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Abstract: 

This paper aims at indicating and certifying the implemented framework for forecasting buildings' energy demand 

of the city of Bologna, Italy. The method is developed through an automated calibration and is based on 7 known, 

physics-based building parameters and 6 unknown, and highly uncertain variables. The proposed method focuses 

on reducing computing time while keeping the accuracy of the output by narrowing the uncertainties in predicting 

unknown parameters. To accomplish this task, 11 archetypes are defined which are representatives of the buildings 

in a specific neighborhood in Bologna, Italy. For every defined archetype, the most informative unknown variables 

are recognized and the Gaussian Process (GP) is employed to emulate the variable-to-data map. A wide sampling of 

the GP outputs is then applied by No-U-Turn Sampler (NUTS). The methodology is validated for 1156 Italian urban 

buildings based on the city database. The level of evaluation metrics demonstrates no bias in the output of the long-

term forecasting while it accelerated the prediction of building energy demand and calibration on the city scale. The 

method is flexible for application in other contexts and various available urban datasets.      

Keywords: Urban building energy modeling, Energy demand forecasting, Bayesian calibration, Unknown 

parameter Estimation, Energy planning and management, Building archetypes, smart meter data analytics 

Abbreviation:  

Urban Building Energy Modeling (UBEM) 

Gaussian Process (GP) 

No-U-Turn Sampler (NUTS) 

Hamiltonian Monte Carlo (HMC) 
Latin Hypercube Sampling (LHS) 

Highlights:  

• This paper proposes an archetype coding method for simplifying buildings classification on large 

scales.  

• The energy demand of 1156 buildings in the city of Bologna, Italy is forecasted by the Bayesian 

calibration method.   

• The method prevents monotheism in applying retrofitting strategies for various types of buildings on 

large scales.  

• The model has proven the accuracy in forecasting energy demand and also estimating unknown 

parameters in urban buildings.   

 

1. Introduction 

Attainment of reliable urban building energy measurements has appeared as one of the most challenging issues 

encountering societies that seek positive-environmental impact districts in highly complicated city structures [1]. 

This complexity has contributed to the recent boost in Urban Building Energy Modeling (UBEM) whereas lack of 



precise urban databases has cast doubts on the reliability of UBEM approaches [2]. In general, UBEM estimates the 

energy demand based on geometry, envelope fabric, equipment and appliances, climate characteristics, and indoor 

environment criteria. A common method to model a large number of buildings based on these parameters is to 

classify buildings in different archetypes according to their features. Archetyping benefits UBEM by time efficiency 

and data summarization. It has been employed in a wide range of urban energy forecasting methods [1]. Table 1 

shows a list of these studies.  

 Table 1: Summary of studies for developed archetypes in UBEM, source: Gholami et al. [1] 

 

 

Model 

developed 

by 

The main aim of the model Methodology  Studied 

location 

Year 

MacGregor 

et al. [3] 

Creating an energy model for the 

residential area by 27 archetypes 

Hourly analysis program (HAP) 

 

Nova Scotia 1993 

Kohler et 

al. [4] 

Development of details and basic 

building elements from big databases 

for materials and operations 

Energy, and monetary models Germany 1999 

Huang and 

Broderick 

[5] 

Creating an engineering model for 

heating and cooling loads 

Prototyping the multifamily and 

single-family houses in 16 various 

regions 

US 2000 

Snakin [6]  Creating a model to find the factors of 

conservation and alternatives for fuel 

History databases and population 

and buildings features 

Finland 2000 

Shipley et 
al. [7] 

Estimation of impacts of building 

envelope improvements 

A monetary and energy emission 

model based on archetypes and 

ASHRAE 

US 2002 

Carlo et al. 
[8] 

A model based on archetypes for 

commercial-buildings 

Employing some initial parameters 

such as building energy regression 

equation to the roof area ratio, facade 

area ratio, and internal load density 

Brazil 2003 

Shimoda et 

al. [9] 

A model for insulation levels in the 

city scale 

A residential end-use energy 

consumption model based on 

archetypes 

Osaka, 

Japan 

2004 

Wan and 

Yik [10] 

define different window areas facing 

the sun 

Archetypes for floor plans Hong Kong 2004 

Palmer et 

al.  [11] 

Introducing a model to calculate SH 

and DHW 

Employing BREDEM-8 (Building 

Research Establishment Tool) 

UK 2006 

Nishio and 

Asano [12] 

Recognizing distribution and housing 

variables 

A tool for archetypes based on 

Monte-Carlo 

Japan 2006 

Petersdorf 

et al. [13] 

Developing a European building stock 

by considering 5 standards and 8 

insulation standards 

Ecofys’s BEAM for modeling 

heating demand in three different 

climate zones 

EU 2006 

Clarke et 

al. [14] 

Development of a model to calculate 

the thermal energy demand 

ESP-r in the Scottish building stock UK 2009 

Tornberg 

and 

Thuvander. 

[15] 

estimating details such as building 

fabric, glazing, ventilation, water 

heating, space heating, and fuel costs 

Energy and environmental model by 

archetyping and employing GIS 

UK 2012 

Ballarini et 

al. [16] 

Analyzing cost-optimal aspects  A national building Typology for 

European building stock 

Italy 2014 

Cerezo et 

al. [17] 

Vision  creating as input data of a 

model 

Formatting a standard input 

 

US 2014 

Yang et al.  
[18] 

Energy performance forecasting  A clustering method to select 

representative buildings and a 

normative model to calculate energy 

parameters 

China 2017 



The energy performance of the buildings in an urban context is not exactly as software simulates it. Discrepancies 

between simulation results and the surveyed performance are unavoidably the consequences of inadequate input 

data, building users’ behavior, and replication of simulation [19]. Calibration aims at creating a correlation between 

the quantity of a parameter in a specific methodology and the relative measurement of a declared value. Similarly, 

in UBEM, calibration is the process of tuning known and unknown parameters to reduce the discrepancies between 

the modeled and measured values [19]. Due to the complexity of various uncertainties sources on large scales, 

uncertainties of inputs in UBEM have raised a meaningful difference between predicted and measured values [20]. 

Indeed, without filling this gap, the UBEM approaches are not reliable in making retrofitting policies, operational 

promoting, or energy forecasting on the urban scale [21].  In a review in 2018, Tian and colleagues [19] have divided 

the calibration methodologies of building stock into two groups of forward and inverse models that the full 

description of this classification can be found there. However, in this paper, calibration methodologies are classified 

according to their approaches as user-driven or automated features. The main focus of the paper is on automated 

calibration methods.    

1.1. Calibration methodologies for UBEM 

Manual calibration is based on trial and error methods, which use the iterative manual tuning of input parameters 

without any systematic and automated procedure. The input data in manual calibration methods are highly 

dependent on users' experience and knowledge about the buildings. However, automated calibration methods are 

not user-driven and employ analytical and statistical methods. Among all automated approaches, calibrations with 

optimization algorithms and the Bayesian approach are the most employed methods in UBEM [22].  

• Bayesian formulation; is a method for measuring uncertainties through probability dissemination. No 

matter if the input data is not accessible (epistemic uncertainty) or does not exist (aleatory uncertainty), 

bayesian calculates the uncertainty that is caused by inadequate input data and measurement errors [23–

25]. Bayesian frameworks are well-adaptable in models with uncertain data inputs. Thus, it updates 

proposed probability dissemination based on model output data which makes it suitable for future 

predictions. The basic calibration model in building energy models is proposed by Kennedy and O’Hogan 

[26], later a guideline for the application of Bayesian calibration has published by Chong and Menberg [27]. 

Fernandez and colleagues in 2018 [28] have shown that the Bayesian method takes ten times more than an 

optimization method for individual buildings.  

•  Optimization under uncertainty calibration; is a technique that aims at minimization of the existed gap 

between modeled and real values to identify the best variable sets. It employs optimization algorithms to 

find the best data set of parameters for calibration. It finds a global minimum gap on a set by using global 

optimization approaches such as genetic algorithm, Particle Swarm Optimization, etc.  Most of these 

methods are applied on individual building scales [29–35].  

 

Although uncertainty methods on building scale do not differ from urban building energy calibration methods in the 

main steps, they alter to a certain extent. The reason is that there are some limitations on large scales that affect 

the efficiency of methodologies and their functionality. When the modeling process extends from one building to 

hundreds of buildings in a city, time, computation cost, and accessibility of supercomputers are among the 

limitations [17]. To reduce the costs, meta-models can be integrated into the models, meta modeling is resembling 

a complicated model to a simpler model through a mathematical model. Coefficients in these meta-models are 

defined based on bounded sets of input and output combinations [36]. It acts as a surrogate for the white box 

simulations. Thus, a Meta model benefits the original model with decreasing calculation time while it ensures the 

reliability of the model [37]. Among all the meta-models, the Gaussian Process (GP) is the most employed model 

because of the high level of accuracy and reliability in interpolations. This method is employed in some energy 

calibrations [37,38] A study by Lim and Zhai [39] has proved that GP models in building energy calibration are the 

most precise metamodel among others.  



Some specific studies in recent years have led the urban energy building calibration to a more reliable status and 

sped it up. Booth and colleagues in 2012[40] introduced a UBEM based on clustering buildings and calibrated four 

unknown parameters through Bayesian calibration with 61 days of measured data. Later the model was improved 

by developing building archetypes based on the form and age of the buildings on city scales [25,41,42]. Kim and 

colleagues in 2015 [43] employed optimization for the estimation of five unknown parameters. In 2016, Zhao and 

colleagues [44] developed a method based on Bayesian calibration using a wide variety of variables for clustering 

buildings, later Evins et al. [45] investigated the impact of user behavioral factors and buildings’ properties on a large 

scale. Sokol and colleagues in 2016 [21] continued this subject by classifying archetypes based on uncertain 

parameters through Bayesian calibration. In 2018, Nagpal and colleagues [46] modeled 3 buildings with different 

numbers of unknown parameters and iteration. They found out that when envelope parameters of the buildings are 

known, the model is more precise and fast. The latest model is trained with 6 years of measured data for heating 

demand by Wang and colleagues in 2020 [47]. They have simulated the model in CitySim. Building archetypes are 

classified based on the construction year and are calibrated by the Bayesian method.  

1.1. Contribution of this work 

As mentioned in the state of the art of this study, UBEM approaches have been significantly enhanced during the 

last decade. Yet, several unsolved issues exist in automated calibration approaches. UBEM calibration is still intensive 

in computation, the reason is that it is usually non-linear and multi-modal such that calibration methods easily fail 

to be accurately processed. Unknown parameters differ from building to building depends on the building's 

properties and human behavior. Common methods in individual building calibration are not enough responsive on 

urban scales. The reason is that there are several unknown parameters on city-scale such as outdoor air temperature 

or the last date of interior renovations. The challenge becomes more complicated when the number of unknown 

parameters in calibration increases. Furthermore, although meta-models are supposed to ease the calibration 

process, they become heavy in processing since the number of sampling and evaluation of variables combination 

affects the validity of outcomes.  

Hence, to address the above-mentioned issues, a UBEM calibration technique has been proposed in this study that 

employs a coding method for classifying archetypes to cope with hundreds of buildings on the city scale. This 

approach is developed to ensure the distinction between informative and uninformative parameters and to reduce 

the computation time and cost for city governments while maintaining the robustness of calibration in UBEM 

calibrations. In this paper, the proposed technique will answer the main questions as follows:  

• How to develop a long-term urban-scale tool for energy demand prediction considering informative 

parameters for cost-effective retrofitting strategies? 

• How to integrate hundreds of buildings in one UBEM calibration while considering different unknown 

parameters for every building with computation efficiency and reliability?  

• How to strengthen UBEM calibration considering the computational burden in large-scale UBEM 

calibration?  

     

2. Materials and methodology:  

Hence, to address all the above-mentioned factors, the methodology is proposed in 4 steps as shown in Fig 1. The 

methodology consists of 3 key features; first, coding urban archetypes to enhance the time efficiency of 

computation, second, sampling the data in an equal probability distribution to ensure the combination coherency in 

all dimensions, and lastly, the involvement of informative data to optimize the complexity of calibration and 

minimize the error in the evaluation process. The details of the important improvements in the proposed method 

will be discussed in the related subsections. The proposed methodology needs various modelings and coding 

engines. In the pre-process steps QGIS was employed to identify buildings on the map and link the geometrical 

features to the shapefile. The model was more developed in Rhinoceros 7 [48] and the energy models for every 

archetype were run by EnergyPlus [49] through the Grasshopper interface, automation and result collection were 



performed using Matlab codes [50]. R-programming was employed to code the main process of calibration and to 

export the outcomes and results.   

  

Figure 1: The proposed methodology in 4 steps 

2.1. Developing a GIS database  

The input database of the methodology relies upon the accessibility of data, but the contextual analysis of the urban 

area is based on the GIS database of the existing buildings. In this step, a GIS database is proposed where the 

buildings are characterized based on definite features consist of building construction period, building function, 

number of floors, net floor area, conditioned floor area, ceiling height, building surface area, and perimeter. These 

building properties are available in municipal urban datasets. The dataset was then enriched through TABULA which 

is a source for building archetypes available for several European countries. In this methodology, a specific TABULA 

[51] for the classification of Italian buildings is employed. TABULA classifies urban buildings based on their properties 

and energy systems. To consider the renovation conditions of the buildings, the official dataset of the municipality 

has been employed as a reliable and updated source. The GIS shapefile is then merged into this database and every 

parcel is associated with a building in the district. Fig 2 illustrates the 3 steps for developing GIS datasets. Then, six 

uncertain parameters were selected to be integrated into geo-referenced data. Table 2 shows these parameters. 



Table 2:Uncertain parameters and their range for the initial calibration process 

 

 

Figure 2: Developing GIS database in three steps; step 1: extracting Bologna municipal GIS database, step 2: defining building 

properties, step 3: enriching urban dataset by TABULA 

2.2. Archetype coding  

To define representative buildings in the neighborhood, a two-steps coding algorithm is designed to generate urban 

building archetypes. In the first step, each archetype will be classified by seven definite parameters such as function, 

age, orientation, construction type, window-wall-ratio, and heating and cooling systems of the buildings as it is 

illustrated in Table 3. It should be noted that geometric parameters of the building are not included in the archetype 

coding since the 3d geometry will be considered in the white box energy modeling in EnergyPlus and their specific 

context. In the second step, six highly uncertain variables (introduced in Table 2) will be defined within specific ranges 

and the calibration process in the next steps will define the values of the uncertain variables for every archetype. 

                                                           
1 Air Change per Hour 
2 Square Meter Per Person   

Num parameter Short Names  Prior Probability 

Distribution  

Units 

1 Infiltration  INF 0-1.5 ACH1 

2 Occupant density  OCC 15-25 M2 /PP 2 

3 Heat set point  HSP 15-25 °C 

4 Cool set point  CSP 23-29 °C 

5 Equipment power density EPD 11-15 W/m2 

6 Domestic hot water flow DHW (1-20) × 10-8 m3/s/m2 



Table 3 shows the coding guideline of the building, for example, code A1234512 shows that this building is a 

residential, built-in 1901-1920, a multi-family house, with Northeast- Southwest orientation, and 40-50% window-

wall-ratio, facilitated with “gas central” heating system and “combined heating and DHW system” as the DHW 

system.        

Table 3: Classification of known and physics-based features 

  

Archetype 

coding 

Function  Building 

age 

Building type The orientation 

of facades with 

openings  

WWR Heating 

system 

DHW 

system 

 

1 Residential  Before 

1900 

Single-family 

house 

East-West Less than 

10% 

Gas-central 

heating 
Individual 

DHW sys 

per 

apartment 

 

2 Office 1901-1920 Terraced 

house 

South-North 10-20% Gas-

decentral-

heating 

Combined 

heating and 

DHW 

 

3 Retail  1920-1946 Multi-family 

house 

Southeast- 

Northwest 

20-30%  Gas-fired 

instantaneo

us water 

heater 

 

4 Hospital  1946-1960 Apartment 

Block 

Northeast- 

Southwest 

30-40%  Gas central 

DHW 

system 

 

5 School  1961-1975  All orientations 40-50%    

6 Hotel  1976-1990   50-60%    

7  1991-2005   60-70%    

8  After 2006   70-80%    

 

2.3.  Initial value setting and sampling of initial calibration 

After archetype identification, a set of values should be generated as prior distribution set for training the model. To 

ensure robust performance, the set of samples must cover the full training range equally. In the proposed 

methodology, Latin Hypercube Sampling (LHS) has been employed. LHS can generate different realizations of 

dependent random variables with any probability distribution shape. An N-dimensional LHS ensures that every 

combination of N conditions is sampled equally, while it is likely that a random sampling pattern misses a few 

combinations of conditions and samples other combinations more than once per repetition.   

2.4.  Sensitivity analysis  

To identify influential parameters on the building energy demand among six uncertain parameters, a sensitivity 

analysis should be calculated for every archetype separately since parameters’ ranks can vary from one archetype 

to another depending on the known parameters. This study employs standardized regression and random forest 

importance variables to consider linearity and non-linearity variation of the data for ranking the importance of the 

parameters based on the annual energy consumption of archetypes. R sensitivity package [52] has been used in this 

study for bootstrapping and calculation of the intervals of sensitivity index.   

 

 



2.5. Emulation  

Due to the complexity of building energy modelling in iterative calibration, a surrogate is employed to reduce the 

computation time. GP model has been selected for this step to combine simulated and observed data. For a GP 

emulation, a mean (η) and a covariance (�) functions should be defined for field measured parameters (x) with p 

number, and the target parameter for calibration (u) with q number. To do so, the equations are: 

 

∑ =  ����,
�  �
��− ∑ ������� |
�� − 

�|� − ∑ ������ |���� − �
��|������ �                  (1) 

 

∑ =  ����,
�  �
��− ∑ ������� |
�� − 

�|��   (2) 

Where:  

λη is the precision hyper-parameter  

β1,…, β p+q  correlation hyper-parameter 

The last equation for calculating the relationship between observation parameters (x) and prediction parameters (u) 

is the vector z with this definition below:  

ℒ!" #�, �� , $� , �� , $� , $%& ∝  |Σ(|)� *+ exp /− �*  (" − 1)3 ∑ (" − 1))�4 5                         (3) 

     

Σ( =  Σ� + 7Σ� + Σ8 00 0:    (4) 

Σ� matrix of the mean (η) in the GP which is the output of equation 1 

Σ�  matrix of the covariance � in the GP which is the output of equation 2 

Σ8 is the matrix of observation error  

So, the joint posterior probability relies on GP correlation hyper-parameters and precision hyper-parameters, and 

prediction parameters [27]. 

2.6. Calibration  

Bayesian calibration (Equation5) has been employed to analyze the uncertainty in every archetype, the analysis was 

carried out through a formulation introduced by Kennedy and O’Hagan [26]. The six unknown parameters will go 

through the calibration process to demonstrate whether the outputs of the simulation are compatible enough with 

observed data. The Bayesian inference equation is as follows:  

;(�|
, <) = =!
#�, <& .  =!�#<&=!
#<&    (5) 

 Where: 

x is the observed data 

u is the target uncertain parameter 



M is the building energy model  

For posterior distribution to ease sampling No-U-Turn Sampler (NUTS), an extension of the Hamiltonian Monte Carlo 

(HMC) for the MCMC sampling has been selected[53].  

In this paper, separate GP models have been employed to emulate the simulator and the discrepancy. The trained 

emulators will be new clusters for the next step of correlation.  The iteration number was set to 40,000 and validation 

has been proceeded by one data set from the test data and has been considered as the target archetype code. The 

assessment was achieved through the Coefficient of Variation of the Root Mean Squared Error (CVRMSE, Equation 

6) and the Mean Absolute Percentage Error (MAPE, equation 7).   

?@A<BC = D ∑ (EFGEF∗)IJFFKL JF8M      (6) 

 

 

 

MAPE=  ∑ RSTGST∗ST RUTTKVUT                                (7) 
 

3. Step-wise description of the method implementation in the city of Bologna  

The case study of this paper is the building stock in the Saffi area in the Saragozza-Porto quarter of the city of 

Bologna. 1156 buildings have been classified into 11 representatives. The input data is collected through the 

municipality of the city of Bologna, ARPAE Emilia-Romagna [54], local weather data, and some other public 

datasets in urban databases.  



 

Figure 3: Identification of the 11 archetypes and the sampled building for every archetype 

 

3.1. Developing a GIS database  

For this case study, the municipality of Bologna has provided a dataset for the case studies of this UBEM, which 

includes (a) Building geometry; consisting of the 3d shape and characteristics of the buildings from the GIS Shapefile. 

(b) Features of the building; overview of the building's conditioning and heating systems, restoration dates, exterior 

conditions and openings, type of the fuel used, as well as materials for façades. Fig 2 shows the steps for developing 

the GIS dataset for the city of Bologna. For energy simulation, an hourly weather file based on the year 2019 dataset 

from a local weather station near the selected neighborhood was employed. TABULA [51] has been considered as 

the source of the properties for archetypes’ materials and also conditioning systems of the buildings and lastly, the 

generated dataset has been modified with the latest changes in the neighborhood based on the official GIS file of 

the municipality.  

   

3.2. Archetype coding  

The buildings in the neighborhoods have been classified through the archetype coding algorithm.  archetypes are 

defined according to Table 3. Table 4 shows the properties of every archetype. Based on the generated code and 

properties, every building will be simulated in EnergyPlus, and Energy Use Intensity (EUI) for every archetype is 

calculated. 

 

 

 

 

 



 

 

 

3.3. Initial value setting and sampling of initial calibration  

A total of 400 sets of unknown parameters are sampled employing the LHS. From this list, 300 samples were used 

for training the model and 100 for testing it. The samples were then simulated in EnergyPlus to calculate EUI. The 

annual gas and electricity usage (kWh/m2) of every archetype is illustrated in Fig 4. Gas usage is limited to the heating 

and DHW systems due to the data availability. As Fig 4 shows, the minimum gas usage belongs to archetype 1. The 

reason is probably the material properties of this archetype, as it is demonstrated in Table 4 the materials’ R-value 

of archetype 1 is higher than other ones. On the other hand, archetype 2 has the highest level of gas consumption. 

Besides, the electricity consumption of all the archetypes is at the same level, except in archetypes 1 and 2 that 

consume the lowest and highest electricity.      

Table 4: Identification of the 11 defined archetypes based on the property details 
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Gross floor area 832 299 594 335 301 678 673 388 254 196 594 

Floor levels 7 4 4 4 4 5 5 4 4 3 5 

Room height 2.8           

Gross Volume 17871 1646 11076 3750 3160 2818 5120 6197 4337 1975 11076 

Window to wall 

ratio  

20-30% 10-20% Less than 

10%  

10-
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10-
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10-
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30% 

10-

20% 
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R-Value floor  2.88 0.89 0.89 0.11 0.11 0.4 0.4 0.4 0.4 0.4 0.4 

R-Value Roof  2.88 0.89 0.89 0.11 0.11 0.4 0.4 0.4 0.4 0.4 0.4 

R-Value Wall  3.34 0.5 0.5 0.47 0.47 0.57 0.63 0.63 0.63 0.63 0.63 

U-Value 

Windows  
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Figure 4: Annual Energy Usage Intensity of the archetypes, Electricity Use Intensity in left and Gas Use Intensity in right  

3.4. Sensitivity analysis 

As mentioned in section 2.4, sensitivity analysis in this study is calculated through two different methods: 

standardized regression coefficient and random forest variable importance. Electricity, gas, and total energy usage 

data of archetypes are employed to rank every parameter. Fig 5 shows the results of sensitivity analysis based on 

annual datasets. The results show the dominant parameter varies in different archetypes. EPD and CSP are 

constantly the most dominant parameters in electricity consumption in all the archetypes. On the other hand, the 

importance ranks for HSP, EPD, and OCC are the highest for gas usage in all the archetypes.  The least important 

parameters in both gas and electricity usage are DHW and INF. However, the ranking figure for annual energy usage 

shows a stable trend. The four most important parameters in this ranking are EPD, HSP, CSP, and OCC, while DHW 

and INF have the least impact on annual energy consumption in all the archetypes.  This ranking eases the calibration 

process, for instance, we know in the calibration of gas energy usage, the DHW does not significantly affect the 

model.  
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Figure 5: The results of the sensitivity analysis for six highly uncertain parameters 
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3.5. Calibration  

After listing the uncertain variables and ranking them, the calibration starts with the GP. As it is described in section 

2.5, GP trains an emulator to produce a combined set of observations and simulation data.  The output of this step 

will be a group of emulators by which the calibration is assessed later. HMC is applied for drawing samples out of 

the posterior distribution of parameters. The sampling is being iterated until a desired number of samples is 

collected.  

The prior and posterior distributions of six uncertain variables are shown in Fig 6. One archetype from every period 

of the archetypes is selected to illustrate the density in both prior and posterior distributions. The blue line 

demonstrates prior distribution and the red line shows the posterior distribution. It is noteworthy that when a 

parameter is not an informative variable for the calibration, it shows a wider distribution for that archetype. 

Therefore, in archetype 1, DHW and EPD are the most informative variables, these results are in accordance with 

the R-value of the construction properties in Table 3 that shows the R-value of the materials for this archetype is 

lower than other archetypes. On the other hand, CSP and HSP are the most informative parameters for archetype 6 

which is the oldest building archetype (1920-45). In all the defined archetypes, CSP is the most effective parameter.   



 

Figure 6: prior and posterior distribution of 4 archetypes, every archetype belongs to a specific built period for the sake of 

comparison. The X-axes show the value of the variable and the Y-axes show the density of the distribution. The blue line belongs 

to prior distribution and the red line stands for the posterior distribution   

The results of the calibration process are shown in Fig 7. Each histogram shows the prior and posterior predictive 

distribution of EUI values. The EUI values of posterior predictive estimations (ypred) in the histograms are based on 

1000 draws out of the posterior predictive distribution for every archetype. It is noteworthy that the range of the 

EUI values of the archetypes have been limited by the illustration frame of the prior distribution. In most of the 

histograms, the ranges for the prior distributions are compatible with the predictive values of EUI, however, for 

archetype 2 the predictive range of EUI (ypred) is not quite into the defined axes by the prior distribution. Possibly, 

the reason is the poorly designed excitation signals in the training that can happen in a data-driven model or simply 

the prior definition of the training set is not well suited to the actual data.            



 

Figure 7: prior and posterior predictive distribution of EUI values. Predictive estimations (ypred) are based on 1000 draws out of 

the posterior predictive EUI. The X-axes show the value of the EUI and the Y-axes show the frequency of the distribution. The 

blue columns illustrate prior EUI values and the red columns show the predictive values for EUI.  

3.6. Evaluation of model performance  

The accuracy of the method for forecasting the EUI corresponded to every archetype was tested through 

random draws out of the ypred from the posterior distribution. The evaluation for each archetype was performed 

on its building energy model and specific building properties. The archetypes are evaluated through two 



methods, the Coefficient of Variation of the Root Mean Squared Error (CVRMSE) and the Mean Absolute 

Percentage Error (MAPE) as illustrated respectively in equations 2 and 3. MAPE is a measure of error, an 

acceptable range for an excellent forecast in MAPE is less than 10%. However, based on the ASHRAE guideline 

the acceptable range for CVRMSE for energy prediction is less than 15% [55].   

Fig 8 shows the variation of energy prediction from the actual values of EUI based on CVRMSE and MAPE. The 

CVMRSE of all the archetypes is less than 0.5% except Archetype 1. This archetype is a new-built building model 

that is simulated based on TABULA [51]. The reason for this gap could be simply a difference in the defined 

structure, R-value of the materials in practice and simulations, or imprecise defined ranges for unknown 

parameters in input data.  

The outputs of MAPE also show the same results for Archetypes 6 and 1. To achieve a better understanding of 

the evaluation results, probably it is helpful to calculate the level of accuracy for the variables in the archetypes.         

 

 

Figure 8: Performance metrics of the 11 defined archetypes for energy demand forecasts of the training buildings and testing 

buildings 

Fig 9 shows the CVRMSE of the 6 unknown variables for every archetype in 1000 draws of the posterior distribution 

and the measured values. The results show that HSP and CSP are the most accurate estimated parameters in almost 

all the archetypes. The CVRMSE for OCC alternates in the different archetypes from 0.0035 in archetype 4 to 0.65 in 

Archetype 1. This means that the model is not precise in predicting the occupancy density in most of the archetypes. 

The results show that archetype 1 demonstrates the highest level of error in all the six variables among the 

archetypes. The reason is probably due to the large floor area in this archetype that has reduced the level of accuracy 

in modeling zones, heating and conditioning systems, and also the level of insulation.  
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Figure 9: Performance metrics of the 6 uncertain variables in the 11 archetypes 

4. Conclusion 

This paper proposed an automated calibration method for long-term energy forecasting at the city scale. The 

proposed archetype-based energy model has been applied in a neighborhood in the city of Bologna in Italy. The 

following conclusions can be obtained from this research:  

1- The presented archetype-based coding framework for the city of Bologna is based on 7 physical features 

that can be applied systematically to any urban region for classifying the urban buildings. These 7 features 

are available in most urban databases. Then, the values for six highly uncertain variables (INF, OCC, CSP, 

HSP, EPD, DHW) are estimated through Bayesian calibration. Therefore, every archetype has been defined 

based on 7 pre-calibration features and a tight range of six calibrated variables which are the most 

effective parameters in estimating building energy consumption. The coding framework is flexible and can 

be applied in any neighborhood containing hundreds of buildings with any uncertain parameters for 

forecasting energy modeling. This method can be also considered for energy forecasting of unseen 

buildings.  

2- Automated calibration can calculate the importance of parameters concerning the building energy 

consumption. Informative parameters in the calculation of EUI are estimated based on 1000 draws out of 

the posterior predictive distributions. This method provides a forecasting framework for reliable prediction 

results.  

3- The proposed model has proved a high level of accuracy with almost no bias in almost all the defined 

archetypes. The evaluation has been calculated both in EUI and also in the 6 highly uncertain variables. The 

comprehensive investigation in performance metrics clarified the concerned errors in uncertain parameters 

and the EUI.   

 

The proposed UBEM prevents monotheism in applying the same strategies in various buildings. The reliability of the 

model is proven in predicting energy demand based on CVRMSE and MAPE. The model is capable of testing scenarios 

and recognizing the most effective retrofitting strategies and accelerating the urban-scale calibration. The simple 

archetype coding makes the method appropriate for energy policymaking on the urban scale and analysis of various 

retrofitting strategies on large scale for various types of buildings.   
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Yet, there are many other aspects that this paper did not cover in the calibration of the urban energy forecasting 

models. Future studies may consider more measures for the robustness of the Bayesian calibration, and also to take 

into consideration noisy urban datasets in processing hourly and monthly databases and optimize them. Besides, 

some efforts are needed to extend the functionality of the UBEMs for high-dimensional outputs. Many proposed 

models on the building-level scale cannot be performed on urban scales due to the required computation time, thus, 

future studies can explore solutions to eliminate this gap.  

 

5. Acknowledgments: 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit 

sectors. 

 

 

References:  

[1] Gholami M, Barbaresi A, Torreggiani D, Tassinari P. Upscaling of spatial energy planning, phases, methods, 

and techniques: A systematic review through meta-analysis. Renew Sustain Energy Rev 2020;132. 

doi:10.1016/j.rser.2020.110036. 

[2] Reinhart CF, Cerezo Davila C. Urban building energy modeling - A review of a nascent field. Build Environ 

2016;97:196–202. doi:10.1016/j.buildenv.2015.12.001. 

[3] MacGregor WA, Hamdullahpur F, Ugursal VI. Space heating using small-scale fluidized beds: A 

technoeconomic evaluation. Int J Energy Res 1993;17:445–66. doi:10.1002/er.4440170602. 

[4] Kohler N, Schwaiger B, Barth B, Koch M. Mass flow, energy flow and costs of the German building stock. 

Karlsruhe; 1999. 

[5] Huang YJ, Brodrick J. A Bottom-Up Engineering Estimate of the Aggregate Heating and Cooling Loads of the 

Entire US Building Stock Prototypical Residential Buildings. 2000 ACEEE Summer Study Energy Effic Build 

2000:135–48. 

[6] Snäkin JP. An engineering model for heating energy and emission assessment. The case of North Karelia, 

Finland. Appl Energy 2000;67:353–81. doi:10.1016/S0306-2619(00)00035-0. 

[7] Shipley D, Todesco G, Adelaar  Ottawa, ON (Canada)] M [Marbek RC. Modelling a nation of buildings : 

estimating energy efficiency potential for large building samples, Canada: International Building 

Performance Simulation Association, Canadian Chapter, Ottawa, ON (Canada); 2002. 

[8] Carlo J, Ghisi E, Lamberts R, Para N, Ahorro EL. THE USE OF COMPUTER SIMULATION TO ESTABLISH 

ENERGY EFFICIENCY PARAMETERS FOR A BUILDING CODE OF A CITY IN BRAZIL LabEEE – Energy Efficiency in 

Buildings Laboratory Federal University of Santa Catarina. Methodology 2003:131–8. 

[9] Shimoda Y, Fujii T, Morikawa T, Mizuno M. Residential end-use energy simulation at city scale. Build 

Environ 2004;39:959–67. doi:10.1016/j.buildenv.2004.01.020. 

[10] Wan KSY, Yik FHW. Representative building design and internal load patterns for modelling energy use in 

residential buildings in Hong Kong. Appl Energy 2004;77:69–85. doi:10.1016/s0306-2619(03)00104-1. 

[11] Palmer J, Boardman B, Bottrill C, Darby S, Hinnells M, Killip G, et al. Reducing the environmental impact of 

housing Final Report Consultancy study in support of the Royal Commission on Environmental Pollution’s 

26 th Report on the Urban Environment 2006. 

[12] Nishio K, Asano H. A residential end-use demand model for analyzing the energy conservation potential of 

new energy efficient technologies. Proc Energy Effic Domest Appliances Light 2006. 

[13] Petersdorff C, Boermans T, Harnisch J. Mitigation of {CO}2 Emissions from the {EU}-15 Building Stock. 

Beyond the {EU} Directive on the Energy Performance of Buildings (9 pp). Environ Sci Pollut Res - Int 



2006;13:350–8. doi:10.1065/espr2005.12.289. 

[14] Clarke JA, Johnstone CM, Kim JM, Tuohy PG. Energy, Carbon and Cost Performance of Building Stocks: 

Upgrade Analysis, Energy Labelling and National Policy Development. Adv Build Energy Res 2009;3:1–20. 

doi:10.3763/aber.2009.0301. 

[15] Jonas Tornberg LTA. A GIS energy model for the building stock of Goteborg Jonas 2012. 

[16] Ballarini I, Corgnati SP, Corrado V. Use of reference buildings to assess the energy saving potentials of the 

residential building stock: The experience of {TABULA} project. Energy Policy 2014;68:273–84. 

doi:10.1016/j.enpol.2014.01.027. 

[17] Cerezo C, Dogan T, Reinhart CF. TOWARDS STANDARIZED BUILDING PROPERTIES TEMPLATE FILES FOR 

EARLY DESIGN ENERGY MODEL GENERATION Massachusetts Institute of Technology , Cambridge , MA 

2014. 

[18] Yang G, Li Z, Augenbroe G. Development of prototypical buildings for urban scale building energy 

modeling: A reduced order energy model approach. Sci Technol Built Environ 2017;24:33–42. 

doi:10.1080/23744731.2017.1328943. 

[19] Tian W, Heo Y, de Wilde P, Li Z, Yan D, Park CS, et al. A review of uncertainty analysis in building energy 

assessment. Renew Sustain Energy Rev 2018;93:285–301. doi:10.1016/j.rser.2018.05.029. 

[20] Cerezo Davila C, Reinhart CF, Bemis JL. Modeling Boston: A workflow for the efficient generation and 

maintenance of urban building energy models from existing geospatial datasets. Energy 2016;117:237–50. 

doi:10.1016/j.energy.2016.10.057. 

[21] Sokol J, Cerezo Davila C, Reinhart CF. Validation of a Bayesian-based method for defining residential 

archetypes in urban building energy models. Energy Build 2017;134:11–24. 

doi:10.1016/j.enbuild.2016.10.050. 

[22] Chen J, Gao X, Hu Y, Zeng Z, Liu Y. A meta-model-based optimization approach for fast and reliable 

calibration of building energy models. Energy 2019;188:116046. doi:10.1016/j.energy.2019.116046. 

[23] Li H, Li X, Qi M. Field testing of natural ventilation in college student dormitories (Beijing, China). Build 

Environ 2014;78:36–43. doi:10.1016/j.buildenv.2014.04.009. 

[24] Huang P, Huang G, Wang Y. HVAC system design under peak load prediction uncertainty using multiple-

criterion decision making technique. Energy Build 2015;91:26–36. doi:10.1016/j.enbuild.2015.01.026. 

[25] Tian W, Choudhary R. A probabilistic energy model for non-domestic building sectors applied to analysis of 

school buildings in greater London. Energy Build 2012;54:1–11. doi:10.1016/j.enbuild.2012.06.031. 

[26] Kennedy MC, Hagan AO. Bayesian calibration of computer models. J R Stat Soc B 2001:425–65. 

[27] Chong A, Menberg K. Guidelines for the Bayesian calibration of building energy models. Energy Build 

2018;174:527–47. doi:10.1016/j.enbuild.2018.06.028. 

[28] Fernández M, Conde B, Eguía P, Granada E. Parameter identification of a round-robin test box model using 

a deterministic and probabilistic methodology. J Build Perform Simul 2018;11:623–38. 

doi:10.1080/19401493.2017.1420824. 

[29] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE 

Trans Evol Comput 2002;6:182–97. doi:10.1109/4235.996017. 

[30] Taheri M, Kingdom U, Tahmasebi F. A Case Study of Optimization-Aided Thermal Building Performance 

Simulation Calibration A CASE STUDY OF OPTIMIZATION-AIDED THERMAL BUILDING PERFORMANCE 

SIMULATION CALIBRATION Mahnameh Taheri , Farhang Tahmasebi , Ardeshir Mahdavi Vienna University 



of Techn 2013. 

[31] Wetter M. GenOpt®-A Generic Optimization Program GenOpt Ö-A Generic Optimization Program. 2001. 

[32] Li W, Tian Z, Lu Y, Fu F. Stepwise calibration for residential building thermal performance model using 

hourly heat consumption data. Energy Build 2018;181:10–25. doi:10.1016/j.enbuild.2018.10.001. 

[33] Yang T, Pan Y, Mao J, Wang Y, Huang Z. An automated optimization method for calibrating building energy 

simulation models with measured data: Orientation and a case study. Appl Energy 2016;179:1220–31. 

doi:10.1016/j.apenergy.2016.07.084. 

[34] Asadi S, Mostavi E, Boussaa D, Indaganti M. Building energy model calibration using automated 

optimization-based algorithm. Energy Build 2019;198:106–14. doi:10.1016/j.enbuild.2019.06.001. 

[35] Chaudhary G, New J, Sanyal J, Im P, O’Neill Z, Garg V. Evaluation of “Autotune” calibration against manual 

calibration of building energy models. Appl Energy 2016;182:115–34. doi:10.1016/j.apenergy.2016.08.073. 

[36] Chen J, Gao X, Hu Y, Zeng Z, Liu Y. A meta-model-based optimization approach for fast and reliable 

calibration of building energy models. Energy 2019;188:116046. doi:10.1016/j.energy.2019.116046. 

[37] Manfren M, Aste N, Moshksar R. Calibration and uncertainty analysis for computer models - A meta-model 

based approach for integrated building energy simulation. Appl Energy 2013;103:627–41. 

doi:10.1016/j.apenergy.2012.10.031. 

[38] Lim H, Zhai Z (John). Influences of energy data on Bayesian calibration of building energy model. Appl 

Energy 2018;231:686–98. doi:10.1016/j.apenergy.2018.09.156. 

[39] Lim H, Zhai ZJ. Comprehensive evaluation of the influence of meta-models on Bayesian calibration. Energy 

Build 2017;155:66–75. doi:10.1016/j.enbuild.2017.09.009. 

[40] Booth AT, Choudhary R, Spiegelhalter DJ. Handling uncertainty in housing stock models. Build Environ 

2012;48:35–47. doi:10.1016/j.buildenv.2011.08.016. 

[41] Booth AT, Choudhary R, Spiegelhalter DJ. A hierarchical bayesian framework for calibrating micro-level 

models with macro-level data. J Build Perform Simul 2013;6:293–318. doi:10.1080/19401493.2012.723750. 

[42] Booth AT, Choudhary R. Decision making under uncertainty in the retrofit analysis of the UK housing stock: 

Implications for the Green Deal. Energy Build 2013;64:292–308. doi:10.1016/j.enbuild.2013.05.014. 

[43] Kim J-H, Augenbroe G, Suh H-S, Wang Q. DOMESTIC BUILDING ENERGY PREDICTION IN DESIGN STAGE 

UTILIZING LARGE-SCALE CONSUMPTION DATA FROM REALIZED PROJECTS 2015. 

[44] Zhao F, Lee SH, Augenbroe G. Reconstructing building stock to replicate energy consumption data. Energy 

Build 2016;117:301–12. doi:10.1016/j.enbuild.2015.10.001. 

[45] Evins R, Orehounig K, Dorer V. Variability between domestic buildings: the impact on energy use. J Build 

Perform Simul 2016;9:162–75. doi:10.1080/19401493.2015.1006526. 

[46] Nagpal S, Mueller C, Aijazi A, Reinhart CF. A methodology for auto-calibrating urban building energy 

models using surrogate modeling techniques. J Build Perform Simul 2019;12:1–16. 

doi:10.1080/19401493.2018.1457722. 

[47] Wang CK, Tindemans S, Miller C, Agugiaro G, Stoter J. Bayesian calibration at the urban scale: a case study 

on a large residential heating demand application in Amsterdam. J Build Perform Simul 2020;13:347–61. 

doi:10.1080/19401493.2020.1729862. 

[48] McNeel R and others. Rhinoceros 3D, Version 7.0. Robert McNeel \& Assoc Seattle, WA 2021. 

[49] U.S. Department of Energy. EnergyPlus | EnergyPlus. US Dep Energy 2020. 



[50] Mathworks. Matlab R2017b 2017. 

[51] Corrado V, Ballarini I, Corgnati SP. Typology Approach for Building Stock National scientific report on the 

TABULA activities in Italy. 2012. 

[52] Bertrand Iooss A, Da Veiga S, Janon A, Pujol G, contribu-tions from Baptiste Broto  with, Boumhaout K, et 

al. Package “sensitivity” Title Global Sensitivity Analysis of Model Outputs. 2020. 

[53] Betancourt M. A Conceptual Introduction to Hamiltonian Monte Carlo. 2018. 

[54] ARPAE. Hydro-Weather-Climate, dexter system 2020. 

[55] Shailza. ENERGY MODELING OF MULTI-STORIED RESIDENTIAL BUILDINGS-A MANUAL CALIBRATION 

APPROACH. 2018 Build. Perform. Anal. Conf. SimBuild co-organized by ASHRAE IBPSA-USA, Chicago, IL: 

2018. 

 


