly segnmented; 3=fore/hindb
$16 \quad 0=$ no forebody; $1=$ flattenned forebody; $3=$ cup-shaped forebody
$\begin{array}{ll}17 & 0=\text { no forebody; } 1=\text { flattenned forebody; } 3=\text { cup-shaped forebody } \\ 17 & 0=\text { vitellaria postovarian in hindbody; } 1=\text { vitellaria pre- and post ovarian in fore and hindbody; } 2=\text { vitellaria pre-ovarian in forebody; } 3=\text { vitellaria pre- and postavarian in hindbody only } \\ 18\end{array}$
Metacercaria
19 0=forebody spathulate; 3=forebody cup-shaped
20 0=encysted; 3=unencysted
21 0=limebodies free; $3=$ limebodies enclosed
22 0=pseudosuckers present; 3=pseudosuckers absent
23 0=none; $1=$ no or weak segmentation; $3=$ segmented
$240=$ four excretory canals in two loops; $1=1$ median flanked by two lateral canals; $2=$ one median flanked by 1 in anterior, and 2 in posterior of median anastomosis; $3=$ net-like web of canals

0.3

Supplementary Figure 3. Metacercaraie of Hysteromorpha triloba in muscle of Squalius cephalus. A-B: live metacercariae (scale = 100 $\mu \mathrm{m}$); Metacercariae in cheek (C), lateral (D) and caudal (E) muscle.

Supplementary Table 1. Characteristics and genomic assembly statistics of mitochondrial genomes and rDNA operons for seven members of the Diplostomoidea

Supplementary Table 1 continued

Mitochondrial DNA	$\begin{aligned} & \text { Cotylurus } n \\ & 13,815 \text { bp } \end{aligned}$	$\begin{aligned} & \text { rcogliesei } \\ & , 172 \text { reads) } \end{aligned}$			ana 7,847 re p	
cox3	1	655	655	1	655	655
trnH(gtg)	683	747	65	690	752	63
cob	751	1,875	1,125	756	1,883	1,128
nad41	1,860	2,123	264	1,868	2,131	264
nad4	2,084	3,382	1,299	2,092	3,390	1,299
trnQ(ttg)	3,382	3,445	64	3,406	3,473	68
trnF(gaa)	3,468	3,533	66	3,477	3,544	68
trnM(cat)	3,541	3,609	69	3,554	3,624	71
atp6	3,613	4,131	519	3,628	4,146	519
nad2	4,151	5,041	891	4,142	5,056	915
trnV(tac)	5,045	5,107	63	5,060	5,121	62
trnA(tgc)	5,119	5,182	64	5,128	5,190	63
trnD(gtc)	5,196	5,261	66	5,198	5,266	69
nad1	5,271	6,170	900	5,273	6,187	915
trnP(tgg)	6,172	6,235	64	6,178	6,241	64
trnN(gtt)	6,245	6,300	56	6,249	6,312	64
trnI(gat)	6,311	6,376	66	6,334	6,399	66
trnK(ctt)	6,380	6,446	67	6,406	6,473	68
nad3	6,447	6,803	357	6,478	6,834	357
tRNA-Ser	6,803	6,862	60	6,846	6,905	60
trnW(tca)	6,869	6,933	65	6,914	6,973	60
cox1	6,942	8,552	1,611	6,983	8,620	1,638
tRNA-Thr	8,563	8,623	61	8,637	8,695	59
$\operatorname{trnT}(\mathrm{tgt})$						
large subunit rRNA	8,627	9,614	988	8,689	9,694	1,006
trnC(gca)	9,615	9,679	65	9,695	9,760	66
rrnS	9,677	10,404	728	9,758	10,496	739
cox2	10,430	11,038	609	10,522	11,148	627
nad6	11,038	11,496	459	11,152	11,613	462
trnY(gta)	11,516	11,581	66	11,623	11,687	65
trnL1(aag)	11,587	11,650	64	11,694	11,759	66
trnS2(tga)	11,651	11,717	67	11,760	11,826	67
trnL2(taa)	11,723	11,787	65	11,885	11,950	66
$\operatorname{trnR}(\mathrm{tcg})$	11,819	11,885	67	11,995	12,061	67
nad5	11,886	13,478	1,593	12,062	13,651	1,590
trnE(ttc)	13,483	13,548	66			
trnG(tcc)	13,748	13,812	65	13,767	13,833	67
Nuclear rDNA operon	7761 bp (540,219 reads)		8240 bp (213,367 reads)			
external transcribed spacer	1	468	468	1	1,007	1,007
small subunit rRNA	469	2,446	1,978	1,008	2,985	1,978
internal transcribed spacer 1	2,447	3,086	640	2,986	3,561	576
5.8 S rRNA	3,087	3,243	157	3,562	3,718	157
internal transcribed spacer 2	3,244	3,534	291	3,719	4,013	295
large subunit rRNA	3,535	7,744	4,210	4,014	8,223	4,210
external transcribed spacer	7,745	>7761	>17	8,224	>8240	>17

bioRxiv preprint doi: https://doi.org/10.1101/333518; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Supplementary Table 1 continued. Positions or anticodons of tRNAs in bold differ from those in other diplostomoids

Mitochondrial DNA	Hysteromorpha triloba 13,855 bp (23,049 reads)			Cyathocotyle prussica 13,665 bp (15,199 reads)			Cardiocephaloides medioconiger 15,107 bp (144,789 reads)		
	start	p length							
cox3	1	655	655	1	645	645	1	650	650
trnH(gtg)	680	750	71	648	712	65	684	746	63
cob	754	1,872	1,119	714	1,829	1,116	750	1,874	1,125
nad4l	1,865	2,128	264	1,810	2,085	276	1,859	2,122	264
nad4	2,089	3,384	1,296	2,046	3,332	1,287	2,083	3,387	1,305
trnQ(ttg)	3,391	3,451	61	3,345	3,406	62	3,409	3,472	64
trnF (gaa)	3,461	3,521	61	3,410	3,472	63	3,482	3,541	60
trnM(cat)	3,528	3,597	70	3,478	3,541	64	3,586	3,653	68
atp6	3,601	4,119	519	3,545	4,060	516	3,657	4,175	519
nad2	4,115	5,110	996	4,069	4,965	897	4,171	5,082	912
$t \mathrm{n} V(\mathrm{tac})$	5,028	5,088	61 trnA(tgc)	4,988	5,052	65 trnV(tac)	5,091	5,154	64
$\operatorname{trn} A(\operatorname{tgc})$	5,101	5,168	68 trnV(tac)	5,067	5,130	64 trnA(tgc)	5,180	5,241	62
$\operatorname{trnD}(\mathrm{gtc})$	5,174	5,240	67	5,137	5,198	62	5,253	5,315	63
nad1	5,244	6,170	927	5,199	6,092	894	5,319	6,230	912
trnP(tgg)	6,156	6,218	$63 \mathrm{trnN}(\mathrm{gtt})$	6,119	6,181	63 trnP(tgg)	6,243	6,309	67
trnN(gtt)	6,231	6,292	62 trnP(tgg)	6,188	6,251	64 trnN(gtt)	6,318	6,382	65
trnI(gat)	6,296	6,361	66	6,253	6,318	66	6,407	6,472	66
trnK(ctt)	6,364	6,429	66	6,334	6,400	67	6,484	6,553	70
nad3	6,433	6,789	357	6,403	6,750	348	6,555	6,911	357
tRNA-Ser	6,793	6,852	60	6,758	6,815	58	6,950	7,015	66
$t \mathrm{n} W$ (tca)	6,856	6,921	66	6,817	6,883	67	7,022	7,088	67
cox1	6,933	8,570	1,638	6,888	8,438	1,551	7,162	8,724	1,563
tRNA-Thr	8,589	8,658	70	8,447	8,511	65	8,741	8,803	63
$\operatorname{trnT}(\mathrm{tgt})$	8,589	8,655	67						
large subunit rRNA	8,659	9,652	994	8,515	9,506	992	8,794	9,835	1,042
trnC(gca)	9,654	9,720	67	9,507	9,570	64	9,795	9,860	66
rrnS	9,718	10,451	734	9,567	10,301	735	9,859	10,584	726
cox2	10,477	11,097	621	10,327	10,920	594	10,611	11,219	609
nad6	11,109	11,570	462	10,904	11,368	465	11,224	11,682	459
trnY(gta)	11,584	11,647	64	11,370	11,434	65 trnS2(tga)	11,776	11,841	66
trnL1(tag)	11,652	11,715	64 trnL1(tag)	11,444	11,508	65 trnY(gta)	12,615	12,678	64
trnS2(tga)	11,716	11,781	66	11,506	11,574	69 trnL2_1(caa)	12,700	12,766	67
trnL2(taa)	11,819	11,886	68	11,585	11,650	66	12,814	12,876	63
$\operatorname{trnR}(\mathrm{tcg})$	11,908	11,974	67	11,685	11,753	69	12,883	12,950	68
nad5	11,973	13,565	1,593	11,753	13,339	1,587	12,951	14,546	1,596
trnE(ttc)	13,572	13,635	64	13,347	13,407	61	14,559	14,624	66
trnG(tcc)	13,781	13,852	72	13,596	13,662	67	15,032	15,105	74
Nuclear rDNA operon	8020 bp (6	736 read		8041 bp (5	01 reads		7991 bp (2	106 read	
external transcribed spacer	1	770	770	1	680	680	1	729	729
small subunit rRNA	771	2,748	1,978	682	2,670	1,989	730	2,695	1,966
internal transcribed spacer 1	2,749	3,341	593	2,671	3,338	668	2,696	3,312	617
5.8S rRNA	3,342	3,498	157	3,339	3,495	157	3,313	3,469	157
internal transcribed spacer 2	3,499	3,793	295	3,496	3,824	329	3,470	3,762	293
large subunit rRNA	3,794	8,003	4,210	3,825	8,024	4,200	3,763	7,974	4,212
external transcribed spacer	8,004	>8020	>17	8,025	>8041	>17	7,975	>7991	>17

Supplementary Table 2. Selected morphometrics from adults of Posthodiplostomum reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n)

Identification (present study)	Posthodiplostomum centrarchi		P. centrarchi and/or Posthodiplostomum minimum	
Identification (original source)			P. minimum P. minimum	rarchi, and/or mum
Source	present study		Dubois, 196	
Life stage	adult		adult	
Host	Ardea herodias			
Locality	Montreal, Quebec, Canada Length	Width	Length	Width
Body	1222-1775 (1518, $\pm 186,9)$		890-1700	
Forebody	680-1200 (911, $\pm 165,9)$	452-875 (622, $\pm 130,9)$	540-1150	250-600
Hindbody	$520-875(639, \pm 108,9)$	248-750 ($373, \pm 159,9)$	300-600	160-470
Forebody/Hindbody	0.58-0.86 (0.71, $\pm 0.09,9)$		0.41-0.83	
Oral sucker	38-72 (52, $\pm 10,8)$	38-72 (56, $\pm 10,8)$	30-66	30-60
Pharynx	40-53 (49, $\pm 4,8)$	40-53 (42, $\pm 5,8)$	26-53	24-47
Oesophagus	60-72 (66, $\pm 8,2)$		25-90	
Ventral sucker	55-90 (76, $\pm 11,9)$	55-80 (71, $\pm 8,7)$	42-95	50-100
VS position \% in forebody	54-71 (60, $\pm 6,7)$		60-71	
Tribocytic organ	140-200 (178, $\pm 22,8)$	144-256 (195, $\pm 44,6)$	125-220	125-190
Ovary	80-105 (92, $\pm 11,4)$	72-88 (80, $\pm 6,4)$	35-100	42-116
Anterior testis	96-200 (159, $\pm 33,7)$	144-272 (204, $\pm 49,7)$	70-170	120-240
Posterior testis	176-350 (257, $\pm 58,8)$	216-350 (280, $\pm 43,9)$	70-240	170-330
Eggs	70-98 (84, $\pm 11,10)$	42-64 (56, $\pm 8,10)$	73-91	48-64
N eggs	$0-4(1, \pm 1.7,9)$		≤ 8	
Copulatory bursa	120-216 (177, $\pm 37,8)$	135-300 (248, $\pm 55,9)$	145-160	

Supplementary Table 3. Selected morphometrics from adults of Cardiocephaloides medioconiger reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n)

Identification	Cardiocephaloides medioconiger		C. medioconiger	
Source			Dubois, 1968	
Life stage	adult		adult	
Host(s)	Thallassius maximus			
Locality	Tavernier, Florida, USA			
	Length	Width	Length	Width
Body	7273-8324 (7832, $\pm 529,3)$		4450-9000	
Forebody (FB)	1333-1616 (1468, $\pm 142,3)$	1414-1455 (1431, $\pm 21,3)$	630-1500	450-1360
Hindbody (HB)	5657-6869 (6364, $\pm 631,3)$	1232-1293 (1266, $\pm 31,3)$	2130-7500	500-1400
HB/FB	3.5-4.9 (4.4, $\pm 0.8,3)$		2.5-5	
Oral sucker	103-160 (136, $\pm 29,3)$	175-193 (187, $\pm 10,3)$	81-179	75-136
Pharynx	129-152 (144, $\pm 13,3)$	119-152 (136, $\pm 17,3)$	66-183	66-192
Ventral sucker	103-168 (138, $\pm 33,3)$	112-128(120, $\pm 8,3)$	104-157	75-138
Testicular zone	828-1010 (935, $\pm 95,3)$		520-1200	
Anterior testis	303-475 (394, $\pm 86,3)$		240-560	500-750
Posterior testis	363-484 (430, $\pm 62,3)$	485-707 (599, $\pm 111,3)$	285-578	500-750
Ovary	363-363 (363, $\pm 0,2)$	300-363 (332, $\pm 45,2)$	150-278	217-300
Eggs	94-117 (104, ± 7, 12)	62-70 (68, $\pm 3,12)$	96-131	63-78
Egg wall width	2-2.2 (2.1, $\pm 0.1,3)$		2-4*	
Copulatory bursa (CB)	1010-1919 (1488, $\pm 456,3)$		600-1600	
HB/CB	3.6-5.6 (4.5, $\pm 1,3)$		3.3-8	

[^1]| Identification | Cotylurus marcogliesei n | | Cotylurus br | |
| :---: | :---: | :---: | :---: | :---: |
| Source | present study | | Dubois, 1968 | |
| Life stage | adult | | adult | |
| Host(s) | Lophodytes cucullatus | | | |
| Locality | Montreal, QC, Canada Length | Width | Length | Width |
| Body | 816-1152 (990, $\pm 114,8)$ | | 1000-1800 | |
| Forebody | 216-408 (313, $\pm 51,9)$ | 312-640 (447, $\pm 105,8)$ | 300-720 | 300-540 |
| Hindbody | 600-880 (722, $\pm 100,8)$ | 256-520 (331, $\pm 88,7)$ | 540-1110 | 260-660 |
| Hindbody/Forebody | $2.1-2.8(2.3, \pm 0.2,8)$ | | 1.25-1.94 | |
| Oral sucker | $48-80(68, \pm 13,8)$ | 64-112 (86, $\pm 14,8)$ | 72-120 | 61-120 |
| Pharynx | $30-50(38, \pm 11,3)$ | | 50-59 | 36-45 |
| Ventral sucker | 80-128 (107, $\pm 18,5)$ | 96-168 (116, $\pm 30,5)$ | 83-180 | 66-170 |
| Anterior testis | 136-168 (152, $\pm 23,2)$ | | 135-295 | 180-320 |
| Posterior testis | 136-160 (148, $\pm 17,2)$ | | 160-340 | 180-315 |
| Ovary | | | 75-150 | 65-120 |
| N eggs | 7-13 (10, $\pm 3,7)$ | | | breux" |
| Eggs | 84-105 (94, $\pm 7,33)$ | 38-65 (56, $\pm 8,33)$ | 88-110 | 50-70 |
| Genital bulb | 104-144 (126, $\pm 15,5)$ | 74-160 (112, $\pm 32,5)$ | | |
| \% extremity of antierior testis 40-45 (43, $\pm 4,2)$ | | | | |
| \% extremity of posterior testi 59-67(63, $\pm 4,3)$ | | | | |

Supplementary Table 5. Selected morphometrics from adults of Alaria reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n)

Identification Source Life stage Host(s) Locality	Alaria americana		Alaria americana sources cited in Johnson, 1968		Alaria americana (= Alaria canis)			
			Larue and Fallis, 1936					
	adult				sources cited in Johnson, 1968 adult		adult	
	Vulpes vulpes		Canis fami	ulpes fulva	Canis familiaris			
	Montreal, QC, Canada Length	Width	Length	Width	Length	Width		
Body	2121-2868 (2337, $\pm 275,7)$		1160-4200		2500-4200 (3200)			
Forebody (FB)	1375-1858 (1510, $\pm 177,7)$	465-869 (592, $\pm 153,6)$			1600-2600 (2200)	680-950 (800)		
Hindbody (HB)	606-1010 (815, $\pm 124,8)$	252-559 (458, $\pm 99,7)$			680-1600 (1000)	750-1100 (920)		
FB/HB	1.8-2.3 (1.9, $\pm 0.24,7)$		1.4-2.2					
Lappet	136-240 (190, $\pm 38,5)$							
Oral sucker (OS)	64-120 (89, $\pm 20,5)$	50-119 (82, $\pm 27,5)$	75-140	75-150	75-140 (100)	110-150 (120)		
Pharynx (PH)	120-150 (134, $\pm 11,6)$	45-96 (81, $\pm 20,6)$	120-196	80-153	140-170 (150)	90-140 (120)		
OS/PH	0.49-0.83 (0.66, $\pm 0.14,5)$		0.67					
Ventral sucker	88-104 (95, $\pm 6,6)$	88-120 (101, $\pm 11,6)$	70-176	90-140	90-120 (110)	90-140 (110)		
Tribocytic organ	667-788 (736, $\pm 40,6)$	160-250 (218, $\pm 40,4)$						
Ovary	67-160 (105, $\pm 37,5)$	65-280 (172, $\pm 92,4)$						
Anterior testis	110-319 (219, $\pm 91,4)$	120-327 (228, $\pm 104,3)$						
Posterior testis	80-283 (165, $\pm 79,5)$	152-270 (228, $\pm 66,3)$						
Ejaculatory pouch	250-444 (346, $\pm 70,8)$	101-135 (119, $\pm 10,8)$						
Ejaculatory pouch wall		$31-55(42, \pm 7,8)$		35-55				
Eggs	102-136 (117, $\pm 8,25)$	36-80 (64, $\pm 8,25)$	90-133	64-86	108-116(113)	64-76(70)		
N eggs	0-11 (7, $\pm 4,8)$							

Supplementary Table 6. Selected morphometrics from metacercariae and adults of Hysteromorpha from the present and other studies, reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n)

Identification	Hysteromorpha triloba			
	H. triloba		(Diplostomum trilobum)	
Source Life stage	present study		Ciurea, 1930	
	Metacercaria		Metacercaria	
Host(s)	Squalius cephalus		Tinca tinca, Blicca bjoerkna, Idus idus, Rutilus rutilus	
Locality	Italy		Danube region	
	Length	Width	Length	Width
Body	$776-889(830 \pm 42,7)$		690-1250	
Forebody	536-664 (606 448,7$)$	576-687 (630 $\pm 33,7)$	460-860	420-690
Pseudosucker	48-80 (64 $\pm 12,7)$	44-96(69 $\pm 14,12)$	70-110 diameter	
Hinbody	120-303 (225 $\pm 62,7)$	256-545 (404 $\pm 96,7)$	200-400 260-390	
Oral sucker	$\begin{aligned} & 72-125(82 \pm 19,7) \\ & 50-76(61 \pm 10,7) \end{aligned}$	$52-84(70 \pm 12,7)$	66-96 diameter	
Pharynx		30-44 (36 $\pm 4,7)$	55-73 39-50	
Oesoaphagus	20-47 (34 $\pm 19,2)$		18-48	
Ventral sucker	$\begin{aligned} & 60-82(70 \pm 8,7) \\ & 160-229(193 \pm 27,6) \end{aligned}$	$\begin{aligned} & 88-107(99 \pm 6,7) \\ & 163-320(207 \pm 54,7) \end{aligned}$	77-120 diameter	
Tribocytic organ			200-330	120-290
Identification	(Hemistomum trilobum)*		(Diplostomum trilobum)	
Source	Krause, 1915		Ciurea, 1930	
Life stage	Adult		Adult	
Host(s)	Phalacrocorax carbo		Phalacrocorax carbo	
Locality	Europe		Eastern Europe	
	Length	Width	Length	Width
Body	780-840	470-500	780-1910	
Forebody	470-690		390-690	390-1050
Pseudosucker			55-170 diameter	
Hindbody	130-360		390-1210	340-620
Oral sucker	68		77-130 diameter	
Pharynx	45-49	$\begin{aligned} & 36-40 \\ & 90-110 \end{aligned}$	55-88	37-57
Ventral suckerTribocytic organ	81-117215-275		111-167 diameter	
			$\begin{array}{ll}220-340 \\ 40-120 & 170-380 \\ 100-240\end{array}$	
Ovary				
Anterior testis			120-290	120-230
Posterior testis			$\begin{aligned} & 80-240 \\ & 91-99 \end{aligned}$	280-490
Eggs	$81 \quad 54$			55-62

Hysteromorpha corti					
H. corti		(Hysteromorpha triloba)		(Diplostomulum corti)	
present study		Sereno-Uribe et al. 2018		Hughes, 1929	
Metacercaria		Metacercaria		Metacercaria	
Notemigonus crysoleucas, Catostomus commersoni		Astyanax mexicanus		Ameiurus melas, A. nebulosus	
St. Lawrencer River, Montreal, Canada; Lake Tarpon, Tampa, Florida		San Luis Potosi, Mexico		Illinois River, USA	
Length	Width	Length	Width	Length	Width
$712-880(797 \pm 55,7)$		641-836 (736)		700-880 (810,	
640-696 (670 $\pm 25,5)$	384-472 (429 $\pm 34,7)$	453-586 (547)	498-532 (517)		400-530 (475, 4)
		57-90 (71)	45-66 (53)		
80-160 (126 $\pm 32,5)$	152-200 (176 $\pm 34,2)$	136-251 (188)	209-349 (289)		
60-68 (62 $\pm 4,5)$	56-68 (63 $\pm 4,5)$	56-65 (61)	43-56(52)	62-72 (67, 4)	
$32-35(33 \pm 23)$	32-35 (33 $\pm 2,3)$	42-53 (48)	24-35 (55?)	40-53 (45, 3)	26-38(33, 3)
				15-21 (19, 4)	
56-68 (60 $\pm 6,5)$	60-76 (73 $\pm 6,6)$	47-54 (50)	69-76 (72)	73-83 $(76,4)$	
136-176 (163 $\pm 18,4)$	116-160 (137 $\pm 19,5)$	143-195 (179)	134-158(146)		

Supplementary Table 7. Selected morphometrics from adults of Tylodelphys immer reported in $\mu \mathrm{m}$ as range (mean, \pm standard deviation, n)				
Identification	Tylolephys immer		Tylolephys i	
Source	present study		Dubois, 196	
Life stage	adult		adult	
Host(s)	Gavia immer			
Locality	Montreal, QC, Canada Length	Width	Length	Width
Body	1515-1636 (1592, $\pm 50,5)$		1470-1840	
Forebody (FB)	970-1111 (1046, $\pm 58,5)$	455-556 (507, $\pm 44,5)$	690-1140	320-580
Hindbody (HB)	525-566 (545, $\pm 15,5)$	284-404 (352, $\pm 46,5)$	330-790	220-470
HB/FB	0.47-0.56 (0.52, $\pm 0.04,5)$		0.45-0.76	
Lappet	160-232 (197, $\pm 19,5)$		180-280	
Oral sucker	80-119 (102, $\pm 15,5)$	100-127(114, $\pm 13,5)$	72-120	80-115
Pharynx	68-84 (79, $\pm 6,5)$	66-80 (73, $\pm 5,5)$	60-89	48-70
Ventral sucker	90-109 (100, $\pm 8,5)$	100-131(114, $\pm 12,5)$	70-100	80-122
Tribocytic organ	240-288 (262, $\pm 24,5)$	152-240 (192, $\pm 32,5)$	190-270	100-210
Ovary	40-80 (61, $\pm 20,3)$	56-80 (69, 12,3)	95-115	80-145
Anterior testis	80-96 (88, $\pm 7,4)$	272-344 (310, $\pm 30,4)$	90-200	250-380
Posterior testis	88-112 (102, $\pm 10,5)$	272-320 (294, $\pm 22,5)$	90-195	215-350
Eggs	80-100 (93, $\pm 7,12)$	40-68 ($54, \pm 8,12$)	83-104	54-68
N eggs	$1-8(5, \pm 3,5)$		3-17	

[^0]: ${ }^{1}$ Note: Nucleotide sequence data reported in this paper will be available in the GenBank ${ }^{\mathrm{TM}}$ and EMBL databases, and accession numbers will be provided by the time this manuscript goes to press.

[^1]: * see key to species of Cardiocephaloides p. 178, in Dubois (1968).

