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S U M M A R Y
Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic
settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide
the modelling of deformation sources is not available, due to the lack of tomography studies, for
example. Therefore, volcano ground deformation due to magma movement in the subsurface is
commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a
homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained
by a single deformation source, the magmatic system is often represented by a combination of
these sources and their displacements fields are simply summed. By doing so, the assumption
of homogeneity in the half-space is violated and the resulting interaction between sources is
neglected. We have quantified the errors of such a simplification and investigated the limits in
which the combination of analytical sources is justified. We have calculated the vertical and
horizontal displacements for analytical models with adjacent deformation sources and have
tested them against the solutions of corresponding 3-D finite element models, which account
for the interaction between sources. We have tested various double-source configurations
with either two spherical sources representing magma chambers, or a magma chamber and
an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a
tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source
(magma chamber), we find the discrepancies with the numerical models to be insignificant
(<5 per cent) independently of the source separation. However, if a Mogi source is placed side
by side to an Okada source (in the strike-perpendicular direction), we find the discrepancies
to become significant for a source separation less than four times the radius of the magma
chamber. For horizontally or vertically aligned pressurized sources, the discrepancies are up to
20 per cent, which translates into surprisingly large errors when inverting deformation data for
source parameters such as depth and volume change. Beyond 8 radii however, we demonstrate
that the summation of analytical sources represents adjacent magma chambers correctly.

Key words: Numerical approximations and analysis; Mechanics, theory, and modelling;
Physics of magma and magma bodies; Volcano monitoring.

1 I N T RO D U C T I O N

Analytical models of volcano deformation are available for sources
of various simple geometries generally embedded in a homoge-
neous, isotropic and elastic half-space. Magma chambers and mag-
matic conduits are either modelled as a pressurized point source
(Mogi 1958; Okada 1992) or as finite sources of various shapes, such
as a sphere (McTigue 1987), a vertically elongated ellipsoid (Bonac-
corso & Davis 1999), or a horizontal penny-shaped or elliptical

crack (Fialko et al. 2001). Dykes are modelled as vertical or in-
clined finite elliptical pressurized cracks (Pollard & Holzhausen
1979; Davis 1983) or as finite rectangular dislocation sources open-
ing evenly (Okada 1985, 1992). Although pressurized models are
more realistic, Davis (1983) demonstrated that the discrepancies
are negligible between the vertical surface displacements computed
for a pressurized elliptical crack and for a rectangular dislocation
source of identical volume. Some models account for viscoelas-
tic crustal behaviour (Dragoni & Magnanensi 1989; Piombo et al.
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2007), nevertheless the following study will be restricted to purely
elastic behaviour as imposed in the Mogi point source and Okada
rectangular dislocation source, hereafter referred to as ‘Mogi’ and
‘Okada’ models.

The Mogi and Okada models are certainly the most widely used
analytical models to calculate surface deformation related to the
pressurization of a magma chamber or the opening of a dyke (e.g.
Sturkell 2003; Abidin et al. 2005; Sanderson et al. 2010; Stiros et al.
2010; Hughes 2011). This is due to the fact that they explain well
many deformation patterns through simple equations governed by
only a few parameters (Dvorak & Dzurisin 1997; Masterlark 2007).
These two analytical models simplify the geometry and physical
properties of the magmatic system and its surrounding. The elastic-
ity assumption implies that displacements on the source walls must
be infinitely small compared to the source main dimensions. The
deformation source is embedded in a homogeneous and isotropic
elastic half-space, the half-space assumption implying a flat and
stress-free surface. For the source walls to be stress free, outside of
the pressurization or opening, the Mogi point source must be located
at a depth more than five times its radius (Lisowski 2007). In this
simplified approach, several aspects are neglected: the properties of
the magma within the source, such as its compressibility (Rivalta &
Segall 2008), the surface topography, and the 3-D heterogeneities
in the crust.

Several studies comparing numerical and analytical results have
quantified the errors introduced when these aspects are neglected.
Neglecting the topography or variations in the mechanical properties
of the crust can introduce significant errors when predicting the
surface deformation and when estimating the volume change of the
source or its depth (e.g. Cayol & Cornet 1998; Williams & Wadge
1998; Lungarini et al. 2005; Masterlark 2007; Long & Grosfils
2009; de Zeeuw-van Dalfsen et al. 2012).

Magmatic systems are often represented by a combination of
several sources if a single source model does not explain a complex
data set. Many systems are modelled with a magma chamber where
the magma originates and propagates either towards the surface or
laterally through a dyke/conduit. Examples for this set of models
are Mt Etna, Sicily (Palano et al. 2008, cf. Model C), Stromboli Vol-
cano, Aeolian Islands (Bonaccorso et al. 2008), Kilauea Volcano,
Hawaii (Yang & Davis 1992) and Izu islands, Japan Nishimura
et al. (2001). Occasionally, magma chambers are also placed side
by side to a dyke, for example at Krafla Volcano, Iceland (Arnadóttir
et al. 1998), or at Kilauea Volcano, Hawaii (Montgomery-Brown
et al. 2010). When the magmatic system is modelled with several
magma chambers, those are either vertically stacked or more of-
ten stacked with a horizontal offset, for example at Unzen Volcano,
Japan (Kohno et al. 2008), Long Valley Caldera, California (Tiampo
et al. 2000). In these various cases, different analytical deformation
sources are combined, and their respective deformation fields are
summed. However, by doing so, the homogeneous half-space as-
sumption is violated, in the sense that the source interaction is
neglected. This interaction has been addressed in engineering stud-
ies in 2-D and 3-D for cracks, holes or cavities subjected to a far-
field tension or compression (Gdoutos 1981; Kachanov 1987, 2003;
Grechka & Kachanov 2006; Gorbatikh et al. 2007). However these
studies have focused on the estimation of the effective crustal elas-
ticity or stress intensity factors. For 2-D cavities, Jaeger et al. (2007,
p. 250) pointed out that if the cavity is not located too close to any
adjacent cavities or other boundaries, such as the ground surface,
the infinite rock mass assumption (homogeneous half-space) is rea-
sonable. Accordingly, the nearest distance to another cavity or other
type of boundary should be at least three times the characteristic

dimension of the cavity in order for this assumption to be met.
However, the effect of source interactions in the context of vol-
cano surface deformation, and for various arrangements of Mogi
and Okada sources (i.e. in 3-D), has not been addressed yet. Such
interaction introduces uncertainties additional to those caused by ne-
glecting topography and heterogeneities. In this study, it is our aim to
isolate and quantify these uncertainties. We investigate the discrep-
ancies induced when combining several Mogi and Okada sources
by testing the combined analytical solutions against the compre-
hensive numerical solutions. We determine the limitations of sum-
ming analytical Mogi and Okada solutions and quantify the errors
induced.

2 M E T H O D

A common benchmark test in deformation modelling is the com-
parison between analytical and numerical solutions of equivalent
models. The analytical models simplify the physical problems and
solve the equations of elasticity, while satisfying a set of assump-
tions at any point of a volume. Finite elements (FE) models solve
the complete set of elasticity equations at certain locations only
(e.g. at mesh nodes) of a finite volume, satisfying the physical
constraints given by the boundary conditions. The displacement
within elements is then interpolated from the nodal displacements.
On the one hand, comparing a simple numerical solution with its
corresponding analytical solution allows us to calibrate the numer-
ical models. On the other hand, when several Mogi and Okada
sources are combined, we can evaluate the discrepancies between
the sum of the analytical solutions and their corresponding nu-
merical model solutions. We used COMSOL Multiphysics R© as a
FE modelling package and list the range of model parameters in
Table 1 (see also the more detailed Table A-1 in the supporting
information).

2.1 Numerical FE models equivalent to the Mogi
and Okada models

Several issues have to be addressed before an FE model equivalent
to Mogi and Okada models could be found. First, the homogeneous
half-space assumption of the Mogi and Okada models is reproduced
in the FE models by a large enough elastic volume and by zero-
displacement conditions on its lateral and bottom boundaries. The
domain is chosen big enough for these boundary conditions not to
distort the numerical solution. The surface, that is the top boundary
of the volume, is flat and stress free.

Secondly, the compromise between the computational capacity
and the resolution of the mesh influences the accuracy of the solution
and defines a discrepancy threshold of 5 per cent, that we consider
significant.

Finally, although being a point source, the Mogi model is em-
ployed to compute the ground deformation due to spherical magma
chambers. Hence we model it numerically as a pressurized spheri-
cal cavity embedded in the elastic domain, the source pressurization
being applied as a vector normal to the cavity walls.

The Okada source can be numerically modelled using several
approaches. In the three methods tested in this study (Fig. 1), the
deformation source is composed of two rectangular surfaces rep-
resenting the dyke walls, initially welded. An ‘identity pair’ con-
dition is imposed on the two surfaces surrounding the dyke, to
ensure the continuity of the deformation field in the elastic medium.
The boundary conditions applied on the dyke walls depend on the
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Table 1. Geometry and physical parameters for Models A–D (∗ tested with Model A–G1 only). In all models, a Poisson’s
ratio of ν = 0.25 and a Young’s modulus of E = 10 GPa are used. The dyke, of width and length 1 km, is modelled in the
FEM with Methods 1–3 described in text. Note: Model ‘A-G2d’ refers to superposed sources (‘A’), source with radius of
50 m and the upper source radius-to-depth ratio of 0.05 (‘G2’), and a source separation of 5 radii (‘d’). Model ‘DI-M2a’
refers to a spherical source juxtaposed to a dyke (‘DI’) at a distance of 1.5 radii (‘a’), the dyke being modelled numerically
with Method 2 (one of the dyke walls is displaced relative to the other). See also Table A-1 in supporting information for
more details on numerical models and their benchmarking.

Model Group Source a/d Source separation Source 1 Source 2
radius ratio (a–f) �P1 �P2
a (m) (radii) (MPa) or opening Uop

G1a–f 50 0.1 2.5, 3, 4, 5, 8, 10 Upper source Lower source
G1’a–f 500 0.1 2.5, 3, 4, 5, 8, 10 20 20 MPa

A
G2a–f 50 0.05 2.5, 3, 4, 5, 8, 10 20 −20 MPa
G3a–f 500 0.5 2.5, 3, 4, 5, 8, 10 200∗ 200∗ MPa
G1a–f 50 0.1 2.5, 3, 4, 5, 8, 10 Upper source Right-hand s.
G1’a–f 500 0.1 2.5, 3, 4, 5, 8, 10 20 20 MPa

B
G2a–f 50 0.05 2.5, 3, 4, 5, 8, 10 20 −20 MPa
G3a–f 500 0.5 2.5, 3, 4, 5, 8, 10

Lower source Upper source
C a–f 500 <0.2 1.5, 2, 3, 4, 7, 9 20 MPa 1 m

−20 MPa 1 m
Right-hand s. Left-hand s.

M1a–f 500 0.2 1.5, 2, 3, 4, 7, 9 20 1 m
−20 1 m

DI
M2a–f 500 0.2 1.5, 2, 3, 4, 7, 9 20 1 m

−20 1 m
M3a–f 500 0.2 1.5, 2, 3, 4, 7, 9 20 12 MPa

−20 12 MPa
Right-hand s. Left-hand s.

DII a–f 500 0.2 1.5, 2, 3, 4, 7, 9 20 1 m
−20 1 m

method employed. In the first numerical approach (‘Method 1’),
we apply constant normal displacement of ±Uop/2 to the wall of
a vertical dyke (Currenti et al. 2008; Pulvirenti et al. 2009), such
that Uop is the total opening of the dyke and the centre of the dyke
is fixed in space. Note that, in contrast to our numerical Method 1,
the central plane of an inclined or horizontal Okada source is not
fixed, but is shifted towards the free surface. In the second approach
(‘Method 2’), we impose a constant displacement Uop between the
two dyke walls without fixing their location. Methods 1 and 2 will
provide identical results if no second source is employed. However,
Method 2 can account for the response of the dyke geometry to the
stress-field of a secondary source. Finally, Davis (1983) showed that
the vertical displacements due to a rectangular tensile source and a
pressurized elliptical crack after Pollard & Holzhausen (1979) are
similar when their volume change is similar and their depth-to-top is
deep enough, that is at a ratio of depth to half-length of 1.25. Hence
in ‘Method 3’, although the dyke is not elliptical but tabular, we
model it as a pressurized source with a volume change equivalent
to the one of the analytical Okada source (Fig. 1).

2.2 Description of models scenarios A–D

The surface displacements induced by Mogi and Okada sources are
controlled by the geometry, the volume change of the source(s), and
by the elastic properties of the medium. In this study, we focus on
the effect of the model geometry and show results from more than
150 models in which we vary:

(i) source geometry (spherical and/or rectangular sources)
(ii) source separation

(iii) relative source position
(iv) ratio between radius and depth of spherical sources
(v) pressure difference between spherical sources and medium.

Two main types of models are considered, with either two spher-
ical sources (Models A and B) or one spherical and one rectangular
source (Models C and D). Geometrically, the sources are arranged
such that their centres are either lined-up vertically (Models A and
C), horizontally in the strike-perpendicular direction (Models B and
DI), and horizontally in the strike-parallel direction (Model DII). In
the following, we will refer to these three geometries as models with
‘superposed’, ‘juxtaposed’ and ‘aligned’ sources, respectively. All
models are schematized in Fig. 2 and their geometrical and phys-
ical parameters are listed in Table 1. For all models, the medium
Poisson’s ratio and Young’s modulus were fixed to ν = 0.25 and
E = 10 GPa, respectively.

In Models A and B, the two sources, identical in size, are either
superposed (Models A) or juxtaposed (Models B). The Mogi source
radius (a) is set to 50 or 500 m. We vary the depth (d) of the
upper source (source 1) such that its radius/depth ratio is either
0.1 (Groups G1 and G1’, with a 50 and 500 m, respectively), 0.05
(Group G2) or 0.5 (Group G3). In the last case of a/d = 0.5, the
source is too close to the surface (McTigue 1987), violating the point
source assumption of the Mogi model, thus we have employed the
finite source analytical solution given by McTigue (1987). Various
pressure differences have been tested, for example in Model A
�P1 = ±�P2 = 20 MPa or �P1 = �P2 = 200 MPa, where �P1

and �P2 is the overpressure of the upper and the bottom sources,
respectively.

In Models C and D (Fig. 2) the Mogi and Okada sources are
either superposed (Model C), juxtaposed (Model DI), or aligned
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Figure 1. Finite element numerical methods employed to model a spherical pressurized source and a dyke source equivalent to the analytical Mogi and Okada
sources. Magma chamber: a load is applied normal to the spherical source. The dyke is modelled with three different methods. Method 1: a constant normal
displacement of ±Uop/2 is applied to the dyke walls; Method 2: a constant displacement Uop is applied between the two dyke walls without fixing their
location; Method 3: a pressure normal to the dyke walls is applied such that its volume change corresponds to the volume of the analytical Okada source.

(Model DII). The dimensions of the Okada source are set to
1 × 1 km with an opening of 1 m and depth-to-top of 1 km
(Model C), or 2 km (Models D). The Mogi source radius is
set to 500 m, and the pressure difference �P = ±20 MPa. The
centre-to-centre distance separating the sources ranges from 2.5
to 10 times the source radius in Models A and B and the separa-
tion between the Mogi source centre and the closest boundary of
the Okada source varies from 1.5 to 9 source radii in Models C
and D.

2.3 Estimation of discrepancies

For all scenarios considered, we calibrate the numerical sources
against the analytical sources independently before running the
combined source models. In order to estimate the errors, we cal-
culate the mean surface absolute discrepancies ε (eq. 1) following
Currenti et al. (2008), and the local discrepancies � (eq. 2) at the
maximum (U |max) or the minimum (U |min) of the vertical or hori-
zontal surface displacements. These two estimates have been chosen

because ε relates to a datafit involving an entire data set, while �

links to the modelling process employing a single datapoint at the
maximum.

The average of the absolute discrepancies ε [per cent] is computed
at each surface node normalized by the average surface analytical
solution U An,

ε j =

N∑
i=1

∣∣∣U An
j i −U FE

j i

∣∣∣
N

N∑
i=1

∣∣∣U An
j i

∣∣∣
N

× 100, (1)

with U An
j i and U FE

j i being the analytical or numerical
horizontal (Uxi, Uyi) or vertical (Uzi) surface displacements
(in m) calculated at the surface node i located at coordinates
(x, y, 0) (in m), with N being the total number of surface
nodes.

The local discrepancies (�, in per cent) correspond to the nor-
malized difference at the minimum (�x |min, �z |min) or maxi-
mum (�x |max, �z |max) of the analytical and numerical surface
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Figure 2. Model scenarios. Two spherical sources superposed (Model A) or juxtaposed (Model B), close to models of for example Soufrière Hills Volcano,
Montserrat, or Long Valley Caldera, California; One spherical and one dyke sources superposed (Model C), similar to models of for example Mt Etna and
Stromboli Volcano; or one spherical source offset to a dyke in strike-perpendicular and strike-parallel directions referred to in text as ‘juxtaposed’ and ‘aligned’,
respectively (Models DI and DII), such as for example Kilauea Volcano, Hawaii and Izu islands, Japan. The separation between the sources is increased from
2.5 to 10 radii (Models A and B) or 1.5 to 9 source radius unit (Models C and D). Geometry and physical parameters are listed in Table 1.

displacements. Taking �x |min and �z |max as examples:

�x

∣∣∣
min

=
abs

{
U An

x

∣∣∣
min

− U FE
x

∣∣∣
min

}

abs
{

U An
x

∣∣∣
min

} × 100

or �z

∣∣∣
max

=
abs

{
U An

z

∣∣∣
max

− U FE
z

∣∣∣
max

}

abs
{

U An
z

∣∣∣
max

} × 100. (2)

During the calibration process, we have determined that the ap-
propriate domain size and mesh density for the various models
induce numerical errors of less than 5 per cent (see supporting in-
formation, Table 8). Smaller errors were achieved for the Mogi
source models, with � and ε less than 3 per cent. The calibration of
the dyke modelled as either a dislocation tensile source (Methods
1 and 2) or as a pressurized tabular crack (Method 3) confirms that
the surface displacements solutions of the three methods are similar
to the Okada analytical solutions despite the different dyke shapes
for depth-to-top of 1 and 2 km, if no second source is present (Fig. 3
and in Table A-1, in the supporting information).

Throughout this study, we use the domain dimensions and mesh
density that have yielded the maximum error of 5 per cent during
the calibration of the individual sources to investigate the combined
models discrepancies. Furthermore, we compared the sum of the
analytical solution of models combining Mogi and Okada sources
with the sum of the individual numerical solutions of each source
and found that the discrepancies are also negligible [‘M1+M2’

and ‘M+0 (DIa)’ in Table A-1]. Accordingly, discrepancies larger
than 5 per cent will be considered as significant and caused by
the presence of a second deformation source and resulting source
interaction.

3 R E S U LT S

In the following sections, we present the results for superposed
or juxtaposed spherical sources (Models A and B, respectively)
and for juxtaposed dyke and spherical source (Model DI) that give
significant discrepancies between analytical and FEM surface dis-
placements. In the main body of the paper, we present a subset of
the results for Models A, B and DI, and list the full set of results in
the supporting information. Models with a spherical source and a
dyke either superposed or aligned (Model C and DII, respectively)
always yield negligible discrepancies (Table 2) and are not further
described. The tables and figures in the supporting information are
numbered with the prefix ‘A-’ .

3.1 Effect of source types and relative position

3.1.1 Models A and B: superposed and juxtaposed
spherical sources

Models A and B results highlight how the discrepancies between
analytical and numerical models depend on both geometry and on
the combination of inflating or deflating sources.
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Figure 3. Surface displacements profiles for a dyke with depth-to-top at 0.2 km (left-hand panel), 1 km (centre panel) and 2 km (right-hand panel) calculated
either analytically or computed using Methods 1–3. The dyke opens by 1 m and its height and width are 1 km. The horizontal Ux and vertical Uz surface
displacements are normalized by U An

x |max and U An
z |max, respectively. Note that in the absence of a secondary source and for a depth-to-top larger than 1 km

all three methods yield similar results matching the analytical Okada solution.

Table 2. Models A–D: maximum discrepancies found either for various pressurization (�P1, �P2) of the two
spherical sources in Models A–B or for various pressurization of the spherical source (�P1) and various dyke
opening (Uop, Methods 1–2) or dyke pressurization (�P2, Method 3). Dlimit

(1) corresponds to the source separation
where the discrepancies become negligible. In all models, the Poisson’s ratio ν = 0.25 and the Young’s modulus
E = 10 GPa.

Model # �P1 �P1
�P2 Uop Maximum discrepancies obtained (per cent) Dlimit

(1)

(MPa) εx εy εz �x �z (radii)

20 1 n/a 3.3 3.3 5.6 7.0 13.9 4
A, G1a 200 1 n/a 3.3 3.3 5.6 7.0 13.9 4

10 1 n/a 3.3 3.3 5.6 7.0 13.9 –
20 1/2 n/a 3.6 3.6 5.7 7.3 16.1 –
40 2 n/a 3.1 3.1 5.5 6.6 12.0 –
20 −1 n/a 6.5 5.6 11.4 7.2 13.6 4

200 −1 n/a 6.5 5.6 11.4 7.2 13.6 –
20 −1/2 n/a 8.5 8.5 7.6 1.5 16.2 4
20 1 n/a 5.3 5.8 4.6 1.4 6.3 4

B,G1’a 200 1 n/a 5.3 5.8 4.6 1.4 6.3 –
20 −1 n/a 9.6 13.1 12.3 8.9 13.8 4
20 n/a 1 1.3 1.2 1.6 1.2 1.5 <1.5

Ca −20 n/a 1 9.0 0.4 1.9 4.0 1.0 2
20 n/a 1 m 97.2 12.3 12.6 82.3 15.1 9+

DI,m1 −20 n/a 1 m 553.7 9.8 22.5 298.8 5.3 9+
20 n/a 2 m 39.3 18.5 12.1 41.1 14.7 –

DI,m1 −20 n/a 2 m 723.5 14.9 30.8 657.4 1.7 –
20 n/a 1 m 7.1 7.6 5.7 5.9 7.2 3

DI,m2 −20 n/a 1 m 24.1 7.6 6.8 8.7 7.0 3
20 n/a 2 m 11.0 17.0 9.7 11.0 10.7 –

DI,m2 −20 n/a 2 m 49.0 13.7 15.4 18.8 12.6 –
20 n/a 12 MPa 14.3 12.3 9.1 11.2 5.5 3

DI,m3 −20 n/a 12 MPa 11.1 15.5 11.9 17.6 12.9 3
20 n/a 23 MPa 16.5 23.5 13.2 26.6 11.8 –

DI,m3 −20 n/a 23 MPa 30.3 19.2 17.5 23.1 19.2 –
20 n/a 1 0.3 0.7 1.5 0.2 0.7 <1.5

DII,m1 −20 n/a 1 0.9 1.4 1.4 0.7 1.7 <1.5



Deformation modelling of interacting sources 259

Figure 4. Model A: surface (ε) and maximum local (�) discrepancies vs source separation, obtained for models combining two superposed spherical
sources. The shallower source is pressurized by �P1 = +20 MPa and the deeper source is either pressurized by �P2 = +20 MPa (left-hand column: a–c) or
underpressurized by �P2 = −20 MPa (right-hand column: d–f ). Corresponding discrepancies values are listed in Table A-2.

When the two sources are inflating, superposed sources (Model
A) produce overall greater discrepancies than juxtaposed sources
(Model B): for example for Model A, at 2.5 radii separation,
ε, �x and �z are 14, 8 and 16 per cent, respectively, while for
Model B ε reaches 7 per cent, �x is always negligible and �z is

10 per cent (Figs 4 and 5, Tables A-2 and A-3). However, when
one of the sources is deflating, the discrepancies for both models
are similar. For Models A and B, all discrepancies are negligi-
ble (<5 per cent) beyond a source separation (centre-to-centre) of
4 radii.
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Figure 5. Model B: surface (ε) and maximum local (�) discrepancies vs source separation, obtained for models combining two juxtaposed spherical sources,
one of them being pressurized by �P1 = +20 MPa and the other one being either pressurized by �P2 = +20 MPa (left-hand column: a–c) or pressurized by
�P2 = −20 MPa (right-hand column: d–f). Corresponding discrepancies values are listed in Table A-3.
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Figure 6. Models A and B (Group G1’a): surface displacements across the centre of the deformation sources for models with two superposed (Model A)
or two juxtaposed sources (Model B) separated by a distance of 2.5 radii. The lower of right-hand source (Source 2) pressurization is either �P2 = 20 MPa
(left-hand column: a, c) or �P2 = −20 MPa (right-hand column: b, d). The profiles for further source separation are presented in Figs A-2 and A-3.

Depending on the position of the sources and their pressurization
(inflation or deflation) the analytical models either under- or over-
estimate the surface displacements (Fig. 6). Two overpressurized
sources ‘shield’ each other and their inflation is buffered where the
sources are the closest (Fig. 7a). However, when one of the two
sources is inflating and the second deflating, the former expands
into the space vacated by the latter, this effect being the strongest
where the sources are the closest (Fig. 7b). At the surface, for both
Models A and B, the discrepancies are significative ( 5 per cent) up
to a horizontal distance of 3 km (Ux) and 5 km (Uz). In the case
where two sources are superposed, the analytical solution overesti-
mates both horizontal and vertical displacements for two inflating
sources (Fig. 6a), but underestimates them for one inflating and
one deflating source (Fig. 6b). In the scenario of two juxtaposed
sources (Model B), the analytical model underestimates the surface
displacements when the two sources are inflating or overestimates
them when one of the sources is deflating (Figs 6c and d).

Finally, the discrepancies computed between the numerical so-
lution and McTigue’s finite spherical source solution (Group 3 in

Models A and B) do not clearly differ from those calculated using
Mogi’s point source (Groups 1–2). The surface discrepancies ε are
similar for Models A and B. In contrast, when the two spheres are
superposed and inflating (Model A), the finite source solution re-
duces �x to 5 per cent (Groups 1–2: 8 per cent) and �z to 7 per cent
(Groups 1–2: 15 per cent). In case of the juxtaposed sources (Model
B), when one of the source is deflating, �x is similar but McTigue’s
solution reduces �z to 7 per cent (Groups 1–2: 14 per cent).

3.1.2 Model DI, Methods 1–3: juxtaposed tensile rectangular
and spherical sources

The discrepancies computed for Model DI strongly depend on the
approach employed to model the opening dyke (Fig. 1). The results
of the three approaches (Methods 1–3) are compared in Fig. 8, in
Fig. A1, and in Fig. 9 (see also Table A-5). The conditions applied
on the dyke boundaries (displacements or pressure) are directly
related to the way the sources can deform and influence each other
(Fig. 10).
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Figure 7. Models A (Group G1’a): Cross-section of the source total deformation (m) of a spherical source pressurized by �P1 = 20 MPa superposed to
another spherical source pressurized by either �P2 = 20 MPa (left-hand panel) or �P2 = −20 MPa) (right-hand panel), in an homogeneous medium. The
source deformation is magnified by a factor of 100.

Using Method 1, a fixed displacement prescribed on both dyke
walls immobilizes the dyke, prevents its deformation, and only the
spherical source deforms. Method 1 gives analytical and numerical
surface displacements that differ radically in the dyke opening direc-
tion (the x direction for the models considered). Consequently, the
discrepancies (ε and �) in this direction are two orders of magnitude
larger than in the other directions (see Table A-4). When the spher-
ical source inflates, εx and �x reach 97 and 82 per cent (Fig. A1).
They even reach 550 and 300 per cent, respectively, when the spher-
ical source deflates (Fig. 8). The remaining discrepancies in vertical
(εz) and strike (εy) directions are, however, of the same order of
magnitude as those computed for Models A and B: εz and �z are
up to 13 and 15 per cent for an inflating sphere and up to 23 and
5 per cent for a deflating source. All discrepancies become negligi-
ble beyond 9 radii separation.

In contrast to Method 1, when using Methods 2 and 3 (displace-
ment of a flexible dyke wall with constant opening, or pressurized
tabular crack) all discrepancies are of comparable magnitude to
models A and B. With these two methods (2 and 3), both the dyke
and the spherical source can deform (Fig. 10). This is reflected in
the magnitude of the surface discrepancies: while εy is on average
lower than both εx and εz for a rigid dyke (Method 1), all compo-
nents of the surface discrepancies are within 2 per cent for source
separation of 3 radii and beyond. For both methods, neglecting the
source interaction leads to significant discrepancies up to a horizon-
tal distance of 5 km (Ux) and 3 km (Uz), with an underestimation
of Uz and overall a slight overestimation of Ux (Fig. 9).

With Method 2, the dyke is simply ‘pushed’ away from or ‘pulled’
towards the inflating or deflating sphere, which in turn deforms in
response to the dyke opening, constant over the dyke plane.

The discrepancies computed with Method 2, which is the closest
to an Okada rectangular tensile dislocation, are on average the lowest
calculated between the three methods, and are significant only up
to 2 radii source separation (Fig. 8, and also Fig. A-1). Regarding
the surface discrepancies, εx is still larger than εz , with 7 per cent
versus 6 per cent and 24 per cent versus 7 per cent for inflating and
deflating sphere, respectively. However �x and �z are similar, with
maximum values for �x and �z of 6 and 7 per cent, respectively, for
an inflating sphere, and 9 and 7 per cent for a deflating source.

A pressurized tabular crack, Method 3, does not open uniformly
as the Okada analytical model or Methods 1 or 2, but deforma-
tion of the dyke walls results in a bulging shape (Fig. 1). In the
presence of an additional inflating or deflating source, the resulting
shape will be more complex (Fig. 10). The discrepancies are overall
intermediate to those calculated with the two other methods and
become negligible beyond 3 radii separation (Fig. 8). This is the
most realistic model for a pressurized dyke.

3.2 Effect of the radius/depth ratio

In Models A and B, the effect of the distance between sources
and free surface has also been tested with various (upper source)
radius/depth ratios (a/d) and was found to generally have little in-
fluence on the magnitude of the discrepancies: the surface discrep-
ancies computed for a/d = 0.1 and 0.05 are all within 5 per cent,
and �x and �z differ less than 2 per cent. Models with superposed
inflating sources separated by 2.5 radii are an exception, with ε

computed for a a/d = 0.1 with a = 500 m being 10 per cent larger
than for the same ratio but with a = 50 m (Model A-Group G1a and
G1’a, Fig. 4). Overall, independent of the a/d ratio, the discrepan-
cies always follow the same trend and are all negligible beyond 4
radii separation.

3.3 Effect of source strength and geometry
(Models A + Models DI)

The results listed in Table 2 underline the fact that the discrepancies
vary with the pressure difference or displacements applied to the
spherical or dislocation source walls. For the three models A, B and
DI, we found that the discrepancies are in general larger if one of
the sources is deflating.

Table 2 also highlights how far the discrepancies depend on the
geometry. Discrepancies are higher for Model DI than for Models A
and B, although they decrease more rapidly and are only significant
(>5 per cent) for source separation of less than 3 radii (Methods 2
and 3), and 4 radii for Model A.
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Figure 8. Model DI: surface (ε) and maximum local (�) discrepancies vs source separation, obtained for models combining a spherical source pressurized
by �P = −20 MPa juxtaposed to a dyke opening by 1 m, modelled with Methods 1–3 (from top to bottom). Corresponding discrepancies values are listed in
Table A-5.

The various pressure differences tested in Model A indi-
cate that the discrepancies are identical for all multiples of
the chosen �P1/�P2 ratio. The magnitude of discrepancies in-
creases with the magnitude of the deeper source pressuriza-

tion (�P2) for a constant pressurization of the upper source
(�P1).

The various openings or pressures applied on the dyke wall in
Model DI (Methods 2 and 3) also show that the closest results to the



264 K. Pascal, J. Neuberg and E. Rivalta

Figure 9. Model DIa: surface displacements across the centre of the deformation sources for models of a dyke opening by 1 m, modelled by Methods 1-3,
juxtaposed to a spherical source pressurized by either �P2 = +20 MPa (left-hand column: a, c and e) or �P2 = −20 MPa (right-hand column: b, d and f).
The sources are separated by a distance of 1.5 radii. The profiles for further source separation are presented in Figs A-4–A-6.
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Figure 10. Models DI: cross-section of the source deformation (m) of a dyke opening by 1 m, modelled with Methods 1–3, juxtaposed to an inflating,
�P = +20 MPa (left-hand panel), or a deflating, �P = −20 MPa, spherical source (right-hand panel), in an homogeneous medium. The distance between
sources is 1.5 radii (Group DIa). The upper scale corresponds to the horizontal displacement of the dyke walls, to emphasize how Methods 1–3 differ. The
lower scale corresponds to the total deformation of the spherical source. The source deformation is magnified by a factor of 100. Note that, with Method 1
(upper panel: a, b), only the spherical source is deforming.

analytical solution are generally given when the dyke is modelled
with Method 2, with the exception of the surface discrepancies
εx, which are closer to the analytical solution when modelled with
Method 3.

3.4 Case studies

In the following section, we apply our methodology to three
examples (referred as Models CS1-3) where analytical models

were combined. In line with Section 2.2, we construct FE mod-
els with geometries and physical parameters equivalent to the
analytical models presented in these case studies, which are de-
picted in Fig. 11, and their parameters are summarized in Table 3.
We then calculate the discrepancies between FE and analytical mod-
els to estimate the effect of neglecting the source interactions.

We adapted these cases from Elsworth et al. (2008) and Linde
et al. (2010) who employed analytical models to represent the
volcanic plumbing system of Soufrière Hill volcano, Montserrat,
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Figure 11. Case studies CS1-3. CS1 and CS2, corresponding to our Models A and C, respectively, are adapted from Elsworth et al. (2008) and Linde et al.
(2010) analytical models of the plumbing system of Soufrière Hills Volcano, Montserrat, West Indies. CS3, corresponding to our Model DI, is adapted from
the Dabbahu segment, Afar, Ethiopia magmatic system as described in Wright et al. (2006). Geometry and physical paarameters are listed in Table 3.

West Indies, for the first episode of unrest (1995 November 15–1998
March 10) and an explosion during 2004 March, respectively. The
third case study Wright et al. (2006) modelled the magmatic system
of the Dabbahu segment, Afar, Ethiopia, for the rifting episode that
occurred between 2005 September 14 and October 4.

Model CS1, representing Soufrière Hills Volcano (SHV), consists
of two superposed spherical magma chambers, and corresponds to
our Model A with two superposed Mogi sources, separated by 6
source radii and with a ratio of source radius to depth of 0.17 (upper
source). In Model CS2, the SHV magmatic system composed of
a dyke (Okada source) superposed to a spherical pressure source
(Mogi source).This model correspond to our Model C, with a dis-
tance between sources of 1.4 times the magma chamber radius.
In Model CS3, we focus on the northern section of the Dabbahu-
Gab’ho segment (Wright et al. 2006; Ayele et al. 2009), where two
deflating magma chambers are located on either side of the dyke.
Compared to their original models, we focus merely on an opening
dyke without shear components. This scenario corresponds to our
Model DI, where the dyke has been modelled with Method 2, in
Section 2.2.

The discrepancies computed for CS1-3 (Table 3) are in good
agreement with our previous results. In Model CS2, as in Model
C, both surface (ε) and maximum discrepancies (�) are negligible
(<5 per cent). Models CS1 and CS3 have a set of geometrical and
physical parameters more complex than Models A and D1, hence-
forth producing a different, more intricate, deformation pattern (see
e.g. Fig. A-7a). However, as expected from Model A and DI results,
Model CS1 discrepancies are weaker than Model CS3 discrepan-
cies. In Model CS1, analytical and FEM solutions fit closely, with
the exception of the near-field vertical displacements. Henceforth,
the surface and horizontal (�x |min and �x |max) discrepancies of
Model CS1 are insignificant, but �z |max are significant and reach
18.5 per cent. In Model CS3, horizontal and vertical surface dis-
crepancies are up to 20 per cent, and reflect how the analytical and
FEM solutions differ by 10–15 per cent over a 10 km2 area encom-
passing the three sources, with maxima of 25 per cent for Uz and Ux

above or slightly offset of the spherical sources, respectively (see
also Fig. A-7b and c).

For both models CS1 and CS3, the significant discrepancies cal-
culated contrast with the negligible discrepancies calculated for
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Table 3. Geometry, physical parameters and discrepancies obtained for Models CS1-3 (Fig. 11 and Fig. A-
7). Parameters are adapted from Elsworth et al. (2008), Linde et al. (2010) and Wright et al. (2006) for the
volcanic plumbing system of Soufrière Hills Volcano, Montserrat, West Indies and from Wright et al. (2006)
for the magmatic system of the Dabbahu-Gab’ho segment, Afar, Ethiopia. Overpressures are either given in the
referenced works or, where indicated, derived from the source volume change (Delaney & McTigue 1994). In
CS3, we chose a common value of 1 km for the magma chambers radius, otherwise unknown. Young’s modulus
value is taken from Hamling et al. (2010). In the FE model, dykes are modelled with Method 2, described in
Section 2.1.

Model CS1 Model CS2 Model CS3

Centre position (km) (0,0,−6) (0,0,−5) (3,6.5,−5)
radius (km) 1 0.5 1

Mogi source 1
�P1 9.29 MPa −2.5 MPa −2.03 GPa

�V1 (km3) 0.03 −0.2
Centre position (km) (0,0,−12) n/a (−4,−1,−5)

radius (km) 1 n/a 1
Mogi source 2

�P2 51.25 MPa n/a −3.06 GPa
�V2 (km3) −0.16 −0.3

Centre position (km) n/a (0,0,−2.85) (0,0,−5.5)
Okada source width × height (km) n/a 2.9 × 1 12 × 7

Opening (m) n/a 0.16 8
Mogi1-Ok.:: 4

Source separation (radii) 6 1.4
Mogi2-Ok.:: 3

Crustal E (GPa) 2.5 10 80
properties ν 0.25 0.25 0.25

εx 3.3 0.9 20.7
εy 3.2 0.6 17.50
εz 3.2 1.9 20.8

Discrepancies (per cent)
�x

∣∣∣∣
min

0.1 2.2 2.4

�x

∣∣∣∣
max

0.0 0.6 10.3

�z

∣∣∣∣
min

2.4 1.0 13.7

�z

∣∣∣∣
max

18.5 1.8 16.0

Models A and DI with similar source separations. This is particu-
larly due to the 8 m opening of the dyke in CS3, against only 1 m in
Model DI, and to the high, if not unrealistic, overpressures applied
on most of the magma chambers walls in the two case studies. In
Model CS3, we chose a typical magma chamber radius of 1 km and
calculated the overpressure from the volume change given in Wright
et al. (2006), and from the relation between radius, pressure and vol-
ume changes given in Delaney & McTigue (1994), where pressure
and radius are inversely proportional. Increasing the magma cham-
bers radii would induce a trade-off between decreasing the source
interaction by decreasing the overpressure applied, and increasing
the source interaction as the sources would grow closer.

3.5 Summary

It is difficult to deduce a general law for the discrepancies between
analytical and FE solutions valid for all the geometries and pa-
rameters investigated. Nevertheless, we can extract the following
findings from our models:

(i) The discrepancies induced when aligning and superposing a
Mogi and an Okada source in Models C and DII (Fig. 2) are always
negligible (<5 per cent).

(ii) In contrast, models with superposed or juxtaposed Mogi
sources (Models A and B) and models with juxtaposed Mogi and
Okada sources (Models DI) result in analytical solutions differing
from the numerical solution by up to 16, 14 and 300 per cent, re-
spectively. For these three models, the discrepancies are maximal

when the sources are the closest, in which case they are significant
up to a horizontal distance of up to 5 km. All surface and maximum
discrepancies computed for Models A and B become negligible
when the sources are separated by 4 radii or more (Figs 4–8).

(iii) For model DI, in the case where the dyke opening is modelled
with relative displacements of the dyke walls (Method 2) or pressure
difference (Method 3), all discrepancies become insignificant for a
source separation of more than 3 radii. However, when applying
fixed displacements (Method 1), the discrepancies are significant
for a source separation of at least 9 radii.

(iv) When applying our methodology to three case studies
adapted from the magmatic systems of Soufrière Hills Volcano,
Montserrat, West Indies (Models CS1-2) and the Dabbahu seg-
ment, Afar, Ethiopia (Model CS3), we find discrepancies in good
agreement with the above results. Additionally, these models high-
light how the source interaction and the discrepancies are related to
the trade-off between overpressure and radius.

4 M A P P I N G T H E D I S C R E PA N C I E S I N T O
M O D E L PA R A M E T E R S �P , DY K E
O P E N I N G , A N D S O U RC E S E PA R AT I O N
( M O D E L A A N D D I )

4.1 Sensitivity analysis

Data sets of ground deformation are often inverted for geophysical
model parameters, such as magma chamber pressure and volume,
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Table 4. Summary of parameters and discrepancies for Models A-G1’a and DIa used as references in the
sensitivity analysis tests (Figs 12 to 15). The results of the corresponding Monte-Carlo inversions are listed in
Table 5. The domain elastic parameters are E = 10 GPa and ν = 0.25.

Model A-G1’a Model DIa

Method 1 Method 2 Method 3

Centre position (km) (0,0,−5) (0.75,0,−2.5)
Mogi source 1 radius (km) 0.5 0.5

�P1 (MPa) 20 −20
Centre position (km) (0,0,−6.25) n/a

Mogi source 2 radius (km) 0.5 n/a
�P2 (MPa) 20 n/a

Centre position (km) n/a (0,0,−2.5)
width × height (km) n/a 1 × 1

Okada source
Opening (m) n/a 1 1 n/a
�P (MPa) n/a n/a n/a 12

Source separation (radii) 2.5 1.5
εx 11.6 553.7 24.1 11.1
εy 11.4 9.8 7.6 15.5
εz 14.1 22.5 6.8 11.9

Discrepancies (per cent)
�x

∣∣∣∣
min

8.1 298.8 8.7 17.6

�x

∣∣∣∣
max

185.1 0.5 2.7

�z

∣∣∣∣
min

15.5 5.3 7.0 12.9

�z

∣∣∣∣
max

n/a n/a n/a

as well as its location. Therefore, we investigate in the following
section how the estimation of model parameters is affected by
neglecting the source interaction when two analytical models are
combined, or in other words how the neglected source interaction
is mapped into model parameters. As a reference, we use the nu-
merical solutions of Model A-Group G1’a or Model DIa. In Model
A-Group G1’a, two spherical sources with radius a = 500 m are
superposed (upper source a/d = 0.1) while in Model DIa the 500 m
radius spherical source is juxtaposed to a 1 km × 1 km dyke opening
by 1 m (see Table 4 for a list of the corresponding model param-
eters). We vary in the combined analytical model either the source
separation, the Mogi source pressurization �P1 or �P2 (Fig. 12), or
the dyke opening in order to match the numerical reference model
(Fig. 15 for Method 3, and Figs 13 and 14 for Methods 1–2). This
match is quantified by the discrepancies as defined in Section 2.3
(eqs 1 and 2). We plot a grid of the discrepancies ε and � as well
as the mean of ε, calculated for a range of each of the three pa-
rameters. Red areas correspond to negligible discrepancies hence
to a best fit between the numerically generated data set (reference
model) and the analytical combined model. The vertical red line
indicates the parameter values of the reference numerical model,
which the analytical models aim to retrieve. In this way, we can
quantify how the interaction of deformation sources, neglected by
the analytical models, maps into distorted model parameters. By
varying one model parameter at the time, we assess the sensitivity
of the model solution to this model parameter.

The sensitivity analysis of Model A-Group G1’a (Fig. 12) shows
that the discrepancies we try to minimize are, for the range of
values chosen, less sensitive to the source separation than to the
overpressure in the spherical sources, particularly for the shallower
source (�P1). Compared to the reference model, the discrepancies
map into incorrect model parameters where �P1 is underestimated
by 10–20 per cent, �P2 by 20–35 per cent, and the source separation
is overestimated by 70–100 per cent. The fact that the red gridpoints,
calculated for the various discrepancies, overlap, indicates that the

solution of the respective model parameter satisfies all components
of the surface displacement.

The sensitivity analysis of Model DIa (dyke juxtaposed to cham-
ber) is represented in Fig. 15 for a dyke modelled with Method 3,
and in Figs 13 and 14 for a dyke modelled with Method 1 and 2,
respectively:

(i) Method 1: The high discrepancies throughout Fig. 13 demon-
strate that no analytical model was found fitting the reference nu-
merical surface displacements. The mean surface discrepancies are
systematically larger than 70 per cent, dominated by εx larger than
100 per cent. Taken separately, the minima for εy and εz are still
between 6 and 25 per cent, and would yield a dyke opening under-
estimated by up to 50 per cent, a source separation overestimated
by up to 45 per cent, but a reasonable �P only 5 per cent off its
actual value (Table 4). The large values of �|min or �|max (e.g.
�x |max > 150 per cent) emphasize how strongly the analytical and
numerical surface displacements differ, and that combining a Mogi
and Okada solutions can never represent a scenario that we modelled
through Method 1, where the dyke is fixed and the magma chamber
accounts for all the deformation triggered by the interacting sources.

(ii) Method 2: Compared to the previous method, the dyke mod-
elled with Method 2 can now be deformed remaining at a constant
opening of 1 m. In this case, the results depicted in Fig. 14 show
that an inversion using the analytical models would lead to an un-
derestimation of the dyke opening by 20 per cent and to an incorrect
estimation of �P and source separation by up to 10 per cent, with
a minimum mean(ε) of 10 per cent. For the parameter range given,
the spread of the smaller discrepancies points out that the model is
more sensitive to the dyke opening than to �P, and finally to the
source separation.

(iii) Method 3: When the numerical model is realized by a tabular
crack (Method 3), the volume change of the numerical pressurized
crack is equivalent to the volume change of an Okada source of same
dimensions and opening by 1 m. An inversion using the analytical



Deformation modelling of interacting sources 269

Figure 12. Sensitivity analysis for a model with two superposed Mogi sources of radii a = 500 m and upper source radius-over-depth ratio a/d = 0.1 (Model
A-G1’a). The numerical solution is taken as reference and in the analytical model we vary either the source separation, �P1, or �P2 (from top to bottom
panel). The red lines indicate the position of the reference model parameters (here A-G1’a). Reading each panel horizontally, the colour code refers to the value
of the surface discrepancies (ε), their mean, and of the discrepancies at the extrema (�). Values in red are discrepancies below 5 per cent and indicate a good
fit between the analytical and reference models. Reading the panels vertically gives an estimate of each discrepancy component for a given model parameter,
indicating their respective sensitivity. Note that �x |min = �x |max due to symmetry. Additionnally, the FEM Uz |min tend to zero hence �z |min results will not
be taken into account. The parameter ranges showing the best-fit to the numerical model are listed in Table A-6.

models points to a source pressurization and a dyke opening within
10 and 20 per cent of their actual value, respectively, and a source
separation overestimated by up to 25 per cent (Fig. 15). The mini-
mum mean (ε) and ε are approximately equal to 7 per cent. As for
Method 2, the various discrepancies computed for Method 3 indi-
cate that the model solution is more sensitive to a variation in dyke
opening and �P, but less sensitive to a change in source separation.

To summarize, when modelling a magmatic system composed
of two Mogi sources, neglecting the source interaction ultimately
leads to a significant underestimation of pressurization and vast
overestimation of the source separation if the original sources are
as close as 2.5 radii.

When modelling a magmatic system composed of a dyke jux-
taposed to a magma chamber (Model DI), the discrepancies are
enormous when Method 1 is employed. This is due to the fact
that the dyke is fixed in space and the ‘interaction’ between the
two sources results in the deformation of the spherical source only,
while the dyke acts as a rigid, pinned, barrier. When comparing the
reference numerical model using Method 2 or 3, the discrepancies
are much smaller and tend to be more sensitive to a variation in
dyke opening and �P, but less sensitive to source separation. When
using Method 2, neglecting the source interaction is likely to lead
to an underestimation of the dyke opening by up to 20 per cent and
to give a comparatively better estimate of the source pressurization
and the distance between sources. With Method 3, the discrepancies
calculated for each parameter range indicate stronger dissimilarities

between the numerical and analytical solutions than with Method 2.
Given that Method 3 is the closest to a realistic pressurized dyke, the
discrepancies between Method 3 and analytical solutions provide
a measure of the error made when a real dyke is modelled with a
constant-opening dislocation.

4.2 Inversions

While the ‘grids’ in Figs 12 and 15 give some valuable insight into
how each of the deformation components contributes to the esti-
mation of a model parameter such as �P, source separation and
dyke opening, a common inversion scheme will seek to minimize
the misfit between input and model in all components simultane-
ously. Therefore, we take the scenarios of Model A-Group G1’
and DIa and use their respective FE surface displacements as input
data for the parameter inversion based on the solution of Mogi and
Okada. In other words, we assume that the FE solutions represent
the displacement fields for real cases where magma sources close
to each other interact, and estimate how strongly this interaction
affects the retrieval of the model parameters by inversion with ana-
lytical models. We employ a hybrid Monte Carlo, downhill simplex
inversion scheme (Clarke 1996; Wright et al. 1999) to estimate vol-
ume change, dyke opening and source location. With this method,
calculation of the L2-norm allows to find the minimum misfit be-
tween the FE input and the analytically modelled displacements.
To make sure the parameters retrieved do not correspond to local
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Figure 13. Sensitivity analysis for a model of a dyke opening by 1 m, modelled with Method 1, juxtaposed to a deflating spherical source (�P = −20 MPa).
The sources are separated by a distance of 1.5 radii (Model DI -M1a). The numerical solution is taken as reference and in the analytical model we vary either
the source separation, �P1, or �P2 (from top to bottom panel). The red lines indicate the position of the reference model parameters (here A-G1’a). Reading
each panel horizontally, the colour code refers to the value of the surface discrepancies (ε), their mean, and of the discrepancies at the extrema (�). Values
in red are discrepancies below 5 per cent and indicate a good fit between the analytical and reference models. Reading the panels vertically gives an estimate
of each discrepancy component for a given model parameter, indicating their respective sensitivity. In this model the FEM Ux |max tend to zero hence �x |max

results will not be taken into account. The parameter ranges showing the best-fit to the numerical model are listed in Table A-6.

minima, we restart the inversion 2000 times with 200 randomly
chosen starting parameter values. As previously, the full domain of
the FE models are 200 km × 200 km × 100 km for Model A and
110 km × 100 km × 35 km for Model DI, in order to avoid includ-
ing FEM boundary effects in the solution. However, we invert for all
models the FE displacements only in a 30 km × 30 km area in the
centre of the models. The dimensions of this area corresponds to the
spatial extension of GPS or InSAR data used during inversions. The
source parameters inverted for are indicated in bold in Table 5. In
Inversions #1, #2 and #3, we have tried to retrieve only one source
parameter: the dyke position, the dyke opening, and the magma
chamber volume change, respectively (Model DI), or the deeper
magma chamber position (Source 2), Source 2 volume change, and
Source 1 volume change, respectively (Model A). In Inversions #4,
we have jointly inverted for dyke opening and magma chamber
volume change (Model DIa), or the two magma chambers volume
change (Model A). In inversions #5, we have tried to retrieve the
positions of both sources together with the volume changes of the
magma chamber(s) (Model A) and the dyke opening (for Model
DI). For Model DI (numerical Method 2), whether independently
or jointly inverted for, the source deflation �V (hence �P) is sim-
ilar to its reference value, and the dyke opening and the source
separation are only slightly under- or overestimated, respectively
(Table 5).

For Model A, we have run the inversions with source separation
between 2.5 and 10 radii for the numerical model with interacting
sources (rows a–f in Table 5). We also have added the individual

FE displacements generated by each of the sources for all source
separations, and we have inverted the sum, in the following referred
to as ‘M1+M2’. This sum is identical to the analytical solution
except for the noise introduced by the FE method (see ‘M1+M2’ in
Table A-1). As a reference, we have furthermore inverted the sum
of the analytical solutions for the same set of model parameters.
In this case, the inversions have retrieved the original parameters,
pointing out the fact that only the numerical noise introduced by
the FE method affects the results of inversions of the ‘M1+M2’
solutions. Finally, in order to evaluate if ours findings can be gen-
eralized and if they are applicable to ‘real’ deformation field and
associated analytical inversions, we perform a statistical study and
give the errors on the source parameters retrieved during an analyt-
ical inversion of 100 synthetic data sets of the ‘full’ (Model A-G1’)
and the ‘summed’ (‘M1+M2’) solutions for two superposed spher-
ical sources separated by 2.5–10 radii. The data sets are generated
adding to the original solutions Gaussian noise with a standard devi-
ation equal to 1 cm, equivalent to data noise in GPS measurements,
for instance. We then applied a bootstrap method, commonly used
for deformation data sets, to obtain the final resampled synthetic
data sets with added noise (Efron & Tibshirani 1986; Gottsmann
et al. 2006; Lisowski 2007; Foroozan et al. 2010).

In Fig. 16, we compare the normalized error between reference
and retrieved parameters for both interacting and non-interacting
source solutions in Inversions #1–4, along with the distribution of
errors given by the statistical tests. This figure therefore highlights
how the results of the inversions are affected both by neglecting
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Figure 14. Sensitivity analysis for a model of a dyke opening by 1 m, modelled with Method 2, juxtaposed to a deflating spherical source (�P = −20 MPa).
The sources are separated by a distance of 1.5 radii (Model DI-M2a). The numerical solution is taken as reference and in the analytical model we vary either
the source separation, �P1, or �P2 (from top to bottom panel). The red lines indicate the position of the reference model parameters (here A-G1’a). Reading
each panel horizontally, the colour code refers to the value of the surface discrepancies (ε), their mean, and of the discrepancies at the extrema (�). Values
in red are discrepancies below 5 per cent and indicate a good fit between the analytical and reference models. Reading the panels vertically gives an estimate
of each discrepancy component for a given model parameter, indicating their respective sensitivity. In this model the FEM Ux |max tend to zero hence �x |max

results will not be taken into account. The parameter ranges showing the best-fit to the numerical model are listed in Table A-6.

the surface interaction and by noise contamination. Overall, the
influence of the source interaction on the retrieved parameters is
significant until a minimum source separation of 8 radii is reached.
When all but one parameters are fixed (Inversions #1–3 in Figs 16a,
c and d), the error for the ‘M1+M2’ parameters retrieved from the
non-noisy solution only reach ±2 per cent. The inversions results
are in realistic ranges, but are affected by large or very large errors,
in particular when one inverts for the depth of the deep source.
The results for the full, non-noisy, FE model confirm our previ-
ous results underestimating �V, hence �P, by up to 30 per cent
and overestimating the source separation by up to 20 per cent. The
results obtained in the statistical studies are consistent with those
results. When inverting for only one parameter, the depth of the
lower source, that is the source separation, is overestimated by up
to 16 per cent (σ ≈ 2 per cent), its volume change is in average un-
derestimated by up to 23 per cent (σ ≈ 3 per cent) and the volume
change of the upper source is in average underestimated by as much
as 16 per cent (σ ≈ 2 per cent). When the source parameters were
retrieved within 5 per cent for source separation of more than 4 radii,
here the comparison between full and summed solution shows that
the source interaction can still introduce bigger errors, of up to
17 per cent (σ ≈ 4 per cent), at this distance. If the errors on the
source parameters decrease with the source separation, however,
when the sources are separated by more than 8 radii, the errors av-
erage and standard deviation on the lower source depth and volume
change are again unexpectedly high, for both full and summed so-
lution. This demonstrates that, as the lower source is getting deeper

and its effect on the surface deformation lessens, retrieving its pa-
rameters is difficult, particularly because of the introduction of the
noise.

When �V1 and �V2 are simultaneously inverted for (Inversion
#4, Figs 16e and f), neglecting the interaction between sources lead,
when inverting the original non-noisy solutions, to underestimating
the volume change of the upper source by 30 per cent while overes-
timating the lower volume change by 20 per cent when the distance
between sources is 2.5 radii. When the sources are further apart,
the two volume changes can be retrieved with 5 per cent. When
depths and �V are jointly inverted for (Inversion #5, Fig. 16c), re-
sults are unrealistic for small source separation (<4 radii) and still
incorrectly estimated until 8 radii, when all parameters are retrieved
within ±10 per cent. This indicates that even small uncertainties
in deformation data (produced by the FE method, in these original
data sets) can lead to unrealistic source parameters if the inversion
is based on source models which are in close vicinity to each other.
This is confirmed for both Inversions #4 and #5, where the average
errors and standard deviation on the source parameters when in-
verting the noisy resampled data set are large and insignificant, due
to the fact that the inversion scheme tries to retrieve an overall �V
and depth z consistent with the surface displacements, rather than
solving for the individual �V1 and �V2, z1 and z2.

In order to understand why source interaction affects heavily the
inversion results, we have plotted the surface displacement solutions
for different source separation in Fig. 17, where we compare FEM
and analytical models. The curves corresponding to the analytical
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Figure 15. Sensitivity analysis for a model of a dyke opening by 1 m, modelled with Method 3, juxtaposed to a deflating spherical source (�P = −20 MPa).
The sources are separated by a distance of 1.5 radii (Model DI-M3a). The numerical solution is taken as reference and in the analytical model we vary either
the source separation, �P1, or �P2 (from top to bottom panel). The red lines indicate the position of the reference model parameters (here DI-M3a). Reading
each panel horizontally, the colour code refers to the value of the variation of surface discrepancies (ε), their mean, and of the discrepancies at the extrema (�).
Values in red are discrepancies below 5 per cent and indicate a good fit between the analytical and reference models. Reading the panels vertically gives an
estimate of each discrepancy component for a given model parameter, indicating their respective sensitivity. In this model the FEM Ux |max tend to zero hence
�x |max results will not be taken into account. The parameter ranges showing the best-fit to the numerical model are listed in Table A-6.

solutions are well separated from each other and progressively less
peaked for increasing source separation, while the numerical solu-
tions overlap, or even show an inversion in the curve progression, for
source separation up to 5–8 radii. This shows how source interaction
induces a strong component of non-uniqueness to the displacement
field.

5 S U M M A RY A N D C O N C LU S I O N S

In this study, we have evaluated the limits of combining Mogi and
Okada analytical sources for several model scenarios, comparing
the analytical surface displacements with the equivalent numerical
model solutions, which also account for the source interaction. We
have carried out a series of synthetic tests combining either two
spherical sources representing magma chamber models, or a magma
chamber and an adjacent dyke model. As model parameters we have
used the relative source positions, dyke opening and the source
pressurization.

We have modelled numerically the Mogi source by embedding a
pressurized cavity (corresponding to a fluid-filled magma chamber)
into a large numerical domain representing a half-space. To model
numerically the Okada source, we tested three approaches: apply-
ing a constant normal displacement on the dyke walls (Method 1);
imposing a constant displacement on one of the dyke walls with
respect to the other (Method 2) and applying a pressure normal to
the dyke walls (Method 3). To quantify the discrepancies between

analytical and numerical solutions, we have estimated the differ-
ences in the surface displacements either by considering the entire
surface (ε) or by examining the difference at the extrema of the
surface displacement (�).

We have demonstrated that discrepancies are negligible for all
models with superposed or aligned dyke and magma chamber
(Models C and DII). However in all other cases tested, neglecting
the source interaction introduces significant discrepancies whose
magnitude depends on the source type, model geometry and on the
source strength (pressurization or dyke opening). FE and analytical
models differ the most in the near field, where volume or pressure
estimates of magma intrusions are dominated by large amplitudes.
The discrepancies decrease with increasing source separation, yet
number and diversity of the parameters involved prevent the deriva-
tion of a simple mathematical expression to estimate these discrep-
ancies. Instead we employ numerical models and consider several
scenarios separately.

Amongst these scenarios, we have found that when two pressur-
ized sources are either superposed (Model A) or juxtaposed (Model
B) they interact, for example, by shielding each other if they are
both inflating. Neglecting this interaction causes discrepancies of
up to 16 per cent at 2.5 radii source separation, which become negli-
gible for a source separation of more than 4 radii. Depending on the
pressurization of the sources (inflation or deflation), and on their
position, the analytical models either under- or overestimate the
surface displacements (Figs 6 and 9).
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Table 5. Inversions of the synthetic data sets (numerical reference model) using combined analytical models corresponding to
Models A-G1’a-f, and DIa. In Model A, two spherical sources of radius a = 500 m, and pressurized by �P1 = �P2 = 20 MPa, are
superposed by a distance of 2.5 (G1’a) to 10 radii (G1’f). In Model DI, a 1 km × 1 km dyke opening by 1 m is juxtaposed by 1.5
radii (i.e. 750 m) to a deflating source (�P = −20 MPa). Note that inversions #1 through #3 retrieve only one parameter (in bold)
while inversions #4 and #5 attempt to obtain several parameters simultaneously.

Source parameters Reference Inversions #
model #1 #2 #3 #4 #5

DIa (M2) Mogi �V (10−3 km3) −1.9 −1.9 −1.9 −1.9 −1.9 −1.9
source �P (MPa) −20.0 −20.0 −20.0 −19.7 −18.9 −19.0

x (m) 750 750 750 750 750 744
Okada Opening (m) 1 1 0.72 1 0.68 0.70
source x (m) 0 -238 0 0 0 −178

Source separation (radii) 1.5 1.97 1.5 1.5 1.5 1.84
Mogi �V1 (10−3 km3) 1.9 1.9 1.9 1.6 1.4 3.8

source 1 �P1 (MPa) 20.0 20.0 20.0 16.4 13.9 38.2
depth (km) 5.00 5.00 5.00 5.00 5.00 5.72

A-G1’a Mogi �V2 (10−3 km3) 1.9 1.9 1.4 1.9 2.3 −1.2× 1014

source 2 �P2 (MPa) 20.0 20.0 14.8 20.0 23.6 −1.2× 1015

depth (km) 6.25 7.42 6.25 6.25 6.25 2.70× 108

Source separation (radii) 2.5 4.8 2.5 2.5 2.5 5.4× 108

Mogi �V1 (10−3 km3) 1.9 1.9 1.9 1.7 1.6 −25.2
source 1 �P1 (MPa) 20.0 20.0 20.0 17.7 16.8 −256.4

depth (km) 5.00 5.00 5.00 5.00 5.00 5.09

A-G1’b Mogi �V2 (10−3 km3) 1.9 1.9 1.6 1.9 2.1 28.7
source 2 �P2 (MPa) 20.0 20.0 16.5 20.0 21.4 292.7

depth (km) 6.50 7.26 6.50 6.50 6.50 5.14
Source separation (radii) 3.0 4.5 3.0 3.0 3.0 5.1

Mogi �V1 (10−3 km3) 1.9 1.9 1.9 1.9 1.9 2.8
source 1 �P1 (MPa) 20.0 20.0 20.0 18.9 18.9 29.1

depth (km) 5.00 5.00 5.00 5.00 5.00 5.38

A-G1’c Mogi �V2 (10−3 km3) 1.9 1.9 1.8 1.9 2.0 0.8
source 2 �P2 (MPa) 20.0 20.0 18.1 20.0 20.0 8.5

depth (km) 7.00 7.40 7.00 7.00 7.00 7.53
Source separation (radii) 4.0 4.8 4.0 4.0 4.0 4.3

Mogi �V1 (10−3 km3) 1.9 1.9 1.9 1.9 1.8 2.1
source 1 �P1 (MPa) 20.0 20.0 20.0 19.4 18.6 21.2

depth (km) 5.00 5.00 5.00 5.00 5.00 5.12

A-G1’d Mogi �V2 (10−3 km3) 1.9 1.9 1.8 1.9 1.9 1.7
source 2 �P2 (MPa) 20.0 20.0 18.8 20.0 19.7 17.3

depth (km) 7.50 7.75 7.50 7.50 7.50 7.34
Source separation (radii) 5.0 5.5 5.0 5.0 5.0 4.4

Mogi �V1 (10−3 km3) 1.9 1.9 1.9 1.9 2.0 1.8
source 1 �P1 (MPa) 20.0 20.0 20.0 19.8 20.0 18.0

depth (km) 5.00 5.00 5.00 5.00 5.00 4.92

A-G1’e Mogi �V2 (10−3 km3) 1.9 1.9 1.9 1.9 1.9 2.0
source 2 �P2 (MPa) 20.0 20.0 19.4 20.0 19.4 20.6

depth (km) 9.00 9.16 9.00 9.00 9.00 8.32
Source separation (radii) 8.0 8.3 8.0 8.0 8.0 6.8

Mogi �V1 (10−3 km3) 1.9 1.9 1.9 1.9 2.0 1.9
source 1 �P1 (MPa) 20.0 20.0 20.0 19.8 20.0 19.20

depth (km) 5.00 5.00 5.00 5.00 5.00 4.97

A-G1’f Mogi �V2 (10−3 km3) 1.9 1.9 1.9 1.9 1.9 1.9
source 2 �P2 (MPa) 20.0 20.0 19.4 20.0 19.3 19.3

depth (km) 10.00 10.17 10.00 10.00 10.00 9.48
Source separation (radii) 9.0 10.3 9.0 9.0 9.0 9.0

Additionally, we have found that the discrepancies computed
are overall similar for a particular model geometry and source
pressurization, regardless of the radius-over-depth ratio (a/d) or
the use of McTigue’s expression for a finite source. Surprisingly,
the results obtained for the various pressurization values listed in
Table 2, specifically the equivalent discrepancies for the same ratio

�P1/�P2, also reveal that the discrepancies are not pressure-
dependent, unlike the surface displacements due to an individual
source. In conclusion, the discrepancies depend on the proximity
of interacting surfaces rather than on the strength of the deforma-
tion sources. Hence, in order to avoid closely spaced deformation
sources, one could decrease their radius and therefore increase the
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Table 6. Inversion #1–5, Model A-G1’a (2.5 radii separation): normalized errors on the pa-
rameters retrieved when inverting the synthetic (FE) solution and distribution of the errors. An
additional Gaussian noise with standard deviation 1 cm was added to the numerical solution,
which has been then bootstrapped. The mean, the standard deviation (σ ), the minimum and the
maximum error on each parameters are given for each Inversions of the ‘full’ solution of Model
A, and of the summed ‘M1+M2’ solution and relative parameters to which was added some
Gaussian noise and bootstrapped. The errors distribution is also represented in Figs 16 and A-8

Inversions A-G1’ Distribution of errors
Mean σ Min. Max.

‘Full’ solution #1 z2 18.8 16.2 2.3 10.4 22.7
#2 �V2 −26.1 −23.1 2.7 −30.4 −15.9
#3 �V1 −18.2 −16.2 1.9 −21.3 −11.2

#4 �V1 −30.5 −32.2 19.3 −78.1 −32.2
�V2 17.8 22.9 28.1 −41.4 88.1

#5 �V1 91.0 −1235.6 2540.1 −7451.5 7653.6
�z1 14.4 10.7 22.4 -31.2 63.7
�V2 −6.1×1015 1197.7 2526.2 −7699.7 7427.0
�z2 −4.3×109 −52.0 46.7 −99.1 34.5

Summed ‘M1+M2’ #1 z2 0.5 3.8 2.4 −2.7 9.0
#2 �V2 −1.1 −4.9 3.8 −13.3 7.3
#3 �V1 −0.7 −3.8 2.6 −9.6 4.4

#4 �V1 2.9 −37.5 23.0 −102.1 21.1

�V2 −5.2 48.4 32.8 −26.0 140.6

#5 �V1 −93.9 −1761.4 3602.6 −7538.4 6809.6
�z1 −25.3 −1815.2 2284.1 −7694.3 2721.1
�V2 89.6 34.1 34.1 −95.3 85.7
�z2 −10.9 1746.4 2250.1 −2788.5 7602.2

distance between the interacting surfaces, while maintaining the
same strength by increasing the pressure, due to the trade-off be-
tween radius and pressure change (a3�P, Mogi, 1958). However,
this relationship implies that a small change in the radius must be
compensated by a large increase in pressure. Although not shown
here, the discrepancies are also independent of a variation of the
Young’s modulus E of the surrounding medium (as long as the
medium is homogeneous). This is because both sources are affected
in the same manner.

In models with juxtaposed dyke/magma chambers (Model DI),
neglecting the source interaction can also lead to significant discrep-
ancies in surface displacements, which, however, depend strongly
on the approach taken to model the dyke numerically. Although
Methods 1–3 give identical surface displacements when the dyke is
the only source in the FE model and is deep enough, the variations
in the discrepancies obtained when two sources are combined, em-
phasize that each method models a dyke with a different physical
behaviour and which interacts in a different way with the spherical
source.

Method 1, limited to vertical dykes, may correspond to a dyke
embedded in a large, very stiff region of the half-space, such as a
large pluton formed by multiple cooled intrusions, which would re-
act very rigidly to the stress exerted by a spherical magma chamber
located in a much more compliant region adjacent to the pluton. Of
course, modelling deformation sources embedded in such hetero-
geneous medium with the analytical Okada solution leads to large
discrepancies (>550 per cent).

In contrast to Method 1, both Method 2 and Method 3 represent a
non-rigid dyke, which can absorb a part of the deformation field due
to the combined sources. In Method 3, the static dyke is subjected
to a uniform internal pressure. When no other source is present, the
regional stress is also uniform and the dyke cross section is ellip-

tical, as predicted by the equations of elasticity (Pollard & Muller
1976). However, it opens asymmetrically when another source is
present and, as with Method 2, the dyke is either ‘pushed away’
from the spherical source when it is inflating, or ‘pulled’ towards
it when it is deflating. The discrepancies induced when neglecting
this deformation are up to 25 and 18 per cent for Methods 2 and 3,
respectively, and become negligible beyond 3 radii separation. The
discrepancies summarized in Table 2, generally smaller for Method
2 than for Method 3, suggest that in this source configuration the
Okada source can represent a flexible dyke when it is further than 3
radii from the Mogi source.

In the case of one juxtaposed opening Okada and one deflating
Mogi source, an inversion of the surface displacements computed
with the FEM would be reflected in a minor underestimation and
overestimation of the dyke opening and of the source separation,
respectively, while the source deflation would be similar to its ref-
erence value.

However, when the discrepancies are of the same order of
magnitude in the case of two superposed inflating Mogi sources,
we have demonstrated that an inversion based on analytical models,
and hence neglecting the source interaction, is not able to retrieve
the source parameter(s) unless the source are separated by more
than 8 radii.

In this study, we chose a few combinations of deformation
sources, of model geometry and physical parameters (Models A–D).
Applying the same approach to three case studies based on the mag-
matic systems of Soufrière Hills Volcano, Montserrat, West Indies
(Models CS1 and CS2, similar to Models A and DII, respectively)
and of the Dabbahu segment, Afar, Ethiopia (Models CS3, similar
to Model DI) gave results in agreement with the theoretical mod-
els, showing significant discrepancies for models with superposed
magma chambers or with juxtaposed dyke and magma chambers.
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Figure 16. Inversions #1–4: errors between original and retrieved parameters values obtained for a population of 100 inversions of the solution of the synthetic
data sets (numerical reference model), using combined analytical models corresponding to Model A-G1’a to f. The reference models consist of two superposed
spherical sources of radius a = 500 m pressurized by �P1 = �P2 = 20 MPa. A Gaussian noise with standard deviation 1 cm has been added to the synthetic
solution, which has then been bootstrapped. The population of error between reference and retrieved parameter normalized by the reference parameter is plotted
against the reference model source separation. The error distribution obtained for the full FE model and for the ‘M1+M2’ summed model are indicated in
coloured and grey, respectively. The box-and-whiskers plot indicate the minimum, the first quartile, the median, the third quartile and the maximum of the error
population. The error obtained for the original synthetic data set are indicated with a solid line for the full FE model and with a dotted line for the ‘M1+M2’
summed model. The sources are separated by a distance of 2.5, 3, 4, 5, 8 and 9 radii. Inversions #1–#3 retrieve only one parameter at a time: (a) the deeper
source depth z2, (c) the deeper source volume change �V2, (d) the shallower source volume change �V1. (e) and (f) Inversions #4 retrieve both source volume
change �V1 and �V2. (b) Sketch of Model A and source parameters inverted for. See also Table 6 for summarized results and the corresponding figure for
Inversions #5 (Fig. A-8).

We have demonstrated for several magmatic systems, that the in-
teraction between sources are negligible and the source parameters
can be retrieved correctly through an analytical inversion, either due
to the nature of the model geometry (i.e. Models C, DII), or because

the deformation sources are far enough, or because of the absence
of deformation data in the near field. However, in some cases, trans-
lating the sources volume change into realistic overpressures, which
does not overcome the tensile strength of the surrounding medium
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Figure 17. Profiles above the source centre comparing the analytical
(left-hand panel) and FE (right-hand panel) vertical and horizontal surface
displacements for models with two superposed spherical sources (Model
A-G1’) for source separations between 2.5 and 10 radii. For easier compar-
ison, we mirrored the horizontal displacements of the FE solution.

(Gudmundsson 2012) might imply, due to the trade-off between
pressure change and radius (Delaney & McTigue 1994), the exis-
tence of large magma chambers, close enough to interact. Moreover,
our results for the analytical inversions of superposed magma cham-
bers (Model A) indicate that deep storage systems are ‘intrinsically’
indeterminable by means of geodetic data only: when the vertical
distance between different magma chambers is small, they interact
and the solution is not unique, and when the distance is large, the
magma chambers do not interact much, but the signal of the deeper
source might become too small to be detected. For magmatic sys-
tems with a more complex, finer structure, with two or more storage
zones at different depths (i.e. smaller deformation sources within a
same magma reservoir, rather than distinct magma chambers, e.g.
Sigmundsson et al. 2010, on Eyjafjallajokull Volcano, Iceland), it
would be difficult, at the very least, to invert for source depth and
volume change at once, and independent information on source
depth, for example petrological constraints, should be integrated in
the procedure.

Additionally, when inverting jointly for all source volume
changes and depths, the source interaction but also the noise con-
tamination can make the solution unstable although all source pa-
rameters are retrieved within ±10 per cent beyond the threshold
distance of 8 radii.

Finally, this study also shows how the choice of the method to
model numerically a dyke or a magma chamber is critical when
several sources are combined and located next to each other. The
dyke can be made flexible by defining the displacement of one wall
relative to the other. While generally magma chambers are modelled
as cavities, implying that the magma they contain is fluid, it would
be appropriate to model magma chambers more realistically as an
inclusion, assigning to the magma at least a finite incompressibility,
if not a stiffness when the magma is a solid matrix with melt-filled
pores. By treating our deformation sources as cavities, we optimize
their capability to interact with each other. In models with neigh-
bouring sources, realistic magma bodies with a rigidity, compress-

ibility and viscosity, will behave in a different fashion than fluid-
filled magma bodies. Hence in those cases, numerical models must
include realistic magma properties. In this study, we have isolated
the effect of source interaction and applied a significance threshold
of 5 per cent which we have defined through the calibration of the
FE models against the analytical models. For two superposed spher-
ical magma chambers, we have found that the interaction between
sources could lead to underestimating the chamber volume change
by up to 30 per cent. In the context of more complex modelling ap-
proaches, the compressibility of the magma and topography could
have an impact of 80 per cent (Johnson et al. 2000; Voight et al.
2010) and 10–50 per cent (Cayol & Cornet 1998) on the magma
chamber volume change, respectively. Medium heterogeneities can
introduce discrepancies at the surface of for example 2–40 per cent
for Poisson’s ratio of 0.21–0.34 (Cayol & Cornet 1998; Masterlark
2007). Depending on the magmatic system studied, several of these
factors can be present simultaneously, and evaluating which ones
are dominant should be evaluated on a case by case basis.

It is needless to say that numerical modelling has the advantage
of simultaneously accounting for complex model geometry and the
interaction between several deformation sources. However, we have
demonstrated that a combination of analytical models constitutes a
valid modelling approach as long as the critical source configuration
and separation presented in this study are observed.
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