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Experimental identification of the material
standard linear solid model parameters by
means of dynamical measurements

Stefano Amadori1 and Giuseppe Catania2

Abstract
A procedure for the experimental identification of the material standard linear solid model parameters by means of

dynamic mechanical analysis test instrument measurements is presented. Since the standard linear solid material stress–
strain functional D(ω) relationship in the frequency domain formally depends on the standard linear solid material pa-

rameters, a procedure able to identify these parameters from test measurement estimates is proposed in this work.

Nevertheless, a critical, nonlinear and non-parametric approach is to be followed since the number of the material standard

linear solid block components is generally unknown, and the material D(ω) shows a highly nonlinear dependency on the

unknown standard linear solid material parameters. For these reasons, measurement and test model noise is expected to

strongly influence the accuracy of the identification results. A multi-step procedure is presented, consisting first in the non-

parametric identification of a frequency dependent, two degrees of freedom model instrument frame by means of

a polynomial rational function, where polynomial order and parameters, such as polynomial coefficients and pole-residue

couples, are optimally identified by means of an algebraic numerical technique and of an iterative stabilization procedure.

Another procedure able to identify the material D(ω) polynomial rational functional relationship in the frequency domain is

also proposed, taking into account the dynamic contribution of the instrument frame, of the inertial contribution of the

distributed mass of the beam and of the lumped mass of the instrument force measuring system. An effective procedure,

able to identify the standard linear solid material model parameters in the time domain from the identified material physical

poles, is finally proposed. Some application examples, concerning the identification of the standard linear solid model of

a known material and of an unknown composite material, are shown and discussed as well.

Keywords
Material modelling, dynamic measurements, model identification, identification technique, rational frequency domain

identification

1. Introduction

The standard linear solid (SLS) material model is com-
monly used to model the σ stress ε strain relationship of
many conventional and unconventional materials in the
frequency domain, and it consists of a generalized Kelvin
(K) model made up of N K-blocks connected in series
(Amadori and Catania, 2016, 2017; Findley et al. 1989).
Nevertheless, starting from dynamic mechanical measure-
ments on specimens made of the material under study,
the identification of the SLS material model order and
parameters is not a trivial task since the material
DðωÞ ¼ 1=E0 � bσðωÞ=bεðωÞ, where bð Þ ¼F () is the Fourier
transform operator and E0 ¼ bσðjω ¼ 0Þ=bεðjω ¼ 0Þ, has to
be first identified in a useful Δ = [ωmin, ωmax] frequency
range. Since the Dðω ¼ ωsÞ, s ¼ 1::nf dependency on the
SLS material model parameters can be analytically defined

in closed form for every ωs frequency measured value, a set
of nf highly non-linear equations in the model parameter
unknowns result (Amadori and Catania, 2016, 2017).
Moreover, a non-parametric identification problem results
since the N model order is unknown.

The material stress strain functional relationship D(ω)
can be estimated from dynamical measurements of excitation
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and displacement on homogeneous specimens made of the
material under study, by taking into account a known
system model depending on the system known geometry,
boundary conditions, material known inertial properties
(e.g. density ρ) and unknown D(ω). Dynamic mechanical
analysis (DMA) instruments are an established experi-
mental tool that can be employed for this type of tests,
involving homogeneous, uniform beam specimens to be
excited in axial and flexural conditions in a broad range of
experimental setups (Amadori and Catania, 2017; Ehrenstein
et al., 2004; Kostka et al., 2016 Liu et al., 2014; Menard,
2008; Oregui et al., 2016; Read and Dean, 1978; Xu and
Gupta et al., 2018).

The mathematical model employed generally relies on
beam Euler–Timoshenko assumptions, being generally
acceptable with respect to the specimen subsystem mod-
elling approach, but normal boundary conditions are gen-
erally taken into account, that is, the dynamic contribution
of the instrument frame-fixture and of the mobile measuring
subsystem is not fully taken into account in the measuring Δ
frequency range under study. The specimen frequency re-
sponse function (FRF) is estimated from the specimen
excitation and response measurements at the different
frequency values. Depending on the model adopted to
describe the specimen and to the specimen known geom-
etry, the relationship between the specimen FRF estimate
and D(ω) is outlined (ASTM International, 2015a, 2015b;
Danley, 2018; Storage et al., 2013; Swaminathan and
Shivakumar et al., 2009), so that D(ω) can be identified.

Nevertheless, D(ω) estimate may highly suffer from the
simplified assumed model boundary conditions since the
contribution of the system frame-fixture to the measured
beam FRF may outline poles that are not simply related to
beam geometry and material D(ω). When beam specimens
in various experimental clamping setups are tested, the real
experimental boundary conditions should be made as close
as possible to the boundary conditions assumed in the
adopted system model (Menard, 2008; Storage et al., 2013),
but in a practical context the assumed theoretical boundary
conditions are generally very different from real boundary
conditions, and the contribution of such a difference must be
taken into account.

A solution adopted in many known commercial appli-
cations is to estimate the static elastic stiffness modelling the
ideal coupling between a rigid frame and the specimen and
to also estimate the lumped mass associated to the mobile
measuring subsystem by means of a calibration procedure.
This approach generally results in a simple lumped pa-
rameter frame model approach; nevertheless, such an ap-
proach generally leads to non-consistent and unsatisfying
results (McAninch et al., 2015; Schalnat et al., 2020;
Storage et al., 2013) because such simple models do not
accurately describe the specimen dynamic behaviour in the
medium and high measurement frequency range (Placet and
Foltete, 2010; Schalnat et al., 2020).

To increase the results accuracy, more effective cali-
bration techniques involving the identification of the dy-
namic model of the frame-fixture subsystem are required.
Many effective experimental model identification techni-
ques, operating in the time and frequency domain, are
known in order to obtain an accurate instrument frame
structural model to be coupled with the specimen model and
to define a procedure for filtering the estimated specimen
FRF from the frame coupling real experimental boundary
conditions (Ewins, 2000; Giuliani et al., 2013; Huynh et al.,
2021; Peumans et al., 2019; Stanbridge and Ewins, 1999).
Nevertheless, such approaches typically require that a high
number of experimental dofs are taken into account, being
they not directly available from within the typical DMA
instrument setup, since only one experimental dof is here
available (Amadori and Catania, 2017; Placet and Foltete,
2010; Read and Dean, 1978). An additional multi-channel
test system must be employed, and laser doppler vibrometer
sensors, accelerometers, impulse and shaker excitation
sensors should be employed as well to follow a consistent
model frame identification approach (Huynh et al., 2020,
2021; Warren et al., 2011). It must be outlined that while the
accuracy of the system calibration can significantly be
improved by adopting a multi-dof experimental identifi-
cation technique, the application of such procedure, to be
adopted before any new measurement campaign since the
fixturing subsystem varies with respect to any different
beam specimen, can be not useful from an engineering point
of view because of test time and cost limitations. A multi-
dof frame model identification technique requiring only the
standard DMA measurement FRF estimates was recently
proposed by these authors (Amadori and Catania, 2021).
Such approach is based on a beam spectral-modal approach
and on the adoption of optimization-based numerical
techniques to identify the frame-fixture model subsystem.
Nevertheless, the resulting identified model can be not
consistent at all in some cases because the optimization
function adopted may exhibit many local stationarity points,
it strongly depends on the initial assumed conditions and it
generally requires high computational time.

A novel calibration-model frame identification technique
is proposed in this work, differing from already known
approaches (Ewins, 2000; Giuliani et al., 2013; Huynh
et al., 2020, 2021; Peumans et al., 2019; Stanbridge and
Ewins, 1999;Warren et al., 2011) by only using the standard
input/output (I/O) measurements available from the in-
strument setup. This new technique is also different from
these authors previous work (Amadori and Catania, 2021)
since it relies on an algebraic approach and on an iterative
stabilization procedure.

Since to these authors’ knowledge no previous work is
known with respect to the identification of the material SLS
model order and parameters from estimated D(ω) in the Δ
measured frequency range, a novel identification technique
is here proposed. The robustness of these techniques is
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tested by means of some numerically simulated data test
cases, taking into account the contribution of added noise,
and then some applications of these same techniques in real
experimental data test conditions are reported. Results are
critically discussed.

2. D(ω) SLS material model

The material DðωÞ stress(bσ)–strain(bε) relationship can be
modelled by means of a SLS N order generalized Kelvin
model (Amadori and Catania, 2016, 2017; Findley et al.,
1989), resulting from series connecting N K-blocks, the i-th
block being a parallel connection of an elastic Hooke (Ei

parameter) and a viscous Newton (βi parameter) compo-
nent, i = 1,…,N. Since for the i-th block, the following
equation holds

bσ ¼ ðEi þ j � ω � βiÞ �bεi, i ¼ 1,:::,N (1)

it follows that

bε ¼ XN
i¼1

bεi ¼ bσ �
XN
i¼1

1

Ei þ j � ω � βi

¼ bσ � 1
E0

�
XN
i¼1

1
Ei
E0
þ j � ω � βi

E0

¼ bσ � 1
E0

� 1

DðωÞ

(2)

where E0 can be easily experimentally identified from
within standard static measurements andD(ω) estimates can
be obtained from dynamical test measurements and the
application of an identification technique. The following,
highly non-linear, functional dependence of D(ω) with
respect to the SLS material model Ei, βi, i = 1,…,N, pa-
rameters is outlined in equation (3)

DðωÞ ¼
0
@XN

i¼1

1
Ei
E0
þ j � ω � βi

E0

1
A�1

(3)

so that ðDðωÞÞ�1 is expressed in partial fraction form.
From equation (3), the numerical estimate of N, Ei and βi

values from experimental D(ωs) estimates, ωs 2Δ, appears
to be a critical task. A novel algorithm is proposed in this
work to obtain a physically sound SLS material model from
the D(ω) rational estimated model, and it will be described
in Section 7.

3. Instrument frame-beam coupled
experimental system and model
assumptions

In this work, a single-cantilever experimental setup
(Amadori and Catania, 2016, 2017) is considered. A si-
nusoidal excitation, whose frequency belongs to a Δ fixed
limited range, is applied to a beam specimen of known
geometry, and both force and displacement (ν) response are
measured in correspondence of the same experimental dof.
The single experimental degree of freedom (dof) taken into
account is the transverse beam displacement at the excited
beam end (Amadori and Catania, 2017; Placet and Foltete,
2010), and the beam and mobile measuring system inertial
contributions in the Δ range are taken into account.

Figure 1 shows a schematic representation of the
instrument-beam specimen coupledmechanical system, and
Figure 2 shows the DMA test system used to obtain the
measurements presented in Section 9. Free-sliding
boundary conditions and a kinematical small displace-
ment and deformation plane field are assumed for a ho-
mogeneous-uniform beam specimen. According to the
Bernoulli beam theory (Timoshenko et al., 1974)

bvivðξ,ωÞ � z4 �bvðξ,ωÞ ¼ 0; z4ðωÞ ¼ ρ � S � L4 � ω2

E0 � I � DðωÞ (4)

where ρ is the density, S is the section area and I the section
moment, L is the beam length and ð Þi ¼ ∂ið Þ=∂ξ iis the i-th

Figure 1. Schematic representation of the instrument frame and beam specimen coupled system model with AM mobile measuring

subsystem added md mass.
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derivative with respect to the normalized variable ξ = x/L. It
must be outlined that equation (4) takes into full account the
inertial contribution of the beam mass distribution. Equa-
tion (4) general solution is

bvðω,ξÞ ¼ γ1 � sinðz � ξÞ þ γ2 � cosðz � ξÞ þ γ3 � sinhðz � ξÞ
þ γ4 � coshðz � ξÞ

(5)

The Fourier transform of θ rotation, T shear and M
momentum are (Timoshenko et al., 1974)

bθðω,ξÞ ¼ z

L
� bv0ðω,ξÞ

bTðω,ξÞ ¼ E0 � I � DðωÞ
L3 � bv000ðω,ξÞ

bMðω,ξÞ ¼ E0 � I � DðωÞ
L2 �bv00ðω,ξÞ

(6)

Equations (5) and (6) can also be expressed as

bvðω,ξÞ¼ λvðω,ξÞ �γ �F ;

λvðω,ξÞ¼ ½sinðz � ξÞ cosðz � ξÞ sinhðz � ξÞ coshðz � ξÞ �bθðω,ξÞ¼ λθðω,ξÞ �γ �F ,

λθðω,ξÞ¼ z

L
� ½cosðz � ξÞ � sinðz � ξÞ coshðz � ξÞ sinhðz � ξÞ �

bTðω,ξÞ¼ λΤðω,ξÞ �γ �F,bMðω,ξÞ¼ λΜðω,ξÞ �γ �F,

λΤðω,ξÞ¼E0 � I �DðωÞ �
�

ρ �S �ω2

E0 � I �DðωÞ
�3

4

� ½� cosðz � ξÞ sinðz � ξÞ coshðz � ξÞ sinhðz � ξÞ �
λΜðω,ξÞ¼ω �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ �S �E0 � I �DðωÞ

p
� ½� sinðz � ξÞ � cosðz � ξÞ sinhðz � ξÞ coshðz � ξÞ �

γ¼ ½γ1 γ2 γ3 γ4 �T ; γi ¼
γi
F
, i¼ 1,:::,4

(7)

where ( )T is the transpose operator and F is the Fourier
transform of the force applied at ξ = 1 and γ vector can be
found by imposing the boundary conditions with respect to
the excitation coupling at ξ = 1 and to the system frame
coupling at ξ = 0.

The instrument frame is modelled by means of a two de-
grees of freedom (2-dofs) model associated to a classical linear
second order time domain model, resulting in a 2×2 symmetric
matrix X(ω) transfer function in the frequency domain

XðωÞ ¼
�
Xð1;1ÞðωÞ Xð1;2ÞðωÞ
Xð1;2ÞðωÞ Xð2;2ÞðωÞ

�
(8)

where X(ω) components can be modelled by means of the
ratio of polynomial functions. γ vector then results from the
following steps

bθðω,1Þ ¼ λθðω,1Þ � γ � F ¼ 0bTðω,1Þ ¼ λTðω,1Þ � γ � F ¼ ��
F þ md � ω2 � bvð1Þ�bvðω,0Þ ¼ λvðω,0Þ � γ � F

¼ �Xð1;1ÞðωÞ � bTðω,0Þ þ Xð1;2ÞðωÞ � bMðω,0Þbθðω,0Þ ¼ λθðω,0Þ � γ � F
¼ �Xð1;2ÞðωÞ � bTðω,0Þ þ Xð2;2ÞðωÞ � bMðω,0Þ

(9)

where md is a lumped mass (at ξ = 1) modelling the mobile
measuring subsystem inertial contribution. Combining
equations (7) and (9), the following equation can be obtained

AAðω,XvðωÞÞ � γ ¼ b

AAðω,XvðωÞÞ

¼

2
6664
λθðω,1Þ
λTðω,1Þ þmd � ω2 � λvðω,1Þ
λvðω,0Þ þ Xð1;1Þ � λTðω,0Þ � Xð1;2Þ � λMðω,0Þ
λθðω,0Þ þ Xð1;2Þ � λTðω,0Þ � Xð2;2Þ � λMðω,0Þ

3
7775,

b ¼

8>>><
>>>:

0

�1

0

0

9>>>=
>>>;, XvðωÞ ¼

8><
>:

Xð1;1ÞðωÞ
Xð1;2ÞðωÞ
Xð2;2ÞðωÞ

9>=
>;

(10)

where vector Xv(ω) is defined by means of the different
elements of matrix X(ω) (equation (8)). From equation (10)

γ ¼ AA�1ðω,XvðωÞÞ � b (11)

and combining equations (7) and (11), the h(ω) mea-
surement FRF results as an explicit function of ω and of the
instrument frame X(ω) model contribution

hðωÞ ¼ bvðω,1Þ
F

¼ λvðω,1Þ � AA�1ðω,XvðωÞÞ � b (12)

4. System calibration and X(ω)
identification procedure

A calibration procedure is commonly employed in most test
measuring applications to take into account the elastic
contribution of the system fixture clamping the fixed end of
the beam specimen under test (Figure 2b), generally re-
sulting in only estimating the average system static stiffness
with respect to the beam transverse displacement ν(x = 0)
(Figure 1). Such procedure requires the measurement of
some reference beam specimens made of known materials.

Nevertheless, such optimal static stiffness value is ex-
pected to highly vary with respect to the experimental Δ
frequency range, especially if the contribution of instrument
frame poles cannot be neglected in such experimental
conditions. Moreover, the rotary dynamic frame compliance
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with respect to beam neutral axis rotation in correspondence
of the same beam end position is expected to be also rel-
evant and should be estimated as well.

As a matter of example, Figure 3 shows some experi-
mental results, concerning the D(ω) identification results
related to C67 harmonic steel material (density ρ = 7850
kg/m3, E0 = 2.1�1011 Pa), obtained from two different DMA
test systems and beam geometries (Table 1) in the same
single-cantilever experimental setup. In both setup con-
ditions, frame contribution was taken into account by
identifying the frame coupling static transverse stiffness.
Experimental conditions are similar for both A and B
setups, that is, constant vibration response amplitude
(10 μm) at the mobile end of the beam and frequency range

[0.1,200] Hz for one instrument (A setup, Table 1 and
Figure 3a), and frequency range [0.1,100] Hz for the other
(B setup, Table 1 and Figure 3b). The results are un-
satisfactory if compared with the expected (Hooke) model
behaviour (D(ω)=1, E0 = 2.1 × 1011 Pa), since a low fre-
quency range, low displacement strain and ambient tem-
perature experimental conditions are considered.

In the novel procedure proposed in this work, X(ω) can
be identified directly from some sets of FRF h(ω) meas-
urements made on reference specimens. From equation
(12), h(ωs) measurements, s = 1,...,nf, can be compared to
their analytical counterparts obtained from within a known
beam specimen model coupled to a 2-dofs frame model
whose parameters are unknowns. A system of nf equations

Figure 3. D(ω) C67 harmonic steel estimate: (a) A setup; (b) B setup.

Table 1. C67 harmonic steel experimental setups.

Setup DMA instrument Beam L [mm) Beam width w [mm) Beam thickness t [mm)

A TA Q800 17.5 ± 0.01 12.8 ± 0.01 0.75 ± 0.01

B NETZSCH 242E Artemis 16.0 ± 0.01 2.97 ± 0.01 0.5 ± 0.01

Figure 2. DMA Q800 (TA Instruments) experimental system: (a) instrument; (b) clamping system.

Amadori and Catania 5



in the frame parameters unknowns is obtained for each
tested reference specimen.

Three X11(ω), X12(ω) and X22(ω) unknowns are to be
identified at eachωs frequency value. Assuming a set ofm ≥ 3
different beam specimens, made of known material and ge-
ometry, are available for measurement, a set of ðbvðωs,1Þ=FÞi
measurements, i = 1,…,m, s = 1,…,nf, results. A nonlinear
equation system in Xv(ω) unknown is obtained8>>>>><

>>>>>:

�bvðωs,1Þ
F

�
1

:::�bvðωs,1Þ
F

�
m

9>>>>>=
>>>>>;

¼

8><
>:

h1ðωsÞ
:::

hmðωsÞ

9>=
>;

¼

8><
>:

�
λvðωs,1Þ �AA�1ðωs,XvðωsÞÞ

�
1

:::�
λvðωs,1Þ �AA�1ðωs,XvðωsÞÞ

�
m

9>=
>; �b

(13)

From equation (13), an error vector is defined

eðωs,XvðωsÞÞ¼

8>>>>>><
>>>>>>:

e1
:::

ei
:::

em

9>>>>>>=
>>>>>>;

¼

8>>>>>><
>>>>>>:

h1�
�
λvðωs,1Þ�AA�1ðωs,XvðωsÞÞ

�
1
�b

:::

hi�
�
λvðωs,1Þ�AA�1ðωs,XvðωsÞÞ

�
i
�b

:::

hm�
�
λvðωs,1Þ�AA�1ðωs,XvðωsÞÞ

�
m
�b

9>>>>>>=
>>>>>>;

@0

(14)

In order to findXv(ω) minimizing e, a two-step approach
is adopted. Since equation (14) is highly nonlinear with
respect to Xv(ω), an approximate model can be obtained by
assuming the following approximate boundary conditions,
consisting of neglecting the contribution of the distributed
beam inertial actions with respect to F and to the inertial
contribution of md lumped mass

bvðω,0Þ ¼ λvðω,0Þ � γ � F ¼ Xð1;1ÞðωÞ �
�
F þ md � ω2 � bvð1Þ�

þ Xð1;2ÞðωÞ �
	
L � F þ L � md � ω2 � bvð1Þ þ bMðω,1Þ



bθðω,0Þ ¼ λθðω,0Þ � γ � F ¼ Xð1;2ÞðωÞ �

�
F þ md � ω2 � bvð1Þ�

þ Xð2;2ÞðωÞ �
	
L � F þ L � md � ω2 � bvð1Þ þ bMðω,1Þ



(15)

From equations (7), (9) and (15), the following result is
obtained

bθðωs,1Þ¼ γ1 � cosðz � ξÞ� γ2 � sinðz � ξÞþ γ3 � coshðz � ξÞ
þ γ4 � sinhðz � ξÞ¼ 0

bTðωs,1Þ¼ z3 �E0 � I �DðωsÞ
L3 � ½�γ1 � cosðz � ξÞþ γ2 � sinðz � ξÞ

þ γ3 � coshðz � ξÞþ γ4 � sinhðz � ξÞ� ¼�Fbvðωs,0Þ¼ γ2þ γ4 ¼Xð1;1ÞðωÞ �F �KInþXð1;2ÞðωÞ �L �F
�KInþXð1;2ÞðωÞ � bMðω,1Þ

bθðωs,0Þ¼ z

L
� ðγ1þ γ3Þ¼Xð1;2ÞðωÞ �F �KInþXð2;2ÞðωÞ

�L �F �KInþXð2;2ÞðωÞ � bMðω,1Þ

KIn ¼
�
1þmd �ω2

s �
bvðωs,1Þ

F

�
(16)

Equation (16) can be arranged as follows

Mðωs,ξ ¼ 1,XvðωsÞÞ � γ0 ¼ NðωsÞ � XvðωsÞ � baðωsÞ
γ0 ¼ �

γ01 γ02 γ03 γ04
�T
; γ0χ ¼

γχ
F � KIn

, r ¼ 1,:::,4

Mðωs,1,XvðωsÞÞ ¼

2
666666664

cosðzÞ �sinðzÞ coshðzÞ sinhðzÞ
�DðωÞ � z3 � cosðzÞ DðωÞ � z3 � sinðzÞ DðωÞ � z3 � coshðzÞ DðωÞ � z3 � sinhðzÞ
sinðzÞ � P � Xð1;2Þ 1þ cosðzÞ � P � Xð1;2Þ �sinhðzÞ � P � Xð1;2Þ 1� coshðzÞ � P � Xð1;2Þ

z

L
þ sinðzÞ � P � Xð2;2Þ cosðzÞ � P � Xð2;2Þ

z

L
� sinhðzÞ � P � Xð2;2Þ �coshðzÞ � P � Xð2;2Þ

3
777777775

NðωsÞ ¼

2
6664
0 0 0

0 0 0

1 L 0

0 1 L

3
7775, baðωsÞ ¼

2
666666664

0

� L3

E0 � I
0

0

3
777777775
, P ¼ z2 � E0 � I � DðωsÞ

L2

(17)
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From measurement on the i-th specimen

γ0 ¼ �
M�1ðωs,1,XvðωsÞÞ � NðωsÞ � XvðωsÞ
þM�1ðωs,1,XvðωsÞÞ � baðωsÞ

�
i

:
(18)

The i-th specimen FRF measurement estimate, i = 1,
…,m, can be expressed as

hiðωsÞ ¼
�
KIn � λvðωs,1Þ �

�
M�1ðωs,1,XvðωsÞÞ � NðωsÞ

� XvðωsÞ þM�1ðωs,1,XvðωsÞÞ � baðωsÞ
��

i

(19)

Manipulating equation (19)

ðAAaÞiðωs,XvðωsÞÞ � XvðωsÞ ¼ ðbbaÞiðωs,XvðωsÞÞ
ðbbaÞiðωs,XvðωsÞÞ

¼
�
hðωsÞ
KIn

� λvðωs,1Þ �M�1ðωs,1,XvðωsÞÞ � baðωsÞ
�

i

ðAAaÞiðωs,XvðωsÞÞ
¼ �

λvðωs,1Þ �M�1ðωs,1,XvðωsÞÞ � NðωsÞ � XvðωsÞ
�
i

(20)

And in compact matrix form, taking into account all m
beam specimen contributions

AAaðωs,XvðωsÞÞ�XvðωsÞ¼bbaðωs,XvðωsÞÞ
bbaðωs,XvðωsÞÞ

¼

8>>>>><
>>>>>:

�
hðωsÞ
KIn

�
1

��
λvðωs,1Þ�M�1ðωs,1,XvðωsÞÞ�ðbaðωsÞÞ

�
1

:::�
hðωsÞ
KIn

�
m

��
λvðωs,1Þ�M�1ðωs,1,XvðωsÞÞ�ðbaðωsÞÞ

�
m

9>>>>>=
>>>>>;

AAaðωs,XvðωsÞÞ

¼

8><
>:
�
λvðωs,1Þ�M�1ðωs,1,XvðωsÞÞ�NðωsÞ

�
1

:::�
λvðωs,1Þ�M�1ðωs,1,XvðωsÞÞ�NðωsÞ

�
m

9>=
>;

(21)

The following iterative procedure is proposed to evaluate
Xv

Xv0 ¼ 0

Xvk ¼ AA�1
a ðωs,Xvk�1ðωsÞÞ � bbaðωs,Xvk�1ðωsÞÞ

(22)

where index k is the iteration number. The end condition for
the iterative procedure of equation (22) is

XvðωsÞ ¼ XvkðωsÞ : e∗ðωs,XvkðωsÞÞ � eðωs,XvkðωsÞÞ
< tole OR jXvkðωsÞ � Xvk�1ðωsÞj < tolx:

(23)

Since the numerical inversion of AAa m×3 matrix can be
critical in some iterative steps, a matrix inversion procedure
based on the Svd (Forsythe et al., 1977) decomposition,

lowering the matrix rank from three to two and obtaining the
solution associated to Xv minimal norm, is here adopted
with good results. It also appears that the numerical rank
associated to AAa, formally evaluated by means of the
singular values obtained from applying the Svd procedure
toAAa, depends on the correct choice of them test reference
beam specimens, meaning that additional test specimen
measurements could be added to the current reference set to
increase the AAa rank.

Since in most cases equation (22) contraction require-
ments hold (Cacioppoli, 1930; Granas and Dugundji, 2003),
convergence can be obtained with only a few iterations.
When such conditions do not hold, error from equation (14)
can be approximated by means of a first order Taylor ex-
pansion, and a new iterative procedure, evaluated from
within the exact model boundary conditions (equation (9)),
starting from the approximate value obtained from the
previously defined iterative procedure, can be defined as
follows

XvkðωsÞ ¼ Xvk�1ðωsÞ �
�

∂e
∂Xv

ðωs,Xvk�1ðωsÞÞ
��1

� eðωs,Xvk�1ðωsÞÞ
(24)

where

∂e
∂Xv

ðωs,XvðωsÞÞ¼

2
66666666666664

∂e1
∂Xð1;1Þ

∂e1
∂Xð1;2Þ

∂e1
∂Xð2;2Þ

::: ::: :::

∂ei
∂Xð1;1Þ

∂ei
∂Xð1;2Þ

∂ei
∂Xð2;2Þ

::: ::: :::

∂em
∂Xð1;1Þ

∂em
∂Xð1;2Þ

∂em
∂Xð2;2Þ

3
77777777777775
,

∂ei
∂Xðr,lÞ

¼�λvðωs,1Þ �
�
∂AA�1

∂Xðr,lÞ
ðωs,XvðωsÞÞ

�
i

�b�
∂AA�1

∂Xðr,lÞ
ðωs,XvðωsÞÞ

�
i

¼��
AA�1ðωs,XvðωsÞÞ

�
i

�
�
∂AA
∂Xðr,lÞ

ðωs,XvðωsÞÞ
�

i

��AA�1ðωs,XvðωsÞÞ
�
i

∂ðAAðωs,XvðωsÞÞÞi
∂Xð1;1Þ

¼ ½0 0 λTðωs,1Þ 0 �
∂ðAAðωs,XvðωsÞÞÞi

∂Xð1;2Þ
¼ ½0 0 � λMðωs,1Þ λTðωs,1Þ �

∂ðAAðωs,XvðωsÞÞÞi
∂Xð2;2Þ

¼ ½0 0 0 � λMðωs,1Þ �:

(25)

Iterations end when the conditions defined in equation
(23) hold.
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5. X(ω) rational function model
identification

The instrument frame frequency transfer function vector
Xv(ωs) can be associated to a classical second order model
which includes the two previously defined coupling dofs.
Such model can be mathematically described in the Δ
frequency domain by means of a transfer matrix whose
components are defined by the ratio of an oF order to an
oF+1 order polynomial function (Ewins, 2000)

Xðr,lÞðj � ωsÞ ¼
aðr,lÞoF�1 � poF�1ðj � ωsÞ þ :::þ aðr,lÞi � piðj � ωsÞ

þ:::þ aðr,lÞ0 � p0ðj � ωsÞ
qoFðj � ωsÞ þ :::þ dg � qgðj � ωsÞ þ :::

þd0 � q0ðj � ωsÞ
(26)

where pi(jω), i = 0,…,oF-1, and qg(jω), g = 0,…,oF, are
polynomials from a known polynomial base, for example,
monomial, Legendre, Chebyshev, Forsythe among all
(Allemang and Phillips, 2004; Bogatyrev, 2010;
Dankovic et al., 2009; Forsythe 1957; Kelly, 1967;

Richardson and Formenti, 1982), and (r,l) = (1,1),(1,2) or
(2,2) refers to the indexes of X(ωs) matrix and Xv(ωs)
vector elements.

The parameters ai
(r,l) and dg (equation (26)) associated to

the X(ω) rational model can be identified by means of
a standard approach (Allemang and Phillips, 2004; Forsythe

1957; Kelly, 1967; Phillips et al., 2011; Richardson and
Formenti, 1982).

To increase the numerical accuracy, the frequency values
are normalized so that 0<ωs < 1 is assumed. From equation
(26)

�
qoFðj � ωsÞ þ doF�1 � qoF�1ðj � ωsÞ þ :::þ dg � qgðj � ωsÞ

þ :::þ d0 � q0ðj � ωsÞ
� � Xðr,lÞðj � ωsÞ ¼

¼ aðr,lÞoF�1 � poF�1ðj � ωsÞ þ :::þ aðr,lÞi � piðj � ωsÞ
þ :::þ aðr,lÞ0 � p0ðj � ωsÞ

(27)

and in compact form

where a(r,l) and d are both real vectors, that is

aðr,lÞ ,d 2ℜoF (29)

The following matrices are defined

8<
:

½ p 0 0 � � aa� XXð1;1Þ � d ¼ vvð1;1Þ

½ 0 p 0 � � aa� XXð1;2Þ � d ¼ vvð1;2Þ

½ 0 0 p � � aa� XXð2;2Þ � d ¼ vvð2;2Þ
(31)

In compact form

�
p0ðj � ωÞ p1ðj � ωÞ ::: poF�1ðj � ωÞ

� � aðr,lÞþ
� �

Xðr,lÞðj � ωÞ � q0ðj � ωÞ Xðr,lÞðj � ωÞ � q1ðj � ωÞ … Xðr,lÞðj � ωÞ � qoF�1ðj � ωÞ
� � d ¼ Xðr,lÞ � qoFðj � ωÞ,

aðr,lÞ ¼

8>>><
>>>:

aðr,lÞ0

:::

aðr,lÞoF�1

9>>>=
>>>;; d ¼

8><
>:

d0
:::

doF�1

9>=
>;

(28)

p ¼

8>><
>>:

p0ðj � ω1Þ p1ðj � ω1Þ ::: poF�1ðj � ω1Þ
::: ::: ::: :::

p0
�
j � ωnf

�
p1
�
j � ωnf

�
::: poF�1

�
j � ωnf

�
9>>=
>>;; vvðr,lÞ ¼

8>><
>>:

Xðr,lÞðj � ω1Þ � qoFðj � ω1Þ
:::

Xðr,lÞ
�
j � ωnf

� � qoF�j � ωnf

�
9>>=
>>;

XXðr,lÞ ¼

8>><
>>:

Xðr,lÞðj � ω1Þ � q0ðj � ω1Þ Xðr,lÞðj � ω1Þ � q1ðj � ω1Þ ::: Xðr,lÞðj � ω1Þ � qoF�1ðj � ω1Þ
::: ::: ::: :::

Xðr,lÞ
�
j � ωnf

� � q0�j � ωnf

�
Xðr,lÞ

�
j � ωnf

� � q1�j � ωnf

�
::: Xðr,lÞ

�
j � ωnf

� � qoF�1

�
j � ωnf

�
9>>=
>>;

aa ¼ ½ að1;1Þ að1;2Þ að2;2Þ �T 2ℜ3×oF

(30)
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Λ � aa�Θ � d ¼ V,

Λ ¼ diagðpÞ; Θ ¼
2
4XXð1;1Þ

XXð1;2Þ

XXð2;2Þ

3
5; V ¼

2
4 vvð1;1Þ

vvð1;2Þ

vvð2;2Þ

3
5

(32)

From equation (32) ee error vector and Φ optimal
functional can be defined

ee ¼ Λ � aa�Θ � d�V

Φ ¼ 1

2
� ee∗ � ee (33)

By applying the stationarity condition, and taking into
account the equation (29) condition8>><
>>:

∂Φ
∂aa

¼ReðΛ∗ �ΛÞ �aa�ReðΛ∗ �ΘÞ �d�ReðΛ∗ �VÞ¼0

∂Φ
∂d

¼ReðΘ∗ �ΘÞ �d�ReðΛ∗ �ΘÞT �aaþReðΘ∗ �VÞ¼0

(34)

where Re(�) and Im(�) are the real part and imaginary part
operators. From equation (34), unknown model aa and
d model parameters result

aa ¼ ðReðΛ∗ � ΛÞÞ�1 � ðReðΛ∗ �ΘÞ � dþ ReðΛ∗ �VÞÞ
d ¼ �

ReðΘ∗ �ΘÞ � ReðΛ∗ �ΘÞT � ðReðΛ∗ � ΛÞÞ�1

� ReðΛ∗ �ΘÞ��1�
� �ReðΛ∗ �ΘÞT � ðReðΛ∗ � ΛÞÞ�1

� ðReðΛ∗ �VÞÞ � ReðΘ∗ �VÞ�

8>>>>>><
>>>>>>:

(35)
Equation (26) can also be expressed in partial fraction

form as in equation (36)

Xðr,lÞðj � ωsÞ ¼
aðr,lÞoF�1 � poF�1ðj � ωsÞ þ :::þ aðr,lÞ1 � p1ðj � ωsÞ

þaðr,lÞ0 � p0ðj � ωsÞ
∏oF

k¼1ðjωs � μkÞ

¼
XoF
k¼1

Rk

ðjωs � μkÞ
(36)

where index k refers to poles and residues (k = 1,…, oF), the
μk poles are the zeros of the X(r,l) (ω) denominator and the Rk

residues can be evaluated from equation (36)

Rk ¼
aðr,lÞoF�1 � poF�1ðμkÞ þ :::þ aðr,lÞ1 � p1ðμkÞ þ aðr,lÞ0 � p0ðμkÞ

∏oF
i¼1,i ≠ kðμk � μiÞ

(37)

Rk residues and μk poles are expected to appear as
complex conjugated pairs or real values. Accurate and
physically sound X(ω) model can be obtained by discarding
unphysical poles and their associated residues, for example,
poles with positive real part or couples of complex conjugate
poles associated to natural frequency (the norm of such poles)
external to the frequency excitation range, so that the optimal
oF model order value naturally results by applying this
procedure. Numerically unstable poles, that is, poles
meaningfully varying when further evaluated by increasing
the assumed oF model order, can be discarded (Amadori and
Catania, 2017; Ewins, 2000), with their associated residues,
as well. The mean contribution of the discarded pole-residue
couples is taken into account by means of the evaluation of
a third-grade polynomial function and also adding it to the
main rational identified function (Ewins, 2000).

The effect of the choice of the pi(j � ω), qg(j � ω), poly-
nomial bases was also investigated and rational fits made
with the Legendre polynomial basis generally produced the
most effective results. The Legendre polynomial basis is thus
used herein in all of the applications presented in this work.

6. Material D(ω) estimate

Starting from h(ωs), s = 1,…,nf, measurement estimates
obtained from a beam specimen of unknown material
model, X(ω) being known from the application of the
procedure outlined in Section 5, from equation (12) the
following nonlinear vector equation with respect to Dv(ω)
unknown vector holds

An iterative approach, based on the Taylor series ap-
proximation of evD(ωs) error, defined in equation (38),
assuming ω1 → 0, is adopted

DvkðωsÞ ¼ Dvk�1ðωsÞ �
�
∂evD
∂Dv

ðωs,Dvk�1ðωsÞÞ
��1

� evDðωs,Dvk�1ðωsÞÞ,
Dv0ðωsÞ ¼ Dvðωs�1Þ,
Dv0ðω1Þ ¼ ½ 1 0 �T

(39)
with end condition

DvðωsÞ¼DvkðωsÞ : evD
∗ðωs,DvkðωsÞÞ

� evDðωs,DvkðωsÞÞ<tole
OR jDvkðωsÞ�Dvk�1ðωsÞj<tolD

(40)

FromCauchy–Riemann condition equations (Shilov, 1996)

DvðωsÞ ¼ ½ReðDðωsÞÞ ImðDðωsÞÞ �T

evDðωsÞ ¼


Re

�
λvðωs,1,DvðωsÞÞ � AA�1ðω,DvðωsÞÞ � b

�� ReðhðωsÞÞ
Im

�
λvðωs,1,DvðωsÞÞ � AA�1ðω,DvðωsÞÞ � b

�� ImðhðωsÞÞ
(38)
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∂evD
∂Dv

¼

2
664
Re

�
∂eD
∂D

�
�Im

�
∂eD
∂D

�

Im

�
∂eD
∂D

�
Re

�
∂eD
∂D

�
3
775 (41)

where

Since from equation (3), the reciprocal of D(ω) can be
modelled by means of a partial fraction sum; an equivalent
polynomial rational function form can be assumed as well

1

DðωÞ ¼
ao�1 � ðj � ωÞo�1 þ :::þ a1 � ðj � ωÞ þ a0

ðj � ωÞo þ :::þ d1 � ðj � ωÞ þ d0

¼ ∏o�1
k¼0 ak � ðj � ωÞk

∏o
i¼0 di � ðj � ωÞi

; ða0 ¼ d0 ≡ 1; o ≡NÞ

(43)

Equation (43) refers to the ratio of polynomials, formally
equivalent to equation (26) where a0 = d0 = 1 result since
D(0) = 1 and monomial basis pkðj � ωÞ ¼ ðj � ωÞkand
qiðj � ωÞ ¼ ðj � ωÞi are outlined but the Legendre poly-
nomial basis was mainly adopted for the sake of effec-
tiveness. The identification procedure previously defined in
Section 4, being o the unknown polynomial order, can be
used in this context to identify the ak and di coefficients.

7. D(ω) standard linear solid model
identification

The material SLS model parameters can be easily evaluated
from the ak and di parameters obtained from the previously
outlined procedure. From equation (3) equation (44) also results

1

DðωÞ ¼
XN
i¼1

E0
βi

j � ω�
�
� Ei

βi

�

¼
XN
i¼1

Ri

j � ω� μi
¼ ∏o�1

k¼0 ak � ðj � ωÞk
∏o

i¼0 di � ðj � ωÞi

(44)

μi poles are the zeros of the polynomial equation
associated to di coefficients, and Ri residues are eval-
uated using equation (37). Since the 1/D(ω) identified
model must be physically sound, the optimal N model
order number, coincident with the identified SLS model
order, is evaluated by iteratively assuming increasing o
values and evaluating pole stability diagrams as illus-
trated in Section 5 and taking into account only the
stable, negative real poles and associated positive real
residues.

From equation (44)

8>>>>><
>>>>>:

N ¼ o stable

Ei ¼ �μi �
E0

Ri

βi ¼
E0

Ri

(45)

∂eD
∂D

¼ ∂λvðωs,1Þ
∂z

� ∂z
∂D

� AA�1 � bþ λvðωs,1Þ � ∂AA
�1

∂D
� b

∂λvðωs,1Þ
∂z

¼ ½ cosðzÞ �sinðzÞ coshðzÞ sinhðzÞ �

∂z
∂D

¼ �1

4
�
�
ρ � S � L2 � ω2

s

E0 � I
�1

4

� DðωsÞ�
5
4

∂AA�1

∂D
¼ �AA�1 � ∂AA

∂D
� AA�1

∂AA
∂D

¼

2
66666666666664

∂λθðωs,1Þ
∂z

� ∂z
∂D

∂λTðωs,1Þ
∂D

þ md � ω2
s �

∂λvðωs,1Þ
∂z

� ∂z
∂D

Xð1;1ÞðωsÞ � ∂λTðωs,1Þ
∂D

� Xð1;2ÞðωsÞ � ∂λMðωs,1Þ
∂D

∂λθðωs,1Þ
∂D

þ Xð1;2ÞðωsÞ � ∂λT ðωs,1Þ
∂D

� Xð2;2ÞðωsÞ � ∂λM ðωs,1Þ
∂D

3
77777777777775

(42)
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8. Numerically simulated test
measurements

Some numerical test cases are presented in order to test the
accuracy of the identification procedure. A reference X ðωÞ
model is analytically found by modelling the instrument
frame as a homogeneous uniform beam with normal
clamped-sliding boundary conditions (beam T, Table 2),
whose material is modelled by a Kelvin material model
(N = 1 SLS model), (Figures 4 and 5, black line). X(ω) is
then numerically identified from within the numerically
simulated response data, taking into account noise,
generated from three uniform homogeneous beam (beam
C1, C2 and C3, Table 2) with a Hooke material model
(D(ω) = 1) coupled to X ðωÞ. Measurement noise is taken
into account by adding random noise to the h(ω) FRF
measurements obtained from reference beams C1–C3
coupled with the frame analytical model.

The estimated X(ω) elements resulting from simulated
measurements without noise are shown in Figure 4, and it

appears that X(ω) estimates coincide with reference
X ðωÞmodel. Figure 5 shows the X(ω) identification results
from simulated measurements with noise, S/N= 80 dB
(S/N ≥80 dB can be typically expected in accurate exper-
imental test results). It results from Figure 5 that while
identified X(1,1) (ω) is practically coincident with refer-
enceX ð1;1ÞðωÞ, the error associated to identified X(1,2) (ω)
and X(2,2) (ω) with respect to references appears to be high.
Nevertheless, by comparing the h(ω) simulated measure-
ments obtained from within C1–C3 data specimen and the
identified X(ω) model with the same data used to identify
X(ω), shown in Figure 6, it appears that the global effect of
such errors on h(ω) is minimal. Geometric and material data
(model DðωÞ) related to D1 beam, reported in Table 2, are
used to numerically simulate the response of the beam
coupled to X ðωÞ, taking into account of the contribution of
numerically generated noise (S/N = 80 dB). D(ω) is
identified and the results are presented in Figure 7 and
Table 3. It appears that identification results are practically
coincident with reference values when simulated noise is

Table 2. Numerical test case beam models.

Specimen L [mm] Width w [mm] Thickness t [mm] ρ [kg/m3] N Ei [Pa] βi [Pa�s]
T 280 100 15 7850 1 2.1�1011 7�107
C1 28 12.7 3 7850 1 2.1�1011 0

C2 32 12.7 3 7850 1 2.1�1011 0

C3 38 12.7 3 7850 1 2.1�1011 0

D1 17.5 6 0.75 7850 2 3.8�1010
4.3�1010

1.9�108
1.1�107

Figure 4. XðωÞ reference model (black); XðωÞestimated values from virtual measurements with no added noise (red) and rational fit

(green).
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not taken into account, with respect to D(ω) plot results
and the associated identified SLS parameters. With
respect to S/N = 80 dB simulated noise measurements
identification results, D(ω) plots show that rational fit
identified values closely approximate reference values
and the error associated to the identified SLS param-
eters (Table 2) with respect to reference values (Table 3)
is low.

9. Experimental measurements

Some experimental test cases are considered. Measure-
ments are made with a TA Instruments Q800 DMA, single-
cantilever experimental setup (Figure 2), in the [0.1,200] Hz
frequency range, nf = 202 and ambient constant temperature
(30°C). The maximum applied strain is 0.05%, compatible
with the small deformation model assumption. A set of

Figure 5. XðωÞ reference model (black); XðωÞestimated values from virtual measurements with added noise (S/N = 80 dB) (red) and

rational fit (green).

Figure 6. Comparison of measured ν/F (black) and estimated ν/F using theXðωÞrational fit (red) for beam C1, C2 and C3 (Table 2) with

added noise (S/N = 80 dB).
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Figure 7 DðωÞ reference model (black), D(ω) estimated values (red) and rational fit (green) from beam D1 (Table 2), virtual mea-

surement without (a) and with (b) added noise (S/N = 80 dB).

Table 3. SLS material model from simulated test data.

Specimen N Ei [Pa] βi [Pa�s]
D1 (no noise) 2 3.804�1010

4.303�1010
1.9�108
1.101�107

D1 (S/N = 80 dB) 2 3.850�1010
4.155�1010

1.998�108
1.204�107

Table 4. Experimental test case beam models.

Specimen Material L [mm] Width w [mm] Thickness t [mm] ρ [kg/m3] E0 [Pa]

G1 C67 harmonic steel 17.5 ± 0.01 12.7 ± 0.01 0.75 ± 0.01 7850 ± 5 (2.1 ± 0.05)�1011
G2 C67 harmonic steel 13.05 ± 0.01 12.7 ± 0.01 0.75 ± 0.01 7850 ± 5 (2.1 ± 0.05)�1011
G3 C67 harmonic steel 9.35 ± 0.01 12.7 ± 0.01 0.75 ± 0.01 7850 ± 5 (2.1 ± 0.05)�1011
H1 C67 harmonic steel 15.1 ± 0.01 12.7 ± 0.01 0.75 ± 0.01 7850 ± 5 (2.1 ± 0.05)�1011
H2 Cyanoacrylate polymer/St powder mix 17.5 ± 0.01 4.2 ± 0.01 1.83 ± 0.01 3250 ± 5 (4.5 ± 0.1)�109

Figure 8. X(1,1) (ω), X(1,2) (ω) and X(2,2) (ω) estimated values from experimental measurements (red) and rational fit (green).

Amadori and Catania 13



Figure 9. Comparison of measured ν/F (black) and estimated ν/F using the identified frame rational function (red) for beam G1, G2 and

G3 (Table 4).

Figure 10. D(ω) estimated values (red) and rational fit (green) from experimental measurement on H1 (a) and H2 (b) specimens.
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measurements is made on three harmonic steel beam speci-
mens of different geometry (beams G1–G3, Table 4). The
instrument frame FRFs, X(1,1)(ω), X(1,2)(ω) and X(2,2)(ω)
(Figure 8), are identified by means of the experimental
measurements on the G1–G3 test beams.

In order to test the effectiveness of this identification
procedure, the h(ω) measurements related to beams G1–G3
versus the same data obtained from numerical simulation,
adopting the identified X(ω) model and the beam reference
test data reported in Table 4, are shown in Figure 9: it
appears that the numerically simulated data are practically
coincident with the experimental test data. Experimental
measurements on new test beams (H1–H2, Table 4) are
made and the specimen D(ω) SLS material model is
identified as well. Beam H2 is prepared by mixing a com-
mercially available modified ethyl cyanoacrylate polymeric
material (Loxeal instant 47 gel®, 0.66 volume ratio) and an
environmentally sustainable steel powder obtained from
recycled machining waste chip (10 mm mean grain size,
0.33 volume ratio).

Results are reported in Figure 10 and Table 5. The results
concerning the material rational fit model of H1 specimen
show to be effective and coherent with the expected values
since a N = 1 block SLS model is identified from the C67
steel, D(ω) = 1, while the results concerning the material
rational fit model of specimen H2 are associated to
a physically sound N = 3 blocks SLS model. The H1
identification results appear to be coherent and consistent
with the material under study, since as expected no material
poles in the Δ frequency range were found, so that a Hooke
material model results. Three stable poles resulted from SLS
parameter identification related to unknown H2 material
specimen. The difference from identified rationalD(ω) plots
with respect to estimated plots can be attributed to exper-
imental noise, since such error could only be minimized by
taking into account the unphysical complex poles, being not
consistent with the assumed SLS model.

10. Conclusions

A procedure for the identification of the material standard
linear solid model parameters by means of dynamical
measurements is presented. The real Ei and βi SLS parameters
are identified by means of an algebraic technique dealing with
the experimental estimate of the reciprocal ofD(ω) expressed
as a ratio of polynomial functions. Taking into account the

only physically sound real Ei and βi parameters, a stability
procedure is also introduced to estimate the optimal order of
the material SLS model. It must be outlined that such model
approach makes it also possible to extrapolate the material
behaviour outside the Δ measurement frequency range.

The proposed technique is effective because the contri-
bution of the instrument frame and of the specimen and
measurement subsystem inertia are fully taken into account
in the whole measurement frequency domain. Numerical
simulations taking into account the contribution of noise
showed that the proposed numerical procedure is robust
enough with respect to the SLS material model identification
task. Since the technique only takes into account the I/O
measurements made by the force and displacement sensors
available in a standard DMA system, it can be successfully
applied in most commercially available system contexts.

The accuracy of the procedure aiming to identify the
frame contribution was found to strongly depend on the
correct choice of the set of the test reference specimens used
to identify the instrument frame, strictly depending on the
specific instrument frame architecture, the frequency res-
olution available in the test frequency range and on the
measurement digital accuracy associated to the DMA
sensors. Nevertheless, a procedure based on the Svd al-
gebraic algorithm was outlined in Section 4, equation (22),
to help the experimentalist to choose the optimal set of the
reference specimens.

It should be outlined that the identification of such
optimal set of test reference specimens can be time con-
suming but it theoretically needs to be made only once with
respect to each test setup.

The application of this approach showed to be effective
in all of the test cases approached in this work.

Future work will be addressed towards the identification
of non-standard SLS material models, such as models
employing hysteretic and fractional derivative based dis-
sipative components, and to the identification of the ma-
terial model of the coating layers employed in a multilayer
architecture.
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